research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1-[(4-methylbenzene)sulfonyl]pyrrolidine

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, 1 Campus Dr., Grand Valley State University, Allendale, MI 49401, USA, and bCenter for Crystallographic Research, Michigan State University, Department of Chemistry and Chemical Biology, East Lansing, MI 48824, USA
*Correspondence e-mail: ngassaf@gvsu.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 22 January 2020; accepted 13 February 2020; online 28 February 2020)

The mol­ecular structure of the title compound, C11H15NO2S, features a sulfonamide group with S=O bond lengths of 1.4357 (16) and 1.4349 (16) Å, an S—N bond length of 1.625 (2) Å, and an S—C bond length of 1.770 (2) Å. When viewing the mol­ecule down the S—N bond, both N—C bonds of the pyrrolidine ring are oriented gauche to the S—C bond with torsion angles of −65.6 (2)° and 76.2 (2)°. The crystal structure features both intra- and inter­molecular C—H⋯O hydrogen bonds, as well as inter­molecular C—H⋯π and ππ inter­actions, leading to the formation of sheets parallel to the ac plane.

1. Chemical context

Sulfonamides are of significant value in organic chemistry because of their therapeutic properties. These mol­ecules are referred to in the pharmaceutical industry as sulfa drugs. This class of drugs has been widely used in various pharmaceutical applications owing to their anti­bacterial, anti­viral, anti­malarial, anti­fungal, anti­cancer, anti­depressant, and other properties (Apaydın & Török, 2019[Apaydın, S. & Török, M. (2019). Bioorg. Med. Chem. Lett. 29, 2042-2050.]).

N-containing heterocycles have found many uses in pharmaceutical and materials sciences, and as a result they have attracted the attention of many in the synthetic community. Numerous synthetic methods leading to N-containing heterocycles have been reported (Jiang & Ma, 2013[Jiang, Y. & Ma, D. (2013). Top. Organomet. Chem. 46, 87-118.]). Notwithstanding, because of the importance of N-containing heterocycles, new and versatile synthetic methods are still desirable. The pyrrolidine-4-methyl­benzene­sulfonamide moiety is found in a variety of biologically important compounds that exhibit anti-inflammatory properties. L-proline-derived 4-methyl­benzene­sulfonamides (Fig. 1[link]) have been reported to exhibit anti-inflammatory activity against Trypanosoma brucei gambiense (Ugwu et al., 2018[Ugwu, D. I., Okoro, U. C. & Mishra, N. K. (2018). Eur. J. Med. Chem. 154, 110-116.]). Furthermore, these compounds can permeate the blood-brain barrier and hence can be used in treating inflammation of the brain (Ugwu et al., 2017[Ugwu, D. I., Okoro, U. C. & Ahmad, H. (2017). PLoS One, 12 art. no. e0183807.]).

[Figure 1]
Figure 1
L-proline-derived 4-methyl­benzene­sulfonamide compounds that have been reported to exhibit anti-inflammatory activity against (a) Trypanosoma brucei gambiense and (b) to reduce brain inflammation.

Generally, sulfonamides are synthesized by an analogous nucleophilic acyl-substitution reaction between an electrophile and a nucleophilic amine (Patel et al., 2018[Patel, Z. S., Stevens, A. C., Bookout, E. C., Staples, R. J., Biros, S. M. & Ngassa, F. N. (2018). Acta Cryst. E74, 1126-1129.]). Efficient methods from the literature involve the base-catalyzed sulfonyl­ation of amines using sulfonyl halides (Yan et al., 2007[Yan, J., Li, J. & Cheng, D. (2007). Synlett, pp. 2442-2444.]) or sulfonic acids (De Luca & Giacomelli, 2008[De Luca, L. & Giacomelli, G. (2008). J. Org. Chem. 73, 3967-3969.]) as electrophiles. The title compound, along with some related analogs, has been synthesized previously (Ohwada, et al., 1998[Ohwada, T., Okamoto, I., Shudo, K. & Yamaguchi, K. (1998). Tetrahedron Lett. 39, 7877-7880.]). Recently, we have discovered a more efficient method using aqueous potassium carbonate as the base. This method avoids the use of a phase-transfer catalyst by using tetra­hydro­furan as a water-miscible solvent. An increased rate of reaction and yield of sulfonamide compounds produced from a wide range of amines has been observed. These reaction conditions produced the title compound in a 91% yield, compared to the 58% yield previously reported.

[Scheme 1]

In a continuation of our research group's ongoing inter­est in synthesizing small sulfonamide mol­ecules that mimic the structural motifs of known sulfonamide drug candidates, we synthesized the title compound, C11H15NO2S, and determined its crystal structure from single-crystal X-ray diffraction data.

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 2[link]. The S1=O1 and S1=O2 bond lengths are 1.4357 (16) and 1.4349 (16) Å, which is in line with known values. The S1—C5 and S1—N1 bond lengths are 1.770 (2) and 1.625 (2) Å, respectively, with an N1—S1—C5 bond angle of 107.66 (9)°. The τ4 descriptor for fourfold coordination around the sulfur atom, S1, is 0.94, indicating a slightly distorted tetra­hedron (ideal values are 0 for square-planar, 0.85 for trigonal–pyramidal, and 1 for tetra­hedral coordination; Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]). Both C—N bonds of the pyrrolidine ring are oriented gauche to the S1—C5 bond with torsion angles C5—S1—N1—C1 = −65.62 (18)° and C5—S1—N1—C4 = 76.16 (19)°. A conformational analysis of the five-membered pyrrolidine ring pucker gives a puckering amplitude (Q2) parameter of 0.352 (3) Å and a φ2 parameter of 262.2 (4)°. Consequently, this ring is in a half-chair conformation with a twist along the C2—C3 bond. Lastly, an intra­molecular C—H⋯O contact (Sutor, 1958[Sutor, D. J. (1958). Acta Cryst. 11, 453-458.],1962[Sutor, D. J. (1962). Nature, 195, 68-69.],1963[Sutor, D. J. (1963). J. Chem. Soc. pp. 1105-1110.]; Steiner, 1996[Steiner, T. (1996). Crystallogr. Rev. 6, 1-51.]) is present between H10 and O2 with an H⋯A distance of 2.54 Å (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C5–C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1i 0.95 2.46 3.406 (3) 174
C10—H10⋯O2 0.95 2.54 2.917 (3) 104
C11—H11CCg2ii 0.98 2.73 3.614 (3) 150
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x, -y+1, -z+1.
[Figure 2]
Figure 2
The mol­ecular structure of the title compound, with the atom-labeling scheme. Displacement ellipsoids are drawn at the 40% probability level, and all hydrogen atoms have been omitted for clarity.

3. Supra­molecular features

In the crystal structure of the title compound, mol­ecules are linked by ππ inter­actions, C—H⋯O hydrogen bonds, and C—H⋯π inter­actions (Fig. 3[link], Table 1[link]). The C—H⋯O hydrogen bond is formed between an aromatic C—H group (C6—H6) and one of the sulfonamide O atoms (O1). The C—H⋯π inter­action is between the methyl group (C11—H11C) and a symmetry-derived ring (C5–C10; symmetry code: –x, –y + 1, –z + 1). The ππ inter­action has a centroid-to-centroid distance of 3.8162 (15) Å with a slippage of 1.307 Å. The result of these inter­actions is the formation of sheets that lie in the ac plane (Fig. 4[link]).

[Figure 3]
Figure 3
A depiction of the non-covalent inter­actions present in the crystal of the title compound using a ball-and-stick model with standard CPK colors. C—H⋯O hydrogen bonds and C—H⋯π inter­actions are shown with purple dashed lines, and ππ inter­actions are shown with magenta dashed lines. For clarity, most hydrogen atoms have been omitted and only one orientation of the intra­molecular C—H⋯O hydrogen bond is shown. [Symmetry codes: (i) −x, 1 − y, 1 − z; (ii) 1 − x, 1 − y, −z; (iii) 1 − x, 1 − y, 1 − z.]
[Figure 4]
Figure 4
A view down the a axis of the crystal packing showing the supra­molecular sheets formed via non-covalent inter­actions. C—H⋯O hydrogen bonds and C—H⋯π inter­actions are shown with purple dashed lines, and ππ inter­actions are shown with magenta dashed lines. For clarity, only those hydrogen atoms involved in a non-covalent inter­action are shown, along with H11A and H11B.

