research communications
of 2-(5-benzyl-6-oxo-3-phenyl-1,6-dihydropyridazin-1-yl)acetic acid with two monoclinic modifications: crystal structures and Hirshfeld surface analyses
aLaboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences, Mohamed I University, 60000 Oujda, Morocco, bDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139-Samsun, Turkey, and cLaboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, University, Mohammed V, Rabat, Morocco
*Correspondence e-mail: saiddaoui62@gmail.com, cemle28baydere@hotmail.com
Two polymorphs of the title compound, C19H16N2O3, were obtained from ethanolic (polymorph I) and methanolic solutions (polymorph II), respectively. Both polymorphs crystallize in the monoclinic system with four formula units per cell and a complete molecule in the The main difference between the molecules of (I) and (II) is the reversed position of the hydroxy group of the carboxylic function. All other conformational features are found to be similar in the two molecules. The different orientation of the OH group results in different hydrogen-bonding schemes in the crystal structures of (I) and (II). Whereas in (I) intermolecular O—H⋯O hydrogen bonds with the pyridazinone carbonyl O atom as acceptor generate chains with a C(7) motif extending parallel to the b-axis direction, in the crystal of (II) pairs of inversion-related O—H⋯O hydrogen bonds with an R22(8) ring motif between two carboxylic functions are found. The intermolecular interactions in both crystal structures were analysed using Hirshfeld surface analysis and two-dimensional fingerprint plots.
Keywords: crystal structure; polymorphism; pyridazine; Hirshfeld surface analysis.
1. Chemical context
Pyridazin-3(2H)-ones are an important family of heterocycles because of their great chemical reactivity (Chelfi et al., 2015; Zarrouk et al., 2010), with new products reported recently (Chakraborty et al., 2018; El Kalai et al., 2019a). In addition, the importance of pyridazinones in medicinal chemistry has increased in recent years thanks to their pharmacological properties, including anticancer (Yarden & Caldes, 2013), anti-hypertensive (Siddiqui et al., 2011), antibacterial (Akhtar et al., 2016), anti-HIV (Livermore et al., 1993), anti-inflammatory (Singh et al., 2017), antidepressant (Boukharsa et al., 2016), anti-convulsant (Partap et al., 2018) and cardiotonic (Costas et al., 2015) activities. Several pyridazinone-based products are already present in the pharmaceutical market such as Minaprine (Sotelo et al., 2003), Azanrinone (Mahmoodi et al., 2014), Indolidan (Abouzid et al., 2008) and Levosimendan (Archan & Toller, 2008).
In a continuation of our recent work on the synthesis and crystal structures of new pyridazin-3(2H)-one derivatives (El Kalai et al., 2019b; Daoui et al., 2019a,b), we report here the synthesis, and of 2-(5-benzyl-6-oxo-3-phenylpyridazin-1(6H)-yl)acetic acid, which is going to be subjected to further pharmacological investigations.
2. Structural commentary
The title compound is dimorphic with two monoclinic polymorphs. The molecular structure of polymorph (I) is shown in Fig. 1 and that of polymorph (II) in Fig. 2. The differences in the conformations of the two molecules is shown in the structural overlap drawing (Fig. 3). The main difference between (I) and (II) pertains to the OH function of the carboxyl group, which is reversed in the two molecules. All other conformational features are quite similar in the molecules of the two polymorphs. In (I), the phenyl ring (C1–C6) and the pyridazine ring (N1/N2/C10–C7) are nearly co-planar, making a dihedral angle of 5.92 (2)° whereas the phenyl ring of the benzyl group (C14–C19) is perpendicular to the pyridazine ring, with a dihedral angle of 89.91 (1)° (Fig. 1). In (II), the corresponding values are 15.44 (2) and 89.13 (1)°, respectively. In the molecule of (I), the carboxyl group has a C12—O2 bond length of 1.277 (2) Å between the C atom and the OH function, and the C12=O3 bond length of the carbonyl group is 1.187 (2) Å. The corresponding values in (II) are 1.3057 (16) and 1.2108 (18) Å. The differences in the bond lengths of the two carboxylic groups can be attributed to their different roles in intermolecular hydrogen bonding (see below). In both molecules, weak intramolecular hydrogen bonds [C—H⋯N for (I) and C—H⋯O for (II); Figs. 1 and 2, Tables 1 and 2] stabilize the molecular conformation.
|
3. Supramolecular features
In the I), molecules are linked by O2—H2⋯O1i hydrogen bonds between the carboxylic OH function and the pyridazinone carbonyl O1 atom of a neighbouring molecule, generating C(7) chains extending parallel to the b-axis direction (Fig. 4, Table 1). A weak π–π stacking interaction occurs between the pyridazinone rings of inversion-related molecules [Cg1⋯Cg1(1 − x, 1 − y,1 − z)], with a centroid–to–centroid distance of 3.8437 (12) Å and a slippage of 1.690 (Cg1 is the centroid of the N1/N2/C10–C7 ring) (Fig. 4). As a result of the reversed orientation of the carboxylic hydroxy function, in the of (II) the hydrogen-bonding scheme is different. Here molecules are linked by pairs of O3—H3⋯O2i hydrogen bonds between the carboxylic groups of neighbouring molecules, forming inversion dimers with an R22(8) ring motif. The dimers are linked by weak C5—H5⋯O2ii and C11—H11A⋯O1iii hydrogen bonds, forming C(8) chains extending parallel to the b-axis direction (Table 2, Fig. 5). The crystal packing of (II) also features weak π–π interactions involving the centroids of the N1/N2/C7–C10 (Cg1) and C14–C19 (Cg3) rings, with Cg1⋯Cg3(x, − y, − + z) = 4.3830 (12) Å.
of (4. Database survey
A search of the Cambridge Structural Database (CSD, version 5.40, update August 2019; Groom et al., 2016) using 2-[6-oxopyridazin-1(6H)-yl]acetic acid as the main skeleton revealed the presence of three structures similar to the title compound, but with different substituents on the pyridazione ring, viz. ethyl 2-[6-oxo-3,4-diphenyl-1,6-dihydropyridazin-1-yl]acetic acid acetate (CIPTOL; Aydın et al., 2007), ethyl 3-methyl-6-oxo-5-[3-(trifluoromethyl)phenyl]-1,6-dihydro-1-pyridazineacetate (QANVOR; Xu et al., 2005) and ethyl {4-[(5-chloro-1-benzofuran-2-yl)methyl]-3-methyl-6-oxopyridazin-1(6H)-yl}acetate (XULSEE; Boukharsa et al., 2015). Like in (I) and (II), the packing within the crystal structures of these compounds is dominated by O—H⋯O hydrogen bonds and consolidated by C—H⋯O interactions. In CIPTOL, the pyridazinone ring and two phenyl rings are inclined to each other by 72.73 (11) and 49.97 (10)° compared to the corresponding dihedral angles of 5.92 (2), 89.91 (1) and 15.44 (2)°, 89.13 (1)° in (I) and (II), respectively. In QANVOR, the 3-(trifluoromethyl)phenyl and pyridazinone rings are approximately coplanar with a dihedral angle of 4.84 (13)°. In XULSEE, the dihedral angle between the benzofuran ring system [maximum deviation 0.014 (2) Å] and the pyridazinone ring is 73.33 (8)°.
5. Hirshfeld surface analysis
Hirshfeld surface analysis was applied to quantify the intermolecular contacts in (I) and (II), using CrystalExplorer17.5 (Turner et al., 2017). A standard (high) surface resolution with the three-dimensional dnorm surfaces plotted over a fixed colour scale of −0.7266 (red) to 1.4843 (blue) a.u. was used for (I) and of −0.7232 (red) to 1.3047 (blue) a.u. for (II). The bright-red spots on the Hirshfeld surface mapped over dnorm show the presence of O—H⋯O interactions with neighbouring molecules in (I) (Fig. 6a) and (II) (Fig. 7a), respectively. The presence of red and blue triangles on the shape-index map [Fig. 6b (I) and 7b (II)] are indicative for the presence of π–π stacking interactions. The curvedness plots show flat surface patches characteristic of planar stacking (Fig. 6c and 7c). The complete two-dimensional fingerprint plots are shown in Fig. 8a and 9a for (I) and (II). The H⋯H, H⋯O, C⋯H, C⋯C, C⋯N, N⋯H and C⋯O interactions are illustrated in Fig. 8b–h for (I), and H⋯H, C⋯H, H⋯O, N⋯H, C⋯C and C⋯O interactions are illustrated in Fig. 9b–g for (II). In both crystal structures, H⋯H interactions make the largest contributions to the overall Hirshfeld surfaces [48.7% for (I) and 43.6% for (II)]. As expected from the intermolecular O—H⋯O and C—H⋯O contacts detailed in Tables 1 and 2, H⋯O contacts also account for a high percentage contributions [21.5% (I) and 21.9% (II)] and are indicated by a pair of wings at de + di ∼1.7 Å [Fig. 8c (I) and 9d (II)]. The C⋯H contacts,with percentage contributions of 19.2% in (I) and 22.5% in (II) appear in the fingerprint plots as two distinct spikes at de + di ∼2.9 Å in (I) and 3.0 Å in (II) (Fig. 8d and 9c). The C⋯C contacts, which refer to π–π interactions, contribute 4.2% of the Hirshfeld surfaces for both (I) and (II) (Fig. 8e and 9f). There are additional N⋯H (5.0%) and C⋯O (2.8%) contacts in (II), while in (I) (where N⋯H = 1.8% and C⋯O = 1.7%), C⋯N (2.9%) interactions are also observed.
6. Synthesis and crystallization
A suspension of ethyl 2-(5-benzyl-6-oxo-3-phenylpyridazin-1(6H)-yl)acetate (3.6 mmol), and 6 N NaOH (14.4 mmol) in ethanol (50 ml) was stirred at 353 K for 4 h. The mixture was then concentrated in vacuo, diluted with cold water, and acidified with 6 N HCl. The final product was filtered off by suction filtration and recrystallized from ethanol or methanol. Single crystals of (I) were obtained by slow evaporation of an ethanolic solution at room temperature, and single crystals of (II) were obtained by slow evaporation of a methanolic solution at room temperature.
7. Refinement
Crystal data, data collection and structure . The atom labelling for molecules of (I) and (II) is identical. In the of (I), SIMU, DELU and ISOR commands were used for atoms C12 and O3. For both structures, hydrogen atoms of the carboxylic group were located in a difference-Fourier map and were refined with a fixed O—H distance of 0.82 Å and with Uiso(H) = 1.5Ueq(O). All other hydrogen atoms were placed in calculated positions, with C—H = 0.93–0.96 Å and allowed to ride on their parent atoms with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms.
details are summarized in Table 3Supporting information
https://doi.org/10.1107/S2056989020002406/wm5541sup1.cif
contains datablocks I, II. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020002406/wm5541Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989020002406/wm5541IIsup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989020002406/wm5541Isup4.cml
For both structures, data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2017/1 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020) and PLATON (Spek, 2020); software used to prepare material for publication: WinGX (Farrugia, 2012), PLATON (Spek, 2020) and publCIF (Westrip, 2010).C19H16N2O3 | F(000) = 672 |
Mr = 320.34 | Dx = 1.303 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 10.5500 (8) Å | Cell parameters from 9543 reflections |
b = 9.3679 (6) Å | θ = 1.9–29.8° |
c = 16.5606 (15) Å | µ = 0.09 mm−1 |
β = 93.886 (7)° | T = 296 K |
V = 1632.9 (2) Å3 | Prism, colorless |
Z = 4 | 0.58 × 0.43 × 0.34 mm |
Stoe IPDS 2 diffractometer | 4603 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 1989 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.039 |
Detector resolution: 6.67 pixels mm-1 | θmax = 29.7°, θmin = 2.4° |
rotation method scans | h = −12→14 |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | k = −13→12 |
Tmin = 0.961, Tmax = 0.981 | l = −23→23 |
12987 measured reflections |
Refinement on F2 | 19 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.053 | H-atom parameters constrained |
wR(F2) = 0.158 | w = 1/[σ2(Fo2) + (0.0772P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.89 | (Δ/σ)max < 0.001 |
4603 reflections | Δρmax = 0.35 e Å−3 |
217 parameters | Δρmin = −0.34 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N2 | 0.63345 (14) | 0.43785 (17) | 0.40115 (9) | 0.0550 (4) | |
N1 | 0.56137 (14) | 0.34515 (16) | 0.44077 (9) | 0.0539 (4) | |
O1 | 0.66753 (13) | 0.60906 (17) | 0.31011 (10) | 0.0811 (5) | |
O2 | 0.76216 (13) | 0.27628 (19) | 0.30333 (10) | 0.0914 (6) | |
H2 | 0.804328 | 0.226747 | 0.274357 | 0.137* | |
C7 | 0.43814 (16) | 0.35514 (19) | 0.42800 (10) | 0.0508 (4) | |
C6 | 0.36108 (18) | 0.2513 (2) | 0.47105 (11) | 0.0536 (4) | |
C8 | 0.38202 (17) | 0.4630 (2) | 0.37706 (11) | 0.0567 (5) | |
H8 | 0.294010 | 0.471278 | 0.371699 | 0.068* | |
C10 | 0.58990 (18) | 0.5384 (2) | 0.34591 (11) | 0.0589 (5) | |
C12 | 0.83446 (19) | 0.3288 (2) | 0.36076 (12) | 0.0612 (5) | |
C9 | 0.45351 (17) | 0.5535 (2) | 0.33636 (11) | 0.0594 (5) | |
O3 | 0.94446 (16) | 0.3027 (3) | 0.37082 (12) | 0.1213 (7) | |
C11 | 0.77005 (17) | 0.4220 (2) | 0.41864 (12) | 0.0634 (5) | |
H11A | 0.785002 | 0.382843 | 0.472680 | 0.076* | |
H11B | 0.808847 | 0.515829 | 0.418553 | 0.076* | |
C14 | 0.26299 (19) | 0.7017 (2) | 0.29161 (12) | 0.0638 (5) | |
C5 | 0.2306 (2) | 0.2435 (2) | 0.45719 (13) | 0.0677 (6) | |
H5 | 0.189656 | 0.304979 | 0.419821 | 0.081* | |
C15 | 0.2264 (2) | 0.7924 (3) | 0.35035 (15) | 0.0794 (7) | |
H15 | 0.288323 | 0.838285 | 0.383550 | 0.095* | |
C4 | 0.1600 (2) | 0.1465 (3) | 0.49763 (14) | 0.0780 (6) | |
H4 | 0.072279 | 0.143929 | 0.487252 | 0.094* | |
C13 | 0.4010 (2) | 0.6709 (3) | 0.28207 (15) | 0.0822 (7) | |
H13A | 0.411644 | 0.644798 | 0.226260 | 0.099* | |
H13B | 0.449726 | 0.757252 | 0.293614 | 0.099* | |
C17 | 0.0092 (2) | 0.7521 (3) | 0.31546 (16) | 0.0888 (8) | |
H17 | −0.075763 | 0.769037 | 0.323863 | 0.107* | |
C19 | 0.1676 (2) | 0.6361 (3) | 0.24455 (14) | 0.0836 (7) | |
H19 | 0.188376 | 0.573613 | 0.203863 | 0.100* | |
C3 | 0.2156 (3) | 0.0557 (3) | 0.55173 (15) | 0.0859 (7) | |
H3 | 0.167270 | −0.008738 | 0.579307 | 0.103* | |
C1 | 0.4167 (2) | 0.1565 (3) | 0.52585 (16) | 0.0904 (8) | |
H1 | 0.504386 | 0.157532 | 0.536391 | 0.109* | |
C16 | 0.1008 (2) | 0.8173 (3) | 0.36152 (17) | 0.0958 (8) | |
H16 | 0.078911 | 0.880366 | 0.401664 | 0.115* | |
C18 | 0.0408 (2) | 0.6619 (3) | 0.25690 (16) | 0.0901 (8) | |
H18 | −0.022580 | 0.616712 | 0.224545 | 0.108* | |
C2 | 0.3444 (3) | 0.0599 (3) | 0.56547 (18) | 0.1078 (10) | |
H2A | 0.384238 | −0.003519 | 0.602205 | 0.129* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N2 | 0.0449 (8) | 0.0597 (10) | 0.0611 (9) | 0.0062 (7) | 0.0087 (7) | −0.0024 (8) |
N1 | 0.0496 (9) | 0.0560 (9) | 0.0565 (8) | 0.0062 (7) | 0.0063 (7) | −0.0028 (7) |
O1 | 0.0572 (9) | 0.0901 (11) | 0.0988 (11) | 0.0021 (8) | 0.0255 (8) | 0.0262 (9) |
O2 | 0.0511 (8) | 0.1258 (14) | 0.0963 (11) | 0.0206 (9) | −0.0021 (8) | −0.0447 (10) |
C7 | 0.0487 (10) | 0.0515 (11) | 0.0526 (9) | 0.0073 (8) | 0.0051 (8) | −0.0036 (8) |
C6 | 0.0549 (11) | 0.0523 (11) | 0.0542 (10) | 0.0049 (9) | 0.0079 (8) | −0.0018 (8) |
C8 | 0.0457 (10) | 0.0611 (11) | 0.0643 (11) | 0.0097 (9) | 0.0113 (8) | 0.0068 (9) |
C10 | 0.0512 (10) | 0.0611 (12) | 0.0662 (11) | 0.0069 (10) | 0.0176 (9) | 0.0038 (10) |
C12 | 0.0514 (7) | 0.0670 (9) | 0.0653 (8) | 0.0051 (7) | 0.0037 (7) | 0.0008 (7) |
C9 | 0.0503 (11) | 0.0658 (12) | 0.0638 (11) | 0.0123 (9) | 0.0163 (9) | 0.0119 (9) |
O3 | 0.0569 (8) | 0.1817 (15) | 0.1240 (12) | 0.0325 (10) | −0.0028 (8) | −0.0424 (12) |
C11 | 0.0459 (11) | 0.0735 (14) | 0.0701 (12) | 0.0039 (9) | −0.0017 (9) | −0.0047 (10) |
C14 | 0.0580 (12) | 0.0676 (13) | 0.0666 (12) | 0.0121 (10) | 0.0103 (10) | 0.0237 (10) |
C5 | 0.0596 (12) | 0.0704 (14) | 0.0739 (13) | 0.0014 (10) | 0.0100 (10) | 0.0141 (10) |
C15 | 0.0572 (13) | 0.0833 (16) | 0.0964 (16) | 0.0031 (12) | −0.0039 (11) | −0.0097 (13) |
C4 | 0.0619 (13) | 0.0798 (15) | 0.0939 (16) | −0.0060 (12) | 0.0162 (11) | 0.0109 (13) |
C13 | 0.0623 (13) | 0.0909 (17) | 0.0962 (16) | 0.0209 (12) | 0.0249 (11) | 0.0393 (14) |
C17 | 0.0555 (13) | 0.119 (2) | 0.0923 (17) | 0.0121 (14) | 0.0047 (12) | −0.0046 (16) |
C19 | 0.0876 (18) | 0.0948 (18) | 0.0684 (13) | 0.0214 (14) | 0.0051 (12) | −0.0045 (13) |
C3 | 0.0887 (18) | 0.0720 (15) | 0.0992 (17) | −0.0067 (14) | 0.0234 (14) | 0.0203 (13) |
C1 | 0.0660 (14) | 0.0925 (18) | 0.1114 (19) | 0.0008 (13) | −0.0045 (13) | 0.0438 (16) |
C16 | 0.0666 (15) | 0.118 (2) | 0.1027 (18) | 0.0164 (15) | 0.0038 (13) | −0.0330 (17) |
C18 | 0.0709 (16) | 0.112 (2) | 0.0846 (16) | −0.0008 (15) | −0.0154 (12) | −0.0093 (15) |
C2 | 0.100 (2) | 0.100 (2) | 0.122 (2) | 0.0027 (17) | −0.0042 (17) | 0.0588 (18) |
N2—N1 | 1.353 (2) | C14—C13 | 1.503 (3) |
N2—C10 | 1.371 (2) | C5—C4 | 1.377 (3) |
N2—C11 | 1.458 (2) | C5—H5 | 0.9300 |
N1—C7 | 1.306 (2) | C15—C16 | 1.371 (3) |
O1—C10 | 1.235 (2) | C15—H15 | 0.9300 |
O2—C12 | 1.277 (2) | C4—C3 | 1.341 (3) |
O2—H2 | 0.8200 | C4—H4 | 0.9300 |
C7—C8 | 1.420 (2) | C13—H13A | 0.9700 |
C7—C6 | 1.481 (3) | C13—H13B | 0.9700 |
C6—C1 | 1.373 (3) | C17—C16 | 1.337 (3) |
C6—C5 | 1.382 (3) | C17—C18 | 1.345 (4) |
C8—C9 | 1.346 (3) | C17—H17 | 0.9300 |
C8—H8 | 0.9300 | C19—C18 | 1.389 (3) |
C10—C9 | 1.444 (3) | C19—H19 | 0.9300 |
C12—O3 | 1.187 (2) | C3—C2 | 1.363 (4) |
C12—C11 | 1.494 (3) | C3—H3 | 0.9300 |
C9—C13 | 1.502 (3) | C1—C2 | 1.378 (4) |
C11—H11A | 0.9700 | C1—H1 | 0.9300 |
C11—H11B | 0.9700 | C16—H16 | 0.9300 |
C14—C15 | 1.367 (3) | C18—H18 | 0.9300 |
C14—C19 | 1.375 (3) | C2—H2A | 0.9300 |
N1—N2—C10 | 126.22 (15) | C6—C5—H5 | 119.3 |
N1—N2—C11 | 114.74 (15) | C14—C15—C16 | 121.6 (2) |
C10—N2—C11 | 119.00 (16) | C14—C15—H15 | 119.2 |
C7—N1—N2 | 117.48 (15) | C16—C15—H15 | 119.2 |
C12—O2—H2 | 109.5 | C3—C4—C5 | 121.1 (2) |
N1—C7—C8 | 121.17 (17) | C3—C4—H4 | 119.4 |
N1—C7—C6 | 116.60 (16) | C5—C4—H4 | 119.4 |
C8—C7—C6 | 122.21 (16) | C9—C13—C14 | 113.43 (17) |
C1—C6—C5 | 116.86 (19) | C9—C13—H13A | 108.9 |
C1—C6—C7 | 121.27 (18) | C14—C13—H13A | 108.9 |
C5—C6—C7 | 121.86 (17) | C9—C13—H13B | 108.9 |
C9—C8—C7 | 121.38 (17) | C14—C13—H13B | 108.9 |
C9—C8—H8 | 119.3 | H13A—C13—H13B | 107.7 |
C7—C8—H8 | 119.3 | C16—C17—C18 | 119.6 (2) |
O1—C10—N2 | 119.04 (17) | C16—C17—H17 | 120.2 |
O1—C10—C9 | 125.67 (19) | C18—C17—H17 | 120.2 |
N2—C10—C9 | 115.28 (16) | C14—C19—C18 | 120.9 (2) |
O3—C12—O2 | 123.7 (2) | C14—C19—H19 | 119.5 |
O3—C12—C11 | 120.9 (2) | C18—C19—H19 | 119.5 |
O2—C12—C11 | 115.36 (17) | C4—C3—C2 | 118.6 (2) |
C8—C9—C10 | 118.14 (18) | C4—C3—H3 | 120.7 |
C8—C9—C13 | 124.38 (17) | C2—C3—H3 | 120.7 |
C10—C9—C13 | 117.48 (17) | C6—C1—C2 | 121.0 (2) |
N2—C11—C12 | 114.75 (16) | C6—C1—H1 | 119.5 |
N2—C11—H11A | 108.6 | C2—C1—H1 | 119.5 |
C12—C11—H11A | 108.6 | C17—C16—C15 | 120.9 (2) |
N2—C11—H11B | 108.6 | C17—C16—H16 | 119.6 |
C12—C11—H11B | 108.6 | C15—C16—H16 | 119.6 |
H11A—C11—H11B | 107.6 | C17—C18—C19 | 120.3 (2) |
C15—C14—C19 | 116.8 (2) | C17—C18—H18 | 119.9 |
C15—C14—C13 | 121.1 (2) | C19—C18—H18 | 119.9 |
C19—C14—C13 | 122.1 (2) | C3—C2—C1 | 121.1 (2) |
C4—C5—C6 | 121.3 (2) | C3—C2—H2A | 119.4 |
C4—C5—H5 | 119.3 | C1—C2—H2A | 119.4 |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O1i | 0.82 | 1.82 | 2.593 (2) | 156 |
C1—H1···N1 | 0.93 | 2.47 | 2.780 (3) | 100 |
Symmetry code: (i) −x+3/2, y−1/2, −z+1/2. |
C19H16N2O3 | F(000) = 672 |
Mr = 320.34 | Dx = 1.317 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 10.5976 (6) Å | Cell parameters from 11065 reflections |
b = 15.5500 (7) Å | θ = 2.0–30.2° |
c = 10.3731 (7) Å | µ = 0.09 mm−1 |
β = 109.120 (5)° | T = 296 K |
V = 1615.11 (17) Å3 | Prism, colorless |
Z = 4 | 0.77 × 0.70 × 0.59 mm |
STOE IPDS 2 diffractometer | 4562 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 2560 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.037 |
Detector resolution: 6.67 pixels mm-1 | θmax = 29.8°, θmin = 2.0° |
rotation method scans | h = −14→14 |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | k = −21→21 |
Tmin = 0.950, Tmax = 0.966 | l = −9→14 |
12114 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.049 | H-atom parameters constrained |
wR(F2) = 0.131 | w = 1/[σ2(Fo2) + (0.0658P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.98 | (Δ/σ)max < 0.001 |
4562 reflections | Δρmax = 0.21 e Å−3 |
218 parameters | Δρmin = −0.21 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.72419 (10) | 0.27629 (8) | 0.59311 (12) | 0.0685 (3) | |
O3 | 0.85719 (10) | 0.46576 (8) | 0.50173 (13) | 0.0697 (3) | |
O2 | 0.97177 (11) | 0.41088 (9) | 0.37548 (13) | 0.0746 (4) | |
H3 | 1.024031 | 0.449746 | 0.410547 | 0.112* | |
N1 | 0.56525 (10) | 0.40450 (8) | 0.30448 (12) | 0.0469 (3) | |
N2 | 0.65255 (10) | 0.35304 (8) | 0.39742 (12) | 0.0482 (3) | |
C7 | 0.45128 (12) | 0.42124 (9) | 0.32229 (14) | 0.0448 (3) | |
C10 | 0.63572 (13) | 0.31919 (10) | 0.51338 (15) | 0.0505 (3) | |
C8 | 0.41953 (13) | 0.38747 (10) | 0.43611 (15) | 0.0518 (3) | |
H8 | 0.336938 | 0.399584 | 0.445235 | 0.062* | |
C6 | 0.35817 (13) | 0.47589 (9) | 0.21629 (14) | 0.0467 (3) | |
C9 | 0.50740 (13) | 0.33851 (10) | 0.52997 (15) | 0.0510 (3) | |
C12 | 0.87184 (13) | 0.41235 (11) | 0.42288 (15) | 0.0540 (4) | |
C11 | 0.77702 (13) | 0.33946 (10) | 0.37033 (16) | 0.0529 (4) | |
H11A | 0.758711 | 0.333700 | 0.272786 | 0.064* | |
H11B | 0.817891 | 0.286421 | 0.413433 | 0.064* | |
C14 | 0.34689 (14) | 0.30038 (11) | 0.65991 (16) | 0.0559 (4) | |
C1 | 0.37838 (15) | 0.48952 (12) | 0.09292 (17) | 0.0629 (4) | |
H1 | 0.450530 | 0.463405 | 0.076387 | 0.076* | |
C13 | 0.48712 (15) | 0.29980 (13) | 0.65443 (18) | 0.0679 (5) | |
H13A | 0.543928 | 0.330261 | 0.733863 | 0.082* | |
H13B | 0.517681 | 0.240631 | 0.661889 | 0.082* | |
C2 | 0.29390 (17) | 0.54093 (13) | −0.00593 (19) | 0.0744 (5) | |
H2 | 0.309754 | 0.549564 | −0.088011 | 0.089* | |
C5 | 0.25091 (17) | 0.51563 (13) | 0.23724 (19) | 0.0733 (5) | |
H5 | 0.234983 | 0.508074 | 0.319510 | 0.088* | |
C3 | 0.18788 (19) | 0.57899 (13) | 0.0157 (2) | 0.0814 (6) | |
H3A | 0.129995 | 0.613227 | −0.051425 | 0.098* | |
C19 | 0.3040 (2) | 0.36098 (15) | 0.7325 (2) | 0.0846 (6) | |
H19 | 0.361300 | 0.405216 | 0.775869 | 0.102* | |
C15 | 0.25885 (18) | 0.23814 (14) | 0.5959 (2) | 0.0837 (6) | |
H15 | 0.283752 | 0.197158 | 0.543528 | 0.100* | |
C17 | 0.09285 (19) | 0.29337 (18) | 0.6803 (3) | 0.0941 (7) | |
H17 | 0.008047 | 0.290075 | 0.688145 | 0.113* | |
C4 | 0.1669 (2) | 0.56655 (15) | 0.1373 (2) | 0.0960 (7) | |
H4 | 0.094447 | 0.592977 | 0.152843 | 0.115* | |
C18 | 0.1777 (2) | 0.35732 (18) | 0.7422 (3) | 0.1008 (7) | |
H18 | 0.150476 | 0.399081 | 0.791625 | 0.121* | |
C16 | 0.1334 (2) | 0.23488 (17) | 0.6074 (3) | 0.1056 (8) | |
H16 | 0.075399 | 0.191088 | 0.563708 | 0.127* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0598 (6) | 0.0850 (8) | 0.0606 (7) | 0.0170 (6) | 0.0196 (5) | 0.0211 (6) |
O3 | 0.0610 (6) | 0.0868 (8) | 0.0744 (8) | −0.0176 (6) | 0.0402 (6) | −0.0276 (6) |
O2 | 0.0615 (6) | 0.1001 (10) | 0.0777 (8) | −0.0164 (6) | 0.0437 (6) | −0.0276 (7) |
N1 | 0.0482 (5) | 0.0524 (7) | 0.0415 (6) | 0.0005 (5) | 0.0167 (5) | 0.0007 (5) |
N2 | 0.0435 (5) | 0.0561 (7) | 0.0464 (7) | 0.0002 (5) | 0.0166 (5) | −0.0001 (5) |
C7 | 0.0457 (6) | 0.0494 (8) | 0.0417 (7) | −0.0021 (6) | 0.0175 (5) | −0.0003 (6) |
C10 | 0.0493 (7) | 0.0556 (9) | 0.0462 (8) | −0.0019 (6) | 0.0152 (6) | 0.0019 (7) |
C8 | 0.0466 (6) | 0.0643 (9) | 0.0485 (8) | 0.0003 (6) | 0.0212 (6) | 0.0065 (7) |
C6 | 0.0499 (7) | 0.0503 (8) | 0.0442 (7) | 0.0014 (6) | 0.0212 (6) | 0.0016 (6) |
C9 | 0.0495 (7) | 0.0586 (9) | 0.0467 (8) | −0.0039 (6) | 0.0180 (6) | 0.0058 (7) |
C12 | 0.0459 (7) | 0.0737 (10) | 0.0471 (8) | 0.0002 (7) | 0.0218 (6) | −0.0021 (7) |
C11 | 0.0467 (7) | 0.0654 (10) | 0.0497 (8) | 0.0037 (6) | 0.0200 (6) | −0.0034 (7) |
C14 | 0.0561 (7) | 0.0661 (10) | 0.0481 (8) | 0.0005 (7) | 0.0207 (6) | 0.0174 (7) |
C1 | 0.0595 (8) | 0.0819 (12) | 0.0563 (9) | 0.0189 (8) | 0.0310 (7) | 0.0177 (8) |
C13 | 0.0581 (8) | 0.0897 (13) | 0.0592 (10) | 0.0047 (8) | 0.0236 (7) | 0.0264 (9) |
C2 | 0.0784 (10) | 0.0946 (13) | 0.0575 (10) | 0.0234 (10) | 0.0323 (8) | 0.0246 (9) |
C5 | 0.0790 (10) | 0.0930 (13) | 0.0618 (10) | 0.0284 (9) | 0.0419 (9) | 0.0175 (9) |
C3 | 0.0832 (11) | 0.0951 (15) | 0.0701 (12) | 0.0376 (10) | 0.0307 (9) | 0.0296 (10) |
C19 | 0.0799 (11) | 0.0973 (15) | 0.0831 (14) | −0.0166 (10) | 0.0355 (10) | −0.0194 (11) |
C15 | 0.0728 (11) | 0.0753 (13) | 0.1021 (16) | −0.0058 (10) | 0.0273 (10) | −0.0127 (11) |
C17 | 0.0596 (10) | 0.138 (2) | 0.0901 (16) | −0.0055 (13) | 0.0324 (10) | 0.0234 (15) |
C4 | 0.0908 (12) | 0.1224 (18) | 0.0917 (15) | 0.0572 (13) | 0.0528 (11) | 0.0360 (13) |
C18 | 0.0848 (13) | 0.140 (2) | 0.0911 (16) | 0.0060 (14) | 0.0478 (12) | −0.0147 (15) |
C16 | 0.0719 (12) | 0.0996 (17) | 0.138 (2) | −0.0280 (12) | 0.0244 (13) | −0.0066 (16) |
O1—C10 | 1.2249 (17) | C14—C13 | 1.506 (2) |
O3—C12 | 1.2108 (18) | C1—C2 | 1.375 (2) |
O2—C12 | 1.3057 (16) | C1—H1 | 0.9300 |
O2—H3 | 0.8200 | C13—H13A | 0.9700 |
N1—C7 | 1.3064 (16) | C13—H13B | 0.9700 |
N1—N2 | 1.3570 (16) | C2—C3 | 1.352 (2) |
N2—C10 | 1.3771 (18) | C2—H2 | 0.9300 |
N2—C11 | 1.4513 (17) | C5—C4 | 1.375 (3) |
C7—C8 | 1.4294 (19) | C5—H5 | 0.9300 |
C7—C6 | 1.4813 (19) | C3—C4 | 1.364 (3) |
C10—C9 | 1.4568 (19) | C3—H3A | 0.9300 |
C8—C9 | 1.342 (2) | C19—C18 | 1.376 (3) |
C8—H8 | 0.9300 | C19—H19 | 0.9300 |
C6—C5 | 1.372 (2) | C15—C16 | 1.374 (3) |
C6—C1 | 1.381 (2) | C15—H15 | 0.9300 |
C9—C13 | 1.502 (2) | C17—C16 | 1.340 (4) |
C12—C11 | 1.494 (2) | C17—C18 | 1.354 (3) |
C11—H11A | 0.9700 | C17—H17 | 0.9300 |
C11—H11B | 0.9700 | C4—H4 | 0.9300 |
C14—C15 | 1.357 (2) | C18—H18 | 0.9300 |
C14—C19 | 1.373 (3) | C16—H16 | 0.9300 |
C12—O2—H3 | 109.5 | C6—C1—H1 | 119.4 |
C7—N1—N2 | 117.63 (11) | C9—C13—C14 | 116.80 (13) |
N1—N2—C10 | 126.35 (11) | C9—C13—H13A | 108.1 |
N1—N2—C11 | 113.56 (11) | C14—C13—H13A | 108.1 |
C10—N2—C11 | 119.97 (12) | C9—C13—H13B | 108.1 |
N1—C7—C8 | 121.48 (12) | C14—C13—H13B | 108.1 |
N1—C7—C6 | 115.55 (12) | H13A—C13—H13B | 107.3 |
C8—C7—C6 | 122.96 (11) | C3—C2—C1 | 120.27 (16) |
O1—C10—N2 | 120.56 (12) | C3—C2—H2 | 119.9 |
O1—C10—C9 | 124.76 (13) | C1—C2—H2 | 119.9 |
N2—C10—C9 | 114.67 (12) | C6—C5—C4 | 120.37 (16) |
C9—C8—C7 | 120.84 (12) | C6—C5—H5 | 119.8 |
C9—C8—H8 | 119.6 | C4—C5—H5 | 119.8 |
C7—C8—H8 | 119.6 | C2—C3—C4 | 119.18 (17) |
C5—C6—C1 | 117.74 (14) | C2—C3—H3A | 120.4 |
C5—C6—C7 | 121.72 (13) | C4—C3—H3A | 120.4 |
C1—C6—C7 | 120.53 (12) | C14—C19—C18 | 121.1 (2) |
C8—C9—C10 | 118.94 (13) | C14—C19—H19 | 119.5 |
C8—C9—C13 | 126.17 (13) | C18—C19—H19 | 119.5 |
C10—C9—C13 | 114.88 (12) | C14—C15—C16 | 120.9 (2) |
O2—C12—O3 | 124.45 (14) | C14—C15—H15 | 119.6 |
O3—C12—C11 | 123.16 (12) | C16—C15—H15 | 119.6 |
O2—C12—C11 | 112.38 (13) | C16—C17—C18 | 118.69 (19) |
N2—C11—C12 | 111.36 (12) | C16—C17—H17 | 120.7 |
N2—C11—H11A | 109.4 | C18—C17—H17 | 120.7 |
C12—C11—H11A | 109.4 | C3—C4—C5 | 121.14 (16) |
N2—C11—H11B | 109.4 | C3—C4—H4 | 119.4 |
C12—C11—H11B | 109.4 | C5—C4—H4 | 119.4 |
H11A—C11—H11B | 108.0 | C17—C18—C19 | 120.5 (2) |
C15—C14—C19 | 117.36 (16) | C17—C18—H18 | 119.8 |
C15—C14—C13 | 120.40 (17) | C19—C18—H18 | 119.8 |
C19—C14—C13 | 122.19 (17) | C17—C16—C15 | 121.5 (2) |
C2—C1—C6 | 121.30 (14) | C17—C16—H16 | 119.3 |
C2—C1—H1 | 119.4 | C15—C16—H16 | 119.3 |
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11B···O1 | 0.97 | 2.39 | 2.7325 (19) | 100 |
O2—H3···O3i | 0.82 | 1.84 | 2.6599 (16) | 177 |
C5—H5···O3ii | 0.93 | 2.40 | 3.280 (2) | 159 |
C11—H11A···O1iii | 0.97 | 2.47 | 3.2814 (19) | 141 |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y+1, −z+1; (iii) x, −y+1/2, z−1/2. |
Acknowledgements
The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).
References
Abouzid, K., Abdel Hakeem, M., Khalil, O. & Maklad, Y. (2008). Bioorg. Med. Chem. 16, 382–389. Web of Science CrossRef PubMed CAS Google Scholar
Akhtar, W., Shaquiquzzaman, M., Akhter, M., Verma, G., Khan, M. F. & Alam, M. M. (2016). Eur. J. Med. Chem. 123, 256–281. Web of Science CrossRef CAS PubMed Google Scholar
Archan, S. & Toller, W. (2008). Curr. Opin. Anaesthesiol. 21, 78–84. CrossRef PubMed Google Scholar
Aydın, A., Doğruer, D. S., Akkurt, M. & Büyükgüngör, O. (2007). Acta Cryst. E63, o4522. Web of Science CSD CrossRef IUCr Journals Google Scholar
Boukharsa, Y., El Ammari, L., Taoufik, J., Saadi, M. & Ansar, M. (2015). Acta Cryst. E71, o291–o292. Web of Science CSD CrossRef IUCr Journals Google Scholar
Boukharsa, Y., Meddah, B., Tiendrebeogo, R. Y., Ibrahimi, A., Taoufik, J., Cherrah, Y., Benomar, A., Faouzi, M. E. A. & Ansar, M. (2016). Med. Chem. Res. 25, 494–500. Web of Science CrossRef CAS Google Scholar
Chakraborty, M., Sengupta, D., Saha, T. & Goswami, S. (2018). J. Org. Chem. 83, 7771–7778. CSD CrossRef CAS PubMed Google Scholar
Chelfi, T., Elaatioui, A., Koudad, M., Benchat, N. & Hacht, B. (2015). J. Mater. Environ. Sci, 6, 2174–2178. CAS Google Scholar
Costas, T., Costas-Lago, M. C., Vila, N., Besada, P., Cano, E. & Terán, C. (2015). Eur. J. Med. Chem. 94, 113–122. CrossRef CAS PubMed Google Scholar
Daoui, S., Baydere, C., El Kalai, F., Mahi, L., Dege, N., Karrouchi, K. & Benchat, N. (2019a). Acta Cryst. E75, 1925–1929. CSD CrossRef IUCr Journals Google Scholar
Daoui, S., Çınar, E. B., El Kalai, F., Saddik, R., Dege, N., Karrouchi, K. & Benchat, N. (2019b). Acta Cryst. E75, 1880–1883. CSD CrossRef IUCr Journals Google Scholar
El Kalai, F., Baydere, C., Daoui, S., Saddik, R., Dege, N., Karrouchi, K. & Benchat, N. (2019b). Acta Cryst. E75, 892–895. CSD CrossRef IUCr Journals Google Scholar
El Kalai, F., Chelfi, T., Benchat, N., Hacht, B., Bouklah, M., Elaatiaoui, A., Daoui, S., Allali, M., Ben Hadda, T. & Almalki, F. (2019a). J. Mol. Struct. 1191, 24–31. CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Livermore, D. G. H., Bethell, R. C., Cammack, N., Hancock, A. P., Hann, M. M., Green, D. V. S., Lamont, R. B., Noble, S. A., Orr, D. C. & Payne, J. J. (1993). J. Med. Chem. 36, 3784–3794. CSD CrossRef CAS PubMed Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mahmoodi, N. O., Safari, N. & Sharifzadeh, B. (2014). Synth. Commun. 44, 245–250. CrossRef CAS Google Scholar
Partap, S., Akhtar, M. J., Yar, M. S., Hassan, M. Z. & Siddiqui, A. A. (2018). Bioorg. Chem. 77, 74–83. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Siddiqui, A. A., Mishra, R., Shaharyar, M., Husain, A., Rashid, M. & Pal, P. (2011). Bioorg. Med. Chem. Lett. 21, 1023–1026. Web of Science CrossRef CAS PubMed Google Scholar
Singh, J., Sharma, D. & Bansal, R. (2017). J. Heterocycl. Chem. 54, 2935–2945. CrossRef CAS Google Scholar
Sotelo, E., Coelho, A. & Raviña, E. (2003). Tetrahedron Lett. 44, 4459–4462. CrossRef CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xu, H., Song, H.-B., Yao, C.-S., Zhu, Y.-Q., Hu, F.-Z., Zou, X.-M. & Yang, H.-Z. (2005). Acta Cryst. E61, o1561–o1563. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yarden, Y. & Caldes, C. (2013). Eur. J. Cancer, 49, 2619–2620. CrossRef PubMed Google Scholar
Zarrouk, A., Chelfi, T., Dafali, A., Hammouti, B., Al-Deyab, S. S., Warad, I., Benchat, N. & Zertoubi, M. (2010). Int. J. Electrochem. Sci. 5, 696–705. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.