research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis and DFT studies of 1,3-bis­­[2-meth­­oxy-4-(prop-2-en-1-yl)phen­­oxy]propane

CROSSMARK_Color_square_no_text.svg

aLaboratory of Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, University of Cadi Ayyad, PB. 2390, 40001 Marrakech, Morocco, bDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, dDepartment of Chemistry, College of Science, King Saud University, P.O.Box 2455, Riyadh 11451, Saudi Arabia, and eDepartment of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
*Correspondence e-mail: AbdelmaoujoudTaia2018@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 14 January 2020; accepted 5 February 2020; online 14 February 2020)

The asymmetric unit of the title compound, C23H28O4, comprises two half-mol­ecules, with the other half of each mol­ecule being completed by the application of twofold rotation symmetry. The two completed mol­ecules both have a V-shaped appearance but differ in their conformations. In the crystal, each independent mol­ecule forms chains extending parallel to the b axis with its symmetry-related counterparts through C—H⋯π(ring) inter­actions. Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (65.4%), H⋯C/C⋯H (21.8%) and H⋯O/O⋯H (12.3%) inter­actions. Optimized structures using density functional theory (DFT) at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined mol­ecular structures in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.

1. Chemical context

Eugenol (4-allyl-2-meth­oxy­phenol) is the main active constituent of clove oil (75–90%) from various plants (Patra & Saxena, 2010[Patra, A. K. & Saxena, J. (2010). Phytochemistry, 71, 1198-1222.]). The 4-allyl-2-meth­oxy­phenol core has several active sites and provides a great responsiveness, making it an excellent precursor in the syntheses of new heterocyclic compounds (Araújo et al., 2010[Araújo, J. D. P., Grande, C. A. & Rodrigues, A. E. (2010). Chem. Eng. Res. Des. 88, 1024-1032.]; Xu et al., 2006[Xu, H. X., Delling, M., Jun, J. C. & Clapham, D. E. (2006). Nat. Neurosci. 9, 628-635.]) and for the development of drugs (Sticht & Smith, 1971[Sticht, F. D. & Smith, R. M. (1971). J. Dent. Res. 50, 1531-1535.]). With respect to the biological applications of eugenol 4-allyl-2-meth­oxy­phenol derivatives, it has been shown that these compounds possess potent anti­microbial (Eyambe et al., 2011[Eyambe, G., Canales, L. & Banik, B. K. (2011). Heterocyclic Lett. 1, 154-157.]), anti­oxidant (Nam & Kim, 2013[Nam, H. & Kim, M.-M. (2013). Food & Chem. Toxicol. 55, 106-112.]; Mahapatra et al., 2009[Mahapatra, S. K., Chakraborty, S. P., Majumdar, S., Bag, B. G. & Roy, S. (2009). Eur. J. Pharmacol. 623, 132-140.]; Eyambe et al., 2011[Eyambe, G., Canales, L. & Banik, B. K. (2011). Heterocyclic Lett. 1, 154-157.]), anti­viral (Sun et al., 2016[Sun, W. J., Lv, W. J., Li, L. N., Yin, G., Hang, X. F., Xue, Y. F., Chen, J. & Shi, Z. Q. (2016). New Biotechnol. 33, 345-354.]), anti-inflammatory (Fonsêca et al., 2016[Fonsêca, D. V., Salgado, P. R. R., Neto, H. C. A., Golzio, A. M. F. O., Caldas, M. R. D. F., Melo, C. G. F., Leite, F. C., Piuvezam, M. R., Pordeus, L. C. D., Barbosa, J. M. F. & Almeida, R. N. (2016). Int. Immunopharmacol. 38, 402-408.]), anti­diabetic and anti-leishmania (de Morais et al., 2014[Morais, S. M. de, Vila-Nova, N. S., Bevilaqua, C. M. L., Rondon, F. C., Lobo, C. H., Moura, A. de A. A. N., Sales, A. D., Rodrigues, A. P. R., de Figuereido, J. R., Campello, C. C., Wilson, M. E. & de Andrade, H. F. (2014). Bioorg. Med. Chem. 22, 6250-6255.]) properties. The suppression of melanoma growth caused by eugenol was reported by Ghosh et al. (2005[Ghosh, R., Nadiminty, N., Fitzpatrick, J. E., Alworth, W. L., Slaga, T. J. & Kumar, A. P. (2005). J. Biol. Chem. 280, 5812-5819.]), and the ability of eugenol to act as an in vivo radio-protective agent was described by Tiku et al. (2004[Tiku, A. B., Abraham, S. K. & Kale, R. K. (2004). J. Radiat. Res. 45, 435-440.]). Derivatives of eugenol have also been reported, see, for example: Sadeghian et al. (2008[Sadeghian, H., Seyedi, S. M., Saberi, M. R., Arghiani, Z. & Riazi, M. (2008). Bioorg. Med. Chem. 16, 890-901.]); Ma et al. (2010[Ma, Y.-T., Li, H.-Q., Shi, X.-W., Zhang, A.-L. & Gao, J.-M. (2010). Acta Cryst. E66, o2946.]).

As a continuation of our research devoted to the study of o-alkyl­ation reactions involving eugenol derivatives, we report herein the synthesis, mol­ecular and crystal structures of the title compound, (I)[link]. Hirshfeld surface analysis and a density functional theory (DFT) study carried out at the B3LYP/6–311 G(d,p) level for comparison with the experimentally determined mol­ecular structure.

[Scheme 1]

2. Structural commentary

The asymmetric unit of (I)[link] comprises of two half-mol­ecules A and B that are each completed by twofold rotation symmetry, with the rotation axis running through the central C atom (C8 for mol­ecule A and C20 for mol­ecule B, respectively) of the propane bridge (Fig. 1[link]). For steric reasons, the exocyclic substituents bound to O1, O2, O3 and O4 are approximately in trans positions, with C1—C2—O2—C9, C2—C1—O1—C7, C13—C14—O4—C21 and C14—C13—O3—C19 torsion angles of −167.6 (1), 175.1 (1), 164.6 (1) and −176.7 (1)°, respectively. The two benzene rings in each mol­ecule are nearly perpendicular to each other, with dihedral angles of 86.74 (6)° for A (C1–C6) and Aii, and of 88.12 (6) for B (C13–C18) and Bi, respectively (for symmetry codes, see Fig. 1[link]). The two mol­ecules have a similar V-shaped appearance but different conformations (Fig. 2[link]).

[Figure 1]
Figure 1
The two independent mol­ecules of (I)[link] with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) –x + [{1\over 2}], y, –z + [{1\over 2}]; (ii) –x + [{3\over 2}], y, –z + [{1\over 2}].]
[Figure 2]
Figure 2
Overlay of the two independent half-mol­ecules, showing their different conformations. Mol­ecule A is in light, mol­ecule B in dark colours.

3. Supra­molecular features

In the crystal, chains extending parallel to the b axis are formed through C7—H7ACg1 (for mol­ecule A) and C19—H19BCg2 (for mol­ecule B) inter­actions (Fig. 3[link], Table 1[link]). Between the chains, only van der Waals contacts occur (Figs. 3[link] and 4[link], Table 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of benzene rings A (C1–C6) and B (C13–C18), respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7ACg1i 1.003 (16) 2.759 (15) 3.6170 (15) 144.1 (12)
C19—H19BCg2v 0.992 (16) 2.739 (15) 3.5816 (15) 143.0 (11)
Symmetry codes: (i) x, y-1, z; (v) x, y+1, z.

Table 2
Selected interatomic distances (Å)

O1⋯O2 2.5827 (13) C14⋯H20Bi 2.918 (15)
O2⋯O1 2.5827 (13) C15⋯H21A 2.768 (17)
O3⋯O4 2.5885 (13) C15⋯H21C 2.784 (17)
O4⋯O3 2.5885 (13) C17⋯H22Av 2.727 (19)
O1⋯H9Ci 2.736 (18) C18⋯H22Av 2.764 (18)
O1⋯H7Bii 2.618 (16) C18⋯H19A 2.759 (15)
O2⋯H12Aiii 2.831 (18) C18⋯H19B 2.739 (15)
O2⋯H22B 2.647 (17) C19⋯H18 2.514 (16)
O2⋯H8Biv 2.676 (15) C21⋯H15 2.501 (16)
O3⋯H21Av 2.739 (15) C23⋯H15 2.862 (16)
O3⋯H19Avi 2.604 (16) H3⋯H9C 2.33 (2)
O4⋯H24Bvii 2.89 (2) H3⋯H9A 2.29 (2)
O4⋯H20Bi 2.732 (15) H5⋯H10A 2.37 (2)
C2⋯C7v 3.533 (2) H6⋯H7A 2.24 (2)
C3⋯C12 3.282 (2) H6⋯H7B 2.37 (2)
C6⋯C10i 3.582 (2) H6⋯H18viii 2.50 (2)
C14⋯C19i 3.555 (2) H9A⋯H11ix 2.40 (2)
C18⋯C22v 3.564 (2) H9A⋯H12Aiii 2.56 (3)
C2⋯H8Biv 2.914 (16) H9B⋯H22Av 2.52 (2)
C2⋯H7Av 2.971 (15) H9B⋯H23 2.41 (2)
C3⋯H9C 2.739 (18) H9C⋯H22Bv 2.54 (2)
C3⋯H12B 2.783 (19) H10A⋯H21Ax 2.58 (2)
C3⋯H9A 2.806 (17) H12B⋯H12Biii 2.55 (3)
C4⋯H12B 2.728 (18) H15⋯H21A 2.40 (2)
C5⋯H10Bi 2.775 (19) H15⋯H21C 2.26 (2)
C6⋯H7A 2.719 (15) H17⋯H22B 2.36 (2)
C6⋯H7B 2.786 (15) H18⋯H19A 2.31 (2)
C6⋯H10Bi 2.837 (18) H18⋯H19B 2.26 (2)
C7⋯H6 2.529 (16) H21C⋯H23vii 2.41 (2)
C9⋯H3 2.492 (16) H22A⋯H24A 2.39 (3)
Symmetry codes: (i) x, y-1, z; (ii) [-x+{\script{3\over 2}}, y, -z+{\script{1\over 2}}]; (iii) -x+2, -y, -z+1; (iv) [-x+{\script{3\over 2}}, y+1, -z+{\script{1\over 2}}]; (v) x, y+1, z; (vi) [-x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (vii) -x+1, -y, -z+1; (viii) [-x+{\script{3\over 2}}, y-1, -z+{\script{1\over 2}}]; (ix) -x+2, -y+1, -z+1; (x) x+1, y+1, z.
[Figure 3]
Figure 3
C—H⋯π(ring) inter­actions (green dashed lines) enabling the formation of mol­ecular chains extending along the b-axis direction.
[Figure 4]
Figure 4
A partial packing diagram viewed along the a axis with inter­molecular inter­actions depicted as in Fig. 3[link].

4. Hirshfeld surface analysis

In order to qu­antify the inter­molecular inter­actions in the crystal of (I)[link], a Hirshfeld surface (HS) analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out using Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). In the HS plotted over dnorm (Fig. 5[link]), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625-636.]). The bright-red spots appearing near C16 and hydrogen atom H10B indicate their roles as the donor and/or acceptor groups in hydrogen-bonding contacts. The shape-index of the HS is a tool to visualize possible ππ stacking inter­actions by the appearance of adjacent red and blue triangles. The absence of such triangles suggests that there are no notable ππ inter­actions in (I)[link] (Fig. 6[link]). The overall two-dimensional fingerprint plot, Fig. 7[link]a, and those delineated into H⋯H, H⋯C/C⋯H and H⋯O/O⋯H contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are illustrated in Fig. 7[link]bd, respectively, together with their relative contributions to the Hirshfeld surface. The most important inter­molecular inter­actions (Table 2[link]) are H⋯H contacts, contributing 65.4% to the overall crystal packing, which is reflected in Fig. 7[link]b as widely scattered points of high density due to the large hydrogen content of the mol­ecule with the tip at de = di = 1.11 Å. In the presence of C—H⋯π inter­actions, pairs of characteristic wings with spikes at the tips at de + di = 2.62 Å are seen in the fingerprint plot delineated into H⋯C/C⋯H contacts, Fig. 7[link]c (21.8% contribution to the HS). Finally, the thin and thick pairs of scattered wings in the fingerprint plot delineated into H⋯O/O⋯H contacts (12.3% contribution), Fig. 7[link]d, have a symmetrical distribution of points with the edges at de + di = 2.55 and 2.58 Å.

[Figure 5]
Figure 5
View of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm in the range −0.1048 to 1.1789 a.u..
[Figure 6]
Figure 6
Hirshfeld surface of the title compound plotted over shape-index.
[Figure 7]
Figure 7
The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and those delineated into (b) H⋯H, (c) H⋯C/C⋯H and (d) H⋯O/O⋯H inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.

Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯H, H⋯C/C⋯H and H⋯O/O⋯H inter­actions in Fig. 8[link]ac, respectively.

[Figure 8]
Figure 8
The Hirshfeld surface representations with the function dnorm plotted onto the surface for (a) H⋯H, (b) H⋯C/C⋯H and (c) H⋯O/O⋯H inter­actions.

The large number of H⋯H, H⋯C/C⋯H and H⋯O/O⋯H inter­molecular contacts suggest that these weak inter­actions play major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

5. DFT calculations

The density functional theory (DFT) optimized mol­ecular structures of (I)[link] were computed in the gas phase on the basis of standard B3LYP functionals and 6–311 G(d,p) basis-set calculations (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]) as implemented in GAUSSIAN 09 (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.]). The theoretical and experimental results for mol­ecule A are in good agreement (Table 3[link]).

Table 3
Comparison of selected bond lengths and angles (Å, °) in the experinentally determined and computed mol­ecular structures

Bonds/angles X-ray (this study) B3LYP/6–311G(d,p)
O1—C1 1.3704 (15) 1.38958
O1—C7 1.4342 (15) 1.46082
O2—C2 1.3679 (15) 1.39236
O2—C9 1.4280 (16) 1.44976
O3—C13 1.3658 (15) 1.39978
O3—C19 1.4359 (15) 1.47837
O4—C14 1.3697 (15) 1.39894
O4—C21 1.4289 (16) 1.45321
     
C1—O1—C7 116.96 (10) 118.14221
C2—O2—C9 116.34 (10) 117.63310
C13—O3—C19 116.88 (10) 117.32223
C14—O4—C21 116.03 (10) 117.85841
O1—C1—C6 125.38 (11) 124.87388
O1—C1—C2 115.50 (11) 116.13060
C6—C1—C2 119.12 (11) 118.99394
O2—C2—C3 124.79 (12) 124.29736
O2—C2—C1 115.21 (11) 115.78966

If the energy gap ΔE between the highest occupied mol­ecular orbital (HOMO) and the lowest unoccupied mol­ecular orbital (LUMO) is small, the mol­ecule is highly polarizable and has high chemical reactivity. Numerical values of EHOMO and ELUMO, ΔE = ELUMO - EHOMO, electronegativity (χ), hardness (η), potential (μ), electrophilicity (ω) and softness (σ) for (I)[link] are collated in Table 4[link]. The significance of η and σ is to evaluate both the reactivity and stability. The shapes of the HOMO and the LUMO of mol­ecule A, together with their energy levels are shown in Fig. 9[link].

Table 4
Calculated energies and other calculated data for (I)

Total Energy, TE (eV) −32558
EHOMO (eV) −5.4058
ELUMO (eV) −0.1807
Gap, ΔE (eV) 5.2251
Dipole moment, μ (Debye) 2.8076
Ionization potential, I (eV) 5.4058
Electron affinity, A 0.1807
Electronegativity, χ 2.7932
Hardness, η 2.6126
Electrophilicity index, ω 1.4932
Softness, σ 0.3828
Fraction of electrons transferred, ΔN 0.8051
[Figure 9]
Figure 9
The shapes of HOMO and LUMO orbitals in one of the mol­ecules in (I)[link].

6. Synthesis and crystallization

1,3-Di­bromo­propane (0.2 ml, 1.61 mmol) was added to a solution of eugenol (0.5 ml, 3.23 mmol), tetra­butyl­ammonium chloride (50 mg) and sodium hydroxide solution (5%) in benzene as solvent (20 ml). The mixture was stirred at 293 K for 6 h, and then was extracted three times with di­chloro­methane (15 ml). The residue was purified by column chromatography on silica gel using a mixture of hexa­ne/ethyl acetate (v/v = 97/3) as eluent. Colourless crystals were isolated when the solvent was allowed to evaporate (yield: 86%).

7. Refinement

Details including crystal data, data collection and refinement are summarized in Table 5[link]. Hydrogen atoms were located in a difference-Fourier map and were refined freely.

Table 5
Experimental details

Crystal data
Chemical formula C23H28O4
Mr 368.45
Crystal system, space group Monoclinic, P2/n
Temperature (K) 150
a, b, c (Å) 15.4741 (5), 5.0224 (2), 25.5180 (9)
β (°) 99.858 (2)
V3) 1953.90 (12)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.68
Crystal size (mm) 0.37 × 0.27 × 0.08
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.79, 0.95
No. of measured, independent and observed [I > 2σ(I)] reflections 13935, 3756, 3049
Rint 0.033
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.109, 1.05
No. of reflections 3756
No. of parameters 358
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.19, −0.23
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

1,3-Bis[2-methoxy-4-(prop-2-en-1-yl)phenoxy]propane top
Crystal data top
C23H28O4F(000) = 792
Mr = 368.45Dx = 1.253 Mg m3
Monoclinic, P2/nCu Kα radiation, λ = 1.54178 Å
a = 15.4741 (5) ÅCell parameters from 9361 reflections
b = 5.0224 (2) Åθ = 3.5–72.4°
c = 25.5180 (9) ŵ = 0.68 mm1
β = 99.858 (2)°T = 150 K
V = 1953.90 (12) Å3Plate, colourless
Z = 40.37 × 0.27 × 0.08 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
3756 independent reflections
Radiation source: INCOATEC IµS micro–focus source3049 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.033
Detector resolution: 10.4167 pixels mm-1θmax = 72.4°, θmin = 3.1°
ω scansh = 1918
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 56
Tmin = 0.79, Tmax = 0.95l = 3129
13935 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041All H-atom parameters refined
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0537P)2 + 0.5337P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3756 reflectionsΔρmax = 0.19 e Å3
358 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: dualExtinction coefficient: 0.0071 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.82230 (6)0.27068 (18)0.30688 (3)0.0222 (2)
O20.79368 (6)0.06905 (18)0.37794 (4)0.0249 (2)
O30.32386 (6)0.45366 (18)0.30591 (3)0.0223 (2)
O40.29863 (6)0.12078 (19)0.37925 (4)0.0258 (2)
C10.89151 (8)0.1081 (2)0.32631 (5)0.0194 (3)
C20.87636 (8)0.0744 (2)0.36573 (5)0.0203 (3)
C30.94260 (9)0.2442 (3)0.38859 (5)0.0229 (3)
H30.9308 (10)0.372 (3)0.4158 (6)0.026 (4)*
C41.02517 (8)0.2399 (3)0.37294 (5)0.0227 (3)
C51.03861 (8)0.0650 (3)0.33324 (5)0.0234 (3)
H51.0965 (11)0.061 (3)0.3204 (6)0.028 (4)*
C60.97202 (8)0.1084 (3)0.30986 (5)0.0226 (3)
H60.9834 (10)0.232 (3)0.2825 (6)0.028 (4)*
C70.83297 (8)0.4437 (3)0.26374 (5)0.0219 (3)
H7A0.8849 (10)0.562 (3)0.2749 (6)0.023 (4)*
H7B0.8441 (10)0.334 (3)0.2325 (6)0.025 (4)*
C80.7500000.6078 (4)0.2500000.0224 (4)
H8B0.7581 (11)0.722 (3)0.2188 (6)0.033 (4)*
C90.77076 (10)0.2853 (3)0.40922 (6)0.0289 (3)
H9A0.8027 (11)0.277 (3)0.4452 (7)0.034 (4)*
H9B0.7090 (11)0.260 (3)0.4097 (6)0.028 (4)*
H9C0.7809 (11)0.458 (4)0.3922 (7)0.036 (4)*
C101.09695 (9)0.4256 (3)0.39847 (6)0.0280 (3)
H10A1.1474 (11)0.420 (3)0.3779 (6)0.035 (4)*
H10B1.0731 (12)0.613 (4)0.3959 (7)0.040 (5)*
C111.13272 (9)0.3754 (3)0.45635 (6)0.0298 (3)
H111.1823 (13)0.494 (4)0.4714 (7)0.052 (5)*
C121.10801 (11)0.1937 (3)0.48750 (6)0.0355 (4)
H12A1.1352 (12)0.181 (4)0.5248 (7)0.044 (5)*
H12B1.0621 (13)0.067 (4)0.4757 (7)0.047 (5)*
C130.39264 (8)0.2882 (2)0.32379 (5)0.0198 (3)
C140.37979 (8)0.1110 (2)0.36473 (5)0.0204 (3)
C150.44651 (9)0.0598 (3)0.38657 (5)0.0230 (3)
H150.4371 (11)0.180 (3)0.4150 (6)0.032 (4)*
C160.52658 (8)0.0646 (3)0.36808 (5)0.0229 (3)
C170.53771 (8)0.1037 (3)0.32686 (5)0.0235 (3)
H170.5958 (10)0.104 (3)0.3123 (6)0.026 (4)*
C180.47108 (8)0.2800 (3)0.30487 (5)0.0224 (3)
H180.4801 (10)0.400 (3)0.2759 (6)0.023 (4)*
C190.33292 (8)0.6261 (3)0.26230 (5)0.0213 (3)
H19A0.3426 (10)0.514 (3)0.2309 (6)0.023 (4)*
H19B0.3849 (10)0.743 (3)0.2722 (6)0.026 (4)*
C200.2500000.7913 (4)0.2500000.0223 (4)
H20B0.2441 (11)0.908 (3)0.2806 (6)0.031 (4)*
C210.27648 (10)0.0984 (3)0.41011 (6)0.0289 (3)
H21A0.2830 (11)0.273 (3)0.3913 (6)0.034 (4)*
H21B0.2159 (12)0.073 (3)0.4127 (6)0.036 (4)*
H21C0.3109 (11)0.096 (3)0.4452 (7)0.033 (4)*
C220.59762 (9)0.2578 (3)0.39229 (6)0.0275 (3)
H22A0.5774 (11)0.442 (4)0.3845 (7)0.037 (4)*
H22B0.6510 (11)0.225 (3)0.3753 (6)0.034 (4)*
C230.62171 (9)0.2341 (3)0.45158 (6)0.0300 (3)
H230.6524 (13)0.064 (4)0.4645 (7)0.050 (5)*
C240.60596 (11)0.4141 (3)0.48616 (7)0.0386 (4)
H24A0.5776 (13)0.581 (4)0.4740 (8)0.051 (5)*
H24B0.6230 (13)0.389 (4)0.5240 (8)0.050 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0208 (4)0.0227 (5)0.0230 (5)0.0028 (4)0.0034 (3)0.0050 (4)
O20.0209 (5)0.0269 (5)0.0276 (5)0.0002 (4)0.0063 (4)0.0056 (4)
O30.0212 (4)0.0223 (5)0.0232 (5)0.0035 (4)0.0032 (3)0.0049 (4)
O40.0225 (5)0.0274 (5)0.0289 (5)0.0031 (4)0.0084 (4)0.0061 (4)
C10.0191 (6)0.0183 (6)0.0197 (6)0.0008 (5)0.0002 (5)0.0022 (5)
C20.0200 (6)0.0215 (6)0.0193 (6)0.0012 (5)0.0031 (5)0.0022 (5)
C30.0256 (7)0.0208 (6)0.0213 (6)0.0009 (5)0.0010 (5)0.0006 (5)
C40.0221 (6)0.0215 (6)0.0224 (6)0.0019 (5)0.0015 (5)0.0046 (5)
C50.0196 (6)0.0265 (7)0.0240 (6)0.0004 (5)0.0033 (5)0.0045 (6)
C60.0238 (6)0.0224 (6)0.0216 (6)0.0016 (5)0.0041 (5)0.0002 (5)
C70.0238 (7)0.0203 (6)0.0209 (6)0.0012 (5)0.0023 (5)0.0026 (5)
C80.0247 (9)0.0188 (8)0.0223 (9)0.0000.0001 (7)0.000
C90.0293 (7)0.0278 (7)0.0314 (8)0.0045 (6)0.0100 (6)0.0045 (6)
C100.0265 (7)0.0263 (7)0.0293 (7)0.0065 (6)0.0006 (6)0.0028 (6)
C110.0276 (7)0.0308 (7)0.0285 (7)0.0026 (6)0.0015 (5)0.0040 (6)
C120.0367 (8)0.0419 (9)0.0258 (8)0.0008 (7)0.0007 (6)0.0021 (7)
C130.0207 (6)0.0174 (6)0.0199 (6)0.0013 (5)0.0000 (5)0.0022 (5)
C140.0197 (6)0.0210 (6)0.0203 (6)0.0007 (5)0.0033 (5)0.0027 (5)
C150.0248 (6)0.0221 (6)0.0212 (6)0.0019 (5)0.0013 (5)0.0013 (5)
C160.0227 (6)0.0219 (6)0.0222 (6)0.0013 (5)0.0015 (5)0.0052 (5)
C170.0209 (6)0.0240 (6)0.0254 (7)0.0008 (5)0.0032 (5)0.0048 (5)
C180.0227 (6)0.0217 (6)0.0225 (6)0.0020 (5)0.0033 (5)0.0004 (5)
C190.0226 (6)0.0204 (6)0.0206 (6)0.0004 (5)0.0026 (5)0.0027 (5)
C200.0249 (9)0.0181 (8)0.0224 (9)0.0000.0001 (7)0.000
C210.0297 (7)0.0280 (7)0.0308 (8)0.0009 (6)0.0104 (6)0.0053 (6)
C220.0253 (7)0.0252 (7)0.0295 (7)0.0055 (6)0.0019 (5)0.0036 (6)
C230.0282 (7)0.0280 (7)0.0311 (7)0.0040 (6)0.0029 (6)0.0007 (6)
C240.0411 (9)0.0364 (9)0.0381 (9)0.0078 (7)0.0059 (7)0.0063 (7)
Geometric parameters (Å, º) top
O1—C11.3704 (15)C11—C121.310 (2)
O1—C71.4342 (15)C11—H110.99 (2)
O2—C21.3679 (15)C12—H12A0.975 (19)
O2—C91.4280 (16)C12—H12B0.96 (2)
O3—C131.3658 (15)C13—C181.3816 (18)
O3—C191.4359 (15)C13—C141.4121 (17)
O4—C141.3697 (15)C14—C151.3840 (18)
O4—C211.4289 (16)C15—C161.3995 (18)
C1—C61.3812 (18)C15—H150.974 (17)
C1—C21.4098 (17)C16—C171.3828 (19)
C2—C31.3831 (19)C16—C221.5162 (18)
C3—C41.4025 (18)C17—C181.4015 (19)
C3—H30.984 (16)C17—H171.030 (15)
C4—C51.3833 (19)C18—H180.984 (16)
C4—C101.5099 (18)C19—C201.5148 (16)
C5—C61.4021 (19)C19—H19A1.012 (15)
C5—H51.005 (16)C19—H19B0.992 (16)
C6—H60.972 (16)C20—H20B0.993 (16)
C7—C81.5154 (16)C20—H20Bii0.993 (16)
C7—H7A1.003 (16)C21—H21A1.013 (17)
C7—H7B1.007 (15)C21—H21B0.960 (18)
C8—H8B1.007 (16)C21—H21C0.961 (17)
C8—H8Bi1.007 (16)C22—C231.499 (2)
C9—H9A0.967 (17)C22—H22A0.984 (18)
C9—H9B0.966 (17)C22—H22B1.010 (17)
C9—H9C0.993 (18)C23—C241.315 (2)
C10—C111.507 (2)C23—H231.00 (2)
C10—H10A1.014 (17)C24—H24A0.97 (2)
C10—H10B1.008 (18)C24—H24B0.97 (2)
O1···O22.5827 (13)C14···H20Biii2.918 (15)
O2···O12.5827 (13)C15···H21A2.768 (17)
O3···O42.5885 (13)C15···H21C2.784 (17)
O4···O32.5885 (13)C17···H22Avi2.727 (19)
O1···H9Ciii2.736 (18)C18···H22Avi2.764 (18)
O1···H7Bi2.618 (16)C18···H19A2.759 (15)
O2···H12Aiv2.831 (18)C18···H19B2.739 (15)
O2···H22B2.647 (17)C19···H182.514 (16)
O2···H8Bv2.676 (15)C21···H152.501 (16)
O3···H21Avi2.739 (15)C23···H152.862 (16)
O3···H19Aii2.604 (16)H3···H9C2.33 (2)
O4···H24Bvii2.89 (2)H3···H9A2.29 (2)
O4···H20Biii2.732 (15)H5···H10A2.37 (2)
C2···C7vi3.533 (2)H6···H7A2.24 (2)
C3···C123.282 (2)H6···H7B2.37 (2)
C6···C10iii3.582 (2)H6···H18viii2.50 (2)
C14···C19iii3.555 (2)H9A···H11ix2.40 (2)
C18···C22vi3.564 (2)H9A···H12Aiv2.56 (3)
C2···H8Bv2.914 (16)H9B···H22Avi2.52 (2)
C2···H7Avi2.971 (15)H9B···H232.41 (2)
C3···H9C2.739 (18)H9C···H22Bvi2.54 (2)
C3···H12B2.783 (19)H10A···H21Ax2.58 (2)
C3···H9A2.806 (17)H12B···H12Biv2.55 (3)
C4···H12B2.728 (18)H15···H21A2.40 (2)
C5···H10Biii2.775 (19)H15···H21C2.26 (2)
C6···H7A2.719 (15)H17···H22B2.36 (2)
C6···H7B2.786 (15)H18···H19A2.31 (2)
C6···H10Biii2.837 (18)H18···H19B2.26 (2)
C7···H62.529 (16)H21C···H23vii2.41 (2)
C9···H32.492 (16)H22A···H24A2.39 (3)
C1—O1—C7116.96 (10)C11—C12—H12B123.1 (11)
C2—O2—C9116.34 (10)H12A—C12—H12B115.9 (15)
C13—O3—C19116.88 (10)O3—C13—C18125.61 (11)
C14—O4—C21116.03 (10)O3—C13—C14115.48 (11)
O1—C1—C6125.38 (11)C18—C13—C14118.90 (11)
O1—C1—C2115.50 (11)O4—C14—C15124.66 (12)
C6—C1—C2119.12 (11)O4—C14—C13115.42 (11)
O2—C2—C3124.79 (12)C15—C14—C13119.91 (12)
O2—C2—C1115.21 (11)C14—C15—C16121.15 (12)
C3—C2—C1119.99 (12)C14—C15—H15119.3 (10)
C2—C3—C4121.06 (12)C16—C15—H15119.6 (10)
C2—C3—H3119.0 (9)C17—C16—C15118.61 (12)
C4—C3—H3119.9 (9)C17—C16—C22121.67 (12)
C5—C4—C3118.47 (12)C15—C16—C22119.70 (12)
C5—C4—C10121.09 (12)C16—C17—C18120.79 (12)
C3—C4—C10120.43 (12)C16—C17—H17120.3 (8)
C4—C5—C6120.97 (12)C18—C17—H17118.9 (9)
C4—C5—H5120.3 (9)C13—C18—C17120.59 (12)
C6—C5—H5118.7 (9)C13—C18—H18119.4 (9)
C1—C6—C5120.34 (12)C17—C18—H18120.0 (9)
C1—C6—H6120.2 (9)O3—C19—C20107.42 (9)
C5—C6—H6119.4 (9)O3—C19—H19A109.0 (9)
O1—C7—C8107.63 (9)C20—C19—H19A112.1 (8)
O1—C7—H7A109.5 (8)O3—C19—H19B109.9 (9)
C8—C7—H7A110.4 (9)C20—C19—H19B110.6 (9)
O1—C7—H7B109.4 (9)H19A—C19—H19B107.9 (12)
C8—C7—H7B111.6 (9)C19—C20—C19ii113.61 (15)
H7A—C7—H7B108.2 (12)C19—C20—H20B110.4 (9)
C7—C8—C7i114.11 (15)C19ii—C20—H20B107.3 (9)
C7—C8—H8B106.1 (9)C19—C20—H20Bii107.3 (9)
C7i—C8—H8B110.0 (9)C19ii—C20—H20Bii110.4 (9)
C7—C8—H8Bi110.0 (9)H20B—C20—H20Bii107.6 (18)
C7i—C8—H8Bi106.1 (9)O4—C21—H21A110.7 (9)
H8B—C8—H8Bi110.5 (18)O4—C21—H21B105.3 (10)
O2—C9—H9A111.2 (10)H21A—C21—H21B109.0 (14)
O2—C9—H9B104.5 (9)O4—C21—H21C111.0 (10)
H9A—C9—H9B109.1 (13)H21A—C21—H21C111.5 (14)
O2—C9—H9C110.3 (10)H21B—C21—H21C109.1 (13)
H9A—C9—H9C111.2 (14)C23—C22—C16113.46 (11)
H9B—C9—H9C110.5 (13)C23—C22—H22A107.1 (10)
C11—C10—C4116.06 (12)C16—C22—H22A109.6 (10)
C11—C10—H10A108.5 (9)C23—C22—H22B109.9 (9)
C4—C10—H10A109.5 (10)C16—C22—H22B108.1 (10)
C11—C10—H10B106.7 (10)H22A—C22—H22B108.7 (14)
C4—C10—H10B108.3 (10)C24—C23—C22125.43 (15)
H10A—C10—H10B107.5 (14)C24—C23—H23119.7 (11)
C12—C11—C10127.94 (14)C22—C23—H23114.8 (11)
C12—C11—H11118.0 (11)C23—C24—H24A120.3 (11)
C10—C11—H11114.0 (11)C23—C24—H24B122.2 (12)
C11—C12—H12A121.0 (11)H24A—C24—H24B117.5 (17)
C7—O1—C1—C63.97 (17)C19—O3—C13—C182.61 (18)
C7—O1—C1—C2175.08 (10)C19—O3—C13—C14176.67 (10)
C9—O2—C2—C311.70 (18)C21—O4—C14—C1514.30 (18)
C9—O2—C2—C1167.55 (11)C21—O4—C14—C13164.57 (11)
O1—C1—C2—O21.88 (16)O3—C13—C14—O42.86 (16)
C6—C1—C2—O2177.24 (11)C18—C13—C14—O4176.47 (11)
O1—C1—C2—C3178.83 (11)O3—C13—C14—C15178.22 (11)
C6—C1—C2—C32.05 (18)C18—C13—C14—C152.45 (18)
O2—C2—C3—C4178.74 (12)O4—C14—C15—C16177.52 (12)
C1—C2—C3—C40.48 (19)C13—C14—C15—C161.29 (19)
C2—C3—C4—C51.21 (19)C14—C15—C16—C170.69 (19)
C2—C3—C4—C10179.70 (12)C14—C15—C16—C22178.93 (12)
C3—C4—C5—C61.35 (19)C15—C16—C17—C181.52 (19)
C10—C4—C5—C6179.57 (12)C22—C16—C17—C18179.71 (12)
O1—C1—C6—C5179.06 (11)O3—C13—C18—C17179.10 (12)
C2—C1—C6—C51.92 (19)C14—C13—C18—C171.65 (19)
C4—C5—C6—C10.22 (19)C16—C17—C18—C130.34 (19)
C1—O1—C7—C8178.57 (10)C13—O3—C19—C20179.34 (10)
O1—C7—C8—C7i56.52 (7)O3—C19—C20—C19ii56.61 (7)
C5—C4—C10—C11113.66 (15)C17—C16—C22—C23126.83 (14)
C3—C4—C10—C1167.28 (17)C15—C16—C22—C2355.00 (17)
C4—C10—C11—C121.4 (2)C16—C22—C23—C24111.83 (17)
Symmetry codes: (i) x+3/2, y, z+1/2; (ii) x+1/2, y, z+1/2; (iii) x, y1, z; (iv) x+2, y, z+1; (v) x+3/2, y+1, z+1/2; (vi) x, y+1, z; (vii) x+1, y, z+1; (viii) x+3/2, y1, z+1/2; (ix) x+2, y+1, z+1; (x) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of benzene rings A (C1–C6) and B (C13–C18), respectively.
D—H···AD—HH···AD···AD—H···A
C7—H7A···Cg1iii1.003 (16)2.759 (15)3.6170 (15)144.1 (12)
C19—H19B···Cg2vi0.992 (16)2.739 (15)3.5816 (15)143.0 (11)
Symmetry codes: (iii) x, y1, z; (vi) x, y+1, z.
Comparison of selected bond lengths and angles (Å, °) in the experinentally determined and computed molecular structures top
Bonds/anglesX-ray (this study)B3LYP/6-311G(d,p)
O1—C11.3704 (15)1.38958
O1—C71.4342 (15)1.46082
O2—C21.3679 (15)1.39236
O2—C91.4280 (16)1.44976
O3—C131.3658 (15)1.39978
O3—C191.4359 (15)1.47837
O4—C141.3697 (15)1.39894
O4—C211.4289 (16)1.45321
C1—O1—C7116.96 (10)118.14221
C2—O2—C9116.34 (10)117.63310
C13—O3—C19116.88 (10)117.32223
C14—O4—C21116.03 (10)117.85841
O1—C1—C6125.38 (11)124.87388
O1—C1—C2115.50 (11)116.13060
C6—C1—C2119.12 (11)118.99394
O2—C2—C3124.79 (12)124.29736
O2—C2—C1115.21 (11)115.78966
Calculated energies and other calculated data for (I) top
Total Energy, TE (eV)-32557,8422
EHOMO (eV)-5.4058
ELUMO (eV)-0.1807
Gap, ΔE (eV)5.2251
Dipole moment, µ (Debye)2.8076
Ionization potential, I (eV)5.4058
Electron affinity, A0.1807
Electronegativity, χ2.7932
Hardness, η2.6126
Electrophilicity index ,ω1.4932
Softness, σ0.3828
Fraction of electron transferred, ΔN0.8051
 

Funding information

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged. TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004). The Researchers Supporting Project (No. RSP-2019/78) King Saudi University, Riyadh, Saudi Arabia also supported this work.

References

First citationAraújo, J. D. P., Grande, C. A. & Rodrigues, A. E. (2010). Chem. Eng. Res. Des. 88, 1024–1032.  Google Scholar
First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEyambe, G., Canales, L. & Banik, B. K. (2011). Heterocyclic Lett. 1, 154–157.  Google Scholar
First citationFonsêca, D. V., Salgado, P. R. R., Neto, H. C. A., Golzio, A. M. F. O., Caldas, M. R. D. F., Melo, C. G. F., Leite, F. C., Piuvezam, M. R., Pordeus, L. C. D., Barbosa, J. M. F. & Almeida, R. N. (2016). Int. Immunopharmacol. 38, 402–408.  PubMed Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationGhosh, R., Nadiminty, N., Fitzpatrick, J. E., Alworth, W. L., Slaga, T. J. & Kumar, A. P. (2005). J. Biol. Chem. 280, 5812–5819.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMa, Y.-T., Li, H.-Q., Shi, X.-W., Zhang, A.-L. & Gao, J.-M. (2010). Acta Cryst. E66, o2946.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMahapatra, S. K., Chakraborty, S. P., Majumdar, S., Bag, B. G. & Roy, S. (2009). Eur. J. Pharmacol. 623, 132–140.  PubMed Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMorais, S. M. de, Vila-Nova, N. S., Bevilaqua, C. M. L., Rondon, F. C., Lobo, C. H., Moura, A. de A. A. N., Sales, A. D., Rodrigues, A. P. R., de Figuereido, J. R., Campello, C. C., Wilson, M. E. & de Andrade, H. F. (2014). Bioorg. Med. Chem. 22, 6250–6255.  PubMed Google Scholar
First citationNam, H. & Kim, M.-M. (2013). Food & Chem. Toxicol. 55, 106–112.  Web of Science CrossRef CAS Google Scholar
First citationPatra, A. K. & Saxena, J. (2010). Phytochemistry, 71, 1198–1222.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSadeghian, H., Seyedi, S. M., Saberi, M. R., Arghiani, Z. & Riazi, M. (2008). Bioorg. Med. Chem. 16, 890–901.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSticht, F. D. & Smith, R. M. (1971). J. Dent. Res. 50, 1531–1535.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSun, W. J., Lv, W. J., Li, L. N., Yin, G., Hang, X. F., Xue, Y. F., Chen, J. & Shi, Z. Q. (2016). New Biotechnol. 33, 345–354.  Web of Science CrossRef CAS Google Scholar
First citationTiku, A. B., Abraham, S. K. & Kale, R. K. (2004). J. Radiat. Res. 45, 435–440.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, H. X., Delling, M., Jun, J. C. & Clapham, D. E. (2006). Nat. Neurosci. 9, 628–635.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds