research communications
Crystal structures and Hirshfeld surface analyses of two new tetrakis-substituted pyrazines and a degredation product
aInstitute of Chemistry, University of Neuchâtel, Av. de Bellvaux 15, CH-2000 Neuchâtel, Switzerland, and bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: helen.stoeckli-evans@unine.ch
The two new tetrakis-substituted pyrazines, 1,1′,1′′,1′′′-(pyrazine-2,3,5,6-tetrayl) tetrakis(N,N-dimethylmethanamine), C16H32N6, (I) and N,N′,N′′,N′′′-[pyrazine-2,3,5,6-tetrayltetrakis(methylene)]tetrakis(N-methylaniline), C36H40N6, (II), both crystallize with half a molecule in the the whole molecules are generated by inversion symmetry. There are weak intramolecular C—H⋯N hydrogen bonds present in both molecules and in (II) the pendant N-methylaniline rings are linked by a C—H⋯π interaction. The degredation product, N,N′-[(6-phenyl-6,7-dihydro-5H-pyrrolo[3,4-b]pyrazine-2,3-diyl)bis(methylene)]bis(N-methylaniline), C28H29N5, (III), was obtained several times by reacting (II) with different metal salts. Here, the 6-phenyl ring is almost coplanar with the planar pyrrolo[3,4-b]pyrazine unit (r.m.s. deviation = 0.029 Å), with a dihedral angle of 4.41 (10)° between them. The two N-methylaniline rings are inclined to the planar pyrrolo[3,4-b]pyrazine unit by 88.26 (10) and 89.71 (10)°, and to each other by 72.56 (13)°. There are also weak intramolecular C—H⋯N hydrogen bonds present involving the pyrazine ring and the two N-methylaniline groups. In the crystal of (I), there are no significant intermolecular contacts present, while in (II) molecules are linked by a pair of C—H⋯π interactions, forming chains along the c-axis direction. In the crystal of (III), molecules are linked by two pairs of C—H⋯π interactions, forming inversion dimers, which in turn are linked by offset π–π interactions [intercentroid distance = 3.8492 (19) Å], forming ribbons along the b-axis direction.
1. Chemical context
Tetrakis-substituted pyrazines, which are potential bis-tridentate ligands, have been used in coordination chemistry since the 1980′s, to form not only mononuclear and binuclear complexes but also multi-dimensional coordination polymers. A search of the Cambridge Structural Database (CSD, Version 5.41, last update November 2019; Groom et al., 2016) reveals that the principal tetrakis-substituted pyrazine ligands that have been used are 2,3,5,6-tetrakis(pyridin-2-yl)pyrazine, which was first synthesized by Goodwin & Lions (1959), and 2,3,5,6-pyrazinetetracarboxylic acid, which was first synthesized by Wolff at the end of the 19th century (Wolff, 1887, 1893). Since then the coordination chemistry of only a small number of tetrakis-substituted pyrazines has been studied, for example tetrakis(aminomethyl)pyrazine (Ferigo et al., 1994) and, more recently, the new ligand 2,3,5,6-tetrakis(4-carboxyphenyl) pyrazine, which has been shown to be extremely successful in forming metal–organic frameworks (Jiang et al., 2017; Wang et al., 2019).
In our search for new tetrakis-substituted pyrazine ligands (Tesouro Vallina, 2001), viz. potential bis-tridentate ligands, the title compounds, 1,1′,1′′,1′′′-(pyrazine-2,3,5,6-tetrayl) tetrakis(N,N-dimethylmethanamine) (I) and N,N′,N′′,N′′′-[pyrazine-2,3,5,6-tetrayltetrakis(methylene)]tetrakis(N-methylaniline) (II) were synthesized. During attempts to form transition-metal complexes of (II), the degradation product, N,N′-[(6-phenyl-6,7-dihydro-5H-pyrrolo[3,4-b]pyrazine-2,3-diyl)bis(methylene)]bis(N-methylaniline) (III) was often formed. Herein, we describe their molecular and crystal structures, together with the Hirshfeld surface analysis of their crystal packing.
2. Structural commentary
The molecular structure of compound (I) is illustrated in Fig. 1. The molecule possesses inversion symmetry with the pyrazine ring being located about a center of symmetry. The adjacent dimethylmethanamine substituents, in positions 2,3 (and 5,6), are directed above and below the plane of the pyrazine ring. There is a short intramolecular C3—H3A⋯N3i contact on either side of the molecule [symmetry code: (i) −x, −y, −z 1 ], linking the two dimethylmethanamine substituents (Fig. 1 and Table 1).
The molecular structure of compound (II) is illustrated in Fig. 2. This molecule also possesses inversion symmetry with the pyrazine ring being located about a center of symmetry. Again the adjacent methylaniline substituents, in positions 2,3 (and 5,6), are directed above and below the plane of the pyrazine ring. Rings C4–C9 and C12–C17 are inclined to the pyrazine ring by 63.62 (10) and 86.83 (10)°, respectively, and to each other by 78.28 (11)°. There are short intramolecular C5—H5⋯N1 contacts on either side of the molecule involving a methylaniline ring and the adjacent pyrazine N atom, and the methylaniline substituents in positions 2,6 (and 3,5) are linked by an intramolecular C6—H6⋯π interaction (Fig. 2 and Table 2).
The molecular structure of compound (III) is illustrated in Fig. 3. One side of the molecule has been transformed into a pyrrolo unit fused to the pyrazine ring. The 6-phenyl ring (C7–C12) is almost coplanar with the planar pyrrolo[3,4-b]pyrazine unit (N1–N3/C1–C6; r.m.s. deviation = 0.029 Å), forming a dihedral angle of 4.41 (10)°. On the other side of the molecule, the two adjacent N-methylaniline rings (C14–C19 and C22–C27) are inclined to the planar pyrrolo[3,4-b]pyrazine unit by 88.26 (10) and 89.71 (10)°, and to each other by 72.56 (13)°. There are also weak intramolecular C—H⋯N hydrogen bonds present involving the pyrazine ring and the two N-methylaniline groups (Fig. 3 and Table 3).
3. Supramolecular features
In the crystal of (I), there are no significant intermolecular interactions present (Fig. 4).
In the crystal of (II), molecules are linked by a pair of C—H⋯π interactions, forming chains that propagate along the [001] direction (Fig. 5 and Table 2).
In the crystal of (III), molecules are linked by two pairs of C—H⋯π interactions, forming inversion dimers. Offset π–π interactions link the dimers to form ribbons propagating along the [010] direction; see Fig. 6 and Table 3. The offset π–π interaction, Cg3⋯Cg6ii, where Cg3 and Cg6 are, respectively, the centroids of the phenyl ring (C7–C12) and the pyrrolo[3,4-b]pyrazine ring system, has a centroid–centroid distance of 3.8492 (14) Å, α = 4.41 (10)°, interplanar distances of 3.6495 (14) and 3.5490 (7) Å, with an offset of 1.49 Å [symmetry code: (ii) −x + 1, −y + 1, −z].
4. Hirshfeld surface analysis and two-dimensional fingerprint plots
The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were performed with CrystalExplorer17 (Turner et al., 2017).
The Hirshfeld surfaces are colour-mapped with the normalized contact distance, dnorm, from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii). The Hirshfeld surfaces (HS) of the title compounds, mapped over dnorm, are given in Fig. 7. It is evident from Figs. 7a and 7b that there are no contact distances shorter than the sum of the van der Waals radii in the crystals of either compounds (I) or (II). For compound (III) (Fig. 7c), two small red spots indicate the presence of weak C⋯H contacts (see Table 3).
The two-dimensional fingerprint plots for the title compounds are given in Fig. 8. They reveal, as expected, that the principal contributions to the overall surface involve H⋯H contacts at 87.9% for (I) (Fig. 8a), 68.6% for (II) (Fig. 8b), and 63.3% for (III) (Fig. 8c). The second most important contribution to the HS for compound (I) is from the N⋯H/H⋯N contacts at 8.0%; for compounds (II) and (III) the second most significant contributions are from the C⋯H/H⋯C contacts at 26.3 and 27.4%, respectively. For compound (I), the third most important contribution to the HS is from the C⋯H/H⋯C contacts at 4.0%, while for compounds (II) and (III) it is from the N⋯H/H⋯N contacts at 2.6 and 5.7%, respectively. All other atom⋯atom contacts contribute less that 2% to the HS for all three compounds.
5. Database survey
A search of the CSD (Version 5.41, last update November 2019; Groom et al., 2016) for the structure of 2,3,5,6-tetrakis(pyridin-2-yl)pyrazine gave 289 hits, of which 91 structures are polymeric. The first polymeric compound to be reported in 1995 was for a trinuclear cobalt(II) one-dimensional coordination polymer, catena-[bis(μ2-chloro)acetonitriletetrachloro-[2,3,5,6-tetrakis(2-pyridyl)pyrazine]tricobalt(II)] (CSD refcode TUPWAC; Constable et al., 1995).
A search for the structure of 2,3,5,6-pyrazinetetracarboxylic acid gave 92 hits, of which 64 are polymeric. Here, the first polymeric compound to be reported in 1986 was for a binuclear iron(II) polymer chain, catena-[μ2-(2,5-dicarboxypyrazine-3,6-dicarboxylato-N,O)trans-diaquadiiron(II)] dihydrate (DUWROC; Marioni et al., 1986).
A search for the structure of tetrakis(aminomethyl)pyrazine yielded only eight hits, of which five compounds are polymeric; see for example catena-[μ2-[tetrakis(aminomethyl)pyrazine-N,N′,N′′]manganese dichloride dihydrate] (PITXEV; Ferigo et al., 1994), and catena-[[μ2-2,3,5,6-tetrakis(aminomethyl)pyrazine]bis(μ2-chloro)dichlorodicopper hydrate] (PITXIZ; Ferigo et al., 1994).
Recently a new ligand, 2,3,5,6-tetrakis(4-carboxyphenyl pyrazine), has been shown to be extremely successful in forming 17 metal–organic frameworks (MOFs). It was designed by Jiang and coworkers (Jiang et al., 2017) who produced the first MOF using this ligand, viz. catena-[(μ-4,4′,4′′,4′′′-pyrazine-2,3,5,6-tetrabenzoato)bis(N,N-dimethylformamide)dizinc unknown solvate] (NAWXER; Jiang et al., 2017). Since then the ligand has been used by a number of groups, and the most recent MOF to be published is catena-[(μ-4,4′-bipyridine)bis(μ-hydroxo)bis[μ-dihydrogen 4,4′,4′′,4′′′-(pyrazine-2,3,5,6-tetrayl)tetrabenzoato]trinickel unknown solvate] (HOQTUF; Wang et al., 2019).
In relation to the structure of compound (III), a search for the pyrrolo[3,4-b]pyrazine yielded only two hits. They concern dipyrrolo[3,4-b:3′,4′-e]pyrazine structures that possess inversion symmetry, viz. 2,6-dibenzyl-1,2,3,5,6,7-hexahydrodipyrrolo[3,4-b:3′,4′-e]pyrazine (EXUHIO; Gasser & Stoeckli-Evans, 2004) and 2,6-bis(4-methoxybenzyl)-1,2,3,5,6,7-hexahydrodipyrrolo[3,4-b:3′,4′-e]pyrazine (EXUHOU; Gasser & Stoeckli-Evans, 2004). They were prepared during attempts to form 1,2,3,5,6,7-hexahydro-2,4,6,8-tetraaza-s-indacene by reacting 2,3,5,6-tetrakis(bromomethyl)pyrazine (Ferigo et al., 1994; TOJXUN: Assoumatine & Stoeckli-Evans, 2014) with the corresponding In contrast to (III), where the pyrrolo ring is planar (r.m.s. deviation = 0.029 Å) and inclined by only 2.00 (12)° to the pyrazine ring, here the pyrrolo groups have envelope conformations with the pyrrolo N atoms as the flaps. Their mean planes are inclined to the pyrazine ring by 7.88 (16)° in EXUHIO and by 8.05 (7)° in EXUHOU.
6. Synthesis and crystallization
Synthesis of 1,1′,1′′,1′′′-(pyrazine-2,3,5,6-tetrayl) tetrakis(N,N-dimethylmethanamine) (I):
A large excess of dimethyl amine hydrochloride in water was neutralized with NaOH in an ice bath. Me2NH formed in situ as a gas and was directly condensed in a round-bottom flask in an acetone/liquid N2 bath at about 213 K using a weak vacuum. Once a sufficient quantity of liquid amine had formed, a solution of 2,3,5,6-tetrakis(bromomethyl)pyrazine (0.4530 g, 1 mmol) in 50 ml of CH2Cl2 was added dropwise at low temperature (ca 243 K). The reaction was left for about 4 h, allowing the temperature rise to RT. The excess amine was allowed to evaporate off before the solvent was gassed off. The residue obtained was dissolved in 40 ml of MeOH and passed through a resin column (15 g of Dowex 1 X8) previously charged with OH− ions in order to exchange the HBr molecules, still attached to the ligand, by H2O molecules. About 150 ml were used as Solvent evaporation yielded 0.27 g (87%) of a light-yellow powder of compound (I). Colourless block-like crystals were obtained by slow diffusion of hexane into a solution of the ligand in dichloromethane.
1H NMR (CDCl3, 200 MHz, ppm): 3.65 (s, 8H, CH2), 2.15 (s, 12H, CH3). 13C NMR (D2O, 400 MHz, ppm): 152.16, 62.53, 46.54. IR (KBr pellet, cm−1): 2974 (s), 2942 (s), 2854 (m), 2820 (vs), 2772 (vs), 1635 (b), 1456 (s), 1414 (m), 1348 (s), 1259 (s), 1204 (m), 1168 (m), 1027 (vs), 987 (m), 841 (s). MS (EI, 70 eV), m/z: 310 (MH+), 264, 178. Anal. for C16H32N6 (308.5 g mol−1) Calculated (%) C 62.30, H 10.46, N 27.24. Found (%) C 61.86, H 10.73, N 27.50.
Synthesis of N,N′,N′′,N′′′-[pyrazine-2,3,5,6-tetrayltetrakis(methylene)]tetrakis(N-methylaniline) (II):
A solution of 2,3,5,6-tetrakis(bromomethyl)pyrazine (0.4530 g, 1 mmol) in 35 ml of CH3CN was added dropwise to a suspension of N-methylaniline (1.2 ml, 10 mmol) and Na2CO3 (5.3 g, 50 mmol) in 25 ml of CH3CN. The colour changed immediately from light to deep yellow. The mixture was refluxed for ca 2 h, followed by TLC and then cooled to RT. The white precipitate (NaBr and excess Na2CO3) was filtered off and the filtrate was evaporated under vacuum. The residue was dissolved in hexane and the insoluble yellow powder obtained was recovered, washed with more hexane and then dried to yield 0.335 g (60%) of compound (II). Pale-greenish-yellow block-like crystals were obtained by slow evaporation of a CDCl3 solution of (II) in an NMR tube.
1H NMR (CDCl3, 200 MHz, ppm): 7.14 (t, 8H, ph), 6.68 (m, 12H, ph), 4.58 (s, 8H, CH2), 2.79 (s, 12H, CH3). 13C NMR (CD3OD, 400 MHz, ppm): 149.64, 149.31, 128.94, 116.92, 113.17, 54.75, 39.46. IR (KBr pellet, cm−1): 2926 (w), 1601 (s), 1508 (vs), 1446 (m), 1377 (m), 1366 (m), 1313 (m), 1257 (m), 1212 (m), 1117 (w), 993 (w), 820 (w), 745 (s), 689 (m). MS (EI, 70 eV), m/z: 594 (MK+), 374, 291. Analysis for C36H40N6 (556.7 g mol−1) Calculated (%) C 77.66, H 7.24, N 15.09. Found (%) C 76.82, H 7.19, N 15.07.
Synthesis of N,N′-[(6-phenyl-6,7-dihydro-5H-pyrrolo[3,4-b]pyrazine-2,3-diyl)bis(methylene)]bis(N-methylaniline) (III):
Hexagonal pale-yellow plate-like crystals of compound (III) were obtained several times when reacting (II) with different metal salts, such as Zn(ClO4)2 (in excess), MnCl2·4H2O and Ni(AcO)2·4H2O. No spectroscopic or other analytical data are available for this compound.
7. Refinement
Crystal data, data collection and structure . The C-bound H atoms were included in calculated positions and treated as riding on their parent C atom: C—H = 0.93–0.97 Å with Uiso(H) =1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms. Note for compound (III): using the Stoe IPDS I, a one-circle diffractometer, to measure data for the triclinic system often only 93% of the is accessible. Hence, the diffrn_reflns_Laue_measured_fraction_full of 0.939 is below the required minimum of 0.95.
details are summarized in Table 4
|
Supporting information
https://doi.org/10.1107/S2056989020002133/xi2023sup1.cif
contains datablocks I, II, III, Global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020002133/xi2023Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989020002133/xi2023IIsup3.hkl
Structure factors: contains datablock III. DOI: https://doi.org/10.1107/S2056989020002133/xi2023IIIsup4.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989020002133/xi2023IIsup5.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989020002133/xi2023IIIsup6.cml
Data collection: STADI4 (Stoe & Cie, 1997) for (I), (II); EXPOSE in IPDS-I (Stoe & Cie, 2004) for (III). Cell
STADI4 (Stoe & Cie, 1997) for (I), (II); CELL in IPDS-I (Stoe & Cie, 2004) for (III). Data reduction: X-RED (Stoe & Cie, 1997) for (I), (II); INTEGRATE in IPDS-I (Stoe & Cie, 2004) for (III). For all structures, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015), PLATON (Spek, 2020) and publCIF (Westrip, 2010).C16H32N6 | F(000) = 340 |
Mr = 308.47 | Dx = 1.045 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 9.7577 (14) Å | Cell parameters from 22 reflections |
b = 10.348 (2) Å | θ = 12.6–18.1° |
c = 9.9118 (16) Å | µ = 0.07 mm−1 |
β = 101.663 (15)° | T = 293 K |
V = 980.2 (3) Å3 | Block, colourless |
Z = 2 | 0.53 × 0.53 × 0.26 mm |
Stoe–Siemens AED2, 4-circle diffractometer | Rint = 0.055 |
Radiation source: fine-focus sealed tube | θmax = 25.5°, θmin = 2.7° |
Plane graphite monochromator | h = −11→11 |
ω/\2q scans | k = 0→12 |
3347 measured reflections | l = −11→11 |
1818 independent reflections | 2 standard reflections every 60 min |
1111 reflections with I > 2σ(I) | intensity decay: 1% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.060 | H-atom parameters constrained |
wR(F2) = 0.154 | w = 1/[σ2(Fo2) + (0.0488P)2 + 0.2847P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max < 0.001 |
1818 reflections | Δρmax = 0.15 e Å−3 |
105 parameters | Δρmin = −0.12 e Å−3 |
0 restraints | Extinction correction: (SHELXL2018/3; Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.043 (7) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.07379 (18) | 0.10665 (19) | 0.46684 (19) | 0.0504 (5) | |
N2 | 0.2065 (2) | −0.0663 (2) | 0.2414 (2) | 0.0657 (7) | |
N3 | 0.1836 (2) | 0.1754 (2) | 0.8033 (2) | 0.0699 (7) | |
C1 | 0.0393 (2) | 0.0085 (2) | 0.3779 (2) | 0.0465 (6) | |
C2 | 0.0345 (2) | 0.0981 (2) | 0.5885 (2) | 0.0476 (6) | |
C3 | 0.0864 (3) | 0.0171 (3) | 0.2426 (2) | 0.0576 (7) | |
H3A | 0.009971 | −0.008061 | 0.168567 | 0.069* | |
H3B | 0.111131 | 0.105746 | 0.226663 | 0.069* | |
C4 | 0.2207 (4) | −0.0957 (4) | 0.1004 (3) | 0.1046 (12) | |
H4A | 0.234545 | −0.016958 | 0.053752 | 0.157* | |
H4B | 0.137243 | −0.137698 | 0.052395 | 0.157* | |
H4C | 0.299513 | −0.151713 | 0.102710 | 0.157* | |
C5 | 0.3335 (3) | −0.0092 (4) | 0.3188 (3) | 0.0979 (12) | |
H5C | 0.409862 | −0.068297 | 0.321975 | 0.147* | |
H5B | 0.322027 | 0.009064 | 0.410892 | 0.147* | |
H5A | 0.352858 | 0.069624 | 0.275133 | 0.147* | |
C6 | 0.0739 (3) | 0.2095 (2) | 0.6863 (3) | 0.0615 (7) | |
H6A | 0.105348 | 0.281127 | 0.637289 | 0.074* | |
H6B | −0.008203 | 0.237656 | 0.719505 | 0.074* | |
C7 | 0.3174 (3) | 0.1604 (4) | 0.7623 (4) | 0.1168 (15) | |
H7A | 0.346508 | 0.242054 | 0.731787 | 0.175* | |
H7B | 0.308288 | 0.098709 | 0.688686 | 0.175* | |
H7C | 0.386012 | 0.130348 | 0.839465 | 0.175* | |
C8 | 0.1949 (4) | 0.2720 (3) | 0.9118 (3) | 0.1000 (12) | |
H8A | 0.107852 | 0.277166 | 0.942547 | 0.150* | |
H8B | 0.215925 | 0.354560 | 0.876707 | 0.150* | |
H8C | 0.268255 | 0.248005 | 0.987590 | 0.150* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0471 (11) | 0.0513 (12) | 0.0535 (12) | 0.0003 (9) | 0.0121 (9) | 0.0005 (10) |
N2 | 0.0654 (14) | 0.0752 (16) | 0.0629 (14) | 0.0117 (12) | 0.0279 (11) | 0.0066 (12) |
N3 | 0.0630 (14) | 0.0758 (16) | 0.0663 (14) | −0.0068 (12) | 0.0021 (11) | −0.0189 (12) |
C1 | 0.0433 (12) | 0.0490 (14) | 0.0465 (13) | 0.0037 (11) | 0.0076 (10) | 0.0006 (12) |
C2 | 0.0420 (12) | 0.0478 (14) | 0.0522 (14) | 0.0030 (11) | 0.0076 (10) | −0.0032 (11) |
C3 | 0.0597 (15) | 0.0629 (17) | 0.0520 (14) | 0.0059 (13) | 0.0152 (12) | 0.0041 (12) |
C4 | 0.130 (3) | 0.117 (3) | 0.081 (2) | 0.032 (2) | 0.056 (2) | 0.002 (2) |
C5 | 0.0565 (17) | 0.145 (3) | 0.096 (2) | 0.001 (2) | 0.0259 (17) | 0.019 (2) |
C6 | 0.0660 (17) | 0.0529 (15) | 0.0666 (16) | −0.0012 (13) | 0.0157 (13) | −0.0089 (13) |
C7 | 0.060 (2) | 0.154 (4) | 0.131 (3) | −0.008 (2) | 0.0089 (19) | −0.058 (3) |
C8 | 0.105 (3) | 0.111 (3) | 0.078 (2) | −0.022 (2) | 0.0064 (19) | −0.037 (2) |
N1—C2 | 1.340 (3) | C4—H4B | 0.9600 |
N1—C1 | 1.342 (3) | C4—H4C | 0.9600 |
N2—C5 | 1.446 (4) | C5—H5C | 0.9600 |
N2—C3 | 1.457 (3) | C5—H5B | 0.9600 |
N2—C4 | 1.463 (3) | C5—H5A | 0.9600 |
N3—C7 | 1.452 (4) | C6—H6A | 0.9700 |
N3—C6 | 1.454 (3) | C6—H6B | 0.9700 |
N3—C8 | 1.456 (3) | C7—H7A | 0.9600 |
C1—C2i | 1.394 (3) | C7—H7B | 0.9600 |
C1—C3 | 1.506 (3) | C7—H7C | 0.9600 |
C2—C6 | 1.505 (3) | C8—H8A | 0.9600 |
C3—H3A | 0.9700 | C8—H8B | 0.9600 |
C3—H3B | 0.9700 | C8—H8C | 0.9600 |
C4—H4A | 0.9600 | ||
C2—N1—C1 | 117.5 (2) | N2—C5—H5C | 109.5 |
C5—N2—C3 | 111.0 (2) | N2—C5—H5B | 109.5 |
C5—N2—C4 | 110.8 (2) | H5C—C5—H5B | 109.5 |
C3—N2—C4 | 111.3 (2) | N2—C5—H5A | 109.5 |
C7—N3—C6 | 111.2 (2) | H5C—C5—H5A | 109.5 |
C7—N3—C8 | 110.0 (2) | H5B—C5—H5A | 109.5 |
C6—N3—C8 | 110.9 (2) | N3—C6—C2 | 112.3 (2) |
N1—C1—C2i | 121.0 (2) | N3—C6—H6A | 109.1 |
N1—C1—C3 | 117.3 (2) | C2—C6—H6A | 109.1 |
C2i—C1—C3 | 121.7 (2) | N3—C6—H6B | 109.1 |
N1—C2—C1i | 121.5 (2) | C2—C6—H6B | 109.1 |
N1—C2—C6 | 116.5 (2) | H6A—C6—H6B | 107.9 |
C1i—C2—C6 | 121.9 (2) | N3—C7—H7A | 109.5 |
N2—C3—C1 | 111.3 (2) | N3—C7—H7B | 109.5 |
N2—C3—H3A | 109.4 | H7A—C7—H7B | 109.5 |
C1—C3—H3A | 109.4 | N3—C7—H7C | 109.5 |
N2—C3—H3B | 109.4 | H7A—C7—H7C | 109.5 |
C1—C3—H3B | 109.4 | H7B—C7—H7C | 109.5 |
H3A—C3—H3B | 108.0 | N3—C8—H8A | 109.5 |
N2—C4—H4A | 109.5 | N3—C8—H8B | 109.5 |
N2—C4—H4B | 109.5 | H8A—C8—H8B | 109.5 |
H4A—C4—H4B | 109.5 | N3—C8—H8C | 109.5 |
N2—C4—H4C | 109.5 | H8A—C8—H8C | 109.5 |
H4A—C4—H4C | 109.5 | H8B—C8—H8C | 109.5 |
H4B—C4—H4C | 109.5 | ||
C2—N1—C1—C2i | −0.1 (3) | N1—C1—C3—N2 | 103.4 (2) |
C2—N1—C1—C3 | −178.68 (19) | C2i—C1—C3—N2 | −75.2 (3) |
C1—N1—C2—C1i | 0.1 (3) | C7—N3—C6—C2 | 71.6 (3) |
C1—N1—C2—C6 | −179.79 (19) | C8—N3—C6—C2 | −165.7 (2) |
C5—N2—C3—C1 | −77.0 (3) | N1—C2—C6—N3 | −108.7 (2) |
C4—N2—C3—C1 | 159.1 (2) | C1i—C2—C6—N3 | 71.4 (3) |
Symmetry code: (i) −x, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3A···N3i | 0.97 | 2.62 | 3.261 (4) | 124 |
Symmetry code: (i) −x, −y, −z+1. |
C36H40N6 | Z = 1 |
Mr = 556.74 | F(000) = 298 |
Triclinic, P1 | Dx = 1.251 Mg m−3 |
a = 8.6753 (10) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.9160 (11) Å | Cell parameters from 28 reflections |
c = 10.0631 (10) Å | θ = 12.5–17.6° |
α = 85.774 (10)° | µ = 0.08 mm−1 |
β = 73.468 (11)° | T = 293 K |
γ = 82.467 (11)° | Block, pale-greenish-yellow |
V = 739.21 (15) Å3 | 0.38 × 0.30 × 0.27 mm |
Stoe–Siemens AED2, 4-circle diffractometer | Rint = 0.031 |
Radiation source: fine-focus sealed tube | θmax = 25.5°, θmin = 2.1° |
Plane graphite monochromator | h = −9→10 |
ω/\2q scans | k = −10→10 |
5354 measured reflections | l = −12→12 |
2741 independent reflections | 2 standard reflections every 60 min |
1913 reflections with I > 2σ(I) | intensity decay: 1% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.049 | H-atom parameters constrained |
wR(F2) = 0.108 | w = 1/[σ2(Fo2) + (0.0254P)2 + 0.254P] where P = (Fo2 + 2Fc2)/3 |
S = 1.12 | (Δ/σ)max < 0.001 |
2741 reflections | Δρmax = 0.13 e Å−3 |
193 parameters | Δρmin = −0.14 e Å−3 |
0 restraints | Extinction correction: (SHELXL2018/3; Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.026 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.46201 (19) | 0.59971 (18) | 0.89913 (16) | 0.0393 (4) | |
N2 | 0.5739 (2) | 0.31235 (19) | 0.66461 (17) | 0.0454 (4) | |
N3 | 0.2493 (2) | 0.85914 (19) | 0.95305 (17) | 0.0481 (5) | |
C1 | 0.5585 (2) | 0.4702 (2) | 0.86471 (19) | 0.0366 (5) | |
C2 | 0.4027 (2) | 0.6301 (2) | 1.0334 (2) | 0.0378 (5) | |
C3 | 0.6246 (2) | 0.4442 (2) | 0.7110 (2) | 0.0437 (5) | |
H3A | 0.590818 | 0.533444 | 0.660508 | 0.052* | |
H3B | 0.741879 | 0.433034 | 0.687257 | 0.052* | |
C4 | 0.4248 (3) | 0.3268 (2) | 0.63526 (19) | 0.0429 (5) | |
C5 | 0.3070 (3) | 0.4493 (3) | 0.6795 (2) | 0.0502 (6) | |
H5 | 0.328637 | 0.524582 | 0.728604 | 0.060* | |
C6 | 0.1604 (3) | 0.4603 (3) | 0.6515 (2) | 0.0619 (7) | |
H6 | 0.083983 | 0.542794 | 0.682224 | 0.074* | |
C7 | 0.1237 (3) | 0.3508 (3) | 0.5785 (3) | 0.0674 (7) | |
H7 | 0.024139 | 0.359185 | 0.559288 | 0.081* | |
C8 | 0.2367 (3) | 0.2306 (3) | 0.5354 (3) | 0.0661 (7) | |
H8 | 0.212966 | 0.155880 | 0.486985 | 0.079* | |
C9 | 0.3863 (3) | 0.2167 (2) | 0.5618 (2) | 0.0549 (6) | |
H9 | 0.461601 | 0.133665 | 0.530481 | 0.066* | |
C10 | 0.7008 (3) | 0.2013 (3) | 0.5894 (3) | 0.0645 (7) | |
H10A | 0.799406 | 0.208832 | 0.612583 | 0.097* | |
H10B | 0.717471 | 0.220396 | 0.491434 | 0.097* | |
H10C | 0.669345 | 0.101522 | 0.614401 | 0.097* | |
C11 | 0.2938 (3) | 0.7782 (2) | 1.0686 (2) | 0.0488 (6) | |
H11A | 0.195686 | 0.756971 | 1.138934 | 0.059* | |
H11B | 0.348395 | 0.843600 | 1.108603 | 0.059* | |
C12 | 0.1177 (2) | 0.8292 (2) | 0.9122 (2) | 0.0431 (5) | |
C13 | 0.0121 (3) | 0.7258 (3) | 0.9845 (2) | 0.0586 (6) | |
H13 | 0.032849 | 0.671020 | 1.061037 | 0.070* | |
C14 | −0.1220 (3) | 0.7040 (3) | 0.9440 (3) | 0.0697 (7) | |
H14 | −0.191144 | 0.635993 | 0.994996 | 0.084* | |
C15 | −0.1562 (3) | 0.7802 (3) | 0.8302 (3) | 0.0690 (7) | |
H15 | −0.247073 | 0.765006 | 0.803564 | 0.083* | |
C16 | −0.0517 (3) | 0.8795 (3) | 0.7571 (3) | 0.0643 (7) | |
H16 | −0.072129 | 0.931190 | 0.679059 | 0.077* | |
C17 | 0.0822 (3) | 0.9052 (2) | 0.7956 (2) | 0.0516 (6) | |
H17 | 0.149960 | 0.973716 | 0.743706 | 0.062* | |
C18 | 0.3667 (3) | 0.9499 (3) | 0.8637 (3) | 0.0633 (7) | |
H18A | 0.407036 | 0.906772 | 0.774033 | 0.095* | |
H18B | 0.454775 | 0.952213 | 0.903352 | 0.095* | |
H18C | 0.316286 | 1.051147 | 0.854497 | 0.095* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0443 (10) | 0.0408 (10) | 0.0350 (9) | −0.0041 (8) | −0.0144 (7) | −0.0032 (7) |
N2 | 0.0498 (11) | 0.0481 (10) | 0.0390 (10) | 0.0057 (8) | −0.0163 (8) | −0.0112 (8) |
N3 | 0.0541 (11) | 0.0469 (11) | 0.0455 (10) | 0.0000 (9) | −0.0210 (9) | 0.0016 (8) |
C1 | 0.0371 (11) | 0.0405 (11) | 0.0347 (11) | −0.0066 (9) | −0.0126 (9) | −0.0044 (9) |
C2 | 0.0400 (11) | 0.0397 (11) | 0.0366 (11) | −0.0044 (9) | −0.0147 (9) | −0.0040 (9) |
C3 | 0.0454 (12) | 0.0489 (12) | 0.0360 (11) | −0.0029 (10) | −0.0106 (9) | −0.0039 (9) |
C4 | 0.0523 (13) | 0.0451 (12) | 0.0314 (11) | −0.0027 (10) | −0.0142 (9) | 0.0021 (9) |
C5 | 0.0551 (14) | 0.0576 (14) | 0.0379 (12) | 0.0042 (11) | −0.0159 (10) | −0.0098 (10) |
C6 | 0.0490 (14) | 0.0793 (18) | 0.0521 (14) | 0.0084 (13) | −0.0120 (11) | −0.0046 (13) |
C7 | 0.0535 (15) | 0.090 (2) | 0.0637 (16) | −0.0169 (14) | −0.0239 (13) | 0.0119 (15) |
C8 | 0.0831 (19) | 0.0582 (16) | 0.0719 (17) | −0.0206 (14) | −0.0412 (15) | 0.0038 (13) |
C9 | 0.0747 (16) | 0.0424 (13) | 0.0524 (14) | −0.0010 (11) | −0.0275 (12) | −0.0030 (10) |
C10 | 0.0631 (16) | 0.0667 (16) | 0.0613 (15) | 0.0207 (13) | −0.0210 (12) | −0.0223 (13) |
C11 | 0.0574 (14) | 0.0506 (13) | 0.0406 (12) | 0.0052 (10) | −0.0210 (10) | −0.0074 (10) |
C12 | 0.0464 (12) | 0.0381 (11) | 0.0429 (12) | 0.0086 (9) | −0.0140 (10) | −0.0078 (9) |
C13 | 0.0673 (16) | 0.0563 (15) | 0.0519 (14) | −0.0083 (12) | −0.0173 (12) | 0.0048 (11) |
C14 | 0.0597 (16) | 0.0732 (18) | 0.0723 (18) | −0.0179 (13) | −0.0071 (14) | −0.0057 (14) |
C15 | 0.0550 (15) | 0.0744 (18) | 0.083 (2) | 0.0020 (14) | −0.0280 (14) | −0.0203 (15) |
C16 | 0.0704 (17) | 0.0633 (16) | 0.0654 (16) | 0.0085 (13) | −0.0356 (14) | −0.0040 (13) |
C17 | 0.0555 (14) | 0.0492 (13) | 0.0509 (13) | −0.0012 (11) | −0.0196 (11) | 0.0026 (10) |
C18 | 0.0677 (16) | 0.0617 (15) | 0.0676 (16) | −0.0143 (13) | −0.0287 (13) | 0.0036 (13) |
N1—C2 | 1.336 (2) | C8—H8 | 0.9300 |
N1—C1 | 1.339 (2) | C9—H9 | 0.9300 |
N2—C4 | 1.395 (3) | C10—H10A | 0.9600 |
N2—C10 | 1.454 (3) | C10—H10B | 0.9600 |
N2—C3 | 1.459 (3) | C10—H10C | 0.9600 |
N3—C12 | 1.382 (3) | C11—H11A | 0.9700 |
N3—C11 | 1.442 (2) | C11—H11B | 0.9700 |
N3—C18 | 1.445 (3) | C12—C13 | 1.400 (3) |
C1—C2i | 1.395 (3) | C12—C17 | 1.401 (3) |
C1—C3 | 1.512 (3) | C13—C14 | 1.378 (3) |
C2—C11 | 1.521 (3) | C13—H13 | 0.9300 |
C3—H3A | 0.9700 | C14—C15 | 1.374 (4) |
C3—H3B | 0.9700 | C14—H14 | 0.9300 |
C4—C9 | 1.398 (3) | C15—C16 | 1.371 (4) |
C4—C5 | 1.398 (3) | C15—H15 | 0.9300 |
C5—C6 | 1.369 (3) | C16—C17 | 1.375 (3) |
C5—H5 | 0.9300 | C16—H16 | 0.9300 |
C6—C7 | 1.384 (3) | C17—H17 | 0.9300 |
C6—H6 | 0.9300 | C18—H18A | 0.9600 |
C7—C8 | 1.359 (4) | C18—H18B | 0.9600 |
C7—H7 | 0.9300 | C18—H18C | 0.9600 |
C8—C9 | 1.386 (3) | ||
C2—N1—C1 | 118.46 (16) | C7—C8—C9 | 121.7 (2) |
C4—N2—C10 | 117.64 (17) | C7—C8—H8 | 119.2 |
C4—N2—C3 | 118.71 (16) | C9—C8—H8 | 119.2 |
C10—N2—C3 | 117.17 (18) | C8—C9—C4 | 120.4 (2) |
C12—N3—C11 | 122.00 (18) | C8—C9—H9 | 119.8 |
C12—N3—C18 | 120.07 (17) | C4—C9—H9 | 119.8 |
C11—N3—C18 | 116.70 (18) | N3—C12—C13 | 122.77 (19) |
N1—C1—C2i | 120.79 (16) | N3—C12—C17 | 120.5 (2) |
N1—C1—C3 | 115.85 (16) | C13—C12—C17 | 116.7 (2) |
C2i—C1—C3 | 123.33 (17) | C14—C13—C12 | 121.0 (2) |
N1—C2—C1i | 120.74 (17) | C14—C13—H13 | 119.5 |
N1—C2—C11 | 117.03 (17) | C12—C13—H13 | 119.5 |
C1i—C2—C11 | 122.23 (17) | C15—C14—C13 | 121.6 (2) |
N2—C3—C1 | 114.84 (17) | C15—C14—H14 | 119.2 |
N2—C3—H3A | 108.6 | C13—C14—H14 | 119.2 |
C1—C3—H3A | 108.6 | C16—C15—C14 | 117.7 (2) |
N2—C3—H3B | 108.6 | C16—C15—H15 | 121.1 |
C1—C3—H3B | 108.6 | C14—C15—H15 | 121.1 |
H3A—C3—H3B | 107.5 | C15—C16—C17 | 122.1 (2) |
N3—C11—C2 | 115.02 (17) | C15—C16—H16 | 119.0 |
N3—C11—H11A | 108.5 | C17—C16—H16 | 119.0 |
C2—C11—H11A | 108.5 | C16—C17—C12 | 120.8 (2) |
N3—C11—H11B | 108.5 | C16—C17—H17 | 119.6 |
C2—C11—H11B | 108.5 | C12—C17—H17 | 119.6 |
H11A—C11—H11B | 107.5 | N3—C18—H18A | 109.5 |
N2—C4—C9 | 120.81 (19) | N3—C18—H18B | 109.5 |
N2—C4—C5 | 121.91 (19) | H18A—C18—H18B | 109.5 |
C9—C4—C5 | 117.3 (2) | N3—C18—H18C | 109.5 |
C6—C5—C4 | 121.1 (2) | H18A—C18—H18C | 109.5 |
C6—C5—H5 | 119.5 | H18B—C18—H18C | 109.5 |
C4—C5—H5 | 119.5 | N2—C10—H10A | 109.5 |
C5—C6—C7 | 121.2 (2) | N2—C10—H10B | 109.5 |
C5—C6—H6 | 119.4 | H10A—C10—H10B | 109.5 |
C7—C6—H6 | 119.4 | N2—C10—H10C | 109.5 |
C8—C7—C6 | 118.4 (2) | H10A—C10—H10C | 109.5 |
C8—C7—H7 | 120.8 | H10B—C10—H10C | 109.5 |
C6—C7—H7 | 120.8 | ||
C2—N1—C1—C2i | −0.5 (3) | C4—C5—C6—C7 | −0.1 (4) |
C2—N1—C1—C3 | −178.66 (17) | C5—C6—C7—C8 | 0.4 (4) |
C1—N1—C2—C1i | 0.5 (3) | C6—C7—C8—C9 | −0.6 (4) |
C1—N1—C2—C11 | 179.92 (17) | C7—C8—C9—C4 | 0.5 (4) |
C4—N2—C3—C1 | 83.8 (2) | N2—C4—C9—C8 | 178.8 (2) |
C10—N2—C3—C1 | −125.0 (2) | C5—C4—C9—C8 | −0.2 (3) |
N1—C1—C3—N2 | −117.34 (19) | C11—N3—C12—C13 | 4.2 (3) |
C2i—C1—C3—N2 | 64.5 (2) | C18—N3—C12—C13 | 171.1 (2) |
C12—N3—C11—C2 | 86.2 (2) | C11—N3—C12—C17 | −177.13 (19) |
C18—N3—C11—C2 | −81.1 (2) | C18—N3—C12—C17 | −10.2 (3) |
N1—C2—C11—N3 | 8.2 (3) | N3—C12—C13—C14 | 177.1 (2) |
C1i—C2—C11—N3 | −172.42 (18) | C17—C12—C13—C14 | −1.7 (3) |
C10—N2—C4—C9 | 14.5 (3) | C12—C13—C14—C15 | 1.2 (4) |
C3—N2—C4—C9 | 165.50 (19) | C13—C14—C15—C16 | 0.1 (4) |
C10—N2—C4—C5 | −166.6 (2) | C14—C15—C16—C17 | −0.8 (4) |
C3—N2—C4—C5 | −15.6 (3) | C15—C16—C17—C12 | 0.3 (4) |
N2—C4—C5—C6 | −178.9 (2) | N3—C12—C17—C16 | −177.8 (2) |
C9—C4—C5—C6 | 0.0 (3) | C13—C12—C17—C16 | 1.0 (3) |
Symmetry code: (i) −x+1, −y+1, −z+2. |
Cg2 and Cg3 are the centroids of rings C4–C9 and C12–C17, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···N1 | 0.93 | 2.50 | 3.331 (3) | 149 |
C6—H6···Cg3 | 0.93 | 2.99 | 3.804 (3) | 147 |
C3—H3A···Cg2ii | 0.97 | 2.83 | 3.561 (2) | 133 |
Symmetry code: (ii) −x+1, −y+1, −z+1. |
C28H29N5 | Z = 2 |
Mr = 435.56 | F(000) = 464 |
Triclinic, P1 | Dx = 1.247 Mg m−3 |
a = 8.686 (1) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.7731 (11) Å | Cell parameters from 5000 reflections |
c = 14.3948 (16) Å | θ = 1.7–26.1° |
α = 85.915 (13)° | µ = 0.08 mm−1 |
β = 75.349 (13)° | T = 293 K |
γ = 78.891 (13)° | Hexagonal plate, pale yellow |
V = 1159.8 (2) Å3 | 0.45 × 0.35 × 0.10 mm |
Stoe IPDS 1 diffractometer | 1518 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.051 |
Plane graphite monochromator | θmax = 25.3°, θmin = 2.1° |
φ rotation scans | h = −10→10 |
8653 measured reflections | k = −11→11 |
3953 independent reflections | l = −17→17 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.035 | H-atom parameters constrained |
wR(F2) = 0.079 | w = 1/[σ2(Fo2) + (0.0308P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.68 | (Δ/σ)max < 0.001 |
3953 reflections | Δρmax = 0.12 e Å−3 |
301 parameters | Δρmin = −0.12 e Å−3 |
0 restraints | Extinction correction: (SHELXL2018/3; Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0154 (11) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.4060 (2) | 0.8786 (2) | 0.20916 (11) | 0.0559 (5) | |
N2 | 0.2666 (2) | 0.9790 (2) | 0.05437 (12) | 0.0596 (6) | |
N3 | 0.5915 (2) | 0.6863 (2) | −0.00687 (11) | 0.0641 (6) | |
N4 | −0.0765 (2) | 1.1354 (2) | 0.19845 (12) | 0.0567 (5) | |
N5 | 0.2256 (2) | 0.9508 (2) | 0.39598 (12) | 0.0607 (6) | |
C1 | 0.2797 (3) | 0.9865 (2) | 0.21849 (14) | 0.0536 (6) | |
C2 | 0.4566 (2) | 0.8223 (2) | 0.12258 (14) | 0.0510 (6) | |
C3 | 0.3862 (3) | 0.8699 (3) | 0.04787 (13) | 0.0522 (6) | |
C4 | 0.2133 (2) | 1.0385 (2) | 0.14142 (15) | 0.0550 (6) | |
C5 | 0.5911 (3) | 0.7029 (2) | 0.09341 (13) | 0.0611 (7) | |
H5A | 0.692953 | 0.724226 | 0.098842 | 0.073* | |
H5B | 0.570113 | 0.619743 | 0.131738 | 0.073* | |
C6 | 0.4643 (2) | 0.7825 (2) | −0.03875 (13) | 0.0577 (7) | |
H6A | 0.388274 | 0.733319 | −0.055210 | 0.069* | |
H6B | 0.508592 | 0.838726 | −0.093682 | 0.069* | |
C7 | 0.6870 (3) | 0.5773 (3) | −0.06142 (15) | 0.0559 (6) | |
C8 | 0.8004 (3) | 0.4812 (3) | −0.02614 (15) | 0.0620 (7) | |
H8 | 0.810894 | 0.489435 | 0.035832 | 0.074* | |
C9 | 0.8976 (3) | 0.3735 (3) | −0.08282 (17) | 0.0725 (8) | |
H9 | 0.972506 | 0.309893 | −0.058215 | 0.087* | |
C10 | 0.8853 (3) | 0.3590 (3) | −0.17452 (19) | 0.0773 (8) | |
H10 | 0.951563 | 0.286567 | −0.212066 | 0.093* | |
C11 | 0.7738 (3) | 0.4528 (3) | −0.21026 (16) | 0.0764 (8) | |
H11 | 0.764776 | 0.443527 | −0.272410 | 0.092* | |
C12 | 0.6751 (3) | 0.5608 (3) | −0.15511 (15) | 0.0665 (7) | |
H12 | 0.599899 | 0.623164 | −0.180367 | 0.080* | |
C13 | 0.2210 (3) | 1.0516 (2) | 0.31746 (14) | 0.0602 (7) | |
H13A | 0.287658 | 1.119063 | 0.321236 | 0.072* | |
H13B | 0.110758 | 1.101454 | 0.324780 | 0.072* | |
C14 | 0.1121 (3) | 0.8654 (3) | 0.42226 (14) | 0.0560 (6) | |
C15 | −0.0211 (3) | 0.8838 (3) | 0.38231 (15) | 0.0629 (7) | |
H15 | −0.032502 | 0.953551 | 0.335842 | 0.076* | |
C16 | −0.1360 (3) | 0.8000 (3) | 0.41067 (19) | 0.0781 (8) | |
H16 | −0.224404 | 0.814656 | 0.383465 | 0.094* | |
C17 | −0.1225 (4) | 0.6956 (3) | 0.4781 (2) | 0.0906 (9) | |
H17 | −0.199630 | 0.638472 | 0.496365 | 0.109* | |
C18 | 0.0080 (5) | 0.6771 (3) | 0.51850 (19) | 0.0919 (10) | |
H18 | 0.017561 | 0.607346 | 0.565218 | 0.110* | |
C19 | 0.1240 (3) | 0.7587 (3) | 0.49158 (17) | 0.0713 (8) | |
H19 | 0.211426 | 0.743206 | 0.519603 | 0.086* | |
C20 | 0.3718 (3) | 0.9195 (3) | 0.43102 (17) | 0.0861 (9) | |
H20A | 0.435685 | 0.990627 | 0.408568 | 0.129* | |
H20B | 0.433210 | 0.830763 | 0.407665 | 0.129* | |
H20C | 0.343173 | 0.916359 | 0.499973 | 0.129* | |
C21 | 0.0812 (3) | 1.1664 (2) | 0.14886 (15) | 0.0651 (7) | |
H21A | 0.106550 | 1.237790 | 0.183089 | 0.078* | |
H21B | 0.077662 | 1.202914 | 0.084840 | 0.078* | |
C22 | −0.1951 (3) | 1.2457 (3) | 0.24527 (14) | 0.0534 (6) | |
C23 | −0.1678 (3) | 1.3796 (3) | 0.24765 (15) | 0.0688 (7) | |
H23 | −0.069134 | 1.402028 | 0.213889 | 0.083* | |
C24 | −0.2859 (4) | 1.4813 (3) | 0.29992 (19) | 0.0860 (9) | |
H24 | −0.264807 | 1.570861 | 0.301192 | 0.103* | |
C25 | −0.4332 (4) | 1.4517 (4) | 0.34971 (19) | 0.0920 (11) | |
H25 | −0.511567 | 1.519698 | 0.385288 | 0.110* | |
C26 | −0.4620 (3) | 1.3199 (4) | 0.34573 (18) | 0.0911 (10) | |
H26 | −0.562113 | 1.299000 | 0.378099 | 0.109* | |
C27 | −0.3461 (3) | 1.2173 (3) | 0.29485 (16) | 0.0719 (8) | |
H27 | −0.368766 | 1.128393 | 0.293559 | 0.086* | |
C28 | −0.1287 (3) | 1.0303 (3) | 0.15362 (17) | 0.0805 (8) | |
H28A | −0.200292 | 0.983359 | 0.201593 | 0.121* | |
H28B | −0.036112 | 0.963950 | 0.123096 | 0.121* | |
H28C | −0.184352 | 1.073996 | 0.106462 | 0.121* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0524 (11) | 0.0660 (15) | 0.0465 (11) | −0.0088 (11) | −0.0077 (9) | −0.0042 (9) |
N2 | 0.0533 (12) | 0.0728 (15) | 0.0465 (11) | −0.0058 (11) | −0.0064 (9) | 0.0024 (10) |
N3 | 0.0620 (12) | 0.0785 (16) | 0.0446 (11) | 0.0103 (12) | −0.0146 (9) | −0.0111 (10) |
N4 | 0.0522 (12) | 0.0551 (14) | 0.0605 (11) | −0.0069 (11) | −0.0106 (10) | −0.0064 (10) |
N5 | 0.0562 (13) | 0.0813 (17) | 0.0459 (11) | −0.0163 (12) | −0.0104 (10) | −0.0081 (10) |
C1 | 0.0503 (14) | 0.0603 (18) | 0.0468 (13) | −0.0137 (13) | −0.0020 (11) | −0.0047 (11) |
C2 | 0.0461 (13) | 0.0629 (17) | 0.0413 (13) | −0.0085 (13) | −0.0070 (11) | −0.0013 (12) |
C3 | 0.0469 (13) | 0.0650 (17) | 0.0419 (13) | −0.0106 (13) | −0.0056 (11) | 0.0000 (12) |
C4 | 0.0498 (14) | 0.0601 (17) | 0.0505 (14) | −0.0082 (13) | −0.0063 (12) | 0.0022 (12) |
C5 | 0.0567 (14) | 0.0749 (19) | 0.0467 (13) | −0.0009 (14) | −0.0100 (11) | −0.0089 (12) |
C6 | 0.0524 (14) | 0.0736 (18) | 0.0449 (12) | −0.0084 (13) | −0.0094 (11) | −0.0039 (12) |
C7 | 0.0486 (14) | 0.0627 (18) | 0.0532 (14) | −0.0095 (14) | −0.0052 (11) | −0.0076 (12) |
C8 | 0.0555 (14) | 0.0709 (19) | 0.0563 (14) | −0.0066 (15) | −0.0098 (12) | −0.0068 (13) |
C9 | 0.0645 (17) | 0.069 (2) | 0.0777 (18) | −0.0034 (15) | −0.0112 (14) | −0.0085 (15) |
C10 | 0.0739 (19) | 0.074 (2) | 0.0766 (18) | −0.0108 (17) | 0.0001 (15) | −0.0247 (15) |
C11 | 0.0800 (19) | 0.088 (2) | 0.0597 (15) | −0.0135 (18) | −0.0103 (14) | −0.0186 (15) |
C12 | 0.0623 (16) | 0.080 (2) | 0.0562 (15) | −0.0069 (15) | −0.0135 (12) | −0.0119 (13) |
C13 | 0.0618 (16) | 0.0653 (18) | 0.0513 (13) | −0.0143 (13) | −0.0053 (11) | −0.0109 (13) |
C14 | 0.0589 (16) | 0.0647 (19) | 0.0397 (13) | −0.0072 (15) | −0.0032 (12) | −0.0143 (12) |
C15 | 0.0598 (16) | 0.074 (2) | 0.0540 (14) | −0.0175 (15) | −0.0057 (13) | −0.0109 (13) |
C16 | 0.070 (2) | 0.085 (2) | 0.0761 (18) | −0.0172 (18) | −0.0039 (15) | −0.0237 (17) |
C17 | 0.092 (2) | 0.079 (3) | 0.092 (2) | −0.039 (2) | 0.0180 (18) | −0.0243 (19) |
C18 | 0.127 (3) | 0.069 (2) | 0.0706 (19) | −0.018 (2) | −0.006 (2) | −0.0067 (15) |
C19 | 0.086 (2) | 0.064 (2) | 0.0615 (16) | −0.0086 (17) | −0.0154 (14) | −0.0066 (14) |
C20 | 0.0670 (17) | 0.122 (3) | 0.0789 (17) | −0.0167 (17) | −0.0316 (14) | −0.0145 (16) |
C21 | 0.0603 (16) | 0.0617 (19) | 0.0639 (14) | −0.0040 (14) | −0.0043 (12) | 0.0023 (13) |
C22 | 0.0536 (16) | 0.0608 (19) | 0.0442 (12) | −0.0012 (14) | −0.0162 (11) | 0.0003 (12) |
C23 | 0.0726 (17) | 0.061 (2) | 0.0673 (16) | −0.0041 (17) | −0.0117 (13) | −0.0061 (14) |
C24 | 0.100 (2) | 0.065 (2) | 0.0893 (19) | 0.0040 (19) | −0.0269 (18) | −0.0202 (16) |
C25 | 0.081 (2) | 0.110 (3) | 0.0742 (19) | 0.019 (2) | −0.0162 (17) | −0.0368 (19) |
C26 | 0.0629 (18) | 0.121 (3) | 0.0784 (19) | 0.003 (2) | −0.0059 (14) | −0.0256 (19) |
C27 | 0.0598 (16) | 0.080 (2) | 0.0711 (15) | −0.0083 (16) | −0.0100 (14) | −0.0066 (14) |
C28 | 0.0687 (17) | 0.086 (2) | 0.0927 (18) | −0.0024 (16) | −0.0318 (15) | −0.0313 (16) |
N1—C2 | 1.333 (2) | C12—H12 | 0.9300 |
N1—C1 | 1.354 (2) | C13—H13A | 0.9700 |
N2—C3 | 1.328 (2) | C13—H13B | 0.9700 |
N2—C4 | 1.352 (2) | C14—C15 | 1.394 (3) |
N3—C7 | 1.374 (2) | C14—C19 | 1.398 (3) |
N3—C6 | 1.453 (2) | C15—C16 | 1.376 (3) |
N3—C5 | 1.463 (2) | C15—H15 | 0.9300 |
N4—C22 | 1.415 (3) | C16—C17 | 1.367 (4) |
N4—C28 | 1.449 (3) | C16—H16 | 0.9300 |
N4—C21 | 1.453 (3) | C17—C18 | 1.376 (4) |
N5—C14 | 1.376 (3) | C17—H17 | 0.9300 |
N5—C13 | 1.449 (3) | C18—C19 | 1.367 (4) |
N5—C20 | 1.454 (3) | C18—H18 | 0.9300 |
C1—C4 | 1.397 (3) | C19—H19 | 0.9300 |
C1—C13 | 1.527 (3) | C20—H20A | 0.9600 |
C2—C3 | 1.377 (2) | C20—H20B | 0.9600 |
C2—C5 | 1.483 (3) | C20—H20C | 0.9600 |
C3—C6 | 1.498 (3) | C21—H21A | 0.9700 |
C4—C21 | 1.515 (3) | C21—H21B | 0.9700 |
C5—H5A | 0.9700 | C22—C23 | 1.378 (3) |
C5—H5B | 0.9700 | C22—C27 | 1.395 (3) |
C6—H6A | 0.9700 | C23—C24 | 1.390 (3) |
C6—H6B | 0.9700 | C23—H23 | 0.9300 |
C7—C8 | 1.392 (3) | C24—C25 | 1.373 (4) |
C7—C12 | 1.401 (3) | C24—H24 | 0.9300 |
C8—C9 | 1.385 (3) | C25—C26 | 1.366 (4) |
C8—H8 | 0.9300 | C25—H25 | 0.9300 |
C9—C10 | 1.370 (3) | C26—C27 | 1.378 (3) |
C9—H9 | 0.9300 | C26—H26 | 0.9300 |
C10—C11 | 1.373 (3) | C27—H27 | 0.9300 |
C10—H10 | 0.9300 | C28—H28A | 0.9600 |
C11—C12 | 1.380 (3) | C28—H28B | 0.9600 |
C11—H11 | 0.9300 | C28—H28C | 0.9600 |
C2—N1—C1 | 114.96 (16) | C1—C13—H13B | 108.9 |
C3—N2—C4 | 115.23 (17) | H13A—C13—H13B | 107.7 |
C7—N3—C6 | 122.57 (16) | N5—C14—C15 | 121.3 (2) |
C7—N3—C5 | 123.11 (17) | N5—C14—C19 | 121.3 (2) |
C6—N3—C5 | 113.64 (16) | C15—C14—C19 | 117.3 (3) |
C22—N4—C28 | 118.35 (19) | C16—C15—C14 | 120.9 (3) |
C22—N4—C21 | 117.9 (2) | C16—C15—H15 | 119.5 |
C28—N4—C21 | 114.48 (18) | C14—C15—H15 | 119.5 |
C14—N5—C13 | 120.75 (19) | C17—C16—C15 | 121.1 (3) |
C14—N5—C20 | 119.8 (2) | C17—C16—H16 | 119.4 |
C13—N5—C20 | 117.9 (2) | C15—C16—H16 | 119.4 |
N1—C1—C4 | 122.07 (18) | C16—C17—C18 | 118.5 (3) |
N1—C1—C13 | 115.34 (18) | C16—C17—H17 | 120.8 |
C4—C1—C13 | 122.5 (2) | C18—C17—H17 | 120.8 |
N1—C2—C3 | 122.80 (19) | C19—C18—C17 | 121.6 (3) |
N1—C2—C5 | 125.96 (18) | C19—C18—H18 | 119.2 |
C3—C2—C5 | 111.24 (18) | C17—C18—H18 | 119.2 |
N2—C3—C2 | 123.17 (19) | C18—C19—C14 | 120.6 (3) |
N2—C3—C6 | 126.31 (18) | C18—C19—H19 | 119.7 |
C2—C3—C6 | 110.52 (19) | C14—C19—H19 | 119.7 |
N2—C4—C1 | 121.65 (19) | N5—C20—H20A | 109.5 |
N2—C4—C21 | 115.81 (19) | N5—C20—H20B | 109.5 |
C1—C4—C21 | 122.52 (19) | H20A—C20—H20B | 109.5 |
N3—C5—C2 | 102.26 (16) | N5—C20—H20C | 109.5 |
N3—C5—H5A | 111.3 | H20A—C20—H20C | 109.5 |
C2—C5—H5A | 111.3 | H20B—C20—H20C | 109.5 |
N3—C5—H5B | 111.3 | N4—C21—C4 | 112.0 (2) |
C2—C5—H5B | 111.3 | N4—C21—H21A | 109.2 |
H5A—C5—H5B | 109.2 | C4—C21—H21A | 109.2 |
N3—C6—C3 | 102.22 (16) | N4—C21—H21B | 109.2 |
N3—C6—H6A | 111.3 | C4—C21—H21B | 109.2 |
C3—C6—H6A | 111.3 | H21A—C21—H21B | 107.9 |
N3—C6—H6B | 111.3 | C23—C22—C27 | 117.8 (2) |
C3—C6—H6B | 111.3 | C23—C22—N4 | 123.5 (2) |
H6A—C6—H6B | 109.2 | C27—C22—N4 | 118.7 (3) |
N3—C7—C8 | 121.19 (19) | C22—C23—C24 | 120.7 (3) |
N3—C7—C12 | 120.9 (2) | C22—C23—H23 | 119.6 |
C8—C7—C12 | 117.9 (2) | C24—C23—H23 | 119.6 |
C9—C8—C7 | 120.4 (2) | C25—C24—C23 | 121.0 (3) |
C9—C8—H8 | 119.8 | C25—C24—H24 | 119.5 |
C7—C8—H8 | 119.8 | C23—C24—H24 | 119.5 |
C10—C9—C8 | 121.2 (2) | C26—C25—C24 | 118.4 (3) |
C10—C9—H9 | 119.4 | C26—C25—H25 | 120.8 |
C8—C9—H9 | 119.4 | C24—C25—H25 | 120.8 |
C9—C10—C11 | 119.1 (2) | C25—C26—C27 | 121.5 (3) |
C9—C10—H10 | 120.4 | C25—C26—H26 | 119.3 |
C11—C10—H10 | 120.4 | C27—C26—H26 | 119.3 |
C10—C11—C12 | 120.8 (2) | C26—C27—C22 | 120.6 (3) |
C10—C11—H11 | 119.6 | C26—C27—H27 | 119.7 |
C12—C11—H11 | 119.6 | C22—C27—H27 | 119.7 |
C11—C12—C7 | 120.6 (2) | N4—C28—H28A | 109.5 |
C11—C12—H12 | 119.7 | N4—C28—H28B | 109.5 |
C7—C12—H12 | 119.7 | H28A—C28—H28B | 109.5 |
N5—C13—C1 | 113.53 (19) | N4—C28—H28C | 109.5 |
N5—C13—H13A | 108.9 | H28A—C28—H28C | 109.5 |
C1—C13—H13A | 108.9 | H28B—C28—H28C | 109.5 |
N5—C13—H13B | 108.9 | ||
C2—N1—C1—C4 | −2.9 (3) | N3—C7—C12—C11 | 178.6 (2) |
C2—N1—C1—C13 | −180.0 (2) | C8—C7—C12—C11 | −0.4 (3) |
C1—N1—C2—C3 | 0.0 (3) | C14—N5—C13—C1 | −75.0 (2) |
C1—N1—C2—C5 | −179.5 (2) | C20—N5—C13—C1 | 91.0 (3) |
C4—N2—C3—C2 | −2.3 (3) | N1—C1—C13—N5 | −37.6 (3) |
C4—N2—C3—C6 | 178.1 (2) | C4—C1—C13—N5 | 145.3 (2) |
N1—C2—C3—N2 | 2.8 (3) | C13—N5—C14—C15 | −7.6 (3) |
C5—C2—C3—N2 | −177.7 (2) | C20—N5—C14—C15 | −173.29 (19) |
N1—C2—C3—C6 | −177.6 (2) | C13—N5—C14—C19 | 173.80 (19) |
C5—C2—C3—C6 | 2.0 (3) | C20—N5—C14—C19 | 8.1 (3) |
C3—N2—C4—C1 | −0.6 (3) | N5—C14—C15—C16 | −178.5 (2) |
C3—N2—C4—C21 | 177.8 (2) | C19—C14—C15—C16 | 0.2 (3) |
N1—C1—C4—N2 | 3.4 (3) | C14—C15—C16—C17 | −0.6 (4) |
C13—C1—C4—N2 | −179.8 (2) | C15—C16—C17—C18 | 0.9 (4) |
N1—C1—C4—C21 | −174.9 (2) | C16—C17—C18—C19 | −1.0 (4) |
C13—C1—C4—C21 | 2.0 (3) | C17—C18—C19—C14 | 0.7 (4) |
C7—N3—C5—C2 | −173.1 (2) | N5—C14—C19—C18 | 178.4 (2) |
C6—N3—C5—C2 | −2.3 (2) | C15—C14—C19—C18 | −0.3 (3) |
N1—C2—C5—N3 | 179.7 (2) | C22—N4—C21—C4 | 154.45 (18) |
C3—C2—C5—N3 | 0.1 (2) | C28—N4—C21—C4 | −59.3 (2) |
C7—N3—C6—C3 | 174.2 (2) | N2—C4—C21—N4 | 103.8 (2) |
C5—N3—C6—C3 | 3.3 (2) | C1—C4—C21—N4 | −77.8 (3) |
N2—C3—C6—N3 | 176.5 (2) | C28—N4—C22—C23 | −146.2 (2) |
C2—C3—C6—N3 | −3.2 (2) | C21—N4—C22—C23 | −1.2 (3) |
C6—N3—C7—C8 | −175.5 (2) | C28—N4—C22—C27 | 36.3 (3) |
C5—N3—C7—C8 | −5.5 (3) | C21—N4—C22—C27 | −178.72 (19) |
C6—N3—C7—C12 | 5.6 (3) | C27—C22—C23—C24 | 1.6 (3) |
C5—N3—C7—C12 | 175.6 (2) | N4—C22—C23—C24 | −175.92 (19) |
N3—C7—C8—C9 | −178.8 (2) | C22—C23—C24—C25 | −0.6 (4) |
C12—C7—C8—C9 | 0.1 (3) | C23—C24—C25—C26 | −0.8 (4) |
C7—C8—C9—C10 | 0.2 (4) | C24—C25—C26—C27 | 1.3 (4) |
C8—C9—C10—C11 | −0.3 (4) | C25—C26—C27—C22 | −0.3 (4) |
C9—C10—C11—C12 | 0.1 (4) | C23—C22—C27—C26 | −1.2 (3) |
C10—C11—C12—C7 | 0.3 (4) | N4—C22—C27—C26 | 176.5 (2) |
Cg2 and Cg3 are the centroids of rings N1/N2/C1–C4 and C7–C12, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C15—H15···N4 | 0.93 | 2.61 | 3.542 (3) | 175 |
C28—H28B···N2 | 0.96 | 2.59 | 3.323 (3) | 133 |
C6—H6B···Cg2i | 0.97 | 2.82 | 3.601 (2) | 138 |
C23—H23···Cg3i | 0.93 | 2.97 | 3.881 (3) | 168 |
Symmetry code: (i) −x+1, −y+2, −z. |
Acknowledgements
HSE is grateful to the University of Neuchâtel for their support over the years.
Funding information
Funding for this research was provided by: Swiss National Science Foundation, University of Neuchâtel.
References
Assoumatine, T. & Stoeckli-Evans, H. (2014). Acta Cryst. E70, 51–53. CSD CrossRef CAS IUCr Journals Google Scholar
Constable, E. C., Edwards, A. J., Phillips, D. & Raithby, P. (1995). Supramol. Chem. 5, 93–95. CSD CrossRef CAS Google Scholar
Ferigo, M., Bonhôte, P., Marty, W. & Stoeckli-Evans, H. (1994). J. Chem. Soc. Dalton Trans. pp. 1549–1554. CSD CrossRef Web of Science Google Scholar
Gasser, G. & Stoeckli-Evans, H. (2004). Acta Cryst. C60, o514–o516. CSD CrossRef CAS IUCr Journals Google Scholar
Goodwin, H. A. & Lions, F. (1959). J. Am. Chem. Soc. 81, 6415–6422. CrossRef CAS Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Jiang, Y., Sun, L., Du, J., Liu, Y., Shi, H., Liang, Z. & Li, J. (2017). Cryst. Growth Des. 17, 2090–2096. CSD CrossRef CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Marioni, P.-A., Stoeckli-Evans, H., Marty, W., Güdel, H.-U. & Williams, A. F. (1986). Helv. Chim. Acta, 69, 1004–1011. CSD CrossRef CAS Web of Science Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Stoe & Cie (1997). STADI4 and X-RED. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Stoe & Cie (2004). IPDSI Bedienungshandbuch. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Tesouro Vallina, A. (2001). PhD Thesis. University of Neuchâtel, Switzerland. Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net Google Scholar
Wang, L., Zou, R., Guo, W., Gao, S., Meng, W., Yang, J., Chen, X. & Zou, R. (2019). Inorg. Chem. Commun. 104, 78–82. CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wolff, L. (1887). Ber. Dtsch. Chem. Ges. 20, 425–433. CrossRef Google Scholar
Wolff, L. (1893). Ber. Dtsch. Chem. Ges. 26, 721–725. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.