research communications
2O)2][Ni(H2O)6](SO4)2
of a nickel compound comprising two nickel(II) complexes with different ligand environments: [Ni(tren)(HaDepartment of Natural Sciences, University of Puerto Rico, Carolina Campus, 2100 Avenida Sur, Carolina, PR 00987, Puerto Rico, and bDepartment of Chemistry, University of Puerto Rico, Rio Piedras Campus, Ponce de Leon Avenue, San Juan, PR 00931, Puerto Rico
*Correspondence e-mail: karilys.gonzalez@upr.edu
The title compound, diaqua[tris(2-aminoethyl)amine]nickel(II) hexaaquanickel(II) bis(sulfate), [Ni(C6H18N4)(H2O)2][Ni(H2O)6](SO4)2 or [Ni(tren)(H2O)2][Ni(H2O)6](SO4)2, consists of two octahedral nickel complexes within the same These metal complexes are formed from the reaction of [Ni(H2O)6](SO4) and the ligand tris(2-aminoethyl)amine (tren). The crystals of the title compound are purple, different from those of the starting complex [Ni(H2O)6](SO4), which are turquoise. The reaction was performed both in a 1:1 and 1:2 metal–ligand molar ratio, always yielding the co-precipitation of the two types of crystals. The of the title compound, which crystallizes in the Pnma, consists of two half NiII complexes and a sulfate counter-anion. The mononuclear cationic complex [Ni(tren)(H2O)2]2+ comprises an Ni ion, the tren ligand and two water molecules, while the mononuclear complex [Ni(H2O)6]2+ consists of another Ni ion surrounded by six coordinated water molecules. The [Ni(tren)(H2O)2] and [Ni(H2O)6] subunits are connected to the SO42− counter-anions through hydrogen bonding, thus consolidating the crystal structure.
Keywords: crystal structure; nickel complexes; tren; tripodal ligand; hydrogen bonding.
CCDC reference: 1911584
1. Chemical context
Tris(2-aminoethyl)amine (tren) has been used extensively as an ancillary tripodal ligand for capping transition metals to form mononuclear and polynuclear complexes. The tren ligand has the capacity to chelate metal ions through its central tertiary amine and through its three terminal amine groups in a spider-like conformation, leaving one or two positions available for additional ligand coordination (Marzotto et al., 1993; Albertin et al., 1975; Blackman, 2005; Brines et al., 2007). Metal complexes with a variety of ligands in which also tren is coordinating to the metal center have been proposed for applications in catalysis (Ruffin et al., 2017), sensors, and as precursors of bioinorganic reactions (Sakai et al., 1996). For instance, Ni(tren) complexes have been proposed for applications in biological systems (Salam & Aoki, 2001) or as a model to study enantioselective synthesis or asymmetric catalysis (Rao et al., 2009), and as coordination polymers in magnetism, electrical conductivity and ion exchange (Park et al., 2001; Tanase et al., 1996). [Ni(tren)(H2O)2] was reported previously (Chen et al., 2001; Pedersen et al., 2014); however, to our knowledge, this is the first report of it co-crystallizing with the hexaaquo nickel complex [Ni(H2O)6](SO4).
2. Structural commentary
Fig. 1 shows the molecular structure of the title compound, which crystallizes in the Pnma. Its comprises two half NiII complexes and a sulfate counter-anion. Each Ni complex shows a different ligand environment: (i) the mononuclear cationic complex [Ni(tren)(H2O)2]2+ includes Ni1, the tren ligand and two water molecules; (ii) the mononuclear complex [Ni(H2O)6]2+ consists of Ni2 surrounded by six coordinated water molecules.
Ni1 exhibits an octahedral geometry of the type N4O2, with the central N1 atom of the tren ligand occupying one of the axial positions and atoms N2, N3 and N2i occupying three of the equatorial positions [symmetry code: (i) x, −y + , z]. The remaining two positions, one axial (O2) and one equatorial (O1), are occupied by two oxygen atoms from the two water molecules. The bond lengths are similar for the Ni1—N bonds that are trans to oxygen atoms; for instance, Ni1—N1ax is 2.064 (2) Å and Ni1—N3eq is 2.069 (2) Å; a longer bond distance is observed between Ni1—N2eq, 2.122 (2), which is trans by symmetry to another nitrogen atom, N2i. The nickel–oxygen bond length is shorter for Ni1—O2ax at 2.094 (2) Å, in comparison to Ni1—O1eq, which is 2.140 (2) Å. The N3 and C3 atoms of the tren ligand lie on a mirror plane perpendicular to [010]. This results in a symmetry-induced disorder of the N3/C4/C3 fragment. The octahedral geometry around the Ni1 ion is reflected by the angles N1—Ni1—O2 = 178.42 (8)°, N2—Ni1—N2i = 164.74 (9)°, and N3—Ni1—O1 = 177.27 (8)°.
The Ni2 ion of the mononuclear complex [Ni(H2O)6]2+ also shows an octahedral geometry. In the the atom Ni2 sits on an inversion center on a screw axis along the b-axis direction. The Ni2—Owater bond lengths with O3, O4 and O5 range between 2.051 (1) and 2.074 (1) Å, respectively, with angles of 180° due to symmetry.
3. Supramolecular features
The 2O)2] complex, the sulfate oxygen atoms and the water molecules from the [Ni(H2O)6] complex (Fig. 2 and Table 1). In particular, the two water molecules of [Ni(tren)(H2O)2] form O1—H1⋯O8i and O2—H2⋯O6 hydrogen bonds of 2.05 (2) and 1.96 (2) Å respectively, involving two neighboring SO42− anions [symmetry code: (i) x + , y, −z + ). The [Ni(H2O)6] complex is hydrogen bonded to adjacent SO42− anions through O3—H3E⋯O9ii, O3—H3F⋯O7i, O4—H4C⋯O6, O4—H4D⋯O8i, O5—H5B⋯O7, O5—H5A⋯O7iii contacts [symmetry codes: (ii) −x + , −y + 1, z − ; (iii) −x + , −y + 1, z + ]. These hydrogen-bond distances range from 1.905 (15) to 2.047 (18) Å. Additional weak hydrogen bonds are formed between the hydrogen atoms from the primary amine groups of the tren ligand and the sulfate oxygen atoms.
of the title compound is consolidated through intermolecular hydrogen bonding between the water molecules from the [Ni(tren)(H4. Database survey
A search for tris(2-aminoethyl)aminenickel complexes in the Cambridge Structural Database (CSD version 5.38, updated February 2019; Groom et al., 2016) yielded 222 hits. Among these results, 124 hits contained the ligand tris(2-aminoethyl)amine capping the nickel ion, along with other types of ligands on the remaining coordination sites. Only two hits contain the diaqua[tris(2-aminoethyl)amine]nickel(II) complex, [Ni(tren)(H2O)2] (LUMVIY; Chen et al., 2001; TIYQAT; Tanase et al., 1996). More precisely, the in LUMVIY comprises the [Ni(tren)(H2O)2]2+ cation with two independent halves of a 1,5-naphthalenedisulfonate (1,5nds) ligand as counter-anion. A common feature of this structure with the title compound is the hydrogen bond network formed between the water molecules on the Ni(tren) motif with the counter anions. However, in the title compound, also the hydrogen atoms on the primary amine groups form hydrogen bonds with the sulfate anions, albeit quite weak. In TIYQAT, sulfate anions act as counter-ions for the [Ni(tren)(H2O)2]2+ complex, and uncoordinated water molecules are included in the The angle between the Ni center and the two oxygen atoms from the coordinated water molecules are 86.52 (5)° (O7—Ni1—O8) and 86.9 (4)° (O5—Ni1—O6) for LUMVIY and TIYQAT, respectively. The corresponding angle O2—Ni—O1 in the tittle compound has a value of 88.70 (8)°, which is in good agreement with the reported values. The title compound is the first example of a of [Ni(tren)(H2O)2]2+ co-crystallizing with the [Ni(H2O)6]2+ complex.
5. Synthesis and crystallization
The synthesis of the title compound is summarized in the reaction scheme shown in Fig. 3. NiSO4·6H2O and tris(2-aminoethyl)amine (tren) were used without further purification. A methanolic solution of NiSO4·6H2O (0.0265 g, 0.1 mmol) was added slowly to a tren (0.0146 g, 0.1 mmol) solution (4 mL MeOH) at room temperature. The resulting solution was stirred for two h and it changed color from light green to purple. The solution was then filtered through celite and evaporated under reduced pressure. Single crystals of the title compound were obtained by vapor diffusion of methanol into 2-propanol. In the crystallization process, two types of crystal were formed: the starting reagent hexahydrate nickel (II) complex (turquoise crystals) and the nickel(II) tren complex (purple crystals, Fig. 4). The reaction was performed both in a 1:1 and 1:2 metal–ligand molar ratio, always yielding the title compound. IR data: 3265 (m), 3171 (m), 2937 (w), 2891 (w), 1607 (m), 1472 (w) 1338 (w), 1054 (s), 984 (m), 885 (m), 750 (w), 685 (w).
6. Refinement
Crystal data, data collection and structure . H atoms were included in geometrically calculated positions for the alkyl and amine groups using a riding model: C—H = 0.97 Å and N—H = 0.89 Å with Uiso(H) =1.2Ueq(C, N). The hydrogen atoms of the water molecules were located from the difference-Fourier map; they were refined freely in the case of O1 and O2, with a DFIX of 0.85 (2) Å and Uiso(H) =1.5Ueq(O) in the case of O3 and O4, and riding with O—H = 0.88 Å and Uiso(H) =1.5Ueq(O) in the case of O5.
details are summarized in Table 2
|
The N3 and C3 atoms of the tren ligand lie on a mirror plane perpendicular to [010]. This results in a symmetry-induced disorder of the N3/C4/C3 fragment.
Supporting information
CCDC reference: 1911584
Data collection: CrysAlis PRO (Rigaku OD, 2015); cell
CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: olex2.solve (Bourhis et al., 2015); program(s) used to refine structure: SHELXL2016 (Sheldrick, 20156); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Ni(C6H18N4)(H2O)2][Ni(H2O)6](SO4)2 | Dx = 1.854 Mg m−3 |
Mr = 599.91 | Cu Kα radiation, λ = 1.54184 Å |
Orthorhombic, Pnma | Cell parameters from 14387 reflections |
a = 11.8937 (1) Å | θ = 3.7–68.8° |
b = 21.3933 (2) Å | µ = 4.76 mm−1 |
c = 8.4468 (1) Å | T = 293 K |
V = 2149.25 (4) Å3 | Block, clear violet |
Z = 4 | 0.28 × 0.21 × 0.09 mm |
F(000) = 1256 |
Rigaku Oxford Diffraction SuperNova, Single source at offset/far, HyPix3000 diffractometer | 1996 reflections with I > 2σ(I) |
ω scans | Rint = 0.023 |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) | θmax = 68.9°, θmin = 4.1° |
Tmin = 0.353, Tmax = 0.661 | h = −14→14 |
17858 measured reflections | k = −25→25 |
2044 independent reflections | l = −10→10 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.023 | All H-atom parameters refined |
wR(F2) = 0.063 | w = 1/[σ2(Fo2) + (0.0312P)2 + 1.2986P] where P = (Fo2 + 2Fc2)/3 |
S = 1.12 | (Δ/σ)max < 0.001 |
2044 reflections | Δρmax = 0.37 e Å−3 |
173 parameters | Δρmin = −0.35 e Å−3 |
8 restraints | Extinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: dual | Extinction coefficient: 0.00044 (5) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ni1 | 0.31517 (3) | 0.250000 | 0.58049 (4) | 0.01987 (12) | |
O1 | 0.49430 (15) | 0.250000 | 0.5573 (2) | 0.0285 (4) | |
H1 | 0.523 (2) | 0.2795 (11) | 0.592 (3) | 0.042 (7)* | |
O2 | 0.33527 (17) | 0.250000 | 0.8268 (2) | 0.0315 (4) | |
H2 | 0.304 (2) | 0.2795 (11) | 0.867 (3) | 0.056 (8)* | |
N1 | 0.29062 (16) | 0.250000 | 0.3386 (2) | 0.0237 (4) | |
N2 | 0.32729 (13) | 0.34830 (7) | 0.55183 (18) | 0.0291 (3) | |
H2A | 0.275056 | 0.367313 | 0.609911 | 0.035* | |
H2B | 0.394537 | 0.361563 | 0.583583 | 0.035* | |
N3 | 0.14137 (18) | 0.250000 | 0.5913 (3) | 0.0330 (5) | |
H3A | 0.116429 | 0.211740 | 0.613150 | 0.040* | 0.5 |
H3B | 0.118127 | 0.275722 | 0.667351 | 0.040* | 0.5 |
C1 | 0.34686 (17) | 0.30780 (9) | 0.2826 (2) | 0.0336 (4) | |
H1A | 0.327506 | 0.315269 | 0.172689 | 0.040* | |
H1B | 0.427761 | 0.302752 | 0.289509 | 0.040* | |
C2 | 0.31074 (17) | 0.36314 (9) | 0.3821 (2) | 0.0362 (4) | |
H2C | 0.354856 | 0.399608 | 0.353854 | 0.043* | |
H2D | 0.232177 | 0.372476 | 0.362353 | 0.043* | |
C3 | 0.1684 (2) | 0.250000 | 0.3008 (3) | 0.0344 (6) | |
H3C | 0.145952 | 0.208172 | 0.269741 | 0.041* | 0.5 |
H3D | 0.154994 | 0.277594 | 0.211689 | 0.041* | 0.5 |
C4 | 0.0975 (3) | 0.27067 (19) | 0.4375 (5) | 0.0384 (10) | 0.5 |
H4A | 0.092804 | 0.315934 | 0.437065 | 0.046* | 0.5 |
H4B | 0.022018 | 0.254369 | 0.424014 | 0.046* | 0.5 |
Ni2 | 0.500000 | 0.500000 | 1.000000 | 0.02058 (12) | |
O3 | 0.46413 (12) | 0.51163 (6) | 0.76229 (15) | 0.0337 (3) | |
H3E | 0.4398 (19) | 0.5433 (9) | 0.723 (2) | 0.051* | |
H3F | 0.5103 (18) | 0.4984 (11) | 0.693 (2) | 0.051* | |
O4 | 0.47512 (11) | 0.40611 (6) | 0.96546 (16) | 0.0291 (3) | |
H4C | 0.4079 (14) | 0.3972 (9) | 0.956 (3) | 0.044* | |
H4D | 0.5051 (17) | 0.3935 (9) | 0.883 (2) | 0.044* | |
O5 | 0.33269 (10) | 0.51618 (6) | 1.05567 (15) | 0.0309 (3) | |
H5A | 0.320545 | 0.510448 | 1.156884 | 0.046* | |
H5B | 0.288625 | 0.490680 | 1.003402 | 0.046* | |
S1 | 0.14894 (3) | 0.39419 (2) | 0.92733 (4) | 0.02016 (12) | |
O6 | 0.26060 (10) | 0.36508 (6) | 0.92041 (16) | 0.0339 (3) | |
O7 | 0.15935 (10) | 0.46130 (5) | 0.88353 (15) | 0.0297 (3) | |
O8 | 0.07525 (11) | 0.36247 (6) | 0.81077 (16) | 0.0341 (3) | |
O9 | 0.10124 (13) | 0.38801 (6) | 1.08500 (15) | 0.0408 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0238 (2) | 0.0199 (2) | 0.0160 (2) | 0.000 | −0.00128 (15) | 0.000 |
O1 | 0.0262 (9) | 0.0235 (9) | 0.0357 (10) | 0.000 | −0.0058 (8) | 0.000 |
O2 | 0.0465 (11) | 0.0277 (10) | 0.0203 (9) | 0.000 | −0.0002 (8) | 0.000 |
N1 | 0.0257 (10) | 0.0280 (10) | 0.0172 (9) | 0.000 | −0.0027 (8) | 0.000 |
N2 | 0.0326 (8) | 0.0234 (7) | 0.0313 (8) | 0.0027 (6) | −0.0018 (6) | −0.0024 (6) |
N3 | 0.0275 (11) | 0.0381 (12) | 0.0335 (12) | 0.000 | 0.0076 (9) | 0.000 |
C1 | 0.0396 (10) | 0.0397 (11) | 0.0214 (9) | −0.0057 (8) | 0.0016 (8) | 0.0098 (8) |
C2 | 0.0439 (10) | 0.0254 (9) | 0.0392 (11) | −0.0015 (8) | −0.0059 (9) | 0.0115 (8) |
C3 | 0.0316 (13) | 0.0423 (15) | 0.0292 (13) | 0.000 | −0.0114 (11) | 0.000 |
C4 | 0.0252 (16) | 0.046 (2) | 0.044 (2) | 0.0077 (14) | −0.0074 (15) | −0.0045 (16) |
Ni2 | 0.0226 (2) | 0.0206 (2) | 0.0185 (2) | −0.00029 (15) | −0.00085 (15) | −0.00050 (15) |
O3 | 0.0442 (8) | 0.0364 (7) | 0.0206 (6) | 0.0102 (6) | −0.0007 (6) | 0.0031 (5) |
O4 | 0.0297 (6) | 0.0264 (6) | 0.0312 (7) | −0.0037 (5) | 0.0030 (6) | −0.0036 (5) |
O5 | 0.0258 (6) | 0.0392 (7) | 0.0279 (6) | −0.0029 (5) | 0.0000 (5) | −0.0073 (6) |
S1 | 0.0224 (2) | 0.0187 (2) | 0.0193 (2) | −0.00018 (14) | −0.00065 (14) | 0.00073 (14) |
O6 | 0.0255 (6) | 0.0294 (7) | 0.0468 (8) | 0.0032 (5) | −0.0021 (6) | −0.0059 (6) |
O7 | 0.0369 (7) | 0.0207 (6) | 0.0316 (7) | −0.0039 (5) | −0.0083 (5) | 0.0049 (5) |
O8 | 0.0378 (7) | 0.0280 (6) | 0.0364 (7) | −0.0079 (5) | −0.0130 (6) | 0.0017 (5) |
O9 | 0.0594 (9) | 0.0344 (7) | 0.0284 (7) | 0.0040 (7) | 0.0168 (6) | 0.0024 (6) |
Ni1—O1 | 2.1395 (18) | C2—H2D | 0.9700 |
Ni1—O2 | 2.0940 (19) | C3—H3C | 0.9700 |
Ni1—N1 | 2.0640 (19) | C3—H3Ci | 0.9700 |
Ni1—N2 | 2.1217 (15) | C3—H3D | 0.9700 |
Ni1—N2i | 2.1217 (15) | C3—H3Di | 0.9700 |
Ni1—N3 | 2.069 (2) | C3—C4 | 1.496 (4) |
O1—H1 | 0.78 (2) | C4—H4A | 0.9700 |
O1—H1i | 0.78 (2) | C4—H4B | 0.9700 |
O2—H2 | 0.81 (2) | Ni2—O3ii | 2.0678 (13) |
O2—H2i | 0.81 (2) | Ni2—O3 | 2.0678 (13) |
N1—C1 | 1.483 (2) | Ni2—O4ii | 2.0511 (13) |
N1—C1i | 1.483 (2) | Ni2—O4 | 2.0511 (13) |
N1—C3 | 1.488 (3) | Ni2—O5 | 2.0739 (12) |
N2—H2A | 0.8900 | Ni2—O5ii | 2.0739 (12) |
N2—H2B | 0.8900 | O3—H3E | 0.808 (15) |
N2—C2 | 1.481 (2) | O3—H3F | 0.851 (15) |
N3—H3Ai | 0.8900 | O4—H4C | 0.826 (15) |
N3—H3A | 0.8900 | O4—H4D | 0.830 (15) |
N3—H3B | 0.8900 | O5—H5A | 0.8756 |
N3—H3Bi | 0.8900 | O5—H5B | 0.8759 |
N3—C4 | 1.468 (4) | S1—O6 | 1.4679 (13) |
C1—H1A | 0.9700 | S1—O7 | 1.4878 (12) |
C1—H1B | 0.9700 | S1—O8 | 1.4826 (12) |
C1—C2 | 1.514 (3) | S1—O9 | 1.4537 (13) |
C2—H2C | 0.9700 | ||
O2—Ni1—O1 | 88.70 (8) | C1—C2—H2D | 109.8 |
O2—Ni1—N2 | 96.06 (4) | H2C—C2—H2D | 108.2 |
O2—Ni1—N2i | 96.06 (4) | N1—C3—H3Ci | 109.06 (3) |
N1—Ni1—O1 | 92.87 (8) | N1—C3—H3C | 109.1 |
N1—Ni1—O2 | 178.42 (8) | N1—C3—H3Di | 109.07 (10) |
N1—Ni1—N2i | 84.07 (4) | N1—C3—H3D | 109.1 |
N1—Ni1—N2 | 84.07 (4) | N1—C3—C4 | 112.6 (2) |
N1—Ni1—N3 | 84.39 (9) | H3C—C3—H3Ci | 134.6 |
N2i—Ni1—O1 | 85.52 (4) | H3Ci—C3—H3Di | 107.8 |
N2—Ni1—O1 | 85.52 (4) | H3C—C3—H3D | 107.8 |
N2i—Ni1—N2 | 164.74 (9) | H3C—C3—H3Di | 35.2 |
N3—Ni1—O1 | 177.27 (8) | H3D—C3—H3Ci | 35.2 |
N3—Ni1—O2 | 94.03 (9) | H3D—C3—H3Di | 75.0 |
N3—Ni1—N2i | 94.18 (4) | C4—C3—H3C | 109.1 |
N3—Ni1—N2 | 94.18 (4) | C4—C3—H3Ci | 77.37 (16) |
Ni1—O1—H1i | 113.6 (18) | C4—C3—H3Di | 133.34 (17) |
Ni1—O1—H1 | 113.6 (18) | C4—C3—H3D | 109.1 |
H1—O1—H1i | 109 (3) | N3—C4—H3Ai | 34.21 (10) |
Ni1—O2—H2 | 111.3 (19) | N3—C4—C3 | 113.2 (3) |
Ni1—O2—H2i | 111.3 (19) | N3—C4—H4A | 108.9 |
H2—O2—H2i | 103 (4) | N3—C4—H4B | 108.9 |
C1i—N1—Ni1 | 104.58 (11) | C3—C4—H3Ai | 136.9 (3) |
C1—N1—Ni1 | 104.58 (11) | C3—C4—H4A | 108.9 |
C1—N1—C1i | 113.0 (2) | C3—C4—H4B | 108.9 |
C1—N1—C3 | 111.85 (12) | H4A—C4—H3Ai | 76.7 |
C1i—N1—C3 | 111.85 (12) | H4A—C4—H4B | 107.8 |
C3—N1—Ni1 | 110.50 (15) | H4B—C4—H3Ai | 109.6 |
Ni1—N2—H2A | 110.0 | O3ii—Ni2—O3 | 180.0 |
Ni1—N2—H2B | 110.0 | O3ii—Ni2—O5 | 89.88 (5) |
H2A—N2—H2B | 108.4 | O3—Ni2—O5 | 90.12 (5) |
C2—N2—Ni1 | 108.29 (11) | O3ii—Ni2—O5ii | 90.12 (5) |
C2—N2—H2A | 110.0 | O3—Ni2—O5ii | 89.88 (5) |
C2—N2—H2B | 110.0 | O4—Ni2—O3ii | 92.87 (5) |
Ni1—N3—H3A | 110.0 | O4ii—Ni2—O3 | 92.87 (5) |
Ni1—N3—H3Ai | 110.008 (12) | O4—Ni2—O3 | 87.13 (5) |
Ni1—N3—H3Bi | 110.01 (5) | O4ii—Ni2—O3ii | 87.13 (5) |
Ni1—N3—H3B | 110.0 | O4ii—Ni2—O4 | 180.0 |
H3A—N3—H3Ai | 133.8 | O4ii—Ni2—O5ii | 93.28 (5) |
H3A—N3—H3B | 108.4 | O4ii—Ni2—O5 | 86.72 (5) |
H3A—N3—H3Bi | 34.7 | O4—Ni2—O5ii | 86.72 (5) |
H3Ai—N3—H3Bi | 108.4 | O4—Ni2—O5 | 93.28 (5) |
H3B—N3—H3Ai | 34.7 | O5—Ni2—O5ii | 180.00 (7) |
H3B—N3—H3Bi | 76.4 | Ni2—O3—H3E | 124.9 (15) |
C4—N3—Ni1 | 108.42 (19) | Ni2—O3—H3F | 119.7 (15) |
C4—N3—H3A | 110.0 | H3E—O3—H3F | 103 (2) |
C4—N3—H3Ai | 77.77 (16) | Ni2—O4—H4C | 112.3 (14) |
C4—N3—H3B | 110.0 | Ni2—O4—H4D | 112.1 (14) |
C4—N3—H3Bi | 135.62 (17) | H4C—O4—H4D | 105 (2) |
N1—C1—H1A | 109.6 | Ni2—O5—H5A | 110.9 |
N1—C1—H1B | 109.6 | Ni2—O5—H5B | 110.8 |
N1—C1—C2 | 110.31 (15) | H5A—O5—H5B | 107.8 |
H1A—C1—H1B | 108.1 | O6—S1—O7 | 108.92 (8) |
C2—C1—H1A | 109.6 | O6—S1—O8 | 108.32 (8) |
C2—C1—H1B | 109.6 | O8—S1—O7 | 109.01 (7) |
N2—C2—C1 | 109.38 (14) | O9—S1—O6 | 110.55 (9) |
N2—C2—H2C | 109.8 | O9—S1—O7 | 110.37 (8) |
N2—C2—H2D | 109.8 | O9—S1—O8 | 109.63 (8) |
C1—C2—H2C | 109.8 | ||
Ni1—N1—C1—C2 | −48.90 (17) | N1—C3—C4—N3 | −35.8 (3) |
Ni1—N1—C3—C4 | 18.68 (18) | C1i—N1—C1—C2 | −162.01 (12) |
Ni1—N2—C2—C1 | −27.22 (18) | C1—N1—C3—C4 | −97.4 (2) |
Ni1—N3—C4—C3 | 34.2 (3) | C1i—N1—C3—C4 | 134.7 (2) |
N1—C1—C2—N2 | 52.2 (2) | C3—N1—C1—C2 | 70.7 (2) |
Symmetry codes: (i) x, −y+1/2, z; (ii) −x+1, −y+1, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O8iii | 0.78 (2) | 2.05 (2) | 2.8212 (16) | 172 (2) |
O2—H2···O6 | 0.81 (2) | 1.96 (2) | 2.7342 (15) | 162 (3) |
O3—H3E···O9iv | 0.81 (2) | 1.94 (2) | 2.731 (2) | 167 (2) |
O3—H3F···O7iii | 0.85 (2) | 2.05 (2) | 2.8403 (18) | 155 (2) |
O4—H4C···O6 | 0.83 (2) | 1.91 (2) | 2.7249 (18) | 171 (2) |
O4—H4D···O8iii | 0.83 (2) | 1.95 (2) | 2.7810 (18) | 179 (2) |
O5—H5A···O7v | 0.88 | 2.02 | 2.8125 (19) | 150 |
O5—H5B···O7 | 0.88 | 1.95 | 2.7826 (17) | 160 |
Symmetry codes: (iii) x+1/2, y, −z+3/2; (iv) −x+1/2, −y+1, z−1/2; (v) −x+1/2, −y+1, z+1/2. |
Acknowledgements
We are grateful to the Department of Natural Science at UPR Carolina Campus (Department of Education, grant No. PO31S130068; however, those contents do not necessarily represent the policy of the Department of Education, and you should not assume endorsement by the Federal Government) and the University of Puerto Rico's Molecular Sciences Research Center for the use of the Rigaku XTLab SuperNova diffractometer. Special thanks to Dr Indranil Chakraborty for consultation on the final
of the structure.Funding information
This material is based upon work supported by the National Science Foundation under grant No. 1626103. This study was supported by an Institutional Development Award (IDeA) INBRE grant No. P20GM103475 from the National Institute of General Medical Sciences (NIGMS), a component of the National Institutes of Health (NIH), and the Bioinformatics Research Core of the INBRE. Its contents are solely the responsibility of the authors and do not necessarily represent the official view of NIGMS or NIH.
References
Albertin, G., Bordignon, E. & Orio, A. A. (1975). Inorg. Chem. 14, 1411–1413. CrossRef CAS Web of Science Google Scholar
Blackman, A. G. (2005). Polyhedron, 24, 1–39. Web of Science CrossRef CAS Google Scholar
Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. Web of Science CrossRef IUCr Journals Google Scholar
Brines, L. M., Shearer, J., Fender, J. K., Schweitzer, D., Shoner, S. C., Barnhart, D., Kaminsky, W., Lovell, S. & Kovacs, J. A. (2007). Inorg. Chem. 46, 9267–9277. Web of Science CSD CrossRef PubMed CAS Google Scholar
Chen, C., Cai, J., Feng, X. & Chen, X. (2001). J. Chem. Crystallogr. 31, 271–280. Web of Science CSD CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Marzotto, A., Clemente, D. A., Ciccarese, A. & Valle, G. (1993). J. Crystallogr. Spectrosc. Res. 23, 119–131. CSD CrossRef CAS Web of Science Google Scholar
Park, H. W., Sung, S. M., Min, K. S., Bang, H. & Suh, M. P. (2001). Eur. J. Inorg. Chem. pp. 2857–2863. CrossRef Google Scholar
Pedersen, K. S., Bendix, J. & Clérac, R. (2014). Chem. Commun. 50, 4396–4415. Web of Science CrossRef CAS Google Scholar
Rao, S. A., Pal, A., Ghosh, R. & Das, S. K. (2009). Inorg. Chem. 48, 10476. Web of Science CrossRef Google Scholar
Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Ruffin, H., Boussambe, G. N. M., Roisnel, T., Dorcet, V., Boitrel, B. & Le Gac, S. (2017). J. Am. Chem. Soc. 139, 13847–13857. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sakai, K., Yamada, Y. & Tsubomura, T. (1996). Inorg. Chem. 35, 3163–3172. CSD CrossRef PubMed CAS Web of Science Google Scholar
Salam, A. Md. & Aoki, K. (2001). Inorg. Chim. Acta, 314, 71–82. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Tanase, T., Doi, M., Nouchi, R., Kato, M., Sato, Y., Ishida, K., Kobayashi, K., Sakurai, T., Yamamoto, Y. & Yano, S. (1996). Inorg. Chem. 35, 4848–4857. CSD CrossRef PubMed CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.