research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a new phen­yl(morpholino)methane­thione derivative: 4-[(morpholin-4-yl)carbo­thioyl]benzoic acid

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Physique et de Synthèse., Faculté des Sciences et Techniques (FAST), Université Abomey-Calavi, BP 526 Cotonou, Benin, bCRM2, UMR CNRS 7036, Université de Lorraine, F-54506, Vandoeuvre-lès-Nancy, France, cBruker France SAS, 4 allée Lorentz Champs sur Marne, 77447 Marne la Vallée Cedex 2, France, and dCRM2 UMR CNRS 7036, Université de Lorraine, F-54506, Vandoeuvre-lès-Nancy, France
*Correspondence e-mail: el-eulmi.bendeif@univ-lorraine.fr

Edited by D. Chopra, Indian Institute of Science Education and Research Bhopal, India (Received 3 February 2020; accepted 18 March 2020; online 27 March 2020)

4-[(Morpholin-4-yl)carbothioyl]benzoic acid, C12H13NO3S, a novel phen­yl(morpholino)methane­thione derivative, crystallizes in the monoclinic space group P21/n. The morpholine ring adopts a chair conformation and the carb­oxy­lic acid group is bent out slightly from the benzene ring mean plane. The mol­ecular geometry of the carb­oxy­lic group is characterized by similar C—O bond lengths [1.266 (2) and 1.268 (2) Å] as the carboxyl­ate H atom is disordered over two positions. This mol­ecular arrangement leads to the formation of dimers through strong and centrosymmetric low barrier O—H⋯O hydrogen bonds between the carb­oxy­lic groups. In addition to these inter­molecular inter­actions, the crystal packing consists of two different mol­ecular sheets with an angle between their mean planes of 64.4 (2)°. The cohesion between the different layers is ensured by C—H⋯S and C—H⋯O inter­actions.

1. Chemical context

There is intense research inter­est in developing phen­yl(morpholino)­methane­thione derivatives for pharmaceutical applications. They inhibit the activity of the enzymes MGL (mono­acyl­glycerol lipase) and FAAH (fatty acid amide hydro­lase) (Kapanda et al., 2009[Kapanda, C. N., Muccioli, G. G., Labar, G., Draoui, N., Lambert, D. M. & Poupaert, J. H. (2009). Med. Chem. Res. 18, 243-245.]; Draoui, 2009[Draoui Nihed (2009). Memory Master in Pharmaceutical Sciences, Université Catholique de Louvain (UCL), Belgium.]). MGL and FAAH respectively catalyse the degradation reactions of anandamide and 2-arachidonoylglycerol (2-AG) (Mechoulam et al., 1995[Mechoulam, R., Ben-Shabat, S., Hanus, L., Ligumsky, M., Kaminski, N. E., Schatz, A. R., Gopher, A., Almog, S., Martin, B. R., Compton, D. R., Pertwee, R. G., Griffin, G., Bayewitch, M., Barg, J. & Vogel, Z. (1995). Biochem. Pharmacol. 50, 83-90.]), which are endocannabinoids with beneficial effects in pathophysiological phenomena such as anxiety and pain, and neurodegenerative diseases such as Alzheimer's (Walker et al., 2000[Walker, J. M., Huang, S. M., Strangman, N. M. & Sanudo-Pena, M. C. (2000). J. Pain, 1, 20-32.]; Scherma et al., 2008[Scherma, M., Medalie, J., Fratta, W., Vadivel, S. K., Makriyannis, A., Piomelli, D., Mikics, E., Haller, J., Yasar, S., Tanda, G. & Goldberg, S. R. (2008). Neuropharmacology, 54, 129-140.]; Zvonok et al., 2008[Zvonok, N., Pandarinathan, L., Williams, J., Johnston, M., Karageorgos, I., Janero, D. R., Krishnan, S. C. & Makriyannis, A. (2008). Chem. Biol. 15, 854-862.]). In a continuation of our work on the synthesis of phen­yl(morpholino)­methane­thione derivatives (Agnimonhan et al., 2017[Agnimonhan, H. F., Ahoussi, L. A., Glinma, B., Kohoudé, J. M., Gbaguidi, F. A., Kpoviessi, S. D. S., Poupaert, J. H. & Accrombessi, G. C. (2017). Organic Chemistry: Current Research. 6, 2, 1-5.]), we report herein the synthesis and crystal structure analysis of a new compound, 4-[(morpholin-4-yl)carbothioyl]benzoic acid.

[Scheme 1]

2. Structural commentary

The title compound (Fig. 1[link]) crystallizes in the monoclinic space group P21/n with four mol­ecules in the unit cell (Z = 4). The hydrogen-atom coordinates were located using the high-quality residual electron density maps (Fig. 2[link]), which also show the bonding electrons and oxygen lone pairs. The mol­ecular structure is not planar, as shown in Fig. 1[link]. The morpholine ring adopts a chair conformation. The torsion angle between the morpholine group and the phenyl ring around C5—C8 (C thio­amide) is 3.49 (2)°. Such a conformation of the morpholine ring was also observed in the crystal structure of 2-meth­oxy-N-(morpholin-4-yl­carb­ono­thio­yl) benzohydrazide hemihydrate (Singh et al., 2007[Singh, N. K., Singh, M., Srivastava, A. K., Shrivastav, A. & Sharma, R. K. (2007). Acta Cryst. E63, o4895.]). The carb­oxy­lic acid group is bent slightly [0.15 (2) Å] out of the plane of the aromatic ring. The electron density deformation map calculated without the contribution of the carb­oxy­lic hydrogen (Fig. 2[link]a) shows that this carb­oxy­lic H atom is split over two positions H1A and H1B, linked respectively to atoms O1 and to O2 with a refined population of 0.54 (4)/0.46 (4). This disorder is confirmed by the resulting residual map (Fig. 2[link]b) and by the equivalent C—O1 [1.266 (2) Å] and C—O2 [1.268 (2) Å] bond lengths. As expected, these distances are significantly longer than classical C=O bonds [1.210 (8) Å] and are shorter than conventional C—O—H [1.311 (2) Å] bonds (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). Given the fact that the obtained results are averaged over the time scale and space of the experiments, the distribution of the electronic density reflects the superposition of the two configurations associated with the disorder (flipping) of the hydrogen atom of the carboxylic group. Thus, the hydrogen atom is shared via a double-well hydrogen bond, which leads to equivalent C—O bond lengths

[Figure 1]
Figure 1
A view of 4-(morpholine-4-carbono­thio­yl) benzoic acid with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
Residual electron density maps in the dimer COO plane calculated at the end of the independent atom refinement: (a) without the contribution of the hydrogen atom of the carb­oxy­lic group and (b) with the contribution of the hydrogen atom of the carb­oxy­lic group. The contour level is 0.05 e Å−3.

3. Supra­molecular features

The crystal packing (Fig. 3[link]) consists of two different mol­ecular sheets. The angle between the mean planes of the two sheets is 64.4 (2)° and the intra-sheet distance is 3.031 (2) Å. The building block is a centrosymmetric dimer built from strong and centrosymmetric double-well low-barrier O—H⋯O hydrogen bonds between two COOH groups. It is worth noting that the carb­oxy­lic groups are inter­connected in a head-to-head fashion with significantly short O1⋯O2 inter­action [2.666 (1) Å]. Gilli & Gilli (2000[Gilli, G. & Gilli, P. (2000). J. Mol. Struct. 552, 1-15.]) have documented such hydrogen bonds and similar features were also discussed by Benali-Cherif et al. (2014[Benali-Cherif, R., Takouachet, R., Bendeif, E.-E. & Benali-Cherif, N. (2014). Acta Cryst. C70, 323-325.]) in their work on polymorphs of para-amino benzoic acid. The dimers are themselves connected via weak inter­molecular C—H⋯O and C—H⋯S inter­actions (Table 1[link], Fig. 4[link]). Besides these short contacts, C—H⋯π inter­actions occur between the sheets, leading to a highly linked three-dimensional network of inter­molecular inter­actions (Fig. 4[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9B⋯O1i 0.98 (2) 2.47 (2) 3.2985 (19) 142.1 (16)
C12—H12B⋯S1 0.99 (3) 2.55 (2) 3.0860 (18) 113.8 (17)
O2—H1B⋯O1ii 0.93 (2) 1.75 (2) 2.6661 (15) 165 (5)
O1—H1A⋯O2ii 0.93 (2) 1.78 (2) 2.6661 (15) 160 (4)
C3—H3⋯O3iii 0.94 (2) 2.64 (2) 3.536 (2) 158 (2)
C6—H6⋯S1iv 0.89 (2) 2.996 (2) 3.8650 (14) 166 (2)
C10—H10BCgv 1.00 (2) 2.74 (2) 3.6180 (18) 147 (2)
Symmetry codes: (i) x, y, z-1; (ii) -x, -y+1, -z+2; (iii) x, y, z+1; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) -x+1, -y+1, -z+1.
[Figure 3]
Figure 3
A packing diagram for the title compound viewed along the [101] direction, showing the arrangement of two different mol­ecular sheets.
[Figure 4]
Figure 4
A projection of the three-dimensional network of inter­molecular inter­actions (purple and yellow dotted lines) of the title compound. The C—H⋯π inter­actions are shown with violet dashed lines.

4. Database survey

An unsubstituted analogue of the title compound has previously been reported, viz. morpholin-4-yl(phen­yl)methane­thione (Guntreddi et al., 2014[Guntreddi, T., Vanjari, R. & Singh, K. N. (2014). Org. Lett. 16, 3624-3627.]; Chen et al., 2016[Chen, S., Li, Y., Chen, J., Xu, X., Su, L., Tang, Z., Au, C. & Qiu, R. (2016). Synlett, 27, 2339-2344.]). Similar structures with a planar nucleus and a chair conformation around the methane­thione group have also been reported, including 1-(4-chloro­thio­benzo­yl)piperidine (Muth­u­raj et al., 2007[Muthuraj, V., Ramu, A., Thamaraichelvan, A., Athimoolam, S. & Natarajan, S. (2007). Acta Cryst. E63, o2873-o2874.]), piperidin-1-yl(pyridin-4-yl)methane­thione (Ray et al., 2013[Ray, S., Bhaumik, A., Dutta, A., Butcher, R. J. & Mukhopadhyay, C. (2013). Tetrahedron Lett. 54, 2164-2170.]), ferrocen-1-yl(morpholin-4-yl)methane­thione (Patra et al., 2013[Patra, M., Hess, J., Konatschnig, S., Spingler, B. & Gasser, G. (2013). Organometallics, 32, 6098-6105.]) and (3,5-dimethyl-1H-pyrazo-1-yl)(morpholin-4-yl)methane­thione (El-Sayed et al., 2018[El-Sayed, A., El-Samanody. (2018). Appl. Organomet. Chem. 32 1-13.]).

5. Synthesis and crystallization

All reagents along with the used solvent were obtained from Sigma–Adrich, Prolabo and Acros Organic and used without further purification. To a mixture of 4-formyl­benzoic acid (0.75 g; 5 mmol) and morpholine (0.63 ml, 7.5 mmol) in di­methyl­formamide (15 ml) under agitation was added montmorillonite K-10 (0.35 g) and sulfur S8 (0.26 g, 8 mmol). The brown mixture obtained was irradiated in a microwave for 10–15 minutes at 940 W. The temperature of the reaction mixture was in the range 411–416 K. After cooling to room temperature, the mixture was poured into a solution of ethyl acetate and hydro­chloric acid (0.1 M, 100 ml) to eliminate the excess of sulfur and amine. It was then saturated with an NH4Cl solution and finally washed with distilled water (2 × 100 ml); the organic phase obtained was dried over MgSO4 before being concentrated by evaporation. Brown prismatic crystals suitable for single-crystal X-ray analysis were grown by slow evaporation from an ethanol solution at ambient temperature in the presence of air or in the freezer. The synthesized crystals were stable in air and highly soluble in polar organic solvent (e.g. ethyl acetate, dimethyl sulfoxide).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen atoms were clearly identified in difference-Fourier maps and their atomic coordinates and isotropic displacement parameters were refined. At the end of refinement, the hydrogen atom of the carb­oxy­lic group was localized in the Fourier maps and refined accordingly by splitting its position on two sites with a refined occupancy ratio of 0.54 (4)/0.46 (4).

Table 2
Experimental details

Crystal data
Chemical formula C12H13NO3S
Mr 251.29
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 8.3252 (1), 17.1485 (3), 9.3505 (1)
β (°) 116.249 (1)
V3) 1197.26 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.27
Crystal size (mm) 0.15 × 0.15 × 0.08
 
Data collection
Diffractometer Bruker D8 Quest
Absorption correction Multi-scan (SADABS; Bruker, 2019[Bruker (2019). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.959, 0.981
No. of measured, independent and observed [I > 2σ(I)] reflections 22827, 3664, 3317
Rint 0.024
(sin θ/λ)max−1) 0.715
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.131, 1.08
No. of reflections 3664
No. of parameters 211
No. of restraints 2
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.55, −0.48
Computer programs: APEX3 and SAINT (Bruker, 2019[Bruker (2019). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

The quality of this room-temperature (298 K) crystal structure is also indicated by the experimental electron density deformation maps calculated after the IAM refinement at 0.75 Å−1 experimental resolution: they are of excellent quality (see Fig. 2[link]). They show detailed features in the electron density distribution in the chemical bonds (0.35 e Å−3 for a C—C bond), electron density lone pairs and almost no noise. This surprising data quality is mostly due to the quality of the detector and to the high redundancy of the experiment [22827 collected I(H), 3664 unique reflections, most of them (3317) having [I > 2σ(I)].

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2019); cell refinement: SAINT (Bruker, 2019); data reduction: SAINT (Bruker, 2019), PLATON (Spek, 2020); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: enCIFer (Allen et al., 2004) and WinGX (Farrugia, 2012).

4-[(Morpholin-4-yl)carbothioyl]benzoic acid top
Crystal data top
C12H13NO3SF(000) = 528
Mr = 251.29Dx = 1.394 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.3252 (1) ÅCell parameters from 22827 reflections
b = 17.1485 (3) Åθ = 2.4–30.5°
c = 9.3505 (1) ŵ = 0.27 mm1
β = 116.249 (1)°T = 293 K
V = 1197.26 (3) Å3Prism, brown
Z = 40.15 × 0.15 × 0.08 mm
Data collection top
Bruker D8 Quest
diffractometer
Rint = 0.024
Radiation source: micro-focus sealed X-ray tubeθmax = 30.5°, θmin = 2.4°
ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2019)
k = 2424
Tmin = 0.959, Tmax = 0.981l = 1313
22827 measured reflections60 standard reflections every 120 min
3664 independent reflections intensity decay: none
3317 reflections with I > 2σ(I)
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048All H-atom parameters refined
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0661P)2 + 0.4174P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3664 reflectionsΔρmax = 0.55 e Å3
211 parametersΔρmin = 0.47 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.44570 (18)0.31569 (7)0.41547 (15)0.0357 (3)
C90.4178 (2)0.39766 (8)0.36720 (19)0.0375 (3)
C100.5884 (2)0.43113 (10)0.3757 (2)0.0453 (4)
C110.6791 (3)0.30807 (11)0.3284 (3)0.0539 (4)
C120.5096 (3)0.27137 (10)0.3165 (2)0.0470 (4)
O30.65390 (19)0.38815 (8)0.28269 (17)0.0541 (3)
H70.016 (3)0.4221 (12)0.575 (2)0.050 (5)*
H60.112 (3)0.3489 (12)0.444 (2)0.046 (5)*
H40.573 (3)0.3397 (12)0.835 (2)0.047 (5)*
H9A0.378 (3)0.4270 (12)0.438 (2)0.051 (5)*
H30.452 (3)0.4107 (13)0.975 (3)0.052 (5)*
H9B0.324 (3)0.4011 (12)0.258 (3)0.050 (5)*
H12B0.532 (3)0.2169 (15)0.355 (3)0.061 (6)*
H10A0.679 (3)0.4269 (14)0.494 (3)0.062 (6)*
H12A0.412 (4)0.2743 (15)0.199 (3)0.074 (7)*
H11A0.716 (3)0.2808 (14)0.256 (3)0.062 (6)*
H11B0.783 (3)0.3030 (14)0.449 (3)0.062 (6)*
H10B0.569 (3)0.4855 (13)0.333 (3)0.053 (6)*
H1B0.099 (6)0.496 (3)0.869 (5)0.074 (19)*0.54 (6)
H1A0.147 (5)0.509 (2)1.062 (5)0.045 (16)*0.46 (6)
S10.47641 (7)0.19242 (2)0.59878 (5)0.04786 (14)
C20.20398 (17)0.42178 (8)0.78784 (14)0.0292 (2)
C50.35519 (17)0.33605 (7)0.62500 (15)0.0283 (2)
O10.21386 (16)0.48436 (8)1.01739 (13)0.0468 (3)
C10.11742 (19)0.46256 (8)0.87542 (16)0.0333 (3)
O20.05100 (16)0.47194 (9)0.80599 (14)0.0517 (3)
C40.45678 (18)0.35472 (8)0.78541 (16)0.0330 (3)
C60.17845 (18)0.36164 (9)0.54576 (16)0.0343 (3)
C80.43045 (17)0.28503 (8)0.53941 (15)0.0296 (2)
C30.38209 (18)0.39791 (8)0.86649 (15)0.0331 (3)
C70.10388 (18)0.40414 (9)0.62725 (16)0.0343 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0492 (7)0.0297 (5)0.0396 (6)0.0039 (5)0.0299 (5)0.0014 (4)
C90.0458 (7)0.0344 (7)0.0408 (7)0.0079 (5)0.0269 (6)0.0062 (5)
C100.0557 (9)0.0376 (7)0.0566 (10)0.0006 (6)0.0375 (8)0.0012 (7)
C110.0636 (11)0.0508 (9)0.0685 (12)0.0107 (8)0.0486 (10)0.0014 (8)
C120.0703 (11)0.0390 (8)0.0488 (9)0.0014 (7)0.0420 (9)0.0097 (7)
O30.0700 (8)0.0506 (7)0.0682 (8)0.0016 (6)0.0547 (7)0.0014 (6)
S10.0679 (3)0.0341 (2)0.0500 (2)0.01608 (17)0.0337 (2)0.01035 (15)
C20.0329 (6)0.0322 (6)0.0277 (5)0.0021 (4)0.0182 (5)0.0003 (4)
C50.0311 (6)0.0297 (6)0.0292 (5)0.0014 (4)0.0181 (5)0.0000 (4)
O10.0478 (6)0.0604 (7)0.0327 (5)0.0117 (5)0.0184 (5)0.0096 (5)
C10.0378 (6)0.0367 (6)0.0308 (6)0.0059 (5)0.0201 (5)0.0003 (5)
O20.0395 (6)0.0794 (9)0.0390 (6)0.0177 (6)0.0200 (5)0.0067 (6)
C40.0291 (6)0.0400 (7)0.0301 (6)0.0050 (5)0.0132 (5)0.0006 (5)
C60.0309 (6)0.0474 (7)0.0255 (5)0.0028 (5)0.0134 (5)0.0043 (5)
C80.0306 (6)0.0302 (6)0.0312 (6)0.0023 (4)0.0167 (5)0.0016 (5)
C30.0332 (6)0.0400 (7)0.0257 (5)0.0024 (5)0.0128 (5)0.0028 (5)
C70.0281 (6)0.0466 (7)0.0299 (6)0.0056 (5)0.0145 (5)0.0019 (5)
Geometric parameters (Å, º) top
N1—C81.3288 (17)C2—C71.3906 (18)
N1—C91.4631 (18)C2—C31.3938 (18)
N1—C121.4674 (17)C2—C11.4836 (17)
C9—C101.501 (2)C5—C61.3937 (18)
C9—H9A1.00 (2)C5—C41.3948 (18)
C9—H9B0.98 (2)C5—C81.4973 (17)
C10—O31.4202 (19)O1—C11.2664 (17)
C10—H10A1.03 (2)O1—H1A0.926 (19)
C10—H10B1.00 (2)C1—O21.2681 (18)
C11—O31.426 (2)O2—H1B0.93 (2)
C11—C121.503 (3)C4—C31.3881 (18)
C11—H11A0.98 (2)C4—H40.91 (2)
C11—H11B1.08 (2)C6—C71.3841 (18)
C12—H12B0.99 (3)C6—H60.89 (2)
C12—H12A1.04 (3)C3—H30.94 (2)
S1—C81.6700 (13)C7—H70.95 (2)
C8—N1—C9125.87 (11)C10—O3—C11111.19 (13)
C8—N1—C12123.12 (12)C7—C2—C3119.70 (11)
C9—N1—C12110.80 (12)C7—C2—C1119.55 (11)
N1—C9—C10109.51 (12)C3—C2—C1120.68 (11)
N1—C9—H9A109.5 (12)C6—C5—C4119.66 (11)
C10—C9—H9A110.8 (12)C6—C5—C8119.52 (11)
N1—C9—H9B109.0 (13)C4—C5—C8120.72 (11)
C10—C9—H9B109.6 (12)C1—O1—H1A112 (3)
H9A—C9—H9B108.4 (17)O1—C1—O2122.96 (12)
O3—C10—C9112.31 (14)O1—C1—C2118.70 (12)
O3—C10—H10A109.0 (13)O2—C1—C2118.31 (12)
C9—C10—H10A104.7 (13)C1—O2—H1B115 (3)
O3—C10—H10B105.9 (13)C3—C4—C5120.32 (12)
C9—C10—H10B111.0 (13)C3—C4—H4120.4 (13)
H10A—C10—H10B114.1 (18)C5—C4—H4119.3 (13)
O3—C11—C12111.86 (15)C7—C6—C5119.89 (12)
O3—C11—H11A107.6 (14)C7—C6—H6120.1 (13)
C12—C11—H11A108.8 (14)C5—C6—H6119.9 (13)
O3—C11—H11B109.5 (13)N1—C8—C5117.32 (11)
C12—C11—H11B109.6 (13)N1—C8—S1124.75 (10)
H11A—C11—H11B109.5 (18)C5—C8—S1117.81 (9)
N1—C12—C11109.05 (14)C4—C3—C2119.84 (12)
N1—C12—H12B108.6 (14)C4—C3—H3119.8 (13)
C11—C12—H12B110.5 (13)C2—C3—H3120.4 (13)
N1—C12—H12A108.2 (15)C6—C7—C2120.56 (12)
C11—C12—H12A109.0 (15)C6—C7—H7121.0 (13)
H12B—C12—H12A111.5 (19)C2—C7—H7118.5 (13)
C8—N1—C9—C10118.33 (16)C8—C5—C6—C7175.39 (13)
C12—N1—C9—C1056.57 (18)C9—N1—C8—C58.5 (2)
N1—C9—C10—O355.99 (19)C12—N1—C8—C5177.18 (14)
C8—N1—C12—C11117.94 (17)C9—N1—C8—S1175.68 (12)
C9—N1—C12—C1157.12 (19)C12—N1—C8—S11.4 (2)
O3—C11—C12—N157.0 (2)C6—C5—C8—N164.84 (17)
C9—C10—O3—C1156.2 (2)C4—C5—C8—N1118.65 (15)
C12—C11—O3—C1056.8 (2)C6—C5—C8—S1111.26 (13)
C7—C2—C1—O1173.78 (14)C4—C5—C8—S165.25 (15)
C3—C2—C1—O19.1 (2)C5—C4—C3—C20.9 (2)
C7—C2—C1—O28.3 (2)C7—C2—C3—C41.9 (2)
C3—C2—C1—O2168.82 (14)C1—C2—C3—C4175.16 (13)
C6—C5—C4—C30.6 (2)C5—C6—C7—C20.1 (2)
C8—C5—C4—C3175.88 (13)C3—C2—C7—C61.4 (2)
C4—C5—C6—C71.2 (2)C1—C2—C7—C6175.72 (14)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
C9—H9B···O1i0.98 (2)2.47 (2)3.2985 (19)142.1 (16)
C12—H12B···S10.99 (3)2.55 (2)3.0860 (18)113.8 (17)
O2—H1B···O1ii0.93 (2)1.75 (2)2.6661 (15)165 (5)
O1—H1A···O2ii0.93 (2)1.78 (2)2.6661 (15)160 (4)
C3—H3···O3iii0.94 (2)2.64 (2)3.536 (2)158 (2)
C6—H6···S1iv0.89 (2)2.996 (2)3.8650 (14)166 (2)
C10—H10B···Cgv1.00 (2)2.74 (2)3.6180 (18)147 (2)
Symmetry codes: (i) x, y, z1; (ii) x, y+1, z+2; (iii) x, y, z+1; (iv) x1/2, y+1/2, z1/2; (v) x+1, y+1, z+1.
 

Acknowledgements

We gratefully acknowledge Professor Georges Coffi Accrombessi of the Laboratoire de Chimie Organique Physique et de Synthèse (Bénin) and Professor Jacques H. Poupaert of the Laboratoire de Chimie Thérapeutique, Ecole de Pharmacie de l'Université Catholique de Louvain, Belgium for the reagents and solvents. We also thank the X-TechLab platform at the Agence de développement de Sèmè City in Benin and the IUCr–UNESCO OpenLab for funding through the IUCr Africa fund. We also particularly thank Drs R. Durst and J. Guillin (Bruker) for the free loan of the D8 diffractometer during the Sèmè city OpenLab.

References

First citationAgnimonhan, H. F., Ahoussi, L. A., Glinma, B., Kohoudé, J. M., Gbaguidi, F. A., Kpoviessi, S. D. S., Poupaert, J. H. & Accrombessi, G. C. (2017). Organic Chemistry: Current Research. 6, 2, 1–5.  Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBenali-Cherif, R., Takouachet, R., Bendeif, E.-E. & Benali-Cherif, N. (2014). Acta Cryst. C70, 323–325.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2019). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, S., Li, Y., Chen, J., Xu, X., Su, L., Tang, Z., Au, C. & Qiu, R. (2016). Synlett, 27, 2339–2344.  CAS Google Scholar
First citationDraoui Nihed (2009). Memory Master in Pharmaceutical Sciences, Université Catholique de Louvain (UCL), Belgium.  Google Scholar
First citationEl–Sayed, A., El–Samanody. (2018). Appl. Organomet. Chem. 32 1–13.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGilli, G. & Gilli, P. (2000). J. Mol. Struct. 552, 1–15.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuntreddi, T., Vanjari, R. & Singh, K. N. (2014). Org. Lett. 16, 3624–3627.  CSD CrossRef CAS PubMed Google Scholar
First citationKapanda, C. N., Muccioli, G. G., Labar, G., Draoui, N., Lambert, D. M. & Poupaert, J. H. (2009). Med. Chem. Res. 18, 243–245.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMechoulam, R., Ben-Shabat, S., Hanus, L., Ligumsky, M., Kaminski, N. E., Schatz, A. R., Gopher, A., Almog, S., Martin, B. R., Compton, D. R., Pertwee, R. G., Griffin, G., Bayewitch, M., Barg, J. & Vogel, Z. (1995). Biochem. Pharmacol. 50, 83–90.  CrossRef CAS PubMed Google Scholar
First citationMuthuraj, V., Ramu, A., Thamaraichelvan, A., Athimoolam, S. & Natarajan, S. (2007). Acta Cryst. E63, o2873–o2874.  CSD CrossRef IUCr Journals Google Scholar
First citationPatra, M., Hess, J., Konatschnig, S., Spingler, B. & Gasser, G. (2013). Organometallics, 32, 6098–6105.  CSD CrossRef CAS Google Scholar
First citationRay, S., Bhaumik, A., Dutta, A., Butcher, R. J. & Mukhopadhyay, C. (2013). Tetrahedron Lett. 54, 2164–2170.  CSD CrossRef CAS Google Scholar
First citationScherma, M., Medalie, J., Fratta, W., Vadivel, S. K., Makriyannis, A., Piomelli, D., Mikics, E., Haller, J., Yasar, S., Tanda, G. & Goldberg, S. R. (2008). Neuropharmacology, 54, 129–140.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, N. K., Singh, M., Srivastava, A. K., Shrivastav, A. & Sharma, R. K. (2007). Acta Cryst. E63, o4895.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWalker, J. M., Huang, S. M., Strangman, N. M. & Sanudo-Pena, M. C. (2000). J. Pain, 1, 20–32.  CrossRef Google Scholar
First citationZvonok, N., Pandarinathan, L., Williams, J., Johnston, M., Karageorgos, I., Janero, D. R., Krishnan, S. C. & Makriyannis, A. (2008). Chem. Biol. 15, 854–862.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds