research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Polymorphism of 2-(5-benzyl-6-oxo-3-phenyl-1,6-di­hydro­pyridazin-1-yl)acetic acid with two monoclinic modifications: crystal structures and Hirshfeld surface analyses

CROSSMARK_Color_square_no_text.svg

aLaboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences, Mohamed I University, 60000 Oujda, Morocco, bDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139-Samsun, Turkey, and cLaboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, University, Mohammed V, Rabat, Morocco
*Correspondence e-mail: saiddaoui62@gmail.com, cemle28baydere@hotmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 22 January 2020; accepted 19 February 2020; online 25 February 2020)

Two polymorphs of the title compound, C19H16N2O3, were obtained from ethano­lic (polymorph I) and methano­lic solutions (polymorph II), respectively. Both polymorphs crystallize in the monoclinic system with four formula units per cell and a complete mol­ecule in the asymmetric unit. The main difference between the mol­ecules of (I) and (II) is the reversed position of the hy­droxy group of the carb­oxy­lic function. All other conformational features are found to be similar in the two mol­ecules. The different orientation of the OH group results in different hydrogen-bonding schemes in the crystal structures of (I) and (II). Whereas in (I) inter­molecular O—H⋯O hydrogen bonds with the pyridazinone carbonyl O atom as acceptor generate chains with a C(7) motif extending parallel to the b-axis direction, in the crystal of (II) pairs of inversion-related O—H⋯O hydrogen bonds with an R22(8) ring motif between two carb­oxy­lic functions are found. The inter­molecular inter­actions in both crystal structures were analysed using Hirshfeld surface analysis and two-dimensional fingerprint plots.

1. Chemical context

Pyridazin-3(2H)-ones are an important family of heterocycles because of their great chemical reactivity (Chelfi et al., 2015[Chelfi, T., Elaatioui, A., Koudad, M., Benchat, N. & Hacht, B. (2015). J. Mater. Environ. Sci, 6, 2174-2178.]; Zarrouk et al., 2010[Zarrouk, A., Chelfi, T., Dafali, A., Hammouti, B., Al-Deyab, S. S., Warad, I., Benchat, N. & Zertoubi, M. (2010). Int. J. Electrochem. Sci. 5, 696-705.]), with new products reported recently (Chakraborty et al., 2018[Chakraborty, M., Sengupta, D., Saha, T. & Goswami, S. (2018). J. Org. Chem. 83, 7771-7778.]; El Kalai et al., 2019a[El Kalai, F., Chelfi, T., Benchat, N., Hacht, B., Bouklah, M., Elaatiaoui, A., Daoui, S., Allali, M., Ben Hadda, T. & Almalki, F. (2019a). J. Mol. Struct. 1191, 24-31.]). In addition, the importance of pyridazinones in medicinal chemistry has increased in recent years thanks to their pharmacological properties, including anti­cancer (Yarden & Caldes, 2013[Yarden, Y. & Caldes, C. (2013). Eur. J. Cancer, 49, 2619-2620.]), anti-hypertensive (Siddiqui et al., 2011[Siddiqui, A. A., Mishra, R., Shaharyar, M., Husain, A., Rashid, M. & Pal, P. (2011). Bioorg. Med. Chem. Lett. 21, 1023-1026.]), anti­bacterial (Akhtar et al., 2016[Akhtar, W., Shaquiquzzaman, M., Akhter, M., Verma, G., Khan, M. F. & Alam, M. M. (2016). Eur. J. Med. Chem. 123, 256-281.]), anti-HIV (Livermore et al., 1993[Livermore, D. G. H., Bethell, R. C., Cammack, N., Hancock, A. P., Hann, M. M., Green, D. V. S., Lamont, R. B., Noble, S. A., Orr, D. C. & Payne, J. J. (1993). J. Med. Chem. 36, 3784-3794.]), anti-inflammatory (Singh et al., 2017[Singh, J., Sharma, D. & Bansal, R. (2017). J. Heterocycl. Chem. 54, 2935-2945.]), anti­depressant (Boukharsa et al., 2016[Boukharsa, Y., Meddah, B., Tiendrebeogo, R. Y., Ibrahimi, A., Taoufik, J., Cherrah, Y., Benomar, A., Faouzi, M. E. A. & Ansar, M. (2016). Med. Chem. Res. 25, 494-500.]), anti-convulsant (Partap et al., 2018[Partap, S., Akhtar, M. J., Yar, M. S., Hassan, M. Z. & Siddiqui, A. A. (2018). Bioorg. Chem. 77, 74-83.]) and cardiotonic (Costas et al., 2015[Costas, T., Costas-Lago, M. C., Vila, N., Besada, P., Cano, E. & Terán, C. (2015). Eur. J. Med. Chem. 94, 113-122.]) activities. Several pyridazinone-based products are already present in the pharmaceutical market such as Minaprine (Sotelo et al., 2003[Sotelo, E., Coelho, A. & Raviña, E. (2003). Tetrahedron Lett. 44, 4459-4462.]), Aza­nrinone (Mahmoodi et al., 2014[Mahmoodi, N. O., Safari, N. & Sharifzadeh, B. (2014). Synth. Commun. 44, 245-250.]), Indolidan (Abouzid et al., 2008[Abouzid, K., Abdel Hakeem, M., Khalil, O. & Maklad, Y. (2008). Bioorg. Med. Chem. 16, 382-389.]) and Levosimendan (Archan & Toller, 2008[Archan, S. & Toller, W. (2008). Curr. Opin. Anaesthesiol. 21, 78-84.]).