4. Database survey

The Cambridge Structural Database (CSD, Version 5.40, August 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) contains hundreds of structures that comprise a p-toluene­sulfonamide group bearing a pyrrolidine ring. Included in this list is another crystal-structure determination of the title compound (refcode: BABLEV; Ohwada et al., 1998[Ohwada, T., Okamoto, I., Shudo, K. & Yamaguchi, K. (1998). Tetrahedron Lett. 39, 7877-7880.]), which also crystallizes in the P[\overline{1}] space group. Unfortunately, coordinates were not deposited for this structure at that time, so we are unable to say whether the title compound is a new packing polymorph or a new conformational polymorph. The reduced cell of BABLEV is a = 8.241, b = 2.671, c = 9.240 Å, α = 76.550, β = 63.800, γ = 87.880° with a volume of 574.55 Å3. The theoretical X-ray density values for each structure are similar, with 1.30 g cm−3 for BABLEV and 1.36 g cm−3 for the title compound. Thus, the more densely packed structure reported here is likely the more thermodynamically stable form.

A selection of other structures in the CSD that are closely related to the title compound are BOKPEX (Rao & Chan, 2008[Rao, W. & Chan, W. H. (2008). Chem. Eur. J. 14, 10486-10495.]), GAWDAK (Chen et al., 2005[Chen, Y.-J., Xu, G., Cui, Y.-B., Huang, W. & Gou, S.-H. (2005). Acta Cryst. E61, o3571-o3573.]), VECTUT (Sherman et al., 2007[Sherman, E. S., Fuller, P. H., Kasi, D. & Chemler, S. R. (2007). J. Org. Chem. 72, 3896-3905.]) and YIRCOS (Wang & Peng, 2008[Wang, Y.-W. & Peng, Y. (2008). Acta Cryst. E64, o56.]). These structures were chosen for comparison because they have relatively simple substituents on the pyrrolidine ring. In their paper describing the structure of GAWDAK, the authors report that this crystal also features both intra- and inter­molecular hydrogen bonds in the solid state.

5. Synthesis and crystallization

The title compound was prepared by the dropwise addition of p-toluene­sulfonyl chloride (1.00 g, 5.25 mmol) to a stirring mixture of pyrrolidine (0.48 ml, 5.90 mmol) and 10 ml of tetra­hydro­furan. This was followed by the dropwise addition of 0.59 M aqueous potassium carbonate (10 ml, 5.90 mmol) and the mixture was stirred at room temperate for 6 h. Upon acidification with 5 M HCl, a white precipitate was isolated by vacuum filtration to give the crude sulfonamide product. The crude product was dissolved in hot ethanol and filtered. The filtrate was transferred to a scintillation vial and crystallized upon standing for 24 h to afford colorless crystals, filtered from the mother liquor (yield 91%; m.p. 405–407 K).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms bonded to carbon atoms were placed in calculated positions and refined as riding: C—H = 0.95–1.00 Å with Uiso(H) = 1.2Ueq(C) for methyl­ene groups and aromatic hydrogen atoms, and Uiso(H) = 1.5Ueq(C) for methyl groups.

Table 2
Experimental details

Crystal data
Chemical formula C11H15NO2S
Mr 225.30
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 7.5347 (1), 8.2581 (1), 9.6157 (1)
α, β, γ (°) 77.876 (1), 86.132 (1), 69.682 (1)
V3) 548.56 (1)
Z 2
Radiation type Cu Kα
μ (mm−1) 2.46
Crystal size (mm) 0.22 × 0.16 × 0.04
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.631, 0.753
No. of measured, independent and observed [I > 2σ(I)] reflections 7120, 1944, 1715
Rint 0.033
(sin θ/λ)max−1) 0.603
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.120, 1.09
No. of reflections 1944
No. of parameters 137
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.53, −0.33
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]; Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]) and CrystalMaker (Palmer, 2007[Palmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, England.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: ShelXT (Sheldrick, 2015); program(s) used to refine structure: OLEX2 (Dolomanov et al., 2009; Bourhis et al., 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009; Bourhis et al., 2015); software used to prepare material for publication: CrystalMaker (Palmer, 2007).

1-[(4-Methylbenzene)sulfonyl]pyrrolidine top
Crystal data top
C11H15NO2SZ = 2
Mr = 225.30F(000) = 240
Triclinic, P1Dx = 1.364 Mg m3
a = 7.5347 (1) ÅCu Kα radiation, λ = 1.54178 Å
b = 8.2581 (1) ÅCell parameters from 3988 reflections
c = 9.6157 (1) Åθ = 4.7–68.2°
α = 77.876 (1)°µ = 2.46 mm1
β = 86.132 (1)°T = 173 K
γ = 69.682 (1)°Plate, colourless
V = 548.56 (1) Å30.22 × 0.16 × 0.04 mm
Data collection top
Bruker APEXII CCD
diffractometer
1715 reflections with I > 2σ(I)
φ and ω scansRint = 0.033
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 68.3°, θmin = 4.7°
Tmin = 0.631, Tmax = 0.753h = 99
7120 measured reflectionsk = 99
1944 independent reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0698P)2 + 0.2666P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
1944 reflectionsΔρmax = 0.53 e Å3
137 parametersΔρmin = 0.33 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.56522 (7)0.19952 (7)0.20258 (5)0.0225 (2)
O10.6545 (2)0.2957 (2)0.09657 (16)0.0302 (4)
O20.6789 (2)0.0403 (2)0.29321 (17)0.0313 (4)
N10.4193 (3)0.1465 (2)0.11936 (19)0.0239 (4)
C10.3110 (3)0.0415 (3)0.2046 (2)0.0283 (5)
H1A0.2637380.0844580.2933410.034*
H1B0.3896200.0847840.2289390.034*
C20.1485 (3)0.0702 (3)0.1065 (3)0.0353 (6)
H2A0.1843310.0167660.0436200.042*
H2B0.0350110.0619240.1614290.042*
C30.1137 (4)0.2554 (4)0.0214 (4)0.0511 (8)
H3A0.0516010.2722090.0706160.061*
H3B0.0322780.3440310.0748990.061*
C40.3053 (4)0.2719 (3)0.0018 (3)0.0357 (6)
H4A0.3590190.2402750.0932160.043*
H4B0.2994240.3935840.0018220.043*
C50.4298 (3)0.3438 (3)0.3132 (2)0.0225 (5)
C60.3318 (3)0.5190 (3)0.2538 (2)0.0287 (5)
H60.3421640.5630010.1551560.034*
C70.2192 (3)0.6284 (3)0.3400 (3)0.0331 (6)
H70.1493160.7472650.2991590.040*
C80.2063 (3)0.5674 (4)0.4859 (3)0.0334 (6)
C90.3052 (4)0.3933 (4)0.5423 (3)0.0359 (6)
H90.2969070.3496980.6412580.043*
C100.4167 (3)0.2805 (3)0.4575 (2)0.0296 (5)
H100.4835030.1606960.4979550.035*
C110.0852 (4)0.6900 (4)0.5788 (3)0.0516 (8)
H11A0.0965150.8068290.5473170.077*
H11B0.1276990.6433440.6778520.077*
H11C0.0472680.6994320.5713010.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0196 (3)0.0255 (3)0.0225 (3)0.0078 (2)0.00028 (19)0.0042 (2)
O10.0262 (8)0.0370 (10)0.0289 (9)0.0143 (7)0.0064 (6)0.0056 (7)
O20.0243 (8)0.0313 (9)0.0345 (9)0.0062 (7)0.0048 (7)0.0023 (7)
N10.0240 (9)0.0269 (10)0.0223 (9)0.0101 (8)0.0003 (7)0.0057 (7)
C10.0278 (11)0.0262 (12)0.0327 (12)0.0117 (9)0.0001 (9)0.0051 (9)
C20.0280 (12)0.0392 (15)0.0423 (15)0.0142 (10)0.0049 (10)0.0095 (11)
C30.0361 (15)0.0509 (18)0.0596 (19)0.0150 (13)0.0176 (13)0.0090 (14)
C40.0395 (14)0.0379 (14)0.0281 (13)0.0140 (11)0.0081 (10)0.0005 (10)
C50.0217 (10)0.0269 (12)0.0224 (11)0.0113 (9)0.0004 (8)0.0069 (8)
C60.0318 (12)0.0295 (13)0.0267 (12)0.0141 (10)0.0011 (9)0.0039 (9)
C70.0316 (12)0.0262 (13)0.0443 (15)0.0114 (10)0.0041 (10)0.0118 (10)
C80.0288 (12)0.0453 (15)0.0383 (14)0.0212 (11)0.0072 (10)0.0215 (11)
C90.0370 (13)0.0553 (17)0.0224 (12)0.0224 (12)0.0024 (10)0.0119 (11)
C100.0302 (12)0.0361 (14)0.0225 (11)0.0122 (10)0.0032 (9)0.0035 (9)
C110.0418 (15)0.070 (2)0.0624 (19)0.0267 (15)0.0161 (14)0.0471 (17)
Geometric parameters (Å, º) top
S1—O11.4357 (16)C4—H4B0.9900
S1—O21.4349 (16)C5—C61.390 (3)
S1—N11.6248 (18)C5—C101.386 (3)
S1—C51.770 (2)C6—H60.9500
N1—C11.481 (3)C6—C71.382 (3)
N1—C41.476 (3)C7—H70.9500
C1—H1A0.9900C7—C81.397 (4)
C1—H1B0.9900C8—C91.379 (4)
C1—C21.518 (3)C8—C111.511 (3)
C2—H2A0.9900C9—H90.9500
C2—H2B0.9900C9—C101.386 (3)
C2—C31.517 (4)C10—H100.9500
C3—H3A0.9900C11—H11A0.9800
C3—H3B0.9900C11—H11B0.9800
C3—C41.495 (4)C11—H11C0.9800
C4—H4A0.9900
O1—S1—N1106.88 (9)N1—C4—H4B110.9
O1—S1—C5108.04 (10)C3—C4—H4A110.9
O2—S1—O1119.67 (10)C3—C4—H4B110.9
O2—S1—N1106.48 (10)H4A—C4—H4B108.9
O2—S1—C5107.59 (10)C6—C5—S1119.68 (17)
N1—S1—C5107.66 (9)C10—C5—S1120.00 (18)
C1—N1—S1118.02 (14)C10—C5—C6120.3 (2)
C4—N1—S1120.69 (16)C5—C6—H6120.4
C4—N1—C1110.89 (17)C7—C6—C5119.2 (2)
N1—C1—H1A111.1C7—C6—H6120.4
N1—C1—H1B111.1C6—C7—H7119.4
N1—C1—C2103.35 (18)C6—C7—C8121.3 (2)
H1A—C1—H1B109.1C8—C7—H7119.4
C2—C1—H1A111.1C7—C8—C11120.4 (3)
C2—C1—H1B111.1C9—C8—C7118.4 (2)
C1—C2—H2A111.1C9—C8—C11121.2 (3)
C1—C2—H2B111.1C8—C9—H9119.3
H2A—C2—H2B109.1C8—C9—C10121.3 (2)
C3—C2—C1103.2 (2)C10—C9—H9119.3
C3—C2—H2A111.1C5—C10—C9119.5 (2)
C3—C2—H2B111.1C5—C10—H10120.2
C2—C3—H3A110.7C9—C10—H10120.2
C2—C3—H3B110.7C8—C11—H11A109.5
H3A—C3—H3B108.8C8—C11—H11B109.5
C4—C3—C2105.2 (2)C8—C11—H11C109.5
C4—C3—H3A110.7H11A—C11—H11B109.5
C4—C3—H3B110.7H11A—C11—H11C109.5
N1—C4—C3104.3 (2)H11B—C11—H11C109.5
N1—C4—H4A110.9
S1—N1—C1—C2161.32 (16)C1—N1—C4—C36.5 (3)
S1—N1—C4—C3137.8 (2)C1—C2—C3—C436.6 (3)
S1—C5—C6—C7176.88 (17)C2—C3—C4—N126.6 (3)
S1—C5—C10—C9177.89 (17)C4—N1—C1—C216.0 (2)
O1—S1—N1—C1178.52 (15)C5—S1—N1—C165.62 (18)
O1—S1—N1—C439.71 (19)C5—S1—N1—C476.16 (19)
O1—S1—C5—C638.27 (19)C5—C6—C7—C81.8 (3)
O1—S1—C5—C10143.93 (18)C6—C5—C10—C90.1 (3)
O2—S1—N1—C149.53 (18)C6—C7—C8—C91.6 (3)
O2—S1—N1—C4168.70 (17)C6—C7—C8—C11178.9 (2)
O2—S1—C5—C6168.76 (16)C7—C8—C9—C100.5 (3)
O2—S1—C5—C1013.4 (2)C8—C9—C10—C50.3 (3)
N1—S1—C5—C676.84 (19)C10—C5—C6—C70.9 (3)
N1—S1—C5—C10100.97 (19)C11—C8—C9—C10179.9 (2)
N1—C1—C2—C331.6 (3)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C5–C10 ring.
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.952.463.406 (3)174
C10—H10···O20.952.542.917 (3)104
C11—H11C···Cg2ii0.982.733.614 (3)150
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z+1.
 

Acknowledgements

The authors thank Pfizer, Inc. for the donation of a Varian INOVA 400 FT NMR spectrometer. The CCD-based X-ray diffractometers at Michigan State University were upgraded and/or replaced by departmental funds.

Funding information

Funding for this research was provided by: National Science Foundation (grant No. MRI CHE-1725699); Grand Valley State University Chemistry Department's Weldon Fund.

References

First citationApaydın, S. & Török, M. (2019). Bioorg. Med. Chem. Lett. 29, 2042–2050.  PubMed Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y.-J., Xu, G., Cui, Y.-B., Huang, W. & Gou, S.-H. (2005). Acta Cryst. E61, o3571–o3573.  CrossRef IUCr Journals Google Scholar
First citationDe Luca, L. & Giacomelli, G. (2008). J. Org. Chem. 73, 3967–3969.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJiang, Y. & Ma, D. (2013). Top. Organomet. Chem. 46, 87–118.  CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationOhwada, T., Okamoto, I., Shudo, K. & Yamaguchi, K. (1998). Tetrahedron Lett. 39, 7877–7880.  Web of Science CSD CrossRef CAS Google Scholar
First citationPalmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, England.  Google Scholar
First citationPatel, Z. S., Stevens, A. C., Bookout, E. C., Staples, R. J., Biros, S. M. & Ngassa, F. N. (2018). Acta Cryst. E74, 1126–1129.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRao, W. & Chan, W. H. (2008). Chem. Eur. J. 14, 10486–10495.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSherman, E. S., Fuller, P. H., Kasi, D. & Chemler, S. R. (2007). J. Org. Chem. 72, 3896–3905.  CrossRef PubMed CAS Google Scholar
First citationSteiner, T. (1996). Crystallogr. Rev. 6, 1–51.  CrossRef CAS Google Scholar
First citationSutor, D. J. (1958). Acta Cryst. 11, 453–458.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSutor, D. J. (1962). Nature, 195, 68–69.  CAS Google Scholar
First citationSutor, D. J. (1963). J. Chem. Soc. pp. 1105–1110.  CrossRef Web of Science Google Scholar
First citationUgwu, D. I., Okoro, U. C. & Ahmad, H. (2017). PLoS One, 12 art. no. e0183807.  Google Scholar
First citationUgwu, D. I., Okoro, U. C. & Mishra, N. K. (2018). Eur. J. Med. Chem. 154, 110–116.  CrossRef CAS PubMed Google Scholar
First citationWang, Y.-W. & Peng, Y. (2008). Acta Cryst. E64, o56.  CrossRef IUCr Journals Google Scholar
First citationYan, J., Li, J. & Cheng, D. (2007). Synlett, pp. 2442–2444.  Web of Science CrossRef Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds