research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of poly[(μ3-4-amino-1,2,5-oxa­diazole-3-hydroxamato)thallium(I)]

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, National Taras Shevchenko University of Kyiv, Volodymyrska Street 64, Kyiv, 01601, Ukraine, bSSI "Institute for Single Crystals", National Academy of Sciences of Ukraine, Nauky ave. 60, 61001 Kharkiv, Ukraine, and cDepartment of General Chemistry, O.O. Bohomolets National Medical University, Shevchenko Blvd. 13, 01601 Kyiv, Ukraine
*Correspondence e-mail: sssafyanova@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 18 November 2019; accepted 4 February 2020; online 11 February 2020)

The title compound represents the thallium(I) salt of a substituted 1,2,5-oxa­diazole, [Tl(C3H3N4O3)]n, with amino- and hydroxamate groups in the 4- and 3- positions of the oxa­diazole ring, respectively. In the crystal, the deprotonated hydroxamate group represents an inter­mediate between the keto/enol tautomers and forms a five-membered chelate ring with the thallium(I) cation. The coordination sphere of the cation is augmented to a distorted disphenoid by two monodentately binding O atoms from two adjacent anions, leading to the formation of zigzag chains extending parallel to the b axis. The cohesion within the chains is supported by ππ stacking [centroid–centroid distance = 3.746 (3) Å] and inter­molecular N—H⋯N hydrogen bonds.

1. Chemical context

Substituted oxa­diazo­les attract attention because of their wide range of applications in organic synthesis as useful inter­mediates (Romeo & Chiacchio, 2011[Romeo, G. & Chiacchio, U. (2011). Modern Heterocyclic Chemistry, edited by J. Alvarez-Builla, J. J. Vaquero & J. Barluenga, pp. 1047-1252. Weinheim: Wiley-VCH.]; Zlotin et al., 2017[Zlotin, S. G., Churakov, A. M., Dalinger, I. L., Luk'yanov, O. A., Makhova, N. N., Sukhorukov, A. Yu. & Tartakovsky, V. A. (2017). Mendeleev Commun. 27, 535-546.]) and for drug design (Giorgis et al., 2011[Giorgis, M., Lolli, M. L., Rolando, B., Rao, A., Tosco, P., Chaurasia, S., Marabello, D., Fruttero, R. & Gasco, A. (2011). Eur. J. Med. Chem. 46, 383-392.]; Pal et al., 2017[Pal, P., Gandhi, H. P., Kanhed, A. M., Patel, N. R., Mankadia, N. N., Baldha, S. N., Barmade, M. A., Murumkar, P. R. & Yadav, M. R. (2017). Eur. J. Med. Chem. 130, 107-123.]; Stepanov et al., 2015[Stepanov, A. I., Astrat'ev, A. A., Sheremetev, A. B., Lagutina, N. K., Palysaeva, N. V., Tyurin, A. Yu., Aleksandrova, N. S., Sadchikova, N. P., Suponitsky, K. Yu., Atamanenko, O. P., Konyushkin, L. D., Semenov, R. V., Firgang, S. I., Kiselyov, A. S., Semenova, M. N. & Semenov, V. V. (2015). Eur. J. Med. Chem. 94, 237-251.]). In addition, mol­ecules with the oxa­diazole moiety can be considered for the creation of energetic systems (Zhang et al., 2015[Zhang, J., Mitchell, L. A., Parrish, D. A. & Shreeve, J. M. (2015). J. Am. Chem. Soc. 137, 10532-10535.]) with high thermal stability and mechanical sensitivity. The variety of coordination modes typical for oxa­diazole-containing ligands result in the formation of multiple mono- and polynuclear complexes, as well as coord­ination polymers (Akhbari & Morsali, 2010[Akhbari, K. & Morsali, A. (2010). Coord. Chem. Rev. 254, 1977-2006.]). Complexes with oxa­diazole-based ligands have demonstrated significant biological activity as anti-cancer (Glomb et al., 2018[Glomb, T., Szymankiewicz, K. & Świątek, P. (2018). Molecules, 23, 3361-3377.]), anti-inflammatory (Singh et al., 2013[Singh, A. K., Lohani, M. & Parthsarthy, R. (2013). Iran. J. Pharm. Res. 12, 319-323.]), anti-tuberculosis (De et al., 2019[De, S., Khambete, M. P. & Degani, M. S. (2019). Bioorg. Med. Chem. Lett. 29, 1999-2007.]) and anti-malarial (Zareef et al., 2007[Zareef, M. I., Iqbal, R., De Dominguez, N. G., Rodrigues, J., Zaidi, J. H., Arfan, M. & Supuran, C. T. (2007). J. Enzyme Inhib. Med. Chem. 22, 301-308.]) agents.

However, the standard synthetic procedures for oxa­diazole-containing scaffolds usually utilizes the dehydrative cyclization of bis-oximes, which is performed at high temperatures (Fershtat & Makhova, 2016[Fershtat, L. L. & Makhova, N. N. (2016). Russ. Chem. Rev. 85, 1097-1145.]; Romeo & Chiacchio, 2011[Romeo, G. & Chiacchio, U. (2011). Modern Heterocyclic Chemistry, edited by J. Alvarez-Builla, J. J. Vaquero & J. Barluenga, pp. 1047-1252. Weinheim: Wiley-VCH.]) and often includes the introduction of different activating reagents (Shaposhnikov et al., 2003[Shaposhnikov, S., Pirogov, S. V., Mel'nikova, S. F., Tselinsky, I. V., Näther, C., Graening, T., Traulsen, T. & Friedrichsen, W. (2003). Tetrahedron, 59, 1059-1066.]; Telvekar & Takale, 2013[Telvekar, V. N. & Takale, B. S. (2013). Synth. Commun. 43, 221-227.]). A convenient procedure for the synthesis of substituted 4-amino-1,2,5-oxa­diazo­les based on the formation of bis-oximes in situ from the hydroxyl­amine and cyano-oximes was recently proposed (Neel & Zhao, 2018[Neel, A. J. & Zhao, R. (2018). Org. Lett. 20, 2024-2027.]). The introduction of dehydrating agents allows a significant decrease in the temperature during reaction, gave the possibility to synthesize substituted 1,2,5-oxa­diazo­les with various side functional groups. In this regard, we have adapted the synthetic procedure for 1,2,5-oxa­diazole with amino- and hydroxamate groups in the 4- and 3- position of the 1,2,5-oxa­diazole ring, respectively, and report here the thallium(I) salt of this compound, 1, Tl(C3H3N4O3). The introduction of a hydroxamic group at the 1,2,5-oxa­diazole ring allows the consideration of potentially inter­esting ligand systems for the synthesis of various polynuclear complexes (Pavlishchuk et al., 2018[Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Lofland, S. E. & Addison, A. W. (2018). Eur. J. Inorg. Chem. pp. 3504-3511.]; Lutter et al., 2018[Lutter, J. C., Zaleski, C. M. & Pecoraro, V. L. (2018). Adv. Inorg. Chem. 177-246.]; Ostrowska et al., 2019[Ostrowska, M., Golenya, I. A., Haukka, M., Fritsky, I. O. & Gumienna-Kontecka, E. (2019). New J. Chem. 43, 10237-10249.]; Gumienna-Kontecka et al., 2007[Gumienna-Kontecka, E., Golenya, I. A., Dudarenko, N. M., Dobosz, A., Haukka, M., Fritsky, I. O. & Swiatek-Kozlowska, J. (2007). New J. Chem. 31, 1798-1805.]).

[Scheme 1]

2. Structural commentary

The asymmetric unit of 1 comprises one 4-amino-1,2,5-oxa­diazole-3 hydroxamate anion and a thallium(I) cation. The oxa­diazole ring C2/C3/N2/O3/N3 is almost planar with the largest deviation from the least-squares plane being 0.007 Å for C2. The C2=N2 and C3=N3 bond lengths [1.304 (14) and 1.329 (11) Å, respectively] are typical for C=N double bonds in substituted oxa­diazole cycles (Viterbo & Serafino, 1978[Viterbo, D. & Serafino, A. (1978). Acta Cryst. B34, 3444-3446.]), and the N2—O3 and N3—O3 bonds [1.365 (11) and 1.419 (11) Å, respectively] also fall in a range typical for 1,2,5-oxa­diazo­les (Fonari et al., 2003[Fonari, M. S., Simonov, Yu. A., Kravtsov, V. Ch., Lipkowski, J., Ganin, E. V. & Yavolovskii, A. A. (2003). J. Mol. Struct. 647, 129-140.]; Viterbo & Serafino, 1978[Viterbo, D. & Serafino, A. (1978). Acta Cryst. B34, 3444-3446.]). The substituent amino- and hydroxamate groups in the 4- and 3- positions, respectively, of the 1,2,5-oxa­diazole ring are nearly coplanar with the oxa­diazole ring, with a deviation of 0.071 Å for nitro­gen atom N4 of the amino group and a dihedral angle between the mean plane of the heterocycle and the hydroxamate group C1/O2/N1/O1 of 8.4 (4)°. The C3—N4 [1.360 (13) Å] and N1—O1 [1.412 (9) Å] bond lengths are typical for a non-coordinating amino group (Fonari et al., 2003[Fonari, M. S., Simonov, Yu. A., Kravtsov, V. Ch., Lipkowski, J., Ganin, E. V. & Yavolovskii, A. A. (2003). J. Mol. Struct. 647, 129-140.]; Viterbo & Serafino, 1978[Viterbo, D. & Serafino, A. (1978). Acta Cryst. B34, 3444-3446.]) and for a deprotonated hydroxamate group (Golenya et al., 2012[Golenya, I. A., Gumienna-Kontecka, E., Boyko, A. N., Haukka, M. & Fritsky, I. O. (2012). Inorg. Chem. 51, 6221-6227.]; Safyanova et al., 2017[Safyanova, I. S., Ohui, K. A. & Omelchenko, I. V. (2017). Acta Cryst. E73, 24-27.]), respectively. On the other hand, the C1—N1 [1.314 (12) Å] and C1—O2 [1.275 (11) Å] bond lengths are inter­mediate between the tautomeric keto and enol forms (Larsen, 1988[Larsen, I. K. (1988). Acta Cryst. B44, 527-533.]), accompanied by a delocalization of the π electrons over the N1—C1—O2 backbone and a disorder of the corresponding hydrogen atom that could not be localized from difference-Fourier maps.

The Tl1 cation in 1 is bonded to the bidentate hydroxamate anion through oxygen atoms O1 [2.814 (7) Å] and O2 [2.537 (7) Å] in the form of a five-membered chelate ring. The coordination sphere of the Tl1 cation in 1 is augmented to four by two monodentately binding O2 atoms of two adjacent oxa­diazole moieties with distances of Tl1—O2ii = 2.880 (7) Å and Tl1—O2i = 2.761 (7) Å [symmetry codes: (i) −x, y + [{1\over 2}], −z + [{3\over 2}]; (ii) −x, y − [{1\over 2}], −z + [{3\over 2}]] (Fig. 1[link]). The bond length Tl1—O2 is ca 0.2–0.3 Å shorter in the case of the chelating coordination mode of the hydroxamate group compared with the monodentate coordination mode. Thus, each O2 atom is involved in a chelate coordination with one Tl1 ion and in a monodentate coordination with two other Tl1 ions, forming zigzag chains extending along the b-axis direction (Fig. 2[link]). The Tl—O bond lengths involving the hydroxamate oxygen atoms in 1 are typical for TlI compounds (Salassa & Terenzi, 2019[Salassa, G. & Terenzi, A. (2019). Int. J. Mol. Sci. 20, 3483-3500.]), and the formation of similar polymeric chains is frequently observed for TlI complexes (Akhbari et al., 2009[Akhbari, K., Alizadeh, K., Morsali, A. & Zeller, M. (2009). Inorg. Chim. Acta, 362, 2589-2594.]). The resulting coordination sphere of Tl1 can be best described as a distorted seesaw (SS-4) or disphenoid with a stereochemically active lone pair (Mudring & Rieger, 2005[Mudring, A. V. & Rieger, F. (2005). Inorg. Chem. 44, 6240-6243.]). If longer bonds are taken into account (Akhbari & Morsali, 2010[Akhbari, K. & Morsali, A. (2010). Coord. Chem. Rev. 254, 1977-2006.]; Schroffenegger et al., 2020[Schroffenegger, M., Eder, F., Weil, M., Stöger, B., Schwendtner, K. & Kolitsch, U. (2020). J. Alloys Compd. 820, 153369.]), the Tl1 cation also has weak inter­actions at 3.453 (8), 3.289 (9), 3.385 (7) and 3.219 (8) Å with O3iv, N2ii, O1v and O3vi [symmetry codes: (iv) x, −y + [{3\over 2}], z + [{1\over 2}]; (v) x, y + 1, z; (vi) x, −y + [{1\over 2}], z + [{1\over 2}]] atoms from another three oxa­diazole moieties. The closest contact between adjacent Tl1 cations within a zigzag chain is 3.7458 (5) Å.

[Figure 1]
Figure 1
A fragment of the crystal structure of 1 showing the coordination environment of the Tl1 ions with displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (i) 1 + x, y, z; (ii) 1 − x, [{1\over 2}] + y, [{3\over 2}] − z; (iii) 1 + x, 1 + y, z; (iv) 1 − x, −[{1\over 2}] + y, [{3\over 2}] − z; (v) 1 − x, [{3\over 2}] + y, [{3\over 2}] − z.]
[Figure 2]
Figure 2
The formation of polymeric zigzag chains in 1. [Symmetry codes: (i) 1 + x, y, z; (ii) 1 − x, [{1\over 2}] + y, [{3\over 2}] − z; (iii) 1 + x, 1 + y, z; (iv) 1 − x, −[{1\over 2}] + y, [{3\over 2}] − z; (v) 1 − x, [{3\over 2}] + y, [{3\over 2}] − z.]

3. Supra­molecular features

In the crystal, the oxa­diazole rings are stacked in a parallel manner with a centroid–centroid distance = 3.746 (3) Å (Fig. 1[link]). Together with weak inter­molecular hydrogen bonds between the amino group (N4) and two nitro­gen atoms from the azolo (N3) and the hydroxamic (N1) group (Table 1[link], Fig. 3[link]) they support the cohesion of the chains along the b-axis direction.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯N3i 0.93 2.23 3.156 (10) 169
N4—H4B⋯N1ii 1.01 2.65 3.256 (13) 118
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 3]
Figure 3
Packing diagram of 1, with hydrogen bonds indicated by dashed lines.

4. Database survey

A search in the Cambridge Structural Database (CSD version 5.39, update of May 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for substituted oxa­diazo­les revealed two structures, viz. 3-amino-4-methyl­furazan (Pibiri et al., 2018[Pibiri, I., Lentini, L., Melfi, R., Tutone, M., Baldassano, S., Galluzzo, P. R., Di Leonardo, A. & Pace, A. (2018). Eur. J. Med. Chem. 159, 126-142.]) and 4-amino-1,2,5-oxa­diazole-3-carboxamide oxime (Zhang & Jian, 2009[Zhang, H. & Jian, F. (2009). Acta Cryst. E65, o2911.]). TlI complexes with comparable organic ligands have been reported for thallium (anthrano­yl)anthranilate (Wiesbrock & Schmidbaur, 2004[Wiesbrock, F. & Schmidbaur, H. (2004). J. Inorg. Biochem. 98, 473-484.]), thallium(I) 2-amino-benzoate (Wiesbrock & Schmidbaur, 2003[Wiesbrock, F. & Schmidbaur, H. (2003). J. Am. Chem. Soc. 125, 3622-3630.]), thallium(I) aryl­cyanoxime (Robertson et al., 2004[Robertson, D., Barnes, C. & Gerasimchuk, N. (2004). J. Coord. Chem. 57, 1205-1216.]) [Tl4(H2O)2(anthracene-9-carboxyl­ate)4] (Kumar et al., 2015[Kumar, S., Sharma, R. P., Saini, A., Venugopalan, P. & Starynowicz, P. (2015). J. Mol. Struct. 1079, 291-297.]), bis­[(μ-1,3-di­phenyl­propane-1,3-dionato-O,O′:O′)di­methylthallium] (Britton, 2001[Britton, D. (2001). Acta Cryst. E57, m176-m178.]) and thallium(I) 4-hy­droxy­benzyl­idene-4-amino­benzoate (Akhbari et al., 2009[Akhbari, K., Alizadeh, K., Morsali, A. & Zeller, M. (2009). Inorg. Chim. Acta, 362, 2589-2594.]).

5. Synthesis and crystallization

The title compound was obtained according to a modification of the procedure reported by Neel & Zhao (2018[Neel, A. J. & Zhao, R. (2018). Org. Lett. 20, 2024-2027.]) (Fig. 4[link]). Solutions containing 5 mmol of hydroxyl­amine hydro­chloride in 10 ml of methanol, and 10 mmol of sodium methoxide in 15 ml of methanol were stirred for 30 min while cooling in an ice bath. The formed precipitate of sodium chloride was filtered off. The methano­lic solutions of ethyl-2-cyano-2-(hy­droxy­imino)­acetate (5 mmol) and hydroxyl­amine were combined and stirred for 5 h at room temperature. The resulting white precipitate was filtered off and dissolved in 5 ml of water, followed by HCl addition to pH = 5. The organic compound was extracted with ethyl acetate; the extract was subsequently dried over anhydrous Na2SO4, and the solvent was finally removed by rotary evaporation. Colorless crystals of 1 suitable for single crystal X-ray analysis were obtained by combining the organic compound with thallium(I) nitrate in iso­propanol and subsequent slow evaporation of the solvent at ambient temperature within 48 h (yield 16.5%).

[Figure 4]
Figure 4
Synthesis scheme for 4-amino-1,2,5-oxa­diazole-3 hydroxamate thallium(I).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atoms of the amino group were located from a difference-Fourier map; their coordinates were refined freely with Uiso(H) = 1.2Ueq(N). The hydrogen atom of the hydroxamate function could not be observed in difference-Fourier maps, and a tentative calculated position was in too close vicinity to atom H4B of the amino group. Most probably, the hydroxamate H atom is disordered over the N1—C1—O2 backbone due to the presence of both tautomeric forms. Hence, this H atom is not included in the final model. The highest remaining electron density is located 0.88 Å from Tl1.

Table 2
Experimental details

Crystal data
Chemical formula [Tl(C3H3N4O3)]
Mr 347.46
Crystal system, space group Monoclinic, P21/c
Temperature (K) 298
a, b, c (Å) 10.0731 (4), 3.74576 (18), 16.9805 (6)
β (°) 95.808 (4)
V3) 637.41 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 25.30
Crystal size (mm) 0.2 × 0.2 × 0.2
 
Data collection
Diffractometer Agilent Xcalibur Sapphire3 CCD
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.231, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 4634, 1452, 1320
Rint 0.056
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.111, 1.07
No. of reflections 1452
No. of parameters 100
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 6.17, −2.23
Computer programs: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), SHELXT (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), olex2.refine (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXT (Sheldrick, 2015); program(s) used to refine structure: olex2.refine (Bourhis et al., 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Poly[(µ3-4-amino-1,2,5-oxadiazole-3-hydroxamato)thallium(I)] top
Crystal data top
[Tl(C3H3N4O3)]F(000) = 612
Mr = 347.46Dx = 3.610 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.0731 (4) ÅCell parameters from 216 reflections
b = 3.74576 (18) Åθ = 4.4–22.3°
c = 16.9805 (6) ŵ = 25.30 mm1
β = 95.808 (4)°T = 298 K
V = 637.41 (5) Å3Block, clear colourless
Z = 40.2 × 0.2 × 0.2 mm
Data collection top
Agilent Xcalibur Sapphire3 CCD
diffractometer
1320 reflections with I > 2σ(I)
ω scansRint = 0.056
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
θmax = 27.5°, θmin = 3.0°
Tmin = 0.231, Tmax = 1.000h = 1313
4634 measured reflectionsk = 44
1452 independent reflectionsl = 2219
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0629P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
1452 reflectionsΔρmax = 6.17 e Å3
100 parametersΔρmin = 2.23 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Tl10.05880 (4)0.45183 (11)0.86058 (2)0.03141 (19)
O20.1164 (7)0.4279 (17)0.7187 (4)0.0298 (15)
O10.2851 (8)0.0779 (19)0.8210 (4)0.0339 (17)
O30.2375 (8)0.4924 (18)0.4946 (5)0.0339 (17)
N20.1809 (10)0.510 (2)0.5642 (6)0.0299 (19)
N10.3245 (8)0.148 (2)0.7450 (4)0.0301 (17)
C10.2298 (9)0.319 (2)0.7013 (5)0.0257 (18)
N40.4966 (9)0.110 (2)0.6207 (5)0.0339 (19)
H4A0.5287660.0410400.5833760.041*
H4B0.4826660.0241600.6754760.041*
N30.3648 (8)0.328 (2)0.5070 (4)0.0332 (18)
C20.2653 (9)0.367 (3)0.6185 (5)0.0267 (18)
C30.3828 (9)0.254 (2)0.5839 (5)0.0243 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tl10.0281 (3)0.0419 (3)0.0240 (3)0.00530 (14)0.00185 (18)0.00084 (13)
O20.019 (3)0.047 (4)0.024 (3)0.002 (3)0.004 (3)0.002 (3)
O10.026 (4)0.053 (4)0.023 (4)0.001 (3)0.004 (3)0.006 (3)
O30.030 (4)0.049 (4)0.023 (4)0.001 (3)0.002 (3)0.003 (3)
N20.028 (5)0.040 (4)0.022 (4)0.004 (3)0.003 (4)0.003 (3)
N10.027 (4)0.041 (4)0.023 (4)0.005 (4)0.005 (3)0.002 (3)
C10.032 (5)0.024 (4)0.022 (4)0.002 (4)0.003 (4)0.004 (3)
N40.031 (5)0.044 (5)0.029 (4)0.008 (4)0.011 (4)0.001 (4)
N30.028 (4)0.042 (5)0.028 (4)0.009 (4)0.000 (3)0.002 (4)
C20.020 (4)0.029 (4)0.030 (5)0.002 (4)0.001 (4)0.005 (4)
C30.023 (4)0.030 (4)0.020 (4)0.004 (3)0.000 (3)0.006 (3)
Geometric parameters (Å, º) top
Tl1—O22.537 (7)O1—N11.412 (9)
Tl1—O2i2.761 (7)O3—N21.365 (11)
Tl1—O12.814 (7)O3—N31.419 (11)
Tl1—O2ii2.880 (7)N2—C21.304 (14)
Tl1—O3iii3.219 (8)N1—C11.314 (12)
Tl1—N2ii3.289 (9)C1—C21.497 (11)
Tl1—C1i3.291 (9)N4—C31.360 (13)
Tl1—O1iv3.385 (7)N4—H4A0.9324
Tl1—C13.387 (8)N4—H4B1.0077
Tl1—O3v3.453 (8)N3—C31.329 (11)
O2—C11.275 (11)C2—C31.437 (11)
O2—Tl1—O2i75.9 (2)N1—O1—Tl1vi124.6 (6)
O2—Tl1—O159.1 (2)Tl1—O1—Tl1vi73.70 (15)
O2i—Tl1—O1134.3 (2)N1—O1—Tl1ii69.9 (5)
O2—Tl1—O2ii73.8 (2)Tl1—O1—Tl1ii67.89 (16)
O2i—Tl1—O2ii83.2 (2)Tl1vi—O1—Tl1ii64.47 (13)
O1—Tl1—O2ii91.3 (2)N2—O3—N3110.1 (8)
O2—Tl1—O3iii119.2 (2)N2—O3—Tl1vii112.7 (6)
O2i—Tl1—O3iii164.3 (2)N3—O3—Tl1vii108.2 (5)
O1—Tl1—O3iii60.21 (19)N2—O3—Tl1viii107.8 (5)
O2ii—Tl1—O3iii104.50 (19)N3—O3—Tl1viii139.7 (5)
O2—Tl1—O1iv67.2 (2)Tl1vii—O3—Tl1viii68.20 (17)
O2i—Tl1—O1iv82.28 (19)N2—O3—Tl1i29.7 (5)
O1—Tl1—O1iv73.70 (16)N3—O3—Tl1i137.7 (5)
O2ii—Tl1—O1iv140.56 (18)Tl1vii—O3—Tl1i103.6 (2)
O3iii—Tl1—O1iv99.15 (19)Tl1viii—O3—Tl1i78.16 (14)
O2—Tl1—O3v119.6 (2)N2—O3—Tl1ii36.6 (5)
O2i—Tl1—O3v101.3 (2)N3—O3—Tl1ii111.1 (5)
O1—Tl1—O3v94.4 (2)Tl1vii—O3—Tl1ii78.51 (15)
O2ii—Tl1—O3v166.55 (18)Tl1viii—O3—Tl1ii107.4 (2)
O3iii—Tl1—O3v68.20 (17)Tl1i—O3—Tl1ii49.53 (8)
O1iv—Tl1—O3v52.89 (17)C2—N2—O3107.0 (8)
Tl1—O2—Tl1ii106.8 (2)C1—N1—O1110.6 (7)
C1—O2—Tl1i129.1 (6)O2—C1—N1129.9 (8)
Tl1—O2—Tl1i103.4 (2)O2—C1—C2118.9 (9)
Tl1ii—O2—Tl1i83.2 (2)N1—C1—C2111.1 (7)
C1—O2—Tl1vi91.8 (5)C3—N4—H4A105.2
Tl1—O2—Tl1vi57.29 (13)C3—N4—H4B111.1
Tl1ii—O2—Tl1vi67.75 (13)H4A—N4—H4B121.6
Tl1i—O2—Tl1vi134.9 (2)C3—N3—O3105.6 (6)
C1—O2—Tl1iv123.5 (6)N2—C2—C3109.7 (8)
Tl1—O2—Tl1iv54.51 (12)N2—C2—C1120.8 (8)
Tl1ii—O2—Tl1iv133.3 (2)C3—C2—C1129.3 (9)
Tl1i—O2—Tl1iv64.69 (12)N3—C3—N4124.0 (7)
Tl1vi—O2—Tl1iv111.80 (14)N3—C3—C2107.6 (8)
N1—O1—Tl1115.8 (5)N4—C3—C2128.3 (8)
N3—O3—N2—C20.1 (10)Tl1vi—N1—C1—Tl1i74.4 (19)
Tl1vii—O3—N2—C2120.8 (7)O1—N1—C1—Tl1vi38.2 (6)
Tl1viii—O3—N2—C2166.0 (6)Tl1—N1—C1—Tl1vi48.4 (2)
Tl1i—O3—N2—C2161.9 (14)Tl1ii—N1—C1—Tl1vi29.4 (5)
Tl1ii—O3—N2—C298.6 (9)N2—O3—N3—C30.6 (10)
N3—O3—N2—Tl1i161.8 (7)Tl1vii—O3—N3—C3124.1 (6)
Tl1vii—O3—N2—Tl1i77.3 (8)Tl1viii—O3—N3—C3158.3 (6)
Tl1viii—O3—N2—Tl1i4.1 (10)Tl1i—O3—N3—C312.7 (11)
Tl1ii—O3—N2—Tl1i99.5 (12)Tl1ii—O3—N3—C339.7 (8)
N3—O3—N2—Tl1ii98.7 (9)N2—O3—N3—Tl1vii123.5 (7)
Tl1vii—O3—N2—Tl1ii22.2 (9)Tl1viii—O3—N3—Tl1vii77.5 (7)
Tl1viii—O3—N2—Tl1ii95.4 (6)Tl1i—O3—N3—Tl1vii136.8 (8)
Tl1i—O3—N2—Tl1ii99.5 (12)Tl1ii—O3—N3—Tl1vii84.4 (3)
N3—O3—N2—Tl1vii120.9 (7)N2—O3—N3—Tl1viii158.9 (12)
Tl1viii—O3—N2—Tl1vii73.2 (4)Tl1vii—O3—N3—Tl1viii77.5 (7)
Tl1i—O3—N2—Tl1vii77.3 (8)Tl1i—O3—N3—Tl1viii145.6 (13)
Tl1ii—O3—N2—Tl1vii22.2 (9)Tl1ii—O3—N3—Tl1viii161.9 (10)
N3—O3—N2—Tl1viii165.9 (8)O3—N2—C2—C30.7 (11)
Tl1vii—O3—N2—Tl1viii73.2 (4)Tl1i—N2—C2—C3166.4 (6)
Tl1i—O3—N2—Tl1viii4.1 (10)Tl1ii—N2—C2—C3131.4 (7)
Tl1ii—O3—N2—Tl1viii95.4 (6)Tl1vii—N2—C2—C352.0 (10)
Tl1—O1—N1—C113.7 (9)Tl1viii—N2—C2—C329 (2)
Tl1vi—O1—N1—C173.8 (9)O3—N2—C2—C1175.4 (8)
Tl1ii—O1—N1—C137.9 (6)Tl1i—N2—C2—C117.5 (11)
Tl1vi—O1—N1—Tl187.4 (6)Tl1ii—N2—C2—C144.7 (8)
Tl1ii—O1—N1—Tl151.6 (4)Tl1vii—N2—C2—C1124.2 (7)
Tl1—O1—N1—Tl1ii51.6 (4)Tl1viii—N2—C2—C1154.6 (11)
Tl1vi—O1—N1—Tl1ii35.9 (5)O3—N2—C2—Tl1ii130.7 (7)
Tl1—O1—N1—Tl1vi87.4 (6)Tl1i—N2—C2—Tl1ii62.2 (4)
Tl1ii—O1—N1—Tl1vi35.9 (5)Tl1vii—N2—C2—Tl1ii79.4 (5)
Tl1—O2—C1—N113.2 (13)Tl1viii—N2—C2—Tl1ii160.6 (16)
Tl1ii—O2—C1—N1106.2 (10)O3—N2—C2—Tl1i167.1 (9)
Tl1i—O2—C1—N1162.0 (7)Tl1ii—N2—C2—Tl1i62.2 (4)
Tl1vi—O2—C1—N138.7 (10)Tl1vii—N2—C2—Tl1i141.7 (8)
Tl1iv—O2—C1—N179.1 (11)Tl1viii—N2—C2—Tl1i137.1 (18)
Tl1—O2—C1—C2170.2 (6)O2—C1—C2—N21.5 (14)
Tl1ii—O2—C1—C270.4 (8)N1—C1—C2—N2175.7 (9)
Tl1i—O2—C1—C221.4 (12)Tl1ii—C1—C2—N248.9 (9)
Tl1vi—O2—C1—C2137.9 (7)Tl1—C1—C2—N218 (2)
Tl1iv—O2—C1—C2104.3 (8)Tl1i—C1—C2—N213.9 (9)
Tl1—O2—C1—Tl1ii119.5 (6)Tl1vi—C1—C2—N295.3 (11)
Tl1i—O2—C1—Tl1ii91.7 (7)O2—C1—C2—C3176.8 (9)
Tl1vi—O2—C1—Tl1ii67.6 (2)N1—C1—C2—C30.4 (14)
Tl1iv—O2—C1—Tl1ii174.7 (6)Tl1ii—C1—C2—C3126.4 (9)
Tl1ii—O2—C1—Tl1119.5 (6)Tl1—C1—C2—C3166.8 (11)
Tl1i—O2—C1—Tl1148.8 (10)Tl1i—C1—C2—C3170.8 (10)
Tl1vi—O2—C1—Tl151.9 (4)Tl1vi—C1—C2—C380.0 (13)
Tl1iv—O2—C1—Tl165.8 (5)O2—C1—C2—Tl1ii50.4 (7)
Tl1—O2—C1—Tl1i148.8 (10)N1—C1—C2—Tl1ii126.8 (8)
Tl1ii—O2—C1—Tl1i91.7 (7)Tl1—C1—C2—Tl1ii66.7 (14)
Tl1vi—O2—C1—Tl1i159.3 (7)Tl1i—C1—C2—Tl1ii62.78 (17)
Tl1iv—O2—C1—Tl1i82.9 (6)Tl1vi—C1—C2—Tl1ii46.4 (7)
Tl1—O2—C1—Tl1vi51.9 (4)O2—C1—C2—Tl1i12.4 (7)
Tl1ii—O2—C1—Tl1vi67.6 (2)N1—C1—C2—Tl1i170.4 (8)
Tl1i—O2—C1—Tl1vi159.3 (7)Tl1ii—C1—C2—Tl1i62.78 (17)
Tl1iv—O2—C1—Tl1vi117.8 (5)Tl1—C1—C2—Tl1i3.9 (14)
O1—N1—C1—O21.8 (14)Tl1vi—C1—C2—Tl1i109.2 (8)
Tl1—N1—C1—O28.4 (9)O3—N3—C3—N4176.4 (8)
Tl1ii—N1—C1—O269.4 (9)Tl1vii—N3—C3—N4130.2 (8)
Tl1vi—N1—C1—O240.0 (11)Tl1viii—N3—C3—N4162.5 (7)
O1—N1—C1—C2175.0 (8)O3—N3—C3—C21.0 (10)
Tl1—N1—C1—C2174.8 (8)Tl1vii—N3—C3—C252.4 (10)
Tl1ii—N1—C1—C2107.4 (9)Tl1viii—N3—C3—C214.8 (11)
Tl1vi—N1—C1—C2136.8 (6)Tl1ix—N4—C3—N329.1 (18)
O1—N1—C1—Tl1ii67.6 (9)Tl1ix—N4—C3—C2147.8 (9)
Tl1—N1—C1—Tl1ii77.8 (4)N2—C2—C3—N31.1 (11)
Tl1vi—N1—C1—Tl1ii29.4 (5)C1—C2—C3—N3174.6 (9)
O1—N1—C1—Tl110.2 (7)Tl1ii—C2—C3—N385.0 (10)
Tl1ii—N1—C1—Tl177.8 (4)Tl1i—C2—C3—N327.9 (19)
Tl1vi—N1—C1—Tl148.4 (2)N2—C2—C3—N4176.1 (9)
O1—N1—C1—Tl1i36 (2)C1—C2—C3—N48.2 (16)
Tl1—N1—C1—Tl1i26.0 (17)Tl1ii—C2—C3—N497.8 (11)
Tl1ii—N1—C1—Tl1i103.8 (19)Tl1i—C2—C3—N4149.3 (12)
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x, y1/2, z+3/2; (iii) x, y+1/2, z+1/2; (iv) x, y+1, z; (v) x, y+3/2, z+1/2; (vi) x, y1, z; (vii) x, y+1/2, z1/2; (viii) x, y+3/2, z1/2; (ix) x+1, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···N3x0.932.233.156 (10)169
N4—H4B···N1ix1.012.653.256 (13)118
Symmetry codes: (ix) x+1, y1/2, z+3/2; (x) x+1, y, z+1.
 

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationAkhbari, K., Alizadeh, K., Morsali, A. & Zeller, M. (2009). Inorg. Chim. Acta, 362, 2589–2594.  Web of Science CSD CrossRef CAS Google Scholar
First citationAkhbari, K. & Morsali, A. (2010). Coord. Chem. Rev. 254, 1977–2006.  Web of Science CrossRef CAS Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBritton, D. (2001). Acta Cryst. E57, m176–m178.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDe, S., Khambete, M. P. & Degani, M. S. (2019). Bioorg. Med. Chem. Lett. 29, 1999–2007.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFershtat, L. L. & Makhova, N. N. (2016). Russ. Chem. Rev. 85, 1097–1145.  Web of Science CrossRef CAS Google Scholar
First citationFonari, M. S., Simonov, Yu. A., Kravtsov, V. Ch., Lipkowski, J., Ganin, E. V. & Yavolovskii, A. A. (2003). J. Mol. Struct. 647, 129–140.  Web of Science CSD CrossRef CAS Google Scholar
First citationGiorgis, M., Lolli, M. L., Rolando, B., Rao, A., Tosco, P., Chaurasia, S., Marabello, D., Fruttero, R. & Gasco, A. (2011). Eur. J. Med. Chem. 46, 383–392.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGlomb, T., Szymankiewicz, K. & Świątek, P. (2018). Molecules, 23, 3361–3377.  Web of Science CrossRef Google Scholar
First citationGolenya, I. A., Gumienna-Kontecka, E., Boyko, A. N., Haukka, M. & Fritsky, I. O. (2012). Inorg. Chem. 51, 6221–6227.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGumienna-Kontecka, E., Golenya, I. A., Dudarenko, N. M., Dobosz, A., Haukka, M., Fritsky, I. O. & Swiatek-Kozlowska, J. (2007). New J. Chem. 31, 1798–1805.  CAS Google Scholar
First citationKumar, S., Sharma, R. P., Saini, A., Venugopalan, P. & Starynowicz, P. (2015). J. Mol. Struct. 1079, 291–297.  Web of Science CSD CrossRef CAS Google Scholar
First citationLarsen, I. K. (1988). Acta Cryst. B44, 527–533.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLutter, J. C., Zaleski, C. M. & Pecoraro, V. L. (2018). Adv. Inorg. Chem. 177–246.  Google Scholar
First citationMudring, A. V. & Rieger, F. (2005). Inorg. Chem. 44, 6240–6243.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNeel, A. J. & Zhao, R. (2018). Org. Lett. 20, 2024–2027.  Web of Science CrossRef CAS PubMed Google Scholar
First citationOstrowska, M., Golenya, I. A., Haukka, M., Fritsky, I. O. & Gumienna-Kontecka, E. (2019). New J. Chem. 43, 10237–10249.  Web of Science CSD CrossRef CAS Google Scholar
First citationPal, P., Gandhi, H. P., Kanhed, A. M., Patel, N. R., Mankadia, N. N., Baldha, S. N., Barmade, M. A., Murumkar, P. R. & Yadav, M. R. (2017). Eur. J. Med. Chem. 130, 107–123.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Lofland, S. E. & Addison, A. W. (2018). Eur. J. Inorg. Chem. pp. 3504–3511.  Web of Science CSD CrossRef Google Scholar
First citationPibiri, I., Lentini, L., Melfi, R., Tutone, M., Baldassano, S., Galluzzo, P. R., Di Leonardo, A. & Pace, A. (2018). Eur. J. Med. Chem. 159, 126–142.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRobertson, D., Barnes, C. & Gerasimchuk, N. (2004). J. Coord. Chem. 57, 1205–1216.  Web of Science CSD CrossRef CAS Google Scholar
First citationRomeo, G. & Chiacchio, U. (2011). Modern Heterocyclic Chemistry, edited by J. Alvarez-Builla, J. J. Vaquero & J. Barluenga, pp. 1047–1252. Weinheim: Wiley-VCH.  Google Scholar
First citationSafyanova, I. S., Ohui, K. A. & Omelchenko, I. V. (2017). Acta Cryst. E73, 24–27.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSalassa, G. & Terenzi, A. (2019). Int. J. Mol. Sci. 20, 3483–3500.  Web of Science CrossRef CAS Google Scholar
First citationSchroffenegger, M., Eder, F., Weil, M., Stöger, B., Schwendtner, K. & Kolitsch, U. (2020). J. Alloys Compd. 820, 153369.  Web of Science CrossRef ICSD Google Scholar
First citationShaposhnikov, S., Pirogov, S. V., Mel'nikova, S. F., Tselinsky, I. V., Näther, C., Graening, T., Traulsen, T. & Friedrichsen, W. (2003). Tetrahedron, 59, 1059–1066.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, A. K., Lohani, M. & Parthsarthy, R. (2013). Iran. J. Pharm. Res. 12, 319–323.  Web of Science CAS PubMed Google Scholar
First citationStepanov, A. I., Astrat'ev, A. A., Sheremetev, A. B., Lagutina, N. K., Palysaeva, N. V., Tyurin, A. Yu., Aleksandrova, N. S., Sadchikova, N. P., Suponitsky, K. Yu., Atamanenko, O. P., Konyushkin, L. D., Semenov, R. V., Firgang, S. I., Kiselyov, A. S., Semenova, M. N. & Semenov, V. V. (2015). Eur. J. Med. Chem. 94, 237–251.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationTelvekar, V. N. & Takale, B. S. (2013). Synth. Commun. 43, 221–227.  Web of Science CrossRef CAS Google Scholar
First citationViterbo, D. & Serafino, A. (1978). Acta Cryst. B34, 3444–3446.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationWiesbrock, F. & Schmidbaur, H. (2003). J. Am. Chem. Soc. 125, 3622–3630.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWiesbrock, F. & Schmidbaur, H. (2004). J. Inorg. Biochem. 98, 473–484.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZareef, M. I., Iqbal, R., De Dominguez, N. G., Rodrigues, J., Zaidi, J. H., Arfan, M. & Supuran, C. T. (2007). J. Enzyme Inhib. Med. Chem. 22, 301–308.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, H. & Jian, F. (2009). Acta Cryst. E65, o2911.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, J., Mitchell, L. A., Parrish, D. A. & Shreeve, J. M. (2015). J. Am. Chem. Soc. 137, 10532–10535.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZlotin, S. G., Churakov, A. M., Dalinger, I. L., Luk'yanov, O. A., Makhova, N. N., Sukhorukov, A. Yu. & Tartakovsky, V. A. (2017). Mendeleev Commun. 27, 535–546.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds