research communications
Hirshfeld surface analysis and DFT studies of 1,3-bis[2-methoxy-4-(prop-2-en-1-yl)phenoxy]propane
aLaboratory of Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, University of Cadi Ayyad, PB. 2390, 40001 Marrakech, Morocco, bDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, dDepartment of Chemistry, College of Science, King Saud University, P.O.Box 2455, Riyadh 11451, Saudi Arabia, and eDepartment of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
*Correspondence e-mail: AbdelmaoujoudTaia2018@gmail.com
The 23H28O4, comprises two half-molecules, with the other half of each molecule being completed by the application of twofold rotation symmetry. The two completed molecules both have a V-shaped appearance but differ in their conformations. In the crystal, each independent molecule forms chains extending parallel to the b axis with its symmetry-related counterparts through C—H⋯π(ring) interactions. Hirshfeld surface analysis of the indicates that the most important contributions for the crystal packing are from H⋯H (65.4%), H⋯C/C⋯H (21.8%) and H⋯O/O⋯H (12.3%) interactions. Optimized structures using density functional theory (DFT) at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined molecular structures in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.
of the title compound, CKeywords: crystal structure; allyl; methoxyphenoxy; C—H⋯π(ring); Hirshfeld surface.
CCDC reference: 1982222
1. Chemical context
Eugenol (4-allyl-2-methoxyphenol) is the main active constituent of clove oil (75–90%) from various plants (Patra & Saxena, 2010). The 4-allyl-2-methoxyphenol core has several active sites and provides a great responsiveness, making it an excellent precursor in the syntheses of new (Araújo et al., 2010; Xu et al., 2006) and for the development of drugs (Sticht & Smith, 1971). With respect to the biological applications of eugenol 4-allyl-2-methoxyphenol derivatives, it has been shown that these compounds possess potent antimicrobial (Eyambe et al., 2011), antioxidant (Nam & Kim, 2013; Mahapatra et al., 2009; Eyambe et al., 2011), antiviral (Sun et al., 2016), anti-inflammatory (Fonsêca et al., 2016), antidiabetic and anti-leishmania (de Morais et al., 2014) properties. The suppression of melanoma growth caused by eugenol was reported by Ghosh et al. (2005), and the ability of eugenol to act as an in vivo radio-protective agent was described by Tiku et al. (2004). Derivatives of eugenol have also been reported, see, for example: Sadeghian et al. (2008); Ma et al. (2010).
As a continuation of our research devoted to the study of o-alkylation reactions involving eugenol derivatives, we report herein the synthesis, molecular and crystal structures of the title compound, (I). Hirshfeld surface analysis and a density functional theory (DFT) study carried out at the B3LYP/6–311 G(d,p) level for comparison with the experimentally determined molecular structure.
2. Structural commentary
The comprises of two half-molecules A and B that are each completed by twofold rotation symmetry, with the rotation axis running through the central C atom (C8 for molecule A and C20 for molecule B, respectively) of the propane bridge (Fig. 1). For steric reasons, the exocyclic substituents bound to O1, O2, O3 and O4 are approximately in trans positions, with C1—C2—O2—C9, C2—C1—O1—C7, C13—C14—O4—C21 and C14—C13—O3—C19 torsion angles of −167.6 (1), 175.1 (1), 164.6 (1) and −176.7 (1)°, respectively. The two benzene rings in each molecule are nearly perpendicular to each other, with dihedral angles of 86.74 (6)° for A (C1–C6) and Aii, and of 88.12 (6) for B (C13–C18) and Bi, respectively (for symmetry codes, see Fig. 1). The two molecules have a similar V-shaped appearance but different conformations (Fig. 2).
of (I)3. Supramolecular features
In the crystal, chains extending parallel to the b axis are formed through C7—H7A⋯Cg1 (for molecule A) and C19—H19B⋯Cg2 (for molecule B) interactions (Fig. 3, Table 1). Between the chains, only van der Waals contacts occur (Figs. 3 and 4, Table 2).
|
4. Hirshfeld surface analysis
In order to quantify the intermolecular interactions in the crystal of (I), a Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) was carried out using Crystal Explorer 17.5 (Turner et al., 2017). In the HS plotted over dnorm (Fig. 5), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016). The bright-red spots appearing near C16 and hydrogen atom H10B indicate their roles as the donor and/or acceptor groups in hydrogen-bonding contacts. The shape-index of the HS is a tool to visualize possible π–π stacking interactions by the appearance of adjacent red and blue triangles. The absence of such triangles suggests that there are no notable π–π interactions in (I) (Fig. 6). The overall two-dimensional fingerprint plot, Fig. 7a, and those delineated into H⋯H, H⋯C/C⋯H and H⋯O/O⋯H contacts (McKinnon et al., 2007) are illustrated in Fig. 7b–d, respectively, together with their relative contributions to the Hirshfeld surface. The most important intermolecular interactions (Table 2) are H⋯H contacts, contributing 65.4% to the overall crystal packing, which is reflected in Fig. 7b as widely scattered points of high density due to the large hydrogen content of the molecule with the tip at de = di = 1.11 Å. In the presence of C—H⋯π interactions, pairs of characteristic wings with spikes at the tips at de + di = 2.62 Å are seen in the fingerprint plot delineated into H⋯C/C⋯H contacts, Fig. 7c (21.8% contribution to the HS). Finally, the thin and thick pairs of scattered wings in the fingerprint plot delineated into H⋯O/O⋯H contacts (12.3% contribution), Fig. 7d, have a symmetrical distribution of points with the edges at de + di = 2.55 and 2.58 Å.
Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯H, H⋯C/C⋯H and H⋯O/O⋯H interactions in Fig. 8a–c, respectively.
The large number of H⋯H, H⋯C/C⋯H and H⋯O/O⋯H intermolecular contacts suggest that these weak interactions play major roles in the crystal packing (Hathwar et al., 2015).
5. DFT calculations
The density functional theory (DFT) optimized molecular structures of (I) were computed in the gas phase on the basis of standard B3LYP functionals and 6–311 G(d,p) basis-set calculations (Becke, 1993) as implemented in GAUSSIAN 09 (Frisch et al., 2009). The theoretical and experimental results for molecule A are in good agreement (Table 3).
|
If the energy gap ΔE between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) is small, the molecule is highly polarizable and has high chemical reactivity. Numerical values of EHOMO and ELUMO, ΔE = ELUMO - EHOMO, (χ), hardness (η), potential (μ), (ω) and softness (σ) for (I) are collated in Table 4. The significance of η and σ is to evaluate both the reactivity and stability. The shapes of the HOMO and the LUMO of molecule A, together with their energy levels are shown in Fig. 9.
|
6. Synthesis and crystallization
1,3-Dibromopropane (0.2 ml, 1.61 mmol) was added to a solution of eugenol (0.5 ml, 3.23 mmol), tetrabutylammonium chloride (50 mg) and sodium hydroxide solution (5%) in benzene as solvent (20 ml). The mixture was stirred at 293 K for 6 h, and then was extracted three times with dichloromethane (15 ml). The residue was purified by v/v = 97/3) as Colourless crystals were isolated when the solvent was allowed to evaporate (yield: 86%).
on silica gel using a mixture of hexane/ethyl acetate (7. Refinement
Details including crystal data, data collection and . Hydrogen atoms were located in a difference-Fourier map and were refined freely.
are summarized in Table 5
|
Supporting information
CCDC reference: 1982222
https://doi.org/10.1107/S2056989020001681/wm5538sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020001681/wm5538Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989020001681/wm5538Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2056989020001681/wm5538Isup4.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).C23H28O4 | F(000) = 792 |
Mr = 368.45 | Dx = 1.253 Mg m−3 |
Monoclinic, P2/n | Cu Kα radiation, λ = 1.54178 Å |
a = 15.4741 (5) Å | Cell parameters from 9361 reflections |
b = 5.0224 (2) Å | θ = 3.5–72.4° |
c = 25.5180 (9) Å | µ = 0.68 mm−1 |
β = 99.858 (2)° | T = 150 K |
V = 1953.90 (12) Å3 | Plate, colourless |
Z = 4 | 0.37 × 0.27 × 0.08 mm |
Bruker D8 VENTURE PHOTON 100 CMOS diffractometer | 3756 independent reflections |
Radiation source: INCOATEC IµS micro–focus source | 3049 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.033 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 72.4°, θmin = 3.1° |
ω scans | h = −19→18 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −5→6 |
Tmin = 0.79, Tmax = 0.95 | l = −31→29 |
13935 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | All H-atom parameters refined |
wR(F2) = 0.109 | w = 1/[σ2(Fo2) + (0.0537P)2 + 0.5337P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
3756 reflections | Δρmax = 0.19 e Å−3 |
358 parameters | Δρmin = −0.23 e Å−3 |
0 restraints | Extinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: dual | Extinction coefficient: 0.0071 (4) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.82230 (6) | −0.27068 (18) | 0.30688 (3) | 0.0222 (2) | |
O2 | 0.79368 (6) | 0.06905 (18) | 0.37794 (4) | 0.0249 (2) | |
O3 | 0.32386 (6) | 0.45366 (18) | 0.30591 (3) | 0.0223 (2) | |
O4 | 0.29863 (6) | 0.12078 (19) | 0.37925 (4) | 0.0258 (2) | |
C1 | 0.89151 (8) | −0.1081 (2) | 0.32631 (5) | 0.0194 (3) | |
C2 | 0.87636 (8) | 0.0744 (2) | 0.36573 (5) | 0.0203 (3) | |
C3 | 0.94260 (9) | 0.2442 (3) | 0.38859 (5) | 0.0229 (3) | |
H3 | 0.9308 (10) | 0.372 (3) | 0.4158 (6) | 0.026 (4)* | |
C4 | 1.02517 (8) | 0.2399 (3) | 0.37294 (5) | 0.0227 (3) | |
C5 | 1.03861 (8) | 0.0650 (3) | 0.33324 (5) | 0.0234 (3) | |
H5 | 1.0965 (11) | 0.061 (3) | 0.3204 (6) | 0.028 (4)* | |
C6 | 0.97202 (8) | −0.1084 (3) | 0.30986 (5) | 0.0226 (3) | |
H6 | 0.9834 (10) | −0.232 (3) | 0.2825 (6) | 0.028 (4)* | |
C7 | 0.83297 (8) | −0.4437 (3) | 0.26374 (5) | 0.0219 (3) | |
H7A | 0.8849 (10) | −0.562 (3) | 0.2749 (6) | 0.023 (4)* | |
H7B | 0.8441 (10) | −0.334 (3) | 0.2325 (6) | 0.025 (4)* | |
C8 | 0.750000 | −0.6078 (4) | 0.250000 | 0.0224 (4) | |
H8B | 0.7581 (11) | −0.722 (3) | 0.2188 (6) | 0.033 (4)* | |
C9 | 0.77076 (10) | 0.2853 (3) | 0.40922 (6) | 0.0289 (3) | |
H9A | 0.8027 (11) | 0.277 (3) | 0.4452 (7) | 0.034 (4)* | |
H9B | 0.7090 (11) | 0.260 (3) | 0.4097 (6) | 0.028 (4)* | |
H9C | 0.7809 (11) | 0.458 (4) | 0.3922 (7) | 0.036 (4)* | |
C10 | 1.09695 (9) | 0.4256 (3) | 0.39847 (6) | 0.0280 (3) | |
H10A | 1.1474 (11) | 0.420 (3) | 0.3779 (6) | 0.035 (4)* | |
H10B | 1.0731 (12) | 0.613 (4) | 0.3959 (7) | 0.040 (5)* | |
C11 | 1.13272 (9) | 0.3754 (3) | 0.45635 (6) | 0.0298 (3) | |
H11 | 1.1823 (13) | 0.494 (4) | 0.4714 (7) | 0.052 (5)* | |
C12 | 1.10801 (11) | 0.1937 (3) | 0.48750 (6) | 0.0355 (4) | |
H12A | 1.1352 (12) | 0.181 (4) | 0.5248 (7) | 0.044 (5)* | |
H12B | 1.0621 (13) | 0.067 (4) | 0.4757 (7) | 0.047 (5)* | |
C13 | 0.39264 (8) | 0.2882 (2) | 0.32379 (5) | 0.0198 (3) | |
C14 | 0.37979 (8) | 0.1110 (2) | 0.36473 (5) | 0.0204 (3) | |
C15 | 0.44651 (9) | −0.0598 (3) | 0.38657 (5) | 0.0230 (3) | |
H15 | 0.4371 (11) | −0.180 (3) | 0.4150 (6) | 0.032 (4)* | |
C16 | 0.52658 (8) | −0.0646 (3) | 0.36808 (5) | 0.0229 (3) | |
C17 | 0.53771 (8) | 0.1037 (3) | 0.32686 (5) | 0.0235 (3) | |
H17 | 0.5958 (10) | 0.104 (3) | 0.3123 (6) | 0.026 (4)* | |
C18 | 0.47108 (8) | 0.2800 (3) | 0.30487 (5) | 0.0224 (3) | |
H18 | 0.4801 (10) | 0.400 (3) | 0.2759 (6) | 0.023 (4)* | |
C19 | 0.33292 (8) | 0.6261 (3) | 0.26230 (5) | 0.0213 (3) | |
H19A | 0.3426 (10) | 0.514 (3) | 0.2309 (6) | 0.023 (4)* | |
H19B | 0.3849 (10) | 0.743 (3) | 0.2722 (6) | 0.026 (4)* | |
C20 | 0.250000 | 0.7913 (4) | 0.250000 | 0.0223 (4) | |
H20B | 0.2441 (11) | 0.908 (3) | 0.2806 (6) | 0.031 (4)* | |
C21 | 0.27648 (10) | −0.0984 (3) | 0.41011 (6) | 0.0289 (3) | |
H21A | 0.2830 (11) | −0.273 (3) | 0.3913 (6) | 0.034 (4)* | |
H21B | 0.2159 (12) | −0.073 (3) | 0.4127 (6) | 0.036 (4)* | |
H21C | 0.3109 (11) | −0.096 (3) | 0.4452 (7) | 0.033 (4)* | |
C22 | 0.59762 (9) | −0.2578 (3) | 0.39229 (6) | 0.0275 (3) | |
H22A | 0.5774 (11) | −0.442 (4) | 0.3845 (7) | 0.037 (4)* | |
H22B | 0.6510 (11) | −0.225 (3) | 0.3753 (6) | 0.034 (4)* | |
C23 | 0.62171 (9) | −0.2341 (3) | 0.45158 (6) | 0.0300 (3) | |
H23 | 0.6524 (13) | −0.064 (4) | 0.4645 (7) | 0.050 (5)* | |
C24 | 0.60596 (11) | −0.4141 (3) | 0.48616 (7) | 0.0386 (4) | |
H24A | 0.5776 (13) | −0.581 (4) | 0.4740 (8) | 0.051 (5)* | |
H24B | 0.6230 (13) | −0.389 (4) | 0.5240 (8) | 0.050 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0208 (4) | 0.0227 (5) | 0.0230 (5) | −0.0028 (4) | 0.0034 (3) | −0.0050 (4) |
O2 | 0.0209 (5) | 0.0269 (5) | 0.0276 (5) | 0.0002 (4) | 0.0063 (4) | −0.0056 (4) |
O3 | 0.0212 (4) | 0.0223 (5) | 0.0232 (5) | 0.0035 (4) | 0.0032 (3) | 0.0049 (4) |
O4 | 0.0225 (5) | 0.0274 (5) | 0.0289 (5) | 0.0031 (4) | 0.0084 (4) | 0.0061 (4) |
C1 | 0.0191 (6) | 0.0183 (6) | 0.0197 (6) | −0.0008 (5) | 0.0002 (5) | 0.0022 (5) |
C2 | 0.0200 (6) | 0.0215 (6) | 0.0193 (6) | 0.0012 (5) | 0.0031 (5) | 0.0022 (5) |
C3 | 0.0256 (7) | 0.0208 (6) | 0.0213 (6) | 0.0009 (5) | 0.0010 (5) | −0.0006 (5) |
C4 | 0.0221 (6) | 0.0215 (6) | 0.0224 (6) | −0.0019 (5) | −0.0015 (5) | 0.0046 (5) |
C5 | 0.0196 (6) | 0.0265 (7) | 0.0240 (6) | −0.0004 (5) | 0.0033 (5) | 0.0045 (6) |
C6 | 0.0238 (6) | 0.0224 (6) | 0.0216 (6) | 0.0016 (5) | 0.0041 (5) | 0.0002 (5) |
C7 | 0.0238 (7) | 0.0203 (6) | 0.0209 (6) | 0.0012 (5) | 0.0023 (5) | −0.0026 (5) |
C8 | 0.0247 (9) | 0.0188 (8) | 0.0223 (9) | 0.000 | 0.0001 (7) | 0.000 |
C9 | 0.0293 (7) | 0.0278 (7) | 0.0314 (8) | 0.0045 (6) | 0.0100 (6) | −0.0045 (6) |
C10 | 0.0265 (7) | 0.0263 (7) | 0.0293 (7) | −0.0065 (6) | −0.0006 (6) | 0.0028 (6) |
C11 | 0.0276 (7) | 0.0308 (7) | 0.0285 (7) | −0.0026 (6) | −0.0015 (5) | −0.0040 (6) |
C12 | 0.0367 (8) | 0.0419 (9) | 0.0258 (8) | −0.0008 (7) | −0.0007 (6) | 0.0021 (7) |
C13 | 0.0207 (6) | 0.0174 (6) | 0.0199 (6) | 0.0013 (5) | 0.0000 (5) | −0.0022 (5) |
C14 | 0.0197 (6) | 0.0210 (6) | 0.0203 (6) | −0.0007 (5) | 0.0033 (5) | −0.0027 (5) |
C15 | 0.0248 (6) | 0.0221 (6) | 0.0212 (6) | 0.0019 (5) | 0.0013 (5) | 0.0013 (5) |
C16 | 0.0227 (6) | 0.0219 (6) | 0.0222 (6) | 0.0013 (5) | −0.0015 (5) | −0.0052 (5) |
C17 | 0.0209 (6) | 0.0240 (6) | 0.0254 (7) | −0.0008 (5) | 0.0032 (5) | −0.0048 (5) |
C18 | 0.0227 (6) | 0.0217 (6) | 0.0225 (6) | −0.0020 (5) | 0.0033 (5) | −0.0004 (5) |
C19 | 0.0226 (6) | 0.0204 (6) | 0.0206 (6) | −0.0004 (5) | 0.0026 (5) | 0.0027 (5) |
C20 | 0.0249 (9) | 0.0181 (8) | 0.0224 (9) | 0.000 | 0.0001 (7) | 0.000 |
C21 | 0.0297 (7) | 0.0280 (7) | 0.0308 (8) | −0.0009 (6) | 0.0104 (6) | 0.0053 (6) |
C22 | 0.0253 (7) | 0.0252 (7) | 0.0295 (7) | 0.0055 (6) | −0.0019 (5) | −0.0036 (6) |
C23 | 0.0282 (7) | 0.0280 (7) | 0.0311 (7) | 0.0040 (6) | −0.0029 (6) | 0.0007 (6) |
C24 | 0.0411 (9) | 0.0364 (9) | 0.0381 (9) | 0.0078 (7) | 0.0059 (7) | 0.0063 (7) |
O1—C1 | 1.3704 (15) | C11—C12 | 1.310 (2) |
O1—C7 | 1.4342 (15) | C11—H11 | 0.99 (2) |
O2—C2 | 1.3679 (15) | C12—H12A | 0.975 (19) |
O2—C9 | 1.4280 (16) | C12—H12B | 0.96 (2) |
O3—C13 | 1.3658 (15) | C13—C18 | 1.3816 (18) |
O3—C19 | 1.4359 (15) | C13—C14 | 1.4121 (17) |
O4—C14 | 1.3697 (15) | C14—C15 | 1.3840 (18) |
O4—C21 | 1.4289 (16) | C15—C16 | 1.3995 (18) |
C1—C6 | 1.3812 (18) | C15—H15 | 0.974 (17) |
C1—C2 | 1.4098 (17) | C16—C17 | 1.3828 (19) |
C2—C3 | 1.3831 (19) | C16—C22 | 1.5162 (18) |
C3—C4 | 1.4025 (18) | C17—C18 | 1.4015 (19) |
C3—H3 | 0.984 (16) | C17—H17 | 1.030 (15) |
C4—C5 | 1.3833 (19) | C18—H18 | 0.984 (16) |
C4—C10 | 1.5099 (18) | C19—C20 | 1.5148 (16) |
C5—C6 | 1.4021 (19) | C19—H19A | 1.012 (15) |
C5—H5 | 1.005 (16) | C19—H19B | 0.992 (16) |
C6—H6 | 0.972 (16) | C20—H20B | 0.993 (16) |
C7—C8 | 1.5154 (16) | C20—H20Bii | 0.993 (16) |
C7—H7A | 1.003 (16) | C21—H21A | 1.013 (17) |
C7—H7B | 1.007 (15) | C21—H21B | 0.960 (18) |
C8—H8B | 1.007 (16) | C21—H21C | 0.961 (17) |
C8—H8Bi | 1.007 (16) | C22—C23 | 1.499 (2) |
C9—H9A | 0.967 (17) | C22—H22A | 0.984 (18) |
C9—H9B | 0.966 (17) | C22—H22B | 1.010 (17) |
C9—H9C | 0.993 (18) | C23—C24 | 1.315 (2) |
C10—C11 | 1.507 (2) | C23—H23 | 1.00 (2) |
C10—H10A | 1.014 (17) | C24—H24A | 0.97 (2) |
C10—H10B | 1.008 (18) | C24—H24B | 0.97 (2) |
O1···O2 | 2.5827 (13) | C14···H20Biii | 2.918 (15) |
O2···O1 | 2.5827 (13) | C15···H21A | 2.768 (17) |
O3···O4 | 2.5885 (13) | C15···H21C | 2.784 (17) |
O4···O3 | 2.5885 (13) | C17···H22Avi | 2.727 (19) |
O1···H9Ciii | 2.736 (18) | C18···H22Avi | 2.764 (18) |
O1···H7Bi | 2.618 (16) | C18···H19A | 2.759 (15) |
O2···H12Aiv | 2.831 (18) | C18···H19B | 2.739 (15) |
O2···H22B | 2.647 (17) | C19···H18 | 2.514 (16) |
O2···H8Bv | 2.676 (15) | C21···H15 | 2.501 (16) |
O3···H21Avi | 2.739 (15) | C23···H15 | 2.862 (16) |
O3···H19Aii | 2.604 (16) | H3···H9C | 2.33 (2) |
O4···H24Bvii | 2.89 (2) | H3···H9A | 2.29 (2) |
O4···H20Biii | 2.732 (15) | H5···H10A | 2.37 (2) |
C2···C7vi | 3.533 (2) | H6···H7A | 2.24 (2) |
C3···C12 | 3.282 (2) | H6···H7B | 2.37 (2) |
C6···C10iii | 3.582 (2) | H6···H18viii | 2.50 (2) |
C14···C19iii | 3.555 (2) | H9A···H11ix | 2.40 (2) |
C18···C22vi | 3.564 (2) | H9A···H12Aiv | 2.56 (3) |
C2···H8Bv | 2.914 (16) | H9B···H22Avi | 2.52 (2) |
C2···H7Avi | 2.971 (15) | H9B···H23 | 2.41 (2) |
C3···H9C | 2.739 (18) | H9C···H22Bvi | 2.54 (2) |
C3···H12B | 2.783 (19) | H10A···H21Ax | 2.58 (2) |
C3···H9A | 2.806 (17) | H12B···H12Biv | 2.55 (3) |
C4···H12B | 2.728 (18) | H15···H21A | 2.40 (2) |
C5···H10Biii | 2.775 (19) | H15···H21C | 2.26 (2) |
C6···H7A | 2.719 (15) | H17···H22B | 2.36 (2) |
C6···H7B | 2.786 (15) | H18···H19A | 2.31 (2) |
C6···H10Biii | 2.837 (18) | H18···H19B | 2.26 (2) |
C7···H6 | 2.529 (16) | H21C···H23vii | 2.41 (2) |
C9···H3 | 2.492 (16) | H22A···H24A | 2.39 (3) |
C1—O1—C7 | 116.96 (10) | C11—C12—H12B | 123.1 (11) |
C2—O2—C9 | 116.34 (10) | H12A—C12—H12B | 115.9 (15) |
C13—O3—C19 | 116.88 (10) | O3—C13—C18 | 125.61 (11) |
C14—O4—C21 | 116.03 (10) | O3—C13—C14 | 115.48 (11) |
O1—C1—C6 | 125.38 (11) | C18—C13—C14 | 118.90 (11) |
O1—C1—C2 | 115.50 (11) | O4—C14—C15 | 124.66 (12) |
C6—C1—C2 | 119.12 (11) | O4—C14—C13 | 115.42 (11) |
O2—C2—C3 | 124.79 (12) | C15—C14—C13 | 119.91 (12) |
O2—C2—C1 | 115.21 (11) | C14—C15—C16 | 121.15 (12) |
C3—C2—C1 | 119.99 (12) | C14—C15—H15 | 119.3 (10) |
C2—C3—C4 | 121.06 (12) | C16—C15—H15 | 119.6 (10) |
C2—C3—H3 | 119.0 (9) | C17—C16—C15 | 118.61 (12) |
C4—C3—H3 | 119.9 (9) | C17—C16—C22 | 121.67 (12) |
C5—C4—C3 | 118.47 (12) | C15—C16—C22 | 119.70 (12) |
C5—C4—C10 | 121.09 (12) | C16—C17—C18 | 120.79 (12) |
C3—C4—C10 | 120.43 (12) | C16—C17—H17 | 120.3 (8) |
C4—C5—C6 | 120.97 (12) | C18—C17—H17 | 118.9 (9) |
C4—C5—H5 | 120.3 (9) | C13—C18—C17 | 120.59 (12) |
C6—C5—H5 | 118.7 (9) | C13—C18—H18 | 119.4 (9) |
C1—C6—C5 | 120.34 (12) | C17—C18—H18 | 120.0 (9) |
C1—C6—H6 | 120.2 (9) | O3—C19—C20 | 107.42 (9) |
C5—C6—H6 | 119.4 (9) | O3—C19—H19A | 109.0 (9) |
O1—C7—C8 | 107.63 (9) | C20—C19—H19A | 112.1 (8) |
O1—C7—H7A | 109.5 (8) | O3—C19—H19B | 109.9 (9) |
C8—C7—H7A | 110.4 (9) | C20—C19—H19B | 110.6 (9) |
O1—C7—H7B | 109.4 (9) | H19A—C19—H19B | 107.9 (12) |
C8—C7—H7B | 111.6 (9) | C19—C20—C19ii | 113.61 (15) |
H7A—C7—H7B | 108.2 (12) | C19—C20—H20B | 110.4 (9) |
C7—C8—C7i | 114.11 (15) | C19ii—C20—H20B | 107.3 (9) |
C7—C8—H8B | 106.1 (9) | C19—C20—H20Bii | 107.3 (9) |
C7i—C8—H8B | 110.0 (9) | C19ii—C20—H20Bii | 110.4 (9) |
C7—C8—H8Bi | 110.0 (9) | H20B—C20—H20Bii | 107.6 (18) |
C7i—C8—H8Bi | 106.1 (9) | O4—C21—H21A | 110.7 (9) |
H8B—C8—H8Bi | 110.5 (18) | O4—C21—H21B | 105.3 (10) |
O2—C9—H9A | 111.2 (10) | H21A—C21—H21B | 109.0 (14) |
O2—C9—H9B | 104.5 (9) | O4—C21—H21C | 111.0 (10) |
H9A—C9—H9B | 109.1 (13) | H21A—C21—H21C | 111.5 (14) |
O2—C9—H9C | 110.3 (10) | H21B—C21—H21C | 109.1 (13) |
H9A—C9—H9C | 111.2 (14) | C23—C22—C16 | 113.46 (11) |
H9B—C9—H9C | 110.5 (13) | C23—C22—H22A | 107.1 (10) |
C11—C10—C4 | 116.06 (12) | C16—C22—H22A | 109.6 (10) |
C11—C10—H10A | 108.5 (9) | C23—C22—H22B | 109.9 (9) |
C4—C10—H10A | 109.5 (10) | C16—C22—H22B | 108.1 (10) |
C11—C10—H10B | 106.7 (10) | H22A—C22—H22B | 108.7 (14) |
C4—C10—H10B | 108.3 (10) | C24—C23—C22 | 125.43 (15) |
H10A—C10—H10B | 107.5 (14) | C24—C23—H23 | 119.7 (11) |
C12—C11—C10 | 127.94 (14) | C22—C23—H23 | 114.8 (11) |
C12—C11—H11 | 118.0 (11) | C23—C24—H24A | 120.3 (11) |
C10—C11—H11 | 114.0 (11) | C23—C24—H24B | 122.2 (12) |
C11—C12—H12A | 121.0 (11) | H24A—C24—H24B | 117.5 (17) |
C7—O1—C1—C6 | −3.97 (17) | C19—O3—C13—C18 | 2.61 (18) |
C7—O1—C1—C2 | 175.08 (10) | C19—O3—C13—C14 | −176.67 (10) |
C9—O2—C2—C3 | 11.70 (18) | C21—O4—C14—C15 | −14.30 (18) |
C9—O2—C2—C1 | −167.55 (11) | C21—O4—C14—C13 | 164.57 (11) |
O1—C1—C2—O2 | −1.88 (16) | O3—C13—C14—O4 | 2.86 (16) |
C6—C1—C2—O2 | 177.24 (11) | C18—C13—C14—O4 | −176.47 (11) |
O1—C1—C2—C3 | 178.83 (11) | O3—C13—C14—C15 | −178.22 (11) |
C6—C1—C2—C3 | −2.05 (18) | C18—C13—C14—C15 | 2.45 (18) |
O2—C2—C3—C4 | −178.74 (12) | O4—C14—C15—C16 | 177.52 (12) |
C1—C2—C3—C4 | 0.48 (19) | C13—C14—C15—C16 | −1.29 (19) |
C2—C3—C4—C5 | 1.21 (19) | C14—C15—C16—C17 | −0.69 (19) |
C2—C3—C4—C10 | −179.70 (12) | C14—C15—C16—C22 | −178.93 (12) |
C3—C4—C5—C6 | −1.35 (19) | C15—C16—C17—C18 | 1.52 (19) |
C10—C4—C5—C6 | 179.57 (12) | C22—C16—C17—C18 | 179.71 (12) |
O1—C1—C6—C5 | −179.06 (11) | O3—C13—C18—C17 | 179.10 (12) |
C2—C1—C6—C5 | 1.92 (19) | C14—C13—C18—C17 | −1.65 (19) |
C4—C5—C6—C1 | −0.22 (19) | C16—C17—C18—C13 | −0.34 (19) |
C1—O1—C7—C8 | 178.57 (10) | C13—O3—C19—C20 | −179.34 (10) |
O1—C7—C8—C7i | 56.52 (7) | O3—C19—C20—C19ii | −56.61 (7) |
C5—C4—C10—C11 | −113.66 (15) | C17—C16—C22—C23 | 126.83 (14) |
C3—C4—C10—C11 | 67.28 (17) | C15—C16—C22—C23 | −55.00 (17) |
C4—C10—C11—C12 | −1.4 (2) | C16—C22—C23—C24 | 111.83 (17) |
Symmetry codes: (i) −x+3/2, y, −z+1/2; (ii) −x+1/2, y, −z+1/2; (iii) x, y−1, z; (iv) −x+2, −y, −z+1; (v) −x+3/2, y+1, −z+1/2; (vi) x, y+1, z; (vii) −x+1, −y, −z+1; (viii) −x+3/2, y−1, −z+1/2; (ix) −x+2, −y+1, −z+1; (x) x+1, y+1, z. |
Cg1 and Cg2 are the centroids of benzene rings A (C1–C6) and B (C13–C18), respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7A···Cg1iii | 1.003 (16) | 2.759 (15) | 3.6170 (15) | 144.1 (12) |
C19—H19B···Cg2vi | 0.992 (16) | 2.739 (15) | 3.5816 (15) | 143.0 (11) |
Symmetry codes: (iii) x, y−1, z; (vi) x, y+1, z. |
Bonds/angles | X-ray (this study) | B3LYP/6-311G(d,p) |
O1—C1 | 1.3704 (15) | 1.38958 |
O1—C7 | 1.4342 (15) | 1.46082 |
O2—C2 | 1.3679 (15) | 1.39236 |
O2—C9 | 1.4280 (16) | 1.44976 |
O3—C13 | 1.3658 (15) | 1.39978 |
O3—C19 | 1.4359 (15) | 1.47837 |
O4—C14 | 1.3697 (15) | 1.39894 |
O4—C21 | 1.4289 (16) | 1.45321 |
C1—O1—C7 | 116.96 (10) | 118.14221 |
C2—O2—C9 | 116.34 (10) | 117.63310 |
C13—O3—C19 | 116.88 (10) | 117.32223 |
C14—O4—C21 | 116.03 (10) | 117.85841 |
O1—C1—C6 | 125.38 (11) | 124.87388 |
O1—C1—C2 | 115.50 (11) | 116.13060 |
C6—C1—C2 | 119.12 (11) | 118.99394 |
O2—C2—C3 | 124.79 (12) | 124.29736 |
O2—C2—C1 | 115.21 (11) | 115.78966 |
Total Energy, TE (eV) | -32557,8422 |
EHOMO (eV) | -5.4058 |
ELUMO (eV) | -0.1807 |
Gap, ΔE (eV) | 5.2251 |
Dipole moment, µ (Debye) | 2.8076 |
Ionization potential, I (eV) | 5.4058 |
Electron affinity, A | 0.1807 |
Electronegativity, χ | 2.7932 |
Hardness, η | 2.6126 |
Electrophilicity index ,ω | 1.4932 |
Softness, σ | 0.3828 |
Fraction of electron transferred, ΔN | 0.8051 |
Funding information
The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged. TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004). The Researchers Supporting Project (No. RSP-2019/78) King Saudi University, Riyadh, Saudi Arabia also supported this work.
References
Araújo, J. D. P., Grande, C. A. & Rodrigues, A. E. (2010). Chem. Eng. Res. Des. 88, 1024–1032. Google Scholar
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA. Google Scholar
Eyambe, G., Canales, L. & Banik, B. K. (2011). Heterocyclic Lett. 1, 154–157. Google Scholar
Fonsêca, D. V., Salgado, P. R. R., Neto, H. C. A., Golzio, A. M. F. O., Caldas, M. R. D. F., Melo, C. G. F., Leite, F. C., Piuvezam, M. R., Pordeus, L. C. D., Barbosa, J. M. F. & Almeida, R. N. (2016). Int. Immunopharmacol. 38, 402–408. PubMed Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA. Google Scholar
Ghosh, R., Nadiminty, N., Fitzpatrick, J. E., Alworth, W. L., Slaga, T. J. & Kumar, A. P. (2005). J. Biol. Chem. 280, 5812–5819. Web of Science CrossRef PubMed CAS Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Ma, Y.-T., Li, H.-Q., Shi, X.-W., Zhang, A.-L. & Gao, J.-M. (2010). Acta Cryst. E66, o2946. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mahapatra, S. K., Chakraborty, S. P., Majumdar, S., Bag, B. G. & Roy, S. (2009). Eur. J. Pharmacol. 623, 132–140. PubMed Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Morais, S. M. de, Vila-Nova, N. S., Bevilaqua, C. M. L., Rondon, F. C., Lobo, C. H., Moura, A. de A. A. N., Sales, A. D., Rodrigues, A. P. R., de Figuereido, J. R., Campello, C. C., Wilson, M. E. & de Andrade, H. F. (2014). Bioorg. Med. Chem. 22, 6250–6255. PubMed Google Scholar
Nam, H. & Kim, M.-M. (2013). Food & Chem. Toxicol. 55, 106–112. Web of Science CrossRef CAS Google Scholar
Patra, A. K. & Saxena, J. (2010). Phytochemistry, 71, 1198–1222. Web of Science CrossRef CAS PubMed Google Scholar
Sadeghian, H., Seyedi, S. M., Saberi, M. R., Arghiani, Z. & Riazi, M. (2008). Bioorg. Med. Chem. 16, 890–901. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Sticht, F. D. & Smith, R. M. (1971). J. Dent. Res. 50, 1531–1535. CrossRef CAS PubMed Web of Science Google Scholar
Sun, W. J., Lv, W. J., Li, L. N., Yin, G., Hang, X. F., Xue, Y. F., Chen, J. & Shi, Z. Q. (2016). New Biotechnol. 33, 345–354. Web of Science CrossRef CAS Google Scholar
Tiku, A. B., Abraham, S. K. & Kale, R. K. (2004). J. Radiat. Res. 45, 435–440. Web of Science CrossRef PubMed CAS Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636. Web of Science CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xu, H. X., Delling, M., Jun, J. C. & Clapham, D. E. (2006). Nat. Neurosci. 9, 628–635. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.