In a continuation of our recent work on the synthesis and crystal structures of new pyridazin-3(2H)-one derivatives (El Kalai et al., 2019b[El Kalai, F., Baydere, C., Daoui, S., Saddik, R., Dege, N., Karrouchi, K. & Benchat, N. (2019b). Acta Cryst. E75, 892-895.]; Daoui et al., 2019a[Daoui, S., Baydere, C., El Kalai, F., Mahi, L., Dege, N., Karrouchi, K. & Benchat, N. (2019a). Acta Cryst. E75, 1925-1929.],b[Daoui, S., Çınar, E. B., El Kalai, F., Saddik, R., Dege, N., Karrouchi, K. & Benchat, N. (2019b). Acta Cryst. E75, 1880-1883.]), we report here the synthesis, crystal structure and polymorphism of 2-(5-benzyl-6-oxo-3-phenyl­pyridazin-1(6H)-yl)acetic acid, which is going to be subjected to further pharmacological investigations.

[Scheme 1]

2. Structural commentary

The title compound is dimorphic with two monoclinic polymorphs. The mol­ecular structure of polymorph (I) is shown in Fig. 1[link] and that of polymorph (II) in Fig. 2[link]. The differences in the conformations of the two mol­ecules is shown in the structural overlap drawing (Fig. 3[link]). The main difference between (I) and (II) pertains to the OH function of the carboxyl group, which is reversed in the two mol­ecules. All other conformational features are quite similar in the mol­ecules of the two polymorphs. In (I), the phenyl ring (C1–C6) and the pyridazine ring (N1/N2/C10–C7) are nearly co-planar, making a dihedral angle of 5.92 (2)° whereas the phenyl ring of the benzyl group (C14–C19) is perpendicular to the pyridazine ring, with a dihedral angle of 89.91 (1)° (Fig. 1[link]). In (II), the corresponding values are 15.44 (2) and 89.13 (1)°, respectively. In the mol­ecule of (I), the carboxyl group has a C12—O2 bond length of 1.277 (2) Å between the C atom and the OH function, and the C12=O3 bond length of the carbonyl group is 1.187 (2) Å. The corresponding values in (II) are 1.3057 (16) and 1.2108 (18) Å. The differences in the bond lengths of the two carb­oxy­lic groups can be attributed to their different roles in inter­molecular hydrogen bonding (see below). In both mol­ecules, weak intra­molecular hydrogen bonds [C—H⋯N for (I) and C—H⋯O for (II); Figs. 1[link] and 2[link], Tables 1[link] and 2[link]] stabilize the mol­ecular conformation.

Table 1
Hydrogen-bond geometry (Å, °) for I[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.82 1.82 2.593 (2) 156
C1—H1⋯N1 0.93 2.47 2.780 (3) 100
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °) for II[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11B⋯O1 0.97 2.39 2.7325 (19) 100
O2—H3⋯O3i 0.82 1.84 2.6599 (16) 177
C5—H5⋯O3ii 0.93 2.40 3.280 (2) 159
C11—H11A⋯O1iii 0.97 2.47 3.2814 (19) 141
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of (I) with displacement ellipsoids drawn at the 30% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of (II) with displacement ellipsoids drawn at the 30% probability level.
[Figure 3]
Figure 3
Structural overlap of mol­ecules (I) and (II).

3. Supra­molecular features

In the crystal structure of (I), mol­ecules are linked by O2—H2⋯O1i hydrogen bonds between the carb­oxy­lic OH function and the pyridazinone carbonyl O1 atom of a neighbouring mol­ecule, generating C(7) chains extending parallel to the b-axis direction (Fig. 4[link], Table 1[link]). A weak ππ stacking inter­action occurs between the pyridazinone rings of inversion-related mol­ecules [Cg1⋯Cg1(1 − x, 1 − y,1 − z)], with a centroid–to–centroid distance of 3.8437 (12) Å and a slippage of 1.690 (Cg1 is the centroid of the N1/N2/C10–C7 ring) (Fig. 4[link]). As a result of the reversed orientation of the carb­oxy­lic hy­droxy function, in the crystal structure of (II) the hydrogen-bonding scheme is different. Here mol­ecules are linked by pairs of O3—H3⋯O2i hydrogen bonds between the carb­oxy­lic groups of neighbouring mol­ecules, forming inversion dimers with an R22(8) ring motif. The dimers are linked by weak C5—H5⋯O2ii and C11—H11A⋯O1iii hydrogen bonds, forming C(8) chains extending parallel to the b-axis direction (Table 2[link], Fig. 5[link]). The crystal packing of (II) also features weak ππ inter­actions involving the centroids of the N1/N2/C7–C10 (Cg1) and C14–C19 (Cg3) rings, with Cg1⋯Cg3(x, [{1\over 2}] − y, −[{1\over 2}] + z) = 4.3830 (12) Å.

[Figure 4]
Figure 4
The crystal packing of (I). The O—H⋯O hydrogen bonds are shown as blue dotteded lines, and ππ contacts are represented by green dotted lines. For clarity, only H atoms involved in hydrogen bonding (white sticks) were included.
[Figure 5]
Figure 5
The crystal packing of (II), with O—H⋯O and C—H⋯O inter­actions shown as blue and black dotted lines, respectively.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.40, update August 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using 2-[6-oxopyridazin-1(6H)-yl]acetic acid as the main skeleton revealed the presence of three structures similar to the title compound, but with different substituents on the pyridazione ring, viz. ethyl 2-[6-oxo-3,4-diphenyl-1,6-di­hydro­pyridazin-1-yl]acetic acid acetate (CIPTOL; Aydın et al., 2007[Aydın, A., Doğruer, D. S., Akkurt, M. & Büyükgüngör, O. (2007). Acta Cryst. E63, o4522.]), ethyl 3-methyl-6-oxo-5-[3-(tri­fluoro­meth­yl)phen­yl]-1,6-di­hydro-1-pyridazine­acetate (QANVOR; Xu et al., 2005[Xu, H., Song, H.-B., Yao, C.-S., Zhu, Y.-Q., Hu, F.-Z., Zou, X.-M. & Yang, H.-Z. (2005). Acta Cryst. E61, o1561-o1563.]) and ethyl {4-[(5-chloro-1-benzo­furan-2-yl)meth­yl]-3-methyl-6-oxopyrida­zin-1(6H)-yl}acetate (XULSEE; Boukharsa et al., 2015[Boukharsa, Y., El Ammari, L., Taoufik, J., Saadi, M. & Ansar, M. (2015). Acta Cryst. E71, o291-o292.]). Like in (I) and (II), the packing within the crystal structures of these compounds is dominated by O—H⋯O hydrogen bonds and consolidated by C—H⋯O inter­actions. In CIPTOL, the pyridazinone ring and two phenyl rings are inclined to each other by 72.73 (11) and 49.97 (10)° compared to the corres­ponding dihedral angles of 5.92 (2), 89.91 (1) and 15.44 (2)°, 89.13 (1)° in (I) and (II), respectively. In QANVOR, the 3-(tri­fluoro­meth­yl)phenyl and pyridazinone rings are approximately coplanar with a dihedral angle of 4.84 (13)°. In XULSEE, the dihedral angle between the benzo­furan ring system [maximum deviation 0.014 (2) Å] and the pyridazinone ring is 73.33 (8)°.

5. Hirshfeld surface analysis

Hirshfeld surface analysis was applied to qu­antify the inter­molecular contacts in (I) and (II), using CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net.]). A standard (high) surface resolution with the three-dimensional dnorm surfaces plotted over a fixed colour scale of −0.7266 (red) to 1.4843 (blue) a.u. was used for (I) and of −0.7232 (red) to 1.3047 (blue) a.u. for (II). The bright-red spots on the Hirshfeld surface mapped over dnorm show the presence of O—H⋯O inter­actions with neighbouring mol­ecules in (I) (Fig. 6[link]a) and (II) (Fig. 7[link]a), respectively. The presence of red and blue triangles on the shape-index map [Fig. 6[link]b (I) and 7b (II)] are indicative for the presence of ππ stacking inter­actions. The curvedness plots show flat surface patches characteristic of planar stacking (Fig. 6[link]c and 7c). The complete two-dimensional fingerprint plots are shown in Fig. 8[link]a and 9a for (I) and (II). The H⋯H, H⋯O, C⋯H, C⋯C, C⋯N, N⋯H and C⋯O inter­actions are illustrated in Fig. 8[link]bh for (I), and H⋯H, C⋯H, H⋯O, N⋯H, C⋯C and C⋯O inter­actions are illustrated in Fig. 9[link]bg for (II). In both crystal structures, H⋯H inter­actions make the largest contributions to the overall Hirshfeld surfaces [48.7% for (I) and 43.6% for (II)]. As expected from the inter­molecular O—H⋯O and C—H⋯O contacts detailed in Tables 1[link] and 2[link], H⋯O contacts also account for a high percentage contributions [21.5% (I) and 21.9% (II)] and are indicated by a pair of wings at de + di ∼1.7 Å [Fig. 8[link]c (I) and 9d (II)]. The C⋯H contacts,with percentage contributions of 19.2% in (I) and 22.5% in (II) appear in the fingerprint plots as two distinct spikes at de + di ∼2.9 Å in (I) and 3.0 Å in (II) (Fig. 8[link]d and 9c). The C⋯C contacts, which refer to ππ inter­actions, contribute 4.2% of the Hirshfeld surfaces for both (I) and (II) (Fig. 8[link]e and 9f). There are additional N⋯H (5.0%) and C⋯O (2.8%) contacts in (II), while in (I) (where N⋯H = 1.8% and C⋯O = 1.7%), C⋯N (2.9%) inter­actions are also observed.

[Figure 6]
Figure 6
(a) The Hirshfeld surface of (I) mapped over dnorm, and plotted in the range −0.7266 (red) to 1.4843 (blue) a.u.; (b) the Hirshfeld surface mapped over shape-index; (c) the Hirshfeld surface mapped over curvedness.
[Figure 7]
Figure 7
(a) The Hirshfeld surface of (II) mapped over dnorm, and plotted in the range −0.7232 (red) to 1.3047 (blue) a.u.; (b) the Hirshfeld surface mapped over shape-index, (c) the Hirshfeld surface mapped over curvedness.
[Figure 8]
Figure 8
Two-dimensional fingerprint plots for (I): (a) all inter­molecular inter­actions; (b) H⋯H contacts; (c) H⋯O contacts; (d) C⋯H contacts; (e) C⋯C contacts; (f) C⋯N contacts; (g) N⋯H contacts; (h) C⋯O contacts.
[Figure 9]
Figure 9
Two-dimensional fingerprint plots for (II): (a) all inter­molecular inter­actions; (b) H⋯H contacts; (c) C⋯H contacts; (d) H⋯O contacts; (e) N⋯H contacts; (f) C⋯C contacts; (g) C⋯O contacts.

6. Synthesis and crystallization

A suspension of ethyl 2-(5-benzyl-6-oxo-3-phenyl­pyridazin-1(6H)-yl)acetate (3.6 mmol), and 6 N NaOH (14.4 mmol) in ethanol (50 ml) was stirred at 353 K for 4 h. The mixture was then concentrated in vacuo, diluted with cold water, and acidified with 6 N HCl. The final product was filtered off by suction filtration and recrystallized from ethanol or methanol. Single crystals of (I) were obtained by slow evaporation of an ethano­lic solution at room temperature, and single crystals of (II) were obtained by slow evaporation of a methano­lic solution at room temperature.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The atom labelling for mol­ecules of (I) and (II) is identical. In the refinement of (I), SIMU, DELU and ISOR commands were used for atoms C12 and O3. For both structures, hydrogen atoms of the carb­oxy­lic group were located in a difference-Fourier map and were refined with a fixed O—H distance of 0.82 Å and with Uiso(H) = 1.5Ueq(O). All other hydrogen atoms were placed in calculated positions, with C—H = 0.93–0.96 Å and allowed to ride on their parent atoms with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms.

Table 3
Experimental details

  I II
Crystal data
Chemical formula C19H16N2O3 C19H16N2O3
Mr 320.34 320.34
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/c
Temperature (K) 296 296
a, b, c (Å) 10.5500 (8), 9.3679 (6), 16.5606 (15) 10.5976 (6), 15.5500 (7), 10.3731 (7)
β (°) 93.886 (7) 109.120 (5)
V3) 1632.9 (2) 1615.11 (17)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.09 0.09
Crystal size (mm) 0.58 × 0.43 × 0.34 0.77 × 0.70 × 0.59
 
Data collection
Diffractometer Stoe IPDS 2 STOE IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]) Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.961, 0.981 0.950, 0.966
No. of measured, independent and observed [I > 2σ(I)] reflections 12987, 4603, 1989 12114, 4562, 2560
Rint 0.039 0.037
(sin θ/λ)max−1) 0.698 0.699
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.158, 0.89 0.049, 0.131, 0.98
No. of reflections 4603 4562
No. of parameters 217 218
No. of restraints 19 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.35, −0.34 0.21, −0.21
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXT2017/1 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2017/1 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020) and PLATON (Spek, 2020); software used to prepare material for publication: WinGX (Farrugia, 2012), PLATON (Spek, 2020) and publCIF (Westrip, 2010).

2-(5-Benzyl-6-oxo-3-phenyl-1,6-dihydropyridazin-1-yl)acetic acid (I) top
Crystal data top
C19H16N2O3F(000) = 672
Mr = 320.34Dx = 1.303 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.5500 (8) ÅCell parameters from 9543 reflections
b = 9.3679 (6) Åθ = 1.9–29.8°
c = 16.5606 (15) ŵ = 0.09 mm1
β = 93.886 (7)°T = 296 K
V = 1632.9 (2) Å3Prism, colorless
Z = 40.58 × 0.43 × 0.34 mm
Data collection top
Stoe IPDS 2
diffractometer
4603 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus1989 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.039
Detector resolution: 6.67 pixels mm-1θmax = 29.7°, θmin = 2.4°
rotation method scansh = 1214
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1312
Tmin = 0.961, Tmax = 0.981l = 2323
12987 measured reflections
Refinement top
Refinement on F219 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.158 w = 1/[σ2(Fo2) + (0.0772P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.89(Δ/σ)max < 0.001
4603 reflectionsΔρmax = 0.35 e Å3
217 parametersΔρmin = 0.34 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.63345 (14)0.43785 (17)0.40115 (9)0.0550 (4)
N10.56137 (14)0.34515 (16)0.44077 (9)0.0539 (4)
O10.66753 (13)0.60906 (17)0.31011 (10)0.0811 (5)
O20.76216 (13)0.27628 (19)0.30333 (10)0.0914 (6)
H20.8043280.2267470.2743570.137*
C70.43814 (16)0.35514 (19)0.42800 (10)0.0508 (4)
C60.36108 (18)0.2513 (2)0.47105 (11)0.0536 (4)
C80.38202 (17)0.4630 (2)0.37706 (11)0.0567 (5)
H80.2940100.4712780.3716990.068*
C100.58990 (18)0.5384 (2)0.34591 (11)0.0589 (5)
C120.83446 (19)0.3288 (2)0.36076 (12)0.0612 (5)
C90.45351 (17)0.5535 (2)0.33636 (11)0.0594 (5)
O30.94446 (16)0.3027 (3)0.37082 (12)0.1213 (7)
C110.77005 (17)0.4220 (2)0.41864 (12)0.0634 (5)
H11A0.7850020.3828430.4726800.076*
H11B0.8088470.5158290.4185530.076*
C140.26299 (19)0.7017 (2)0.29161 (12)0.0638 (5)
C50.2306 (2)0.2435 (2)0.45719 (13)0.0677 (6)
H50.1896560.3049790.4198210.081*
C150.2264 (2)0.7924 (3)0.35035 (15)0.0794 (7)
H150.2883230.8382850.3835500.095*
C40.1600 (2)0.1465 (3)0.49763 (14)0.0780 (6)
H40.0722790.1439290.4872520.094*
C130.4010 (2)0.6709 (3)0.28207 (15)0.0822 (7)
H13A0.4116440.6447980.2262600.099*
H13B0.4497260.7572520.2936140.099*
C170.0092 (2)0.7521 (3)0.31546 (16)0.0888 (8)
H170.0757630.7690370.3238630.107*
C190.1676 (2)0.6361 (3)0.24455 (14)0.0836 (7)
H190.1883760.5736130.2038630.100*
C30.2156 (3)0.0557 (3)0.55173 (15)0.0859 (7)
H30.1672700.0087380.5793070.103*
C10.4167 (2)0.1565 (3)0.52585 (16)0.0904 (8)
H10.5043860.1575320.5363910.109*
C160.1008 (2)0.8173 (3)0.36152 (17)0.0958 (8)
H160.0789110.8803660.4016640.115*
C180.0408 (2)0.6619 (3)0.25690 (16)0.0901 (8)
H180.0225800.6167120.2245450.108*
C20.3444 (3)0.0599 (3)0.56547 (18)0.1078 (10)
H2A0.3842380.0035190.6022050.129*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0449 (8)0.0597 (10)0.0611 (9)0.0062 (7)0.0087 (7)0.0024 (8)
N10.0496 (9)0.0560 (9)0.0565 (8)0.0062 (7)0.0063 (7)0.0028 (7)
O10.0572 (9)0.0901 (11)0.0988 (11)0.0021 (8)0.0255 (8)0.0262 (9)
O20.0511 (8)0.1258 (14)0.0963 (11)0.0206 (9)0.0021 (8)0.0447 (10)
C70.0487 (10)0.0515 (11)0.0526 (9)0.0073 (8)0.0051 (8)0.0036 (8)
C60.0549 (11)0.0523 (11)0.0542 (10)0.0049 (9)0.0079 (8)0.0018 (8)
C80.0457 (10)0.0611 (11)0.0643 (11)0.0097 (9)0.0113 (8)0.0068 (9)
C100.0512 (10)0.0611 (12)0.0662 (11)0.0069 (10)0.0176 (9)0.0038 (10)
C120.0514 (7)0.0670 (9)0.0653 (8)0.0051 (7)0.0037 (7)0.0008 (7)
C90.0503 (11)0.0658 (12)0.0638 (11)0.0123 (9)0.0163 (9)0.0119 (9)
O30.0569 (8)0.1817 (15)0.1240 (12)0.0325 (10)0.0028 (8)0.0424 (12)
C110.0459 (11)0.0735 (14)0.0701 (12)0.0039 (9)0.0017 (9)0.0047 (10)
C140.0580 (12)0.0676 (13)0.0666 (12)0.0121 (10)0.0103 (10)0.0237 (10)
C50.0596 (12)0.0704 (14)0.0739 (13)0.0014 (10)0.0100 (10)0.0141 (10)
C150.0572 (13)0.0833 (16)0.0964 (16)0.0031 (12)0.0039 (11)0.0097 (13)
C40.0619 (13)0.0798 (15)0.0939 (16)0.0060 (12)0.0162 (11)0.0109 (13)
C130.0623 (13)0.0909 (17)0.0962 (16)0.0209 (12)0.0249 (11)0.0393 (14)
C170.0555 (13)0.119 (2)0.0923 (17)0.0121 (14)0.0047 (12)0.0046 (16)
C190.0876 (18)0.0948 (18)0.0684 (13)0.0214 (14)0.0051 (12)0.0045 (13)
C30.0887 (18)0.0720 (15)0.0992 (17)0.0067 (14)0.0234 (14)0.0203 (13)
C10.0660 (14)0.0925 (18)0.1114 (19)0.0008 (13)0.0045 (13)0.0438 (16)
C160.0666 (15)0.118 (2)0.1027 (18)0.0164 (15)0.0038 (13)0.0330 (17)
C180.0709 (16)0.112 (2)0.0846 (16)0.0008 (15)0.0154 (12)0.0093 (15)
C20.100 (2)0.100 (2)0.122 (2)0.0027 (17)0.0042 (17)0.0588 (18)
Geometric parameters (Å, º) top
N2—N11.353 (2)C14—C131.503 (3)
N2—C101.371 (2)C5—C41.377 (3)
N2—C111.458 (2)C5—H50.9300
N1—C71.306 (2)C15—C161.371 (3)
O1—C101.235 (2)C15—H150.9300
O2—C121.277 (2)C4—C31.341 (3)
O2—H20.8200C4—H40.9300
C7—C81.420 (2)C13—H13A0.9700
C7—C61.481 (3)C13—H13B0.9700
C6—C11.373 (3)C17—C161.337 (3)
C6—C51.382 (3)C17—C181.345 (4)
C8—C91.346 (3)C17—H170.9300
C8—H80.9300C19—C181.389 (3)
C10—C91.444 (3)C19—H190.9300
C12—O31.187 (2)C3—C21.363 (4)
C12—C111.494 (3)C3—H30.9300
C9—C131.502 (3)C1—C21.378 (4)
C11—H11A0.9700C1—H10.9300
C11—H11B0.9700C16—H160.9300
C14—C151.367 (3)C18—H180.9300
C14—C191.375 (3)C2—H2A0.9300
N1—N2—C10126.22 (15)C6—C5—H5119.3
N1—N2—C11114.74 (15)C14—C15—C16121.6 (2)
C10—N2—C11119.00 (16)C14—C15—H15119.2
C7—N1—N2117.48 (15)C16—C15—H15119.2
C12—O2—H2109.5C3—C4—C5121.1 (2)
N1—C7—C8121.17 (17)C3—C4—H4119.4
N1—C7—C6116.60 (16)C5—C4—H4119.4
C8—C7—C6122.21 (16)C9—C13—C14113.43 (17)
C1—C6—C5116.86 (19)C9—C13—H13A108.9
C1—C6—C7121.27 (18)C14—C13—H13A108.9
C5—C6—C7121.86 (17)C9—C13—H13B108.9
C9—C8—C7121.38 (17)C14—C13—H13B108.9
C9—C8—H8119.3H13A—C13—H13B107.7
C7—C8—H8119.3C16—C17—C18119.6 (2)
O1—C10—N2119.04 (17)C16—C17—H17120.2
O1—C10—C9125.67 (19)C18—C17—H17120.2
N2—C10—C9115.28 (16)C14—C19—C18120.9 (2)
O3—C12—O2123.7 (2)C14—C19—H19119.5
O3—C12—C11120.9 (2)C18—C19—H19119.5
O2—C12—C11115.36 (17)C4—C3—C2118.6 (2)
C8—C9—C10118.14 (18)C4—C3—H3120.7
C8—C9—C13124.38 (17)C2—C3—H3120.7
C10—C9—C13117.48 (17)C6—C1—C2121.0 (2)
N2—C11—C12114.75 (16)C6—C1—H1119.5
N2—C11—H11A108.6C2—C1—H1119.5
C12—C11—H11A108.6C17—C16—C15120.9 (2)
N2—C11—H11B108.6C17—C16—H16119.6
C12—C11—H11B108.6C15—C16—H16119.6
H11A—C11—H11B107.6C17—C18—C19120.3 (2)
C15—C14—C19116.8 (2)C17—C18—H18119.9
C15—C14—C13121.1 (2)C19—C18—H18119.9
C19—C14—C13122.1 (2)C3—C2—C1121.1 (2)
C4—C5—C6121.3 (2)C3—C2—H2A119.4
C4—C5—H5119.3C1—C2—H2A119.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.822.593 (2)156
C1—H1···N10.932.472.780 (3)100
Symmetry code: (i) x+3/2, y1/2, z+1/2.
(II) top
Crystal data top
C19H16N2O3F(000) = 672
Mr = 320.34Dx = 1.317 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.5976 (6) ÅCell parameters from 11065 reflections
b = 15.5500 (7) Åθ = 2.0–30.2°
c = 10.3731 (7) ŵ = 0.09 mm1
β = 109.120 (5)°T = 296 K
V = 1615.11 (17) Å3Prism, colorless
Z = 40.77 × 0.70 × 0.59 mm
Data collection top
STOE IPDS 2
diffractometer
4562 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2560 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.037
Detector resolution: 6.67 pixels mm-1θmax = 29.8°, θmin = 2.0°
rotation method scansh = 1414
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 2121
Tmin = 0.950, Tmax = 0.966l = 914
12114 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0658P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
4562 reflectionsΔρmax = 0.21 e Å3
218 parametersΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.72419 (10)0.27629 (8)0.59311 (12)0.0685 (3)
O30.85719 (10)0.46576 (8)0.50173 (13)0.0697 (3)
O20.97177 (11)0.41088 (9)0.37548 (13)0.0746 (4)
H31.0240310.4497460.4105470.112*
N10.56525 (10)0.40450 (8)0.30448 (12)0.0469 (3)
N20.65255 (10)0.35304 (8)0.39742 (12)0.0482 (3)
C70.45128 (12)0.42124 (9)0.32229 (14)0.0448 (3)
C100.63572 (13)0.31919 (10)0.51338 (15)0.0505 (3)
C80.41953 (13)0.38747 (10)0.43611 (15)0.0518 (3)
H80.3369380.3995840.4452350.062*
C60.35817 (13)0.47589 (9)0.21629 (14)0.0467 (3)
C90.50740 (13)0.33851 (10)0.52997 (15)0.0510 (3)
C120.87184 (13)0.41235 (11)0.42288 (15)0.0540 (4)
C110.77702 (13)0.33946 (10)0.37033 (16)0.0529 (4)
H11A0.7587110.3337000.2727860.064*
H11B0.8178910.2864210.4134330.064*
C140.34689 (14)0.30038 (11)0.65991 (16)0.0559 (4)
C10.37838 (15)0.48952 (12)0.09292 (17)0.0629 (4)
H10.4505300.4634050.0763870.076*
C130.48712 (15)0.29980 (13)0.65443 (18)0.0679 (5)
H13A0.5439280.3302610.7338630.082*
H13B0.5176810.2406310.6618890.082*
C20.29390 (17)0.54093 (13)0.00593 (19)0.0744 (5)
H20.3097540.5495640.0880110.089*
C50.25091 (17)0.51563 (13)0.23724 (19)0.0733 (5)
H50.2349830.5080740.3195100.088*
C30.18788 (19)0.57899 (13)0.0157 (2)0.0814 (6)
H3A0.1299950.6132270.0514250.098*
C190.3040 (2)0.36098 (15)0.7325 (2)0.0846 (6)
H190.3613000.4052160.7758690.102*
C150.25885 (18)0.23814 (14)0.5959 (2)0.0837 (6)
H150.2837520.1971580.5435280.100*
C170.09285 (19)0.29337 (18)0.6803 (3)0.0941 (7)
H170.0080470.2900750.6881450.113*
C40.1669 (2)0.56655 (15)0.1373 (2)0.0960 (7)
H40.0944470.5929770.1528430.115*
C180.1777 (2)0.35732 (18)0.7422 (3)0.1008 (7)
H180.1504760.3990810.7916250.121*
C160.1334 (2)0.23488 (17)0.6074 (3)0.1056 (8)
H160.0753990.1910880.5637080.127*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0598 (6)0.0850 (8)0.0606 (7)0.0170 (6)0.0196 (5)0.0211 (6)
O30.0610 (6)0.0868 (8)0.0744 (8)0.0176 (6)0.0402 (6)0.0276 (6)
O20.0615 (6)0.1001 (10)0.0777 (8)0.0164 (6)0.0437 (6)0.0276 (7)
N10.0482 (5)0.0524 (7)0.0415 (6)0.0005 (5)0.0167 (5)0.0007 (5)
N20.0435 (5)0.0561 (7)0.0464 (7)0.0002 (5)0.0166 (5)0.0001 (5)
C70.0457 (6)0.0494 (8)0.0417 (7)0.0021 (6)0.0175 (5)0.0003 (6)
C100.0493 (7)0.0556 (9)0.0462 (8)0.0019 (6)0.0152 (6)0.0019 (7)
C80.0466 (6)0.0643 (9)0.0485 (8)0.0003 (6)0.0212 (6)0.0065 (7)
C60.0499 (7)0.0503 (8)0.0442 (7)0.0014 (6)0.0212 (6)0.0016 (6)
C90.0495 (7)0.0586 (9)0.0467 (8)0.0039 (6)0.0180 (6)0.0058 (7)
C120.0459 (7)0.0737 (10)0.0471 (8)0.0002 (7)0.0218 (6)0.0021 (7)
C110.0467 (7)0.0654 (10)0.0497 (8)0.0037 (6)0.0200 (6)0.0034 (7)
C140.0561 (7)0.0661 (10)0.0481 (8)0.0005 (7)0.0207 (6)0.0174 (7)
C10.0595 (8)0.0819 (12)0.0563 (9)0.0189 (8)0.0310 (7)0.0177 (8)
C130.0581 (8)0.0897 (13)0.0592 (10)0.0047 (8)0.0236 (7)0.0264 (9)
C20.0784 (10)0.0946 (13)0.0575 (10)0.0234 (10)0.0323 (8)0.0246 (9)
C50.0790 (10)0.0930 (13)0.0618 (10)0.0284 (9)0.0419 (9)0.0175 (9)
C30.0832 (11)0.0951 (15)0.0701 (12)0.0376 (10)0.0307 (9)0.0296 (10)
C190.0799 (11)0.0973 (15)0.0831 (14)0.0166 (10)0.0355 (10)0.0194 (11)
C150.0728 (11)0.0753 (13)0.1021 (16)0.0058 (10)0.0273 (10)0.0127 (11)
C170.0596 (10)0.138 (2)0.0901 (16)0.0055 (13)0.0324 (10)0.0234 (15)
C40.0908 (12)0.1224 (18)0.0917 (15)0.0572 (13)0.0528 (11)0.0360 (13)
C180.0848 (13)0.140 (2)0.0911 (16)0.0060 (14)0.0478 (12)0.0147 (15)
C160.0719 (12)0.0996 (17)0.138 (2)0.0280 (12)0.0244 (13)0.0066 (16)
Geometric parameters (Å, º) top
O1—C101.2249 (17)C14—C131.506 (2)
O3—C121.2108 (18)C1—C21.375 (2)
O2—C121.3057 (16)C1—H10.9300
O2—H30.8200C13—H13A0.9700
N1—C71.3064 (16)C13—H13B0.9700
N1—N21.3570 (16)C2—C31.352 (2)
N2—C101.3771 (18)C2—H20.9300
N2—C111.4513 (17)C5—C41.375 (3)
C7—C81.4294 (19)C5—H50.9300
C7—C61.4813 (19)C3—C41.364 (3)
C10—C91.4568 (19)C3—H3A0.9300
C8—C91.342 (2)C19—C181.376 (3)
C8—H80.9300C19—H190.9300
C6—C51.372 (2)C15—C161.374 (3)
C6—C11.381 (2)C15—H150.9300
C9—C131.502 (2)C17—C161.340 (4)
C12—C111.494 (2)C17—C181.354 (3)
C11—H11A0.9700C17—H170.9300
C11—H11B0.9700C4—H40.9300
C14—C151.357 (2)C18—H180.9300
C14—C191.373 (3)C16—H160.9300
C12—O2—H3109.5C6—C1—H1119.4
C7—N1—N2117.63 (11)C9—C13—C14116.80 (13)
N1—N2—C10126.35 (11)C9—C13—H13A108.1
N1—N2—C11113.56 (11)C14—C13—H13A108.1
C10—N2—C11119.97 (12)C9—C13—H13B108.1
N1—C7—C8121.48 (12)C14—C13—H13B108.1
N1—C7—C6115.55 (12)H13A—C13—H13B107.3
C8—C7—C6122.96 (11)C3—C2—C1120.27 (16)
O1—C10—N2120.56 (12)C3—C2—H2119.9
O1—C10—C9124.76 (13)C1—C2—H2119.9
N2—C10—C9114.67 (12)C6—C5—C4120.37 (16)
C9—C8—C7120.84 (12)C6—C5—H5119.8
C9—C8—H8119.6C4—C5—H5119.8
C7—C8—H8119.6C2—C3—C4119.18 (17)
C5—C6—C1117.74 (14)C2—C3—H3A120.4
C5—C6—C7121.72 (13)C4—C3—H3A120.4
C1—C6—C7120.53 (12)C14—C19—C18121.1 (2)
C8—C9—C10118.94 (13)C14—C19—H19119.5
C8—C9—C13126.17 (13)C18—C19—H19119.5
C10—C9—C13114.88 (12)C14—C15—C16120.9 (2)
O2—C12—O3124.45 (14)C14—C15—H15119.6
O3—C12—C11123.16 (12)C16—C15—H15119.6
O2—C12—C11112.38 (13)C16—C17—C18118.69 (19)
N2—C11—C12111.36 (12)C16—C17—H17120.7
N2—C11—H11A109.4C18—C17—H17120.7
C12—C11—H11A109.4C3—C4—C5121.14 (16)
N2—C11—H11B109.4C3—C4—H4119.4
C12—C11—H11B109.4C5—C4—H4119.4
H11A—C11—H11B108.0C17—C18—C19120.5 (2)
C15—C14—C19117.36 (16)C17—C18—H18119.8
C15—C14—C13120.40 (17)C19—C18—H18119.8
C19—C14—C13122.19 (17)C17—C16—C15121.5 (2)
C2—C1—C6121.30 (14)C17—C16—H16119.3
C2—C1—H1119.4C15—C16—H16119.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11B···O10.972.392.7325 (19)100
O2—H3···O3i0.821.842.6599 (16)177
C5—H5···O3ii0.932.403.280 (2)159
C11—H11A···O1iii0.972.473.2814 (19)141
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x, y+1/2, z1/2.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationAbouzid, K., Abdel Hakeem, M., Khalil, O. & Maklad, Y. (2008). Bioorg. Med. Chem. 16, 382–389.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAkhtar, W., Shaquiquzzaman, M., Akhter, M., Verma, G., Khan, M. F. & Alam, M. M. (2016). Eur. J. Med. Chem. 123, 256–281.  Web of Science CrossRef CAS PubMed Google Scholar
First citationArchan, S. & Toller, W. (2008). Curr. Opin. Anaesthesiol. 21, 78–84.  CrossRef PubMed Google Scholar
First citationAydın, A., Doğruer, D. S., Akkurt, M. & Büyükgüngör, O. (2007). Acta Cryst. E63, o4522.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBoukharsa, Y., El Ammari, L., Taoufik, J., Saadi, M. & Ansar, M. (2015). Acta Cryst. E71, o291–o292.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBoukharsa, Y., Meddah, B., Tiendrebeogo, R. Y., Ibrahimi, A., Taoufik, J., Cherrah, Y., Benomar, A., Faouzi, M. E. A. & Ansar, M. (2016). Med. Chem. Res. 25, 494–500.  Web of Science CrossRef CAS Google Scholar
First citationChakraborty, M., Sengupta, D., Saha, T. & Goswami, S. (2018). J. Org. Chem. 83, 7771–7778.  CSD CrossRef CAS PubMed Google Scholar
First citationChelfi, T., Elaatioui, A., Koudad, M., Benchat, N. & Hacht, B. (2015). J. Mater. Environ. Sci, 6, 2174–2178.  CAS Google Scholar
First citationCostas, T., Costas-Lago, M. C., Vila, N., Besada, P., Cano, E. & Terán, C. (2015). Eur. J. Med. Chem. 94, 113–122.  CrossRef CAS PubMed Google Scholar
First citationDaoui, S., Baydere, C., El Kalai, F., Mahi, L., Dege, N., Karrouchi, K. & Benchat, N. (2019a). Acta Cryst. E75, 1925–1929.  CSD CrossRef IUCr Journals Google Scholar
First citationDaoui, S., Çınar, E. B., El Kalai, F., Saddik, R., Dege, N., Karrouchi, K. & Benchat, N. (2019b). Acta Cryst. E75, 1880–1883.  CSD CrossRef IUCr Journals Google Scholar
First citationEl Kalai, F., Baydere, C., Daoui, S., Saddik, R., Dege, N., Karrouchi, K. & Benchat, N. (2019b). Acta Cryst. E75, 892–895.  CSD CrossRef IUCr Journals Google Scholar
First citationEl Kalai, F., Chelfi, T., Benchat, N., Hacht, B., Bouklah, M., Elaatiaoui, A., Daoui, S., Allali, M., Ben Hadda, T. & Almalki, F. (2019a). J. Mol. Struct. 1191, 24–31.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLivermore, D. G. H., Bethell, R. C., Cammack, N., Hancock, A. P., Hann, M. M., Green, D. V. S., Lamont, R. B., Noble, S. A., Orr, D. C. & Payne, J. J. (1993). J. Med. Chem. 36, 3784–3794.  CSD CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMahmoodi, N. O., Safari, N. & Sharifzadeh, B. (2014). Synth. Commun. 44, 245–250.  CrossRef CAS Google Scholar
First citationPartap, S., Akhtar, M. J., Yar, M. S., Hassan, M. Z. & Siddiqui, A. A. (2018). Bioorg. Chem. 77, 74–83.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiddiqui, A. A., Mishra, R., Shaharyar, M., Husain, A., Rashid, M. & Pal, P. (2011). Bioorg. Med. Chem. Lett. 21, 1023–1026.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSingh, J., Sharma, D. & Bansal, R. (2017). J. Heterocycl. Chem. 54, 2935–2945.  CrossRef CAS Google Scholar
First citationSotelo, E., Coelho, A. & Raviña, E. (2003). Tetrahedron Lett. 44, 4459–4462.  CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, H., Song, H.-B., Yao, C.-S., Zhu, Y.-Q., Hu, F.-Z., Zou, X.-M. & Yang, H.-Z. (2005). Acta Cryst. E61, o1561–o1563.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYarden, Y. & Caldes, C. (2013). Eur. J. Cancer, 49, 2619–2620.  CrossRef PubMed Google Scholar
First citationZarrouk, A., Chelfi, T., Dafali, A., Hammouti, B., Al-Deyab, S. S., Warad, I., Benchat, N. & Zertoubi, M. (2010). Int. J. Electrochem. Sci. 5, 696–705.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds