research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The crystal structures and Hirshfeld surface analyses of a cadmium(II) and a zinc(II) mononuclear complex of the new tetra­kis-substituted pyrazine ligand N,N′,N′′,N′′′-[pyrazine-2,3,5,6-tetra­yltetra­kis­(methyl­ene)]tetra­kis­(N-methyl­aniline)

CROSSMARK_Color_square_no_text.svg

aInstitute of Chemistry, University of Neuchâtel, Av. de Bellevaux 51, CH-2000 Neuchâtel, Switzerland, and bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: helen.stoeckli-evans@unine.ch

Edited by C. Massera, Università di Parma, Italy (Received 24 January 2020; accepted 5 February 2020; online 18 February 2020)

The whole mol­ecule of the cadmium(II) complex, di­iodido­{N,N′,N′′,N′′′-[pyrazine-2,3,5,6-tetra­yltetra­kis­(methyl­ene)]tetra­kis­(N-methyl­aniline)-κ3N2,N1,N6}cadmium(II), [CdI2(C36H40N6)], (I), of the ligand N,N′,N′′,N′′′-[pyrazine-2,3,5,6-tetra­yltetra­kis­(methyl­ene)]tetra­kis­(N-methyl­aniline) (L), is generated by a twofold rotation symmetry; the twofold axis bis­ects the cadmium atom and the nitro­gen atoms of the pyrazine ring. The ligand coordinates in a mono-tridentate manner and the cadmium atom has a fivefold CdN3I2 coordination environment with a distorted shape. In the zinc(II) complex, dichlorido{N,N′,N′′,N′′′-[pyrazine-2,3,5,6-tetra­yltetra­kis­(methyl­ene)]tetra­kis­(N-methyl­aniline)-κ3N2,N1,N6}zinc(II) di­chloro­methane 0.6-solvate, [ZnCl2(C36H40N6)]·0.6CH2Cl2, (II), ligand L also coordinates in a mono-tridentate manner and the zinc atom has a fivefold ZnN3Cl2 coordination environment with a distorted shape. It crystallized as a partial di­chloro­methane solvate. In the crystal of I, the complex mol­ecules are linked by weak C—H⋯I contacts, forming ribbons propagating along [100]. In the crystal of II, the complex mol­ecules are linked by a series of C—H⋯π inter­actions, forming layers lying parallel to the (1[\overline{1}]1) plane. In the crystals of both compounds there are metal–halide⋯π(pyrazine) contacts present. The Hirshfeld analyses confirm the importance of the C—H⋯halide contacts in the crystal packing of both compounds.

1. Chemical context

The title ligand, N,N′,N′′,N′′′-[pyrazine-2,3,5,6-tetra­yltetra­kis(methyl­ene)]tetra­kis­(N-methyl­aniline) (L), whose synthesis and crystal structure have been described in the preceding publication (Tesouro Vallina & Stoeckli-Evans, 2020[Tesouro Vallina, A. & Stoeckli-Evans, H. (2020). Acta Cryst. E76 404-409.]), is a new tetra­kis-substituted pyrazine derivative. It was designed to study its coordination behaviour with transition metals (Tesouro Vallina, 2001[Tesouro Vallina, A. (2001). PhD Thesis. University of Neuchâtel, Switzerland.]). The reaction of the ligand with CdI2 and ZnCl2 lead to the formation of the title mononuclear complexes I and II. Herein, we describe their syntheses, mol­ecular and crystal structures and the analyses of their Hirshfeld surfaces.

2. Structural commentary

The mol­ecular structure of the cadmium(II) complex, Cd(L)I2 (I), of the ligand N,N′,N′′,N′′′-[pyrazine-2,3,5,6-tetra­yltetra­kis­(methyl­ene)]tetra­kis­(N-methyl­aniline) (L), is illustrated in Fig. 1[link]. Selected geometrical parameters are given in Table 1[link]. The complex possesses twofold rotation symmetry, with the twofold axis bis­ecting the cadmium atom, Cd1, and the nitro­gen atoms N1 and N4 of the pyrazine ring. The ligand coordinates in a mono-tridentate manner and the cadmium atom has a fivefold CdN3I2 coordination environment with a distorted shape (see Fig. 2[link]a). The τ5 parameter for the fivefold coordination of atom Cd1 is 0.14 (τ5 = 0 for a perfect square-pyramidal geometry and = 1 for a trigonal–pyramidal geometry; Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

Table 1
Selected geometric parameters (Å, °) for I[link]

Cd1—N1 2.295 (3) Cd1—I1 2.7038 (3)
Cd1—N2 2.599 (3)    
       
N1—Cd1—N2 69.65 (6) N2—Cd1—I1i 95.35 (6)
N2i—Cd1—N2 139.31 (12) N2—Cd1—I1 101.29 (6)
N1—Cd1—I1 114.551 (10) I1i—Cd1—I1 130.90 (2)
Symmetry code: (i) [-x+{\script{3\over 2}}, y, -z].
[Figure 1]
Figure 1
A view of the mol­ecular structure of complex I, with atom labelling [symmetry code (i): −x + [{3\over 2}], y, −z]. Displacement ellipsoids are drawn at the 30% probability level. The intra­molecular C—H⋯π inter­actions are shown as dashed red arrows (Table 2[link]).
[Figure 2]
Figure 2
A comparison of the coordination spheres of (a) the cadmium atom in complex I [symmetry code (i): −x + [{3\over 2}], y, −z], and (b) the zinc atom in complex II.

A search of the Cambridge Structural Database (CSD, Version 5.41, last update November 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for a CdN3I2 coordination environment involving a pyrazine N atom yielded only one relevant structure, the CdI2 mononuclear complex of the ligand 2,3,5,6-tetra­kis­(pyridin-2-yl)pyrazine (TPPZ), viz. complex (2,3,5,6-tetra­kis­(pyridin-2-yl)pyrazine)­bis­(iodo)­cadmium(II) (GAHRIT; Saghatforoush, 2015[Saghatforoush, L. (2015). Jiegou Huaxue, 34, 1869-1875.]). Here the τ5 parameter for the cadmium atom is 0.04. The Cd—Npz bond length is ca 2.388 Å compared to 2.295 (3) Å in I, while the Cd—I bond lengths are ca 2.741 and 2.727 Å compared to 2.7038 (3) Å in I. The N-methyl­aniline groups on the non-coordinated side of the ligand are linked by intra­molecular C—H⋯π inter­actions (Fig. 1[link] and Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °) for I[link]

Cg3 is the centroid of the pyrazine ring N1/N4/C1/C2/C1i/C2i and Cg5 is the centroid of the C12–C17 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18C⋯Cg5i 0.97 2.95 3.896 (5) 165
C17—H17⋯I1ii 0.94 3.09 3.907 (4) 147
Cd1—I1⋯Cgiii 2.70 (1) 3.96 (1) 6.5131 (12) 155 (1)
Cd1—I1⋯Cg3iv 2.70 (1) 3.96 (1) 6.5131 (12) 155 (1)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y, -z]; (ii) [x+{\script{1\over 2}}, -y, z]; (iii) -x+1, -y, -z; (iv) [x-{\script{1\over 2}}, -y, z].

The mol­ecular structure of the zinc(II) complex, Zn(L)Cl2·0.6(CH2Cl2) (II), is illustrated in Fig. 3[link]. It crystallized as a partial di­chloro­methane solvate. Selected geom­etrical parameters are given in Table 3[link]. The ligand L coordinates in a mono-tridentate manner and the zinc atom, Zn1, has a fivefold ZnN3Cl2 coordination environment with a distorted shape (see Fig. 2[link]b). The τ5 parameter for atom Zn1 is 0.30.

Table 3
Selected geometric parameters (Å, °) for II[link]

Zn1—N1 2.057 (3) Zn1—Cl1 2.2251 (10)
Zn1—N2 2.385 (3) Zn1—Cl2 2.2425 (11)
Zn1—N5 2.413 (3)    
       
N1—Zn1—N2 75.02 (12) Cl1—Zn1—N2 98.12 (8)
N1—Zn1—N5 74.23 (12) Cl2—Zn1—N2 95.70 (9)
N2—Zn1—N5 149.21 (11) Cl1—Zn1—N5 93.02 (7)
N1—Zn1—Cl1 114.15 (9) Cl2—Zn1—N5 98.34 (8)
N1—Zn1—Cl2 114.68 (9) Cl1—Zn1—Cl2 131.14 (4)
[Figure 3]
Figure 3
A view of the mol­ecular structure of compound II, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level. For clarity, H atoms have been omitted.

A search of the CSD for a ZnN3Cl2 coordination environment involving a pyrazine N atom yielded five relevant structures, which again involve the ligand TPPZ. They include two polymorphs of the mononuclear complex di­chloro-[2,3,5,6-tetra­kis­(2-pyrid­yl)pyrazine-N,N′,N′′]zinc(II): a monoclinic polymorph (WAGPOJ; Graf et al., 1993[Graf, M., Greaves, B. & Stoeckli-Evans, H. (1993). Inorg. Chim. Acta, 204, 239-246.]) and a triclinic polymorph (WAGPOJ01; Saljooghi & Fatemi, 2011[Saljooghi, A. Sh. & Fatemi, S. J. A. (2011). Russ. J. Coord. Chem. 37, 168-171.]). There are two structures of the binuclear complex [μ2-2,3,5,6-tetra­kis­(2-pyrid­yl)pyrazine]­tetra­chloro­dizinc(II): one hydrated (DOMHOD; Trivedi et al., 2009[Trivedi, M., Pandey, D. S. & Rath, N. P. (2009). Inorg. Chim. Acta, 362, 284-290.]), the other not (PAPCER; Hong et al., 2017[Hong, X.-J., Feng, H.-X., Wei, M.-J., Peng, H.-J., Xie, J.-Q., Cai, Y.-P. & Si, L.-P. (2017). Inorg. Chem. Commun. 77, 59-63.]), and finally, the unusual polynuclear complex octa­kis­(μ2-chloro)­bis­[μ2-2,3,5,6-tetra­kis­(2-pyrid­yl)pyrazine]­dodeca­chloro­tetra­aqua­deca­zinc (WIBVOS; Graf & Stoeckli-Evans, 1994[Graf, M. & Stoeckli-Evans, H. (1994). Acta Cryst. C50, 1461-1464.]). For these five structures, the τ5 parameter for the zinc atoms varies from 0.08 in WAGPOJ to 0.36 in WAGPOJ01. The latter is similar to the value of 0.30 for II. The Zn—Npz bond lengths vary from ca 2.141 to 2.200 Å compared to 2.057 (3) Å in II, while the Zn—Cl bond lengths vary from ca 2.232 to 2.343 Å compared to 2.2251 (10) and 2.2425 (11) Å in II.

The conformation of the ligand L differs in the two complexes (Fig. 4[link]). The orientation of the phenyl rings with respect to the pyrazine ring and to each other is slightly different, and the various dihedral angles are compared in Table 5[link]. It can be seen that the most significant difference, of 20.9 (2)°, involves the orientation of ring D (ring Bi in I) with respect to ring E (ring Ci in I).

Table 5
A comparison of the conformation of the ligand (L) in complexes I and II

The definitions of rings A, B, C, D and E are given in Fig. 4[link].

Dihedral angle (°) Ia II Δ(I - II
A to B 41.9 (2) 35.5 (2) > 6.4
A to C 86.1 (2) 87.5 (3) < 1.4
A to D 41.9 (2) 34.9 (2) > 7.0
A to E 86.1 (2) 74.4 (2) > 11.7
B to C 54.0 (2) 53.7 (3) > 0.3
B to D 38.0 (2) 26.9 (2) > 11.1
B to E 63.4 (2) 71.9 (2) < 8.5
C to D 63.4 (2) 58.5 (3) > 4.9
C to E 24.9 (2) 18.3 (3) > 6.6
D to E 54.0 (2) 74.9 (2) < 20.9
Note: (a) D = Bi, E = Ci; symmetry code: (i) −x + [{3\over 2}], y, −z.
[Figure 4]
Figure 4
A comparison of the conformation of the ligand L in complexes I and II. For complex I, which possesses twofold rotation symmetry, ring D = Bi, and ring E = Ci [symmetry code: (i) −x + [{3\over 2}], y, −z].

3. Supra­molecular features

A partial view of the crystal packing of I is shown in Fig. 5[link]. Mol­ecules are linked by weak C—H⋯I contacts, forming ribbons propagating along [100]; see Table 2[link]. There are Cd—I⋯π(pyrazine) contacts present, consolidating the chains propagating along the a-axis direction (Fig. 6[link]a and Table 2[link]). This situation is similar to that observed in the crystal of the CdI2 complex of TPPZ (GAHRIT; Saghatforoush, 2015[Saghatforoush, L. (2015). Jiegou Huaxue, 34, 1869-1875.]). There, the I⋯centroid(pyrazine ring) distance is 3.699 (1) Å with a Cd—I⋯centroid angle of 175.92 (12)°, compared to 3.9593 (12) Å and 155.19 (3)° in complex I (Fig. 6[link]a and Table 2[link]).

[Figure 5]
Figure 5
A view normal to plane (011) of the crystal packing of complex I. The weak C—H⋯I inter­actions are shown as dashed lines (Table 2[link]).
[Figure 6]
Figure 6
(a) A partial view along the c axis of the crystal packing of I, showing the Cd—I⋯π(pyrazine) inter­actions (Table 2[link]; dashed red arrows), (b) a partial view along the a axis of the crystal packing of II, showing the Zn—Cl⋯π(pyrazine) inter­actions (Table 4[link]; dashed red arrows). For clarity, the di­chloro­methane mol­ecule has been omitted.

In the crystal of II, mol­ecules are linked by a series of C—H⋯π inter­actions, forming layers lying parallel to the (1[\overline{1}]1) plane; see Fig. 7[link] and Table 4[link]. The di­chloro­methane mol­ecules are linked across a center of symmetry with a short Cl4⋯Cl4(−x, −y, −z + 2) contact of 3.045 (5) Å and do not participate in any significant inter­molecular inter­actions with the complex mol­ecule. There are Zn—Cl⋯π(pyrazine) contacts present, which link inversion-related mol­ecules, forming dimers (Fig. 6[link]b and Table 5[link]). This arrangement is similar to that observed in the crystal structure of the ZnCl2 complex of TPPZ (PAPCER; Hong et al., 2017[Hong, X.-J., Feng, H.-X., Wei, M.-J., Peng, H.-J., Xie, J.-Q., Cai, Y.-P. & Si, L.-P. (2017). Inorg. Chem. Commun. 77, 59-63.]). This compound crystallized with two independent mol­ecules in the asymmetric unit. There, the Cl⋯centroid(pyrazine ring) distances are ca 3.087 and 3.167 Å, with the corresponding Zn—Cl⋯centroid angles being ca 152.62 and 141.76°. In the crystal structure of WIBVOS, a similar inter­action is present with a Cl⋯centroid(pyrazine ring) distance of ca 3.987 Å and a Zn—Cl⋯centroid angle of ca. 170.96°. In complex II, the corresponding Cl⋯centroid(pyrazine ring) distance and Zn—Cl⋯centroid angle are 3.683 (2) Å and 155.96 (6)°, respectively (Table 4[link]).

Table 4
Hydrogen-bond geometry (Å, °) for II[link]

Cg3 is the centroid of the pyrazine ring N1/N4/C1/C2/C21/C22, and Cg5 and Cg7 are the centroids of rings C12–C17 and C32–C37, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯Cg7i 0.94 2.88 3.814 (6) 177
C11—H11B⋯Cg5ii 0.98 2.90 3.540 (5) 124
C26—H26⋯Cg3iii 0.94 2.95 3.544 (5) 122
Zn1—Cl2⋯Cg3iv 2.24 (1) 3.68 (1) 5.8035 (19) 156 (1)
Symmetry codes: (i) x-1, y-1, z; (ii) -x+1, -y, -z; (iii) -x+1, -y+1, -z+1; (iv) -x+1, -y, -z+1.
[Figure 7]
Figure 7
A view along the a axis of the crystal packing of compound II. The various C—H⋯π inter­actions (Table 4[link]; blue, red and green) are shown as dashed lines. The di­chloro­methane mol­ecule has been omitted, and only the H atoms (blue, red and green) involved in the C—H⋯π inter­actions have been included.

4. Hirshfeld surface analysis and two-dimensional fingerprint plots

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were performed with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net]). The Hirshfeld surfaces are colour-mapped with the normalized contact distance, dnorm, ranging from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii). A summary of the short inter­molecular contacts in the crystal structures of I and II is given in Table 6[link].

Table 6
Summary of inter­atomic contacts (Å)a, shorter than the sum of the van der Waals radii, in the crystal structures of I and II

Contact Length Length − vdW Symmetry operation
I      
C11⋯C12 3.278 −0.122 [{3\over 2}] − x, −[{1\over 2}] − y, −[{1\over 2}] − z
C12⋯H11A 2.805 −0.095 [{3\over 2}] − x, −[{1\over 2}] − y, −[{1\over 2}] − z
I1⋯H17 3.087 −0.093 [{1\over 2}] + x, −y, z
N3⋯H11B 2.671 −0.079 [{3\over 2}] − x, −[{1\over 2}] − y, −[{1\over 2}] − z
N3⋯C11 3.234 −0.016 [{3\over 2}] − x, −[{1\over 2}] − y, −[{1\over 2}] − z
       
II      
Cl4⋯Cl4 3.045 −0.455 -x, −y, 2 − z
C6⋯H40B 2.758 −0.142 -x, −y, 1 − z
C30⋯H3B 2.779 −0.121 1 − x, −y, 1 − z
H23B⋯H23B 2.287 −0.113 1 − x, 1 − y, 1 − z
H6⋯C36 2.798 −0.102 −1 + x, −1 + y, z
Cl1⋯H33 2.854 −0.096 −1 + x, y, z
H6⋯C37 2.858 −0.042 −1 + x, −1 + y, z
H3B⋯H30A 2.359 −0.041 1 − x, −y, 1 − z
H10B⋯H26 2.382 −0.018 1 − x, 1 − y, 1 − z
Note: (a) distances were calculated using Mercury (Macrae et al., 2008[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

For complex I, the Hirshfeld surface (HS) mapped over dnorm, and the two-dimensional fingerprint plots are given in Fig. 8[link]. The red spots on the HS (Fig. 8[link]a) correspond to the I⋯H contacts, which give a pair of spikes in the fingerprint plot (Fig. 8[link]b) at de + di ≃ 3.0 Å, contributing 14.2% to the HS. The H⋯H contacts contribute 63.4% and the C⋯H contacts 18.0%. Any other atom–atom contacts contributed less than 2% and have not been included here.

[Figure 8]
Figure 8
(a) The Hirshfeld surface of complex I, mapped over dnorm, in the colour range −0.0713 to 1.5380 a.u., (b) the full two-dimensional fingerprint plot for complex I, and fingerprint plots delineated into H⋯H, C⋯H/H⋯C and I⋯H/H⋯I contacts.

For compound II, the Hirshfeld surface mapped over dnorm, is shown in Fig. 9[link]a, and that for the complex itself and the solvent mol­ecule in Figs. 9[link]b and 9c, respectively. The faint red spots correspond to the Cl⋯H contacts in the crystal. These give a pair of spikes in the fingerprint plots, at de + di ≃ 2.7 Å, contributing 22.7%, in the compound (Fig. 10[link]a) and at de + di ≃ 2.7 Å, contributing 18.1%, in the complex (Fig. 10[link]b). For the solvent mol­ecule, a single sharp spike is observed (de + di ≃ 2.8 Å) with a contribution of 59.6% to the HS (Fig. 10[link]c). The H⋯H contacts contribute 55.1, 59.4 and 25.2% to the Hirshfeld surfaces of the compound, the complex and the solvent mol­ecule, respectively, while the C⋯H contributions are 17.7, 18.8 and 6.8%, respectively. Any other atom–atom contacts contributed less than 2% and have not been included here.

[Figure 9]
Figure 9
(a) The Hirshfeld surface of compound II, mapped over dnorm, in the colour range −0.2597 to 1.5438 a.u., (b) the Hirshfeld surface of complex II, mapped over dnorm, in the colour range −0.0933 to 1.5453 a.u., (c) the Hirshfeld surface of the solvent mol­ecule, mapped over dnorm, in the colour range −0.2602 to 1.4344 a.u..
[Figure 10]
Figure 10
(a) The full two-dimensional fingerprint plot for compound II, and fingerprint plots delineated into H⋯H, Cl⋯H/H⋯Cl, C⋯H/H⋯C and Cl⋯C/C⋯Cl contacts, (b) the full two-dimensional fingerprint plot for complex II, and fingerprint plots delineated into H⋯H, C⋯H/H⋯C and Cl⋯H/H⋯Cl contacts, (c) the full two-dimensional fingerprint plot for the solvent mol­ecule and fingerprint plots delineated into Cl⋯H/H⋯Cl, H⋯H, C⋯H/H⋯C, Cl⋯Cl and Cl⋯C/C⋯Cl contacts.

5. Synthesis and crystallization

The synthesis and crystal structure of the ligand, N,N′,N′′,N′′′-[pyrazine-2,3,5,6-tetra­yltetra­kis­(methyl­ene)]tetra­kis­(N-meth­ylaniline) L, have been described in the preceding publication (Tesouro Vallina & Stoeckli-Evans, 2020[Tesouro Vallina, A. & Stoeckli-Evans, H. (2020). Acta Cryst. E76 404-409.]).

Synthesis of the complex [Cd(L)I2] (I)[link]:

About 10 ml of a very dilute CH2Cl2 solution of ligand L were introduced into a glass tube and layered with ca 2 ml of MeOH as a buffer zone. Then, 10 ml of a dilute methano­lic solution of CdI2 were added slowly to avoid possible mixing. The glass tube was sealed and left at room temperature. The colour of the inter­phase changed immediately to deep yellow and in hours to green. After a few days, green rod-like crystals were formed. IR (KBr pellet, cm−1): 2922 (m), 1599 (vs), 1507 (s), 1497 (s), 1173 (m), 1120 (m), 751 (s), 694 (s). No elemental analytical data are available.

Synthesis of the complex [Zn(L)Cl2]·0.6(CH2Cl2) (II)[link]:

To a solution of ZnCl2 (0.1 mmol, 0.014 g) in 5 ml of MeOH, a solution of L (0.05 mmol, 0.028 g, 5 ml CH2Cl2) was added. The solution was stirred at RT for 2 h without any significant colour change. The clear light-green solution obtained was filtered to avoid any impurity and allowed to evaporate slowly. After a few days, yellow rod-like crystals were obtained. IR (KBr pellet, cm−1): 1599 (vs), 1507 (s), 1451 (m), 1363 (s), 1257 (m), 1171 (m), 1033 (m), 920 (m), 746 (s), 691 (s). Analysis for [Zn(C36H40N6)Cl2]·0.6CH2Cl2 (743.99 g mol−1): calculated C 60.50, H 5.68, N 11.65%; found C 60.66, H 5.78, N 11.93%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 7[link]. The C-bound H atoms were included in calculated positions and treated as riding on their parent C atom: C—H = 0.94–0.98 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms.

Table 7
Experimental details

  I II
Crystal data
Chemical formula [CdI2(C36H40N6)] [ZnCl2(C36H40N6)]·0.6CH2Cl2
Mr 922.94 743.99
Crystal system, space group Monoclinic, I2/a Triclinic, P[\overline{1}]
Temperature (K) 223 223
a, b, c (Å) 12.8370 (7), 20.1241 (14), 15.2568 (9) 11.9196 (8), 12.1208 (8), 13.919 (1)
α, β, γ (°) 90, 110.871 (6), 90 98.222 (8), 100.313 (8), 107.580 (7)
V3) 3682.7 (4) 1843.9 (2)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 2.30 0.93
Crystal size (mm) 0.40 × 0.10 × 0.10 0.30 × 0.10 × 0.10
 
Data collection
Diffractometer STOE IPDS 1 STOE IPDS 1
Absorption correction Multi-scan (MULABS; Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) Multi-scan (MULABS; Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.])
Tmin, Tmax 0.961, 1.000 0.983, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 14308, 3566, 2549 14512, 6654, 3490
Rint 0.031 0.054
(sin θ/λ)max−1) 0.615 0.615
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.072, 0.95 0.043, 0.117, 0.79
No. of reflections 3566 6654
No. of parameters 207 437
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.15, −0.88 0.75, −0.35
Computer programs: EXPOSE, CELL and INTEGRATE in IPDS-I (Stoe & Cie, 2004[Stoe & Cie (2004). IPDS-I Bedienungshandbuch. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

With the STOE IPDS I, a one-circle diffractometer, for the triclinic system often only 93% of the Ewald sphere is accessible. Hence, for compound II the _diffrn_reflns_Laue_measured_fraction_full of 0.939 is below the required minimum of 0.95. For II, a small number of low-angle reflections, either in the shadow of the beam-stop or with bad agreement, were omitted during the final cycles of refinement.

Supporting information


Computing details top

For both structures, data collection: EXPOSE in IPDS-I (Stoe & Cie, 2004); cell refinement: CELL in IPDS-I (Stoe & Cie, 2004); data reduction: INTEGRATE in IPDS-I (Stoe & Cie, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008). Software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015), PLATON (Spek, 2020) and publCIF (Westrip, 2010) for (I); SHELXL2018/3 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010) for (II).

Diiodido{N,N',N'',N'''-[pyrazine-2,3,5,6-tetrayltetrakis(methylene)]tetrakis(N-methylaniline)-κ3N2,N1,N6}cadmium(II) (I) top
Crystal data top
[CdI2(C36H40N6)]F(000) = 1808
Mr = 922.94Dx = 1.665 Mg m3
Monoclinic, I2/aMo Kα radiation, λ = 0.71073 Å
a = 12.8370 (7) ÅCell parameters from 5000 reflections
b = 20.1241 (14) Åθ = 1.7–26.1°
c = 15.2568 (9) ŵ = 2.30 mm1
β = 110.871 (6)°T = 223 K
V = 3682.7 (4) Å3Rod, green
Z = 40.40 × 0.10 × 0.10 mm
Data collection top
STOE IPDS 1
diffractometer
3566 independent reflections
Radiation source: fine-focus sealed tube2549 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.031
φ rotation scansθmax = 25.9°, θmin = 2.0°
Absorption correction: multi-scan
(MULABS; Spek, 2009)
h = 1515
Tmin = 0.961, Tmax = 1.000k = 2424
14308 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0409P)2]
where P = (Fo2 + 2Fc2)/3
3566 reflections(Δ/σ)max = 0.001
207 parametersΔρmax = 1.15 e Å3
0 restraintsΔρmin = 0.88 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.7500000.06345 (2)0.0000000.04883 (11)
I10.55787 (2)0.11927 (2)0.00131 (2)0.07922 (12)
N10.7500000.05058 (17)0.0000000.0399 (8)
N20.6906 (2)0.01854 (14)0.17053 (17)0.0460 (6)
N30.7067 (3)0.26232 (15)0.15731 (19)0.0545 (7)
N40.7500000.18660 (18)0.0000000.0423 (8)
C10.7472 (2)0.08374 (16)0.0768 (2)0.0410 (7)
C20.7432 (3)0.15288 (16)0.0772 (2)0.0417 (7)
C30.7572 (3)0.04292 (16)0.1562 (2)0.0476 (8)
H3A0.8356300.0314590.1424270.057*
H3B0.7317150.0693020.2139860.057*
C40.7161 (3)0.06601 (18)0.2319 (2)0.0513 (8)
C50.7873 (3)0.0528 (2)0.2792 (3)0.0655 (10)
H50.8209790.0108100.2735990.079*
C60.8096 (4)0.1012 (2)0.3351 (3)0.0838 (14)
H60.8583700.0915680.3670100.101*
C70.7617 (4)0.1625 (3)0.3441 (4)0.0881 (14)
H70.7775320.1951790.3815960.106*
C80.6897 (4)0.1759 (2)0.2974 (3)0.0835 (13)
H80.6551150.2177600.3042260.100*
C90.6677 (3)0.1284 (2)0.2406 (3)0.0674 (11)
H90.6199140.1384420.2079410.081*
C100.5702 (3)0.0017 (2)0.2061 (2)0.0591 (9)
H10A0.5503770.0191900.2672170.089*
H10B0.5267190.0419030.2115420.089*
H10C0.5548200.0286970.1628810.089*
C110.7299 (3)0.19289 (17)0.1643 (2)0.0528 (8)
H11A0.6690760.1736220.2171430.063*
H11B0.7984050.1889470.1783910.063*
C120.7924 (3)0.30691 (18)0.1149 (2)0.0564 (9)
C130.7708 (5)0.3737 (2)0.1026 (3)0.0763 (13)
H130.6969460.3891040.1214100.092*
C140.8600 (6)0.4174 (2)0.0619 (4)0.0975 (17)
H140.8446060.4623300.0545070.117*
C150.9680 (6)0.3971 (3)0.0330 (4)0.1016 (18)
H151.0265350.4270290.0047080.122*
C160.9892 (4)0.3321 (3)0.0459 (3)0.0862 (14)
H161.0634440.3173670.0273050.103*
C170.9041 (4)0.2880 (2)0.0856 (3)0.0664 (10)
H170.9215270.2435020.0932530.080*
C180.5935 (4)0.2794 (2)0.1693 (3)0.0777 (12)
H18A0.5698960.3170680.2113860.117*
H18B0.5452210.2417510.1956890.117*
H18C0.5890420.2907490.1089650.117*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03359 (17)0.0483 (2)0.0628 (2)0.0000.01500 (15)0.000
I10.04735 (16)0.0918 (2)0.0946 (2)0.02423 (13)0.02050 (14)0.00291 (16)
N10.0377 (19)0.043 (2)0.0401 (19)0.0000.0151 (15)0.000
N20.0346 (13)0.0559 (16)0.0469 (14)0.0013 (12)0.0136 (11)0.0099 (12)
N30.0613 (18)0.0577 (18)0.0493 (16)0.0119 (15)0.0254 (14)0.0097 (14)
N40.049 (2)0.044 (2)0.0371 (19)0.0000.0191 (16)0.000
C10.0357 (15)0.0541 (19)0.0358 (15)0.0012 (14)0.0157 (12)0.0024 (14)
C20.0398 (16)0.0521 (19)0.0373 (16)0.0012 (14)0.0187 (13)0.0003 (14)
C30.0478 (18)0.0541 (19)0.0444 (17)0.0018 (15)0.0209 (14)0.0078 (14)
C40.0404 (17)0.059 (2)0.0513 (18)0.0002 (15)0.0118 (14)0.0126 (16)
C50.057 (2)0.076 (3)0.071 (2)0.0077 (19)0.0325 (19)0.024 (2)
C60.074 (3)0.098 (3)0.093 (3)0.013 (3)0.046 (3)0.040 (3)
C70.075 (3)0.094 (3)0.099 (3)0.003 (3)0.036 (3)0.045 (3)
C80.071 (3)0.070 (3)0.104 (3)0.010 (2)0.025 (3)0.033 (3)
C90.052 (2)0.068 (2)0.081 (3)0.0093 (18)0.023 (2)0.021 (2)
C100.0371 (18)0.077 (3)0.058 (2)0.0061 (17)0.0104 (15)0.0104 (18)
C110.068 (2)0.056 (2)0.0398 (17)0.0015 (17)0.0263 (16)0.0037 (15)
C120.080 (3)0.055 (2)0.0427 (18)0.0036 (19)0.0322 (18)0.0075 (15)
C130.113 (4)0.060 (3)0.064 (2)0.011 (2)0.041 (3)0.009 (2)
C140.161 (6)0.059 (3)0.084 (3)0.018 (3)0.058 (4)0.005 (2)
C150.126 (5)0.101 (5)0.088 (4)0.042 (4)0.051 (4)0.004 (3)
C160.084 (3)0.107 (4)0.074 (3)0.021 (3)0.035 (2)0.008 (3)
C170.076 (3)0.072 (3)0.058 (2)0.002 (2)0.032 (2)0.0091 (19)
C180.070 (3)0.094 (3)0.072 (3)0.023 (2)0.029 (2)0.011 (2)
Geometric parameters (Å, º) top
Cd1—N12.295 (3)C6—H60.9400
Cd1—N2i2.599 (3)C7—C81.380 (7)
Cd1—N22.599 (3)C7—H70.9400
Cd1—I1i2.7038 (3)C8—C91.386 (6)
Cd1—I12.7038 (3)C8—H80.9400
N1—C11.338 (3)C9—H90.9400
N1—C1i1.338 (3)C10—H10A0.9700
N2—C41.454 (4)C10—H10B0.9700
N2—C31.475 (4)C10—H10C0.9700
N2—C101.484 (4)C11—H11A0.9800
N3—C121.388 (5)C11—H11B0.9800
N3—C111.440 (4)C12—C171.394 (6)
N3—C181.440 (5)C12—C131.398 (5)
N4—C21.335 (4)C13—C141.402 (7)
N4—C2i1.335 (4)C13—H130.9400
C1—C21.392 (5)C14—C151.360 (9)
C1—C31.506 (4)C14—H140.9400
C2—C111.511 (4)C15—C161.364 (8)
C3—H3A0.9800C15—H150.9400
C3—H3B0.9800C16—C171.370 (6)
C4—C51.376 (5)C16—H160.9400
C4—C91.386 (5)C17—H170.9400
C5—C61.390 (5)C18—H18A0.9700
C5—H50.9400C18—H18B0.9700
C6—C71.363 (7)C18—H18C0.9700
N1—Cd1—N2i69.65 (6)C6—C7—H7120.5
N1—Cd1—N269.65 (6)C8—C7—H7120.5
N2i—Cd1—N2139.31 (12)C7—C8—C9120.7 (4)
N1—Cd1—I1i114.551 (10)C7—C8—H8119.6
N2i—Cd1—I1i101.29 (6)C9—C8—H8119.6
N1—Cd1—I1114.551 (10)C8—C9—C4120.1 (4)
N2i—Cd1—I195.35 (6)C8—C9—H9120.0
N2—Cd1—I1i95.35 (6)C4—C9—H9120.0
N2—Cd1—I1101.29 (6)N2—C10—H10A109.5
I1i—Cd1—I1130.90 (2)N2—C10—H10B109.5
C1—N1—C1i120.2 (4)H10A—C10—H10B109.5
C1—N1—Cd1119.92 (19)N2—C10—H10C109.5
C1i—N1—Cd1119.92 (19)H10A—C10—H10C109.5
C4—N2—C3113.3 (3)H10B—C10—H10C109.5
C4—N2—C10111.0 (2)N3—C11—C2114.4 (3)
C3—N2—C10109.6 (3)N3—C11—H11A108.7
C4—N2—Cd1111.3 (2)C2—C11—H11A108.7
C3—N2—Cd1101.28 (17)N3—C11—H11B108.7
C10—N2—Cd1110.0 (2)C2—C11—H11B108.7
C12—N3—C11120.8 (3)H11A—C11—H11B107.6
C12—N3—C18120.1 (3)N3—C12—C17121.8 (3)
C11—N3—C18116.6 (3)N3—C12—C13121.4 (4)
C2—N4—C2i118.9 (4)C17—C12—C13116.8 (4)
N1—C1—C2119.5 (3)C12—C13—C14119.6 (5)
N1—C1—C3116.7 (3)C12—C13—H13120.2
C2—C1—C3123.7 (3)C14—C13—H13120.2
N4—C2—C1120.9 (3)C15—C14—C13122.1 (5)
N4—C2—C11117.2 (3)C15—C14—H14118.9
C1—C2—C11121.9 (3)C13—C14—H14118.9
N2—C3—C1111.4 (3)C14—C15—C16118.4 (5)
N2—C3—H3A109.3C14—C15—H15120.8
C1—C3—H3A109.3C16—C15—H15120.8
N2—C3—H3B109.3C15—C16—C17121.0 (5)
C1—C3—H3B109.3C15—C16—H16119.5
H3A—C3—H3B108.0C17—C16—H16119.5
C5—C4—C9118.9 (3)C16—C17—C12122.1 (4)
C5—C4—N2123.7 (3)C16—C17—H17118.9
C9—C4—N2117.4 (3)C12—C17—H17118.9
C4—C5—C6120.5 (4)N3—C18—H18A109.5
C4—C5—H5119.8N3—C18—H18B109.5
C6—C5—H5119.8H18A—C18—H18B109.5
C7—C6—C5120.7 (4)N3—C18—H18C109.5
C7—C6—H6119.6H18A—C18—H18C109.5
C5—C6—H6119.6H18B—C18—H18C109.5
C6—C7—C8119.1 (4)
C1i—N1—C1—C22.3 (2)C4—C5—C6—C70.0 (7)
Cd1—N1—C1—C2177.7 (2)C5—C6—C7—C80.5 (8)
C1i—N1—C1—C3173.3 (3)C6—C7—C8—C91.2 (7)
Cd1—N1—C1—C36.7 (3)C7—C8—C9—C41.6 (7)
C2i—N4—C2—C12.3 (2)C5—C4—C9—C81.1 (6)
C2i—N4—C2—C11177.0 (3)N2—C4—C9—C8179.4 (4)
N1—C1—C2—N44.7 (4)C12—N3—C11—C282.7 (4)
C3—C1—C2—N4170.6 (3)C18—N3—C11—C279.2 (4)
N1—C1—C2—C11174.6 (3)N4—C2—C11—N310.3 (4)
C3—C1—C2—C1110.1 (5)C1—C2—C11—N3169.0 (3)
C4—N2—C3—C1167.5 (3)C11—N3—C12—C176.2 (5)
C10—N2—C3—C168.0 (3)C18—N3—C12—C17167.4 (3)
Cd1—N2—C3—C148.2 (3)C11—N3—C12—C13176.2 (3)
N1—C1—C3—N241.9 (4)C18—N3—C12—C1315.0 (5)
C2—C1—C3—N2142.8 (3)N3—C12—C13—C14178.1 (4)
C3—N2—C4—C55.8 (4)C17—C12—C13—C140.3 (6)
C10—N2—C4—C5118.0 (4)C12—C13—C14—C150.6 (7)
Cd1—N2—C4—C5119.1 (3)C13—C14—C15—C161.3 (8)
C3—N2—C4—C9172.4 (3)C14—C15—C16—C171.2 (8)
C10—N2—C4—C963.8 (4)C15—C16—C17—C120.3 (7)
Cd1—N2—C4—C959.1 (3)N3—C12—C17—C16178.2 (3)
C9—C4—C5—C60.3 (6)C13—C12—C17—C160.5 (5)
N2—C4—C5—C6178.5 (4)
Symmetry code: (i) x+3/2, y, z.
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the pyrazine ring N1/N4/C1/C2/C1i/C2i and Cg5 is the centroid of the C12–C17 ring.
D—H···AD—HH···AD···AD—H···A
C18—H18C···Cg5i0.972.953.896 (5)165
C17—H17···I1ii0.943.093.907 (4)147
Cd1—I1···Cgiii2.70 (1)3.96 (1)6.5131 (12)155 (1)
Cd1—I1···Cg3iv2.70 (1)3.96 (1)6.5131 (12)155 (1)
Symmetry codes: (i) x+3/2, y, z; (ii) x+1/2, y, z; (iii) x+1, y, z; (iv) x1/2, y, z.
Dichorido{N,N',N'',N'''-[pyrazine-2,3,5,6-tetrayltetrakis(methylene)]tetrakis(N-methylaniline)-κ3N2,N1,N6}zinc(II) dichloromethane 0.6-solvate (II) top
Crystal data top
[ZnCl2(C36H40N6)]·0.6CH2Cl2Z = 2
Mr = 743.99F(000) = 774.4
Triclinic, P1Dx = 1.340 Mg m3
a = 11.9196 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.1208 (8) ÅCell parameters from 5000 reflections
c = 13.919 (1) Åθ = 1.7–26.1°
α = 98.222 (8)°µ = 0.93 mm1
β = 100.313 (8)°T = 223 K
γ = 107.580 (7)°Rod, yellow
V = 1843.9 (2) Å30.30 × 0.10 × 0.10 mm
Data collection top
STOE IPDS 1
diffractometer
6654 independent reflections
Radiation source: fine-focus sealed tube3490 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.054
φ rotation scansθmax = 25.9°, θmin = 2.1°
Absorption correction: multi-scan
(MULABS; Spek, 2009)
h = 1413
Tmin = 0.983, Tmax = 1.000k = 1314
14512 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 0.79 w = 1/[σ2(Fo2) + (0.0649P)2]
where P = (Fo2 + 2Fc2)/3
6654 reflections(Δ/σ)max = 0.028
437 parametersΔρmax = 0.75 e Å3
0 restraintsΔρmin = 0.35 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.35680 (4)0.17960 (5)0.48236 (4)0.03370 (16)
Cl10.26266 (9)0.31262 (9)0.48265 (8)0.0379 (3)
Cl20.33732 (10)0.02609 (9)0.55847 (8)0.0383 (3)
N10.4877 (3)0.2055 (3)0.4016 (2)0.0294 (8)
N20.2552 (3)0.0630 (3)0.3191 (2)0.0354 (8)
N30.6536 (3)0.0643 (4)0.1349 (3)0.0463 (10)
N40.6673 (3)0.2247 (3)0.3005 (2)0.0353 (9)
N50.5392 (3)0.3173 (3)0.5955 (2)0.0297 (8)
N60.9012 (3)0.3813 (4)0.3867 (3)0.0440 (10)
C10.4709 (4)0.1232 (4)0.3201 (3)0.0309 (10)
C20.5649 (4)0.1337 (4)0.2698 (3)0.0318 (10)
C30.3531 (4)0.0225 (4)0.2939 (3)0.0370 (10)
H3A0.3324670.0121570.2223310.044*
H3B0.3615230.0390480.3305270.044*
C40.1483 (4)0.0309 (4)0.3234 (3)0.0380 (11)
C50.1318 (4)0.1506 (4)0.2941 (3)0.0440 (11)
H50.1899610.1738020.2670300.053*
C60.0295 (4)0.2354 (5)0.3049 (3)0.0524 (13)
H60.0201010.3159720.2868430.063*
C70.0586 (5)0.2035 (6)0.3417 (4)0.0615 (15)
H70.1280030.2619090.3480520.074*
C80.0441 (4)0.0849 (6)0.3691 (4)0.0618 (15)
H80.1041350.0626840.3939420.074*
C90.0583 (4)0.0012 (5)0.3603 (4)0.0518 (13)
H90.0673820.0816560.3791340.062*
C100.2243 (4)0.1374 (4)0.2491 (3)0.0492 (12)
H10C0.1958020.0906890.1814500.074*
H10B0.2956840.2046090.2532520.074*
H10A0.1612600.1654930.2672310.074*
C110.5545 (4)0.0370 (4)0.1832 (3)0.0458 (12)
H11A0.5494290.0358320.2076510.055*
H11B0.4790570.0217610.1336290.055*
C120.6568 (4)0.1362 (4)0.0662 (3)0.0447 (12)
C130.7525 (5)0.1612 (5)0.0174 (4)0.0666 (16)
H130.8149740.1297030.0323990.080*
C140.7552 (7)0.2312 (7)0.0519 (5)0.087 (2)
H140.8203820.2468880.0830570.105*
C150.6682 (9)0.2781 (6)0.0769 (5)0.098 (3)
H150.6719800.3258670.1246470.117*
C160.5726 (7)0.2540 (6)0.0303 (4)0.086 (2)
H160.5107870.2859780.0467680.103*
C170.5667 (5)0.1833 (5)0.0405 (4)0.0599 (14)
H170.5007860.1675450.0708730.072*
C180.7620 (6)0.0419 (6)0.1793 (4)0.086 (2)
H18C0.7797380.0120430.1304290.129*
H18B0.7494400.0067750.2365600.129*
H18A0.8294620.1158090.2004540.129*
C210.5910 (4)0.2969 (4)0.4341 (3)0.0288 (9)
C220.6828 (3)0.3080 (4)0.3814 (3)0.0310 (10)
C230.5972 (4)0.3833 (4)0.5261 (3)0.0324 (10)
H23A0.6818960.4294290.5586430.039*
H23B0.5555590.4381610.5072470.039*
C240.5072 (4)0.3885 (4)0.6722 (3)0.0317 (10)
C250.5468 (4)0.5100 (4)0.6919 (3)0.0362 (10)
H250.5995520.5518690.6565830.043*
C260.5080 (4)0.5711 (4)0.7651 (3)0.0448 (12)
H260.5338500.6542300.7780530.054*
C270.4327 (4)0.5106 (5)0.8179 (3)0.0487 (13)
H270.4079230.5524190.8675030.058*
C280.3934 (4)0.3893 (5)0.7988 (3)0.0489 (12)
H280.3418850.3477570.8351200.059*
C290.4302 (4)0.3282 (4)0.7255 (3)0.0440 (12)
H290.4026410.2450460.7118710.053*
C300.6175 (4)0.2547 (4)0.6402 (3)0.0432 (12)
H30C0.6936830.3120830.6796120.065*
H30B0.6327520.2035860.5874630.065*
H30A0.5773420.2073770.6826780.065*
C310.7994 (4)0.4100 (4)0.4112 (3)0.0463 (12)
H31A0.7889080.4736270.3782600.056*
H31B0.8177460.4400470.4834540.056*
C320.9419 (4)0.4069 (4)0.3029 (3)0.0368 (10)
C331.0564 (4)0.4040 (5)0.2933 (3)0.0509 (13)
H331.1038870.3800260.3420280.061*
C341.0987 (5)0.4367 (6)0.2120 (4)0.0689 (17)
H341.1757490.4349020.2070240.083*
C351.0337 (5)0.4715 (5)0.1385 (4)0.0710 (17)
H351.0655450.4953980.0848210.085*
C360.9177 (5)0.4703 (5)0.1459 (4)0.0608 (14)
H360.8693570.4909720.0952730.073*
C370.8741 (4)0.4395 (4)0.2261 (3)0.0480 (12)
H370.7963330.4401620.2297730.058*
C380.9460 (5)0.3087 (5)0.4473 (4)0.0611 (15)
H38C0.9516290.2412310.4042140.092*
H38B0.8908600.2811920.4890740.092*
H38A1.0254950.3552340.4892220.092*
C400.1063 (10)0.2516 (11)0.9543 (8)0.095 (4)0.6
H40A0.0534450.2948420.9730820.114*0.6
H40B0.1031920.2494580.8831540.114*0.6
Cl30.2564 (2)0.3346 (3)1.02194 (16)0.0912 (10)0.6
Cl40.0491 (3)0.1163 (3)0.9673 (2)0.1003 (10)0.6
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0365 (3)0.0345 (3)0.0385 (3)0.0163 (3)0.0187 (2)0.0121 (2)
Cl10.0334 (6)0.0367 (7)0.0497 (6)0.0193 (6)0.0121 (5)0.0092 (5)
Cl20.0485 (7)0.0319 (6)0.0394 (6)0.0134 (6)0.0156 (5)0.0167 (5)
N10.032 (2)0.031 (2)0.0280 (18)0.0121 (19)0.0103 (15)0.0056 (15)
N20.032 (2)0.033 (2)0.044 (2)0.0111 (19)0.0145 (16)0.0112 (16)
N30.052 (2)0.052 (3)0.043 (2)0.023 (2)0.0239 (19)0.0053 (19)
N40.037 (2)0.035 (2)0.036 (2)0.011 (2)0.0168 (16)0.0051 (17)
N50.037 (2)0.029 (2)0.0307 (18)0.0164 (18)0.0140 (15)0.0092 (15)
N60.034 (2)0.059 (3)0.046 (2)0.018 (2)0.0189 (18)0.0173 (19)
C10.034 (2)0.028 (3)0.033 (2)0.011 (2)0.0123 (18)0.0089 (19)
C20.037 (3)0.029 (3)0.033 (2)0.013 (2)0.0150 (19)0.0061 (18)
C30.037 (3)0.031 (3)0.042 (3)0.010 (2)0.013 (2)0.003 (2)
C40.032 (2)0.038 (3)0.040 (2)0.005 (2)0.0093 (19)0.010 (2)
C50.044 (3)0.037 (3)0.046 (3)0.007 (3)0.011 (2)0.007 (2)
C60.050 (3)0.043 (3)0.050 (3)0.002 (3)0.006 (2)0.009 (2)
C70.042 (3)0.071 (5)0.055 (3)0.007 (3)0.013 (3)0.015 (3)
C80.036 (3)0.079 (5)0.063 (3)0.007 (3)0.020 (2)0.006 (3)
C90.038 (3)0.051 (3)0.064 (3)0.011 (3)0.019 (2)0.003 (3)
C100.049 (3)0.048 (3)0.049 (3)0.015 (3)0.005 (2)0.019 (2)
C110.055 (3)0.038 (3)0.044 (3)0.012 (3)0.024 (2)0.001 (2)
C120.052 (3)0.046 (3)0.029 (2)0.011 (3)0.012 (2)0.006 (2)
C130.060 (3)0.078 (5)0.044 (3)0.003 (3)0.024 (3)0.002 (3)
C140.090 (5)0.095 (6)0.047 (4)0.012 (5)0.026 (4)0.002 (4)
C150.149 (8)0.071 (5)0.036 (4)0.011 (5)0.017 (4)0.005 (3)
C160.141 (7)0.066 (4)0.038 (3)0.042 (5)0.004 (4)0.007 (3)
C170.080 (4)0.058 (4)0.039 (3)0.025 (3)0.014 (3)0.001 (2)
C180.086 (4)0.122 (6)0.081 (4)0.072 (5)0.032 (4)0.023 (4)
C210.032 (2)0.028 (3)0.028 (2)0.011 (2)0.0081 (18)0.0060 (18)
C220.028 (2)0.032 (3)0.036 (2)0.011 (2)0.0136 (18)0.0078 (19)
C230.033 (2)0.031 (3)0.035 (2)0.011 (2)0.0126 (19)0.0058 (19)
C240.033 (2)0.035 (3)0.028 (2)0.015 (2)0.0075 (18)0.0027 (18)
C250.039 (3)0.038 (3)0.034 (2)0.016 (2)0.0104 (19)0.006 (2)
C260.056 (3)0.042 (3)0.038 (3)0.020 (3)0.014 (2)0.001 (2)
C270.054 (3)0.060 (4)0.036 (3)0.029 (3)0.014 (2)0.002 (2)
C280.053 (3)0.060 (4)0.040 (3)0.021 (3)0.023 (2)0.010 (2)
C290.058 (3)0.040 (3)0.038 (3)0.016 (3)0.023 (2)0.006 (2)
C300.050 (3)0.050 (3)0.039 (3)0.031 (3)0.009 (2)0.008 (2)
C310.039 (3)0.046 (3)0.052 (3)0.008 (3)0.025 (2)0.001 (2)
C320.031 (2)0.038 (3)0.036 (2)0.007 (2)0.0075 (19)0.001 (2)
C330.039 (3)0.076 (4)0.040 (3)0.021 (3)0.015 (2)0.008 (2)
C340.048 (3)0.105 (5)0.052 (3)0.021 (4)0.024 (3)0.007 (3)
C350.076 (4)0.092 (5)0.041 (3)0.016 (4)0.027 (3)0.011 (3)
C360.077 (4)0.051 (4)0.046 (3)0.012 (3)0.008 (3)0.015 (3)
C370.043 (3)0.045 (3)0.054 (3)0.012 (3)0.011 (2)0.011 (2)
C380.046 (3)0.082 (4)0.058 (3)0.019 (3)0.013 (3)0.030 (3)
C400.082 (8)0.114 (10)0.084 (8)0.037 (8)0.013 (6)0.038 (7)
Cl30.0444 (13)0.179 (3)0.0384 (12)0.0251 (17)0.0150 (10)0.0076 (15)
Cl40.088 (2)0.098 (3)0.115 (2)0.043 (2)0.0134 (18)0.0124 (19)
Geometric parameters (Å, º) top
Zn1—N12.057 (3)C15—C161.386 (10)
Zn1—N22.385 (3)C15—H150.9400
Zn1—N52.413 (3)C16—C171.394 (8)
Zn1—Cl12.2251 (10)C16—H160.9400
Zn1—Cl22.2425 (11)C17—H170.9400
N1—C211.334 (5)C18—H18C0.9700
N1—C11.340 (5)C18—H18B0.9700
N2—C41.446 (5)C18—H18A0.9700
N2—C31.473 (5)C21—C221.407 (5)
N2—C101.491 (5)C21—C231.509 (5)
N3—C121.381 (6)C22—C311.497 (6)
N3—C181.449 (6)C23—H23A0.9800
N3—C111.438 (5)C23—H23B0.9800
N4—C21.325 (5)C24—C251.373 (6)
N4—C221.345 (5)C24—C291.386 (6)
N5—C241.453 (5)C25—C261.399 (5)
N5—C301.480 (5)C25—H250.9400
N5—C231.476 (5)C26—C271.371 (7)
N6—C321.380 (5)C26—H260.9400
N6—C311.441 (5)C27—C281.371 (7)
N6—C381.451 (6)C27—H270.9400
C1—C21.408 (5)C28—C291.385 (6)
C1—C31.500 (6)C28—H280.9400
C2—C111.516 (5)C29—H290.9400
C3—H3A0.9800C30—H30C0.9700
C3—H3B0.9800C30—H30B0.9700
C4—C51.393 (6)C30—H30A0.9700
C4—C91.400 (6)C31—H31A0.9800
C5—C61.385 (6)C31—H31B0.9800
C5—H50.9400C32—C371.399 (6)
C6—C71.376 (7)C32—C331.404 (6)
C6—H60.9400C33—C341.380 (7)
C7—C81.383 (8)C33—H330.9400
C7—H70.9400C34—C351.365 (7)
C8—C91.384 (7)C34—H340.9400
C8—H80.9400C35—C361.401 (7)
C9—H90.9400C35—H350.9400
C10—H10C0.9700C36—C371.365 (7)
C10—H10B0.9700C36—H360.9400
C10—H10A0.9700C37—H370.9400
C11—H11A0.9800C38—H38C0.9700
C11—H11B0.9800C38—H38B0.9700
C12—C171.378 (6)C38—H38A0.9700
C12—C131.408 (7)C40—Cl41.625 (12)
C13—C141.370 (9)C40—Cl31.772 (11)
C13—H130.9400C40—H40A0.9800
C14—C151.343 (9)C40—H40B0.9800
C14—H140.9400
N1—Zn1—N275.02 (12)C16—C15—H15121.0
N1—Zn1—N574.23 (12)C17—C16—C15121.2 (6)
N2—Zn1—N5149.21 (11)C17—C16—H16119.4
N1—Zn1—Cl1114.15 (9)C15—C16—H16119.4
N1—Zn1—Cl2114.68 (9)C12—C17—C16120.4 (6)
Cl1—Zn1—N298.12 (8)C12—C17—H17119.8
Cl2—Zn1—N295.70 (9)C16—C17—H17119.8
Cl1—Zn1—N593.02 (7)N3—C18—H18C109.5
Cl2—Zn1—N598.34 (8)N3—C18—H18B109.5
Cl1—Zn1—Cl2131.14 (4)H18C—C18—H18B109.5
C21—N1—C1120.8 (3)N3—C18—H18A109.5
C21—N1—Zn1120.7 (2)H18C—C18—H18A109.5
C1—N1—Zn1118.3 (3)H18B—C18—H18A109.5
C4—N2—C3114.5 (3)N1—C21—C22119.6 (3)
C4—N2—C10111.2 (3)N1—C21—C23115.2 (3)
C3—N2—C10109.9 (3)C22—C21—C23125.1 (4)
C4—N2—Zn1110.2 (2)N4—C22—C21119.8 (4)
C3—N2—Zn199.2 (2)N4—C22—C31117.4 (3)
C10—N2—Zn1111.3 (3)C21—C22—C31122.8 (4)
C12—N3—C18120.4 (4)N5—C23—C21109.2 (3)
C12—N3—C11120.1 (4)N5—C23—H23A109.8
C18—N3—C11117.4 (4)C21—C23—H23A109.8
C2—N4—C22119.8 (3)N5—C23—H23B109.8
C24—N5—C30111.1 (3)C21—C23—H23B109.8
C24—N5—C23114.7 (3)H23A—C23—H23B108.3
C30—N5—C23109.3 (3)C25—C24—C29119.5 (4)
C24—N5—Zn1109.4 (2)C25—C24—N5123.5 (4)
C30—N5—Zn1111.1 (3)C29—C24—N5117.0 (4)
C23—N5—Zn1100.9 (2)C24—C25—C26119.4 (4)
C32—N6—C31122.1 (4)C24—C25—H25120.3
C32—N6—C38122.1 (3)C26—C25—H25120.3
C31—N6—C38115.2 (4)C27—C26—C25120.5 (4)
N1—C1—C2118.9 (4)C27—C26—H26119.7
N1—C1—C3115.6 (3)C25—C26—H26119.7
C2—C1—C3125.4 (4)C28—C27—C26120.2 (4)
N4—C2—C1120.9 (4)C28—C27—H27119.9
N4—C2—C11118.2 (3)C26—C27—H27119.9
C1—C2—C11120.7 (4)C27—C28—C29119.6 (4)
N2—C3—C1110.9 (3)C27—C28—H28120.2
N2—C3—H3A109.5C29—C28—H28120.2
C1—C3—H3A109.5C28—C29—C24120.7 (4)
N2—C3—H3B109.5C28—C29—H29119.6
C1—C3—H3B109.5C24—C29—H29119.6
H3A—C3—H3B108.1N5—C30—H30C109.5
C5—C4—C9118.8 (4)N5—C30—H30B109.5
C5—C4—N2123.3 (4)H30C—C30—H30B109.5
C9—C4—N2117.8 (4)N5—C30—H30A109.5
C6—C5—C4120.0 (4)H30C—C30—H30A109.5
C6—C5—H5120.0H30B—C30—H30A109.5
C4—C5—H5120.0N6—C31—C22114.2 (4)
C7—C6—C5121.1 (5)N6—C31—H31A108.7
C7—C6—H6119.5C22—C31—H31A108.7
C5—C6—H6119.5N6—C31—H31B108.7
C6—C7—C8119.4 (5)C22—C31—H31B108.7
C6—C7—H7120.3H31A—C31—H31B107.6
C8—C7—H7120.3N6—C32—C37122.3 (4)
C7—C8—C9120.5 (5)N6—C32—C33120.4 (4)
C7—C8—H8119.8C37—C32—C33117.3 (4)
C9—C8—H8119.8C34—C33—C32119.6 (5)
C8—C9—C4120.3 (5)C34—C33—H33120.2
C8—C9—H9119.9C32—C33—H33120.2
C4—C9—H9119.9C35—C34—C33122.9 (5)
N2—C10—H10C109.5C35—C34—H34118.5
N2—C10—H10B109.5C33—C34—H34118.5
H10C—C10—H10B109.5C34—C35—C36117.6 (5)
N2—C10—H10A109.5C34—C35—H35121.2
H10C—C10—H10A109.5C36—C35—H35121.2
H10B—C10—H10A109.5C37—C36—C35120.6 (5)
N3—C11—C2114.2 (4)C37—C36—H36119.7
N3—C11—H11A108.7C35—C36—H36119.7
C2—C11—H11A108.7C36—C37—C32121.9 (5)
N3—C11—H11B108.7C36—C37—H37119.1
C2—C11—H11B108.7C32—C37—H37119.1
H11A—C11—H11B107.6N6—C38—H38C109.5
C17—C12—N3122.3 (4)N6—C38—H38B109.5
C17—C12—C13117.4 (5)H38C—C38—H38B109.5
N3—C12—C13120.3 (4)N6—C38—H38A109.5
C14—C13—C12120.5 (6)H38C—C38—H38A109.5
C14—C13—H13119.8H38B—C38—H38A109.5
C12—C13—H13119.8Cl4—C40—Cl3118.1 (6)
C15—C14—C13122.5 (6)Cl4—C40—H40A107.8
C15—C14—H14118.8Cl3—C40—H40A107.8
C13—C14—H14118.8Cl4—C40—H40B107.8
C14—C15—C16118.0 (6)Cl3—C40—H40B107.8
C14—C15—H15121.0H40A—C40—H40B107.1
C21—N1—C1—C20.9 (5)C1—N1—C21—C220.8 (5)
Zn1—N1—C1—C2173.8 (3)Zn1—N1—C21—C22175.4 (3)
C21—N1—C1—C3177.6 (3)C1—N1—C21—C23179.5 (3)
Zn1—N1—C1—C32.8 (4)Zn1—N1—C21—C235.9 (4)
C22—N4—C2—C10.6 (6)C2—N4—C22—C211.2 (6)
C22—N4—C2—C11175.4 (4)C2—N4—C22—C31178.7 (4)
N1—C1—C2—N41.7 (6)N1—C21—C22—N41.9 (5)
C3—C1—C2—N4178.0 (4)C23—C21—C22—N4179.6 (3)
N1—C1—C2—C11174.2 (4)N1—C21—C22—C31178.0 (4)
C3—C1—C2—C112.0 (6)C23—C21—C22—C310.5 (6)
C4—N2—C3—C1163.3 (3)C24—N5—C23—C21162.9 (3)
C10—N2—C3—C170.8 (4)C30—N5—C23—C2171.6 (4)
Zn1—N2—C3—C146.0 (3)Zn1—N5—C23—C2145.5 (3)
N1—C1—C3—N234.4 (5)N1—C21—C23—N539.1 (4)
C2—C1—C3—N2149.2 (4)C22—C21—C23—N5142.4 (4)
C3—N2—C4—C57.8 (6)C30—N5—C24—C25112.7 (4)
C10—N2—C4—C5117.5 (4)C23—N5—C24—C2511.8 (5)
Zn1—N2—C4—C5118.6 (4)Zn1—N5—C24—C25124.3 (3)
C3—N2—C4—C9171.3 (4)C30—N5—C24—C2968.9 (5)
C10—N2—C4—C963.5 (5)C23—N5—C24—C29166.6 (3)
Zn1—N2—C4—C960.4 (4)Zn1—N5—C24—C2954.1 (4)
C9—C4—C5—C62.2 (6)C29—C24—C25—C260.5 (6)
N2—C4—C5—C6176.9 (4)N5—C24—C25—C26177.9 (4)
C4—C5—C6—C71.9 (7)C24—C25—C26—C271.1 (6)
C5—C6—C7—C80.6 (7)C25—C26—C27—C280.8 (7)
C6—C7—C8—C90.3 (8)C26—C27—C28—C290.1 (7)
C7—C8—C9—C40.0 (8)C27—C28—C29—C240.7 (7)
C5—C4—C9—C81.2 (7)C25—C24—C29—C280.3 (6)
N2—C4—C9—C8177.9 (4)N5—C24—C29—C28178.9 (4)
C12—N3—C11—C280.2 (5)C32—N6—C31—C2299.2 (5)
C18—N3—C11—C283.5 (5)C38—N6—C31—C2272.1 (5)
N4—C2—C11—N38.2 (6)N4—C22—C31—N630.4 (6)
C1—C2—C11—N3175.7 (4)C21—C22—C31—N6149.7 (4)
C18—N3—C12—C17163.8 (5)C31—N6—C32—C3713.3 (7)
C11—N3—C12—C170.6 (7)C38—N6—C32—C37157.3 (5)
C18—N3—C12—C1318.0 (7)C31—N6—C32—C33164.9 (4)
C11—N3—C12—C13178.8 (4)C38—N6—C32—C3324.5 (7)
C17—C12—C13—C140.8 (8)N6—C32—C33—C34176.1 (5)
N3—C12—C13—C14179.1 (5)C37—C32—C33—C342.2 (7)
C12—C13—C14—C150.4 (10)C32—C33—C34—C350.5 (9)
C13—C14—C15—C160.0 (10)C33—C34—C35—C361.8 (9)
C14—C15—C16—C170.0 (9)C34—C35—C36—C372.3 (9)
N3—C12—C17—C16179.1 (5)C35—C36—C37—C320.7 (8)
C13—C12—C17—C160.8 (7)N6—C32—C37—C36176.7 (5)
C15—C16—C17—C120.4 (8)C33—C32—C37—C361.6 (7)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the pyrazine ring N1/N4/C1/C2/C21/C22, and Cg5 and Cg7 are the centroids of rings C12–C17 and C32–C37, respectively.
D—H···AD—HH···AD···AD—H···A
C6—H6···Cg7i0.942.883.814 (6)177
C11—H11B···Cg5ii0.982.903.540 (5)124
C26—H26···Cg3iii0.942.953.544 (5)122
Zn1—Cl2···Cg3iv2.24 (1)3.68 (1)5.8035 (19)156 (1)
Symmetry codes: (i) x1, y1, z; (ii) x+1, y, z; (iii) x+1, y+1, z+1; (iv) x+1, y, z+1.
A comparison of the conformation of the ligand (L) in complexes I and II top
The definitions of rings A, B, C, D and E are given in Fig. 4.
Dihedral angle (°)IaIIΔ(I - II
A to B41.9 (2)35.5 (2)> 6.4
A to C86.1 (2)87.5 (3)< 1.4
A to D41.9 (2)34.9 (2)> 7.0
A to E86.1 (2)74.4 (2)> 11.7
B to C54.0 (2)53.7 (3)> 0.3
B to D38.0 (2)26.9 (2)> 11.1
B to E63.4 (2)71.9 (2)< 8.5
C to D63.4 (2)58.5 (3)> 4.9
C to E24.9 (2)18.3 (3)> 6.6
D to E54.0 (2)74.9 (2)< 20.9
Note: (a) D = Bi, E = Ci; symmetry code: (i) -x + 3/2, y, -z.
Summary of interatomic contacts (Å)a, shorter than the sum of the van der Waals radii, in the crystal structures of I and II top
ContactLengthLength - vdWSymmetry operation
I
C11···C123.278-0.1223/2 - x, -1/2 - y, -1/2 - z
C12···H11A2.805-0.0953/2 - x, -1/2 - y, -1/2 - z
I1···H173.087-0.093-1/2 + x, -y, z
N3···H11B2.671-0.0793/2 - x, -1/2 - y, -1/2 - z
N3···C113.234-0.0163/2 - x, -1/2 - y, -1/2 - z
II
Cl4···Cl43.045-0.455-x, -y, 2 - z
C6···H40B2.758-0.142-x, -y, 1 - z
C30···H3B2.779-0.1211 - x, -y, 1 - z
H23B···H23B2.287-0.1131 - x, 1 - y, 1 - z
H6···C362.798-0.102-1 + x, -1 + y, z
Cl1···H332.854-0.096-1 + x, y, z
H6···C372.858-0.042-1 + x, -1 + y, z
H3B···H30A2.359-0.0411 - x, -y, 1 - z
H10B···H262.382-0.0181 - x, 1 - y, 1 - z
Note: (a) distances were calculated using Mercury (Macrae et al., 2008).
 

Acknowledgements

HSE is grateful to the University of Neuchâtel for their support over the years.

Funding information

Funding for this research was provided by: Swiss National Science Foundation and the University of Neuchâtel.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationGraf, M., Greaves, B. & Stoeckli-Evans, H. (1993). Inorg. Chim. Acta, 204, 239–246.  CSD CrossRef CAS Web of Science Google Scholar
First citationGraf, M. & Stoeckli-Evans, H. (1994). Acta Cryst. C50, 1461–1464.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHong, X.-J., Feng, H.-X., Wei, M.-J., Peng, H.-J., Xie, J.-Q., Cai, Y.-P. & Si, L.-P. (2017). Inorg. Chem. Commun. 77, 59–63.  CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationSaghatforoush, L. (2015). Jiegou Huaxue, 34, 1869–1875.  Google Scholar
First citationSaljooghi, A. Sh. & Fatemi, S. J. A. (2011). Russ. J. Coord. Chem. 37, 168–171.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2004). IPDS-I Bedienungshandbuch. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTesouro Vallina, A. (2001). PhD Thesis. University of Neuchâtel, Switzerland.  Google Scholar
First citationTesouro Vallina, A. & Stoeckli-Evans, H. (2020). Acta Cryst. E76 404–409.  CrossRef IUCr Journals Google Scholar
First citationTrivedi, M., Pandey, D. S. & Rath, N. P. (2009). Inorg. Chim. Acta, 362, 284–290.  CSD CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds