research communications
of a new phenyl(morpholino)methanethione derivative: 4-[(morpholin-4-yl)carbothioyl]benzoic acid
aLaboratoire de Chimie Organique Physique et de Synthèse., Faculté des Sciences et Techniques (FAST), Université Abomey-Calavi, BP 526 Cotonou, Benin, bCRM2, UMR CNRS 7036, Université de Lorraine, F-54506, Vandoeuvre-lès-Nancy, France, cBruker France SAS, 4 allée Lorentz Champs sur Marne, 77447 Marne la Vallée Cedex 2, France, and dCRM2 UMR CNRS 7036, Université de Lorraine, F-54506, Vandoeuvre-lès-Nancy, France
*Correspondence e-mail: el-eulmi.bendeif@univ-lorraine.fr
4-[(Morpholin-4-yl)carbothioyl]benzoic acid, C12H13NO3S, a novel phenyl(morpholino)methanethione derivative, crystallizes in the monoclinic P21/n. The morpholine ring adopts a chair conformation and the carboxylic acid group is bent out slightly from the benzene ring mean plane. The molecular geometry of the carboxylic group is characterized by similar C—O bond lengths [1.266 (2) and 1.268 (2) Å] as the carboxylate H atom is disordered over two positions. This molecular arrangement leads to the formation of dimers through strong and centrosymmetric low barrier O—H⋯O hydrogen bonds between the carboxylic groups. In addition to these intermolecular interactions, the crystal packing consists of two different molecular sheets with an angle between their mean planes of 64.4 (2)°. The cohesion between the different layers is ensured by C—H⋯S and C—H⋯O interactions.
Keywords: crystal structure; phenyl(morpholino)methanethione.
CCDC reference: 1991487
1. Chemical context
There is intense research interest in developing phenyl(morpholino)methanethione derivatives for pharmaceutical applications. They inhibit the activity of the enzymes MGL (monoacylglycerol lipase) and FAAH (fatty acid amide hydrolase) (Kapanda et al., 2009; Draoui, 2009). MGL and FAAH respectively catalyse the degradation reactions of anandamide and 2-arachidonoylglycerol (2-AG) (Mechoulam et al., 1995), which are endocannabinoids with beneficial effects in pathophysiological phenomena such as anxiety and pain, and neurodegenerative diseases such as Alzheimer's (Walker et al., 2000; Scherma et al., 2008; Zvonok et al., 2008). In a continuation of our work on the synthesis of phenyl(morpholino)methanethione derivatives (Agnimonhan et al., 2017), we report herein the synthesis and analysis of a new compound, 4-[(morpholin-4-yl)carbothioyl]benzoic acid.
2. Structural commentary
The title compound (Fig. 1) crystallizes in the monoclinic P21/n with four molecules in the (Z = 4). The hydrogen-atom coordinates were located using the high-quality residual electron density maps (Fig. 2), which also show the bonding electrons and oxygen lone pairs. The molecular structure is not planar, as shown in Fig. 1. The morpholine ring adopts a chair conformation. The torsion angle between the morpholine group and the phenyl ring around C5—C8 (C thioamide) is 3.49 (2)°. Such a conformation of the morpholine ring was also observed in the of 2-methoxy-N-(morpholin-4-ylcarbonothioyl) benzohydrazide hemihydrate (Singh et al., 2007). The carboxylic acid group is bent slightly [0.15 (2) Å] out of the plane of the aromatic ring. The electron density deformation map calculated without the contribution of the carboxylic hydrogen (Fig. 2a) shows that this carboxylic H atom is split over two positions H1A and H1B, linked respectively to atoms O1 and to O2 with a refined population of 0.54 (4)/0.46 (4). This disorder is confirmed by the resulting residual map (Fig. 2b) and by the equivalent C—O1 [1.266 (2) Å] and C—O2 [1.268 (2) Å] bond lengths. As expected, these distances are significantly longer than classical C=O bonds [1.210 (8) Å] and are shorter than conventional C—O—H [1.311 (2) Å] bonds (Allen, 2002; Groom et al., 2016). Given the fact that the obtained results are averaged over the time scale and space of the experiments, the distribution of the electronic density reflects the superposition of the two configurations associated with the disorder (flipping) of the hydrogen atom of the carboxylic group. Thus, the hydrogen atom is shared via a double-well hydrogen bond, which leads to equivalent C—O bond lengths
3. Supramolecular features
The crystal packing (Fig. 3) consists of two different molecular sheets. The angle between the mean planes of the two sheets is 64.4 (2)° and the intra-sheet distance is 3.031 (2) Å. The building block is a centrosymmetric dimer built from strong and centrosymmetric double-well low-barrier O—H⋯O hydrogen bonds between two COOH groups. It is worth noting that the carboxylic groups are interconnected in a head-to-head fashion with significantly short O1⋯O2 interaction [2.666 (1) Å]. Gilli & Gilli (2000) have documented such hydrogen bonds and similar features were also discussed by Benali-Cherif et al. (2014) in their work on polymorphs of para-amino benzoic acid. The dimers are themselves connected via weak intermolecular C—H⋯O and C—H⋯S interactions (Table 1, Fig. 4). Besides these short contacts, C—H⋯π interactions occur between the sheets, leading to a highly linked three-dimensional network of intermolecular interactions (Fig. 4).
4. Database survey
An unsubstituted analogue of the title compound has previously been reported, viz. morpholin-4-yl(phenyl)methanethione (Guntreddi et al., 2014; Chen et al., 2016). Similar structures with a planar nucleus and a chair conformation around the methanethione group have also been reported, including 1-(4-chlorothiobenzoyl)piperidine (Muthuraj et al., 2007), piperidin-1-yl(pyridin-4-yl)methanethione (Ray et al., 2013), ferrocen-1-yl(morpholin-4-yl)methanethione (Patra et al., 2013) and (3,5-dimethyl-1H-pyrazo-1-yl)(morpholin-4-yl)methanethione (El-Sayed et al., 2018).
5. Synthesis and crystallization
All reagents along with the used solvent were obtained from Sigma–Adrich, Prolabo and Acros Organic and used without further purification. To a mixture of 4-formylbenzoic acid (0.75 g; 5 mmol) and morpholine (0.63 ml, 7.5 mmol) in dimethylformamide (15 ml) under agitation was added montmorillonite K-10 (0.35 g) and sulfur S8 (0.26 g, 8 mmol). The brown mixture obtained was irradiated in a microwave for 10–15 minutes at 940 W. The temperature of the reaction mixture was in the range 411–416 K. After cooling to room temperature, the mixture was poured into a solution of ethyl acetate and hydrochloric acid (0.1 M, 100 ml) to eliminate the excess of sulfur and amine. It was then saturated with an NH4Cl solution and finally washed with distilled water (2 × 100 ml); the organic phase obtained was dried over MgSO4 before being concentrated by evaporation. Brown prismatic crystals suitable for single-crystal X-ray analysis were grown by slow evaporation from an ethanol solution at ambient temperature in the presence of air or in the freezer. The synthesized crystals were stable in air and highly soluble in polar organic solvent (e.g. ethyl acetate, dimethyl sulfoxide).
6. Refinement
Crystal data, data collection and structure . All hydrogen atoms were clearly identified in difference-Fourier maps and their atomic coordinates and isotropic displacement parameters were refined. At the end of the hydrogen atom of the carboxylic group was localized in the Fourier maps and refined accordingly by splitting its position on two sites with a refined occupancy ratio of 0.54 (4)/0.46 (4).
details are summarized in Table 2
|
The quality of this room-temperature (298 K) −1 experimental resolution: they are of excellent quality (see Fig. 2). They show detailed features in the electron density distribution in the chemical bonds (0.35 e Å−3 for a C—C bond), electron density lone pairs and almost no noise. This surprising data quality is mostly due to the quality of the detector and to the high redundancy of the experiment [22827 collected I(H), 3664 unique reflections, most of them (3317) having [I > 2σ(I)].
is also indicated by the experimental electron density deformation maps calculated after the IAM at 0.75 ÅSupporting information
CCDC reference: 1991487
https://doi.org/10.1107/S2056989020003977/dx2024sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020003977/dx2024Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989020003977/dx2024Isup3.cml
Data collection: APEX3 (Bruker, 2019); cell
SAINT (Bruker, 2019); data reduction: SAINT (Bruker, 2019), PLATON (Spek, 2020); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: enCIFer (Allen et al., 2004) and WinGX (Farrugia, 2012).C12H13NO3S | F(000) = 528 |
Mr = 251.29 | Dx = 1.394 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 8.3252 (1) Å | Cell parameters from 22827 reflections |
b = 17.1485 (3) Å | θ = 2.4–30.5° |
c = 9.3505 (1) Å | µ = 0.27 mm−1 |
β = 116.249 (1)° | T = 293 K |
V = 1197.26 (3) Å3 | Prism, brown |
Z = 4 | 0.15 × 0.15 × 0.08 mm |
Bruker D8 Quest diffractometer | Rint = 0.024 |
Radiation source: micro-focus sealed X-ray tube | θmax = 30.5°, θmin = 2.4° |
ω scans | h = −11→11 |
Absorption correction: multi-scan (SADABS; Bruker, 2019) | k = −24→24 |
Tmin = 0.959, Tmax = 0.981 | l = −13→13 |
22827 measured reflections | 60 standard reflections every 120 min |
3664 independent reflections | intensity decay: none |
3317 reflections with I > 2σ(I) |
Refinement on F2 | 2 restraints |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | All H-atom parameters refined |
wR(F2) = 0.131 | w = 1/[σ2(Fo2) + (0.0661P)2 + 0.4174P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
3664 reflections | Δρmax = 0.55 e Å−3 |
211 parameters | Δρmin = −0.47 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
N1 | 0.44570 (18) | 0.31569 (7) | 0.41547 (15) | 0.0357 (3) | |
C9 | 0.4178 (2) | 0.39766 (8) | 0.36720 (19) | 0.0375 (3) | |
C10 | 0.5884 (2) | 0.43113 (10) | 0.3757 (2) | 0.0453 (4) | |
C11 | 0.6791 (3) | 0.30807 (11) | 0.3284 (3) | 0.0539 (4) | |
C12 | 0.5096 (3) | 0.27137 (10) | 0.3165 (2) | 0.0470 (4) | |
O3 | 0.65390 (19) | 0.38815 (8) | 0.28269 (17) | 0.0541 (3) | |
H7 | −0.016 (3) | 0.4221 (12) | 0.575 (2) | 0.050 (5)* | |
H6 | 0.112 (3) | 0.3489 (12) | 0.444 (2) | 0.046 (5)* | |
H4 | 0.573 (3) | 0.3397 (12) | 0.835 (2) | 0.047 (5)* | |
H9A | 0.378 (3) | 0.4270 (12) | 0.438 (2) | 0.051 (5)* | |
H3 | 0.452 (3) | 0.4107 (13) | 0.975 (3) | 0.052 (5)* | |
H9B | 0.324 (3) | 0.4011 (12) | 0.258 (3) | 0.050 (5)* | |
H12B | 0.532 (3) | 0.2169 (15) | 0.355 (3) | 0.061 (6)* | |
H10A | 0.679 (3) | 0.4269 (14) | 0.494 (3) | 0.062 (6)* | |
H12A | 0.412 (4) | 0.2743 (15) | 0.199 (3) | 0.074 (7)* | |
H11A | 0.716 (3) | 0.2808 (14) | 0.256 (3) | 0.062 (6)* | |
H11B | 0.783 (3) | 0.3030 (14) | 0.449 (3) | 0.062 (6)* | |
H10B | 0.569 (3) | 0.4855 (13) | 0.333 (3) | 0.053 (6)* | |
H1B | −0.099 (6) | 0.496 (3) | 0.869 (5) | 0.074 (19)* | 0.54 (6) |
H1A | 0.147 (5) | 0.509 (2) | 1.062 (5) | 0.045 (16)* | 0.46 (6) |
S1 | 0.47641 (7) | 0.19242 (2) | 0.59878 (5) | 0.04786 (14) | |
C2 | 0.20398 (17) | 0.42178 (8) | 0.78784 (14) | 0.0292 (2) | |
C5 | 0.35519 (17) | 0.33605 (7) | 0.62500 (15) | 0.0283 (2) | |
O1 | 0.21386 (16) | 0.48436 (8) | 1.01739 (13) | 0.0468 (3) | |
C1 | 0.11742 (19) | 0.46256 (8) | 0.87542 (16) | 0.0333 (3) | |
O2 | −0.05100 (16) | 0.47194 (9) | 0.80599 (14) | 0.0517 (3) | |
C4 | 0.45678 (18) | 0.35472 (8) | 0.78541 (16) | 0.0330 (3) | |
C6 | 0.17845 (18) | 0.36164 (9) | 0.54576 (16) | 0.0343 (3) | |
C8 | 0.43045 (17) | 0.28503 (8) | 0.53941 (15) | 0.0296 (2) | |
C3 | 0.38209 (18) | 0.39791 (8) | 0.86649 (15) | 0.0331 (3) | |
C7 | 0.10388 (18) | 0.40414 (9) | 0.62725 (16) | 0.0343 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0492 (7) | 0.0297 (5) | 0.0396 (6) | 0.0039 (5) | 0.0299 (5) | −0.0014 (4) |
C9 | 0.0458 (7) | 0.0344 (7) | 0.0408 (7) | 0.0079 (5) | 0.0269 (6) | 0.0062 (5) |
C10 | 0.0557 (9) | 0.0376 (7) | 0.0566 (10) | −0.0006 (6) | 0.0375 (8) | −0.0012 (7) |
C11 | 0.0636 (11) | 0.0508 (9) | 0.0685 (12) | 0.0107 (8) | 0.0486 (10) | −0.0014 (8) |
C12 | 0.0703 (11) | 0.0390 (8) | 0.0488 (9) | 0.0014 (7) | 0.0420 (9) | −0.0097 (7) |
O3 | 0.0700 (8) | 0.0506 (7) | 0.0682 (8) | 0.0016 (6) | 0.0547 (7) | 0.0014 (6) |
S1 | 0.0679 (3) | 0.0341 (2) | 0.0500 (2) | 0.01608 (17) | 0.0337 (2) | 0.01035 (15) |
C2 | 0.0329 (6) | 0.0322 (6) | 0.0277 (5) | 0.0021 (4) | 0.0182 (5) | −0.0003 (4) |
C5 | 0.0311 (6) | 0.0297 (6) | 0.0292 (5) | 0.0014 (4) | 0.0181 (5) | 0.0000 (4) |
O1 | 0.0478 (6) | 0.0604 (7) | 0.0327 (5) | 0.0117 (5) | 0.0184 (5) | −0.0096 (5) |
C1 | 0.0378 (6) | 0.0367 (6) | 0.0308 (6) | 0.0059 (5) | 0.0201 (5) | 0.0003 (5) |
O2 | 0.0395 (6) | 0.0794 (9) | 0.0390 (6) | 0.0177 (6) | 0.0200 (5) | −0.0067 (6) |
C4 | 0.0291 (6) | 0.0400 (7) | 0.0301 (6) | 0.0050 (5) | 0.0132 (5) | −0.0006 (5) |
C6 | 0.0309 (6) | 0.0474 (7) | 0.0255 (5) | 0.0028 (5) | 0.0134 (5) | −0.0043 (5) |
C8 | 0.0306 (6) | 0.0302 (6) | 0.0312 (6) | 0.0023 (4) | 0.0167 (5) | −0.0016 (5) |
C3 | 0.0332 (6) | 0.0400 (7) | 0.0257 (5) | 0.0024 (5) | 0.0128 (5) | −0.0028 (5) |
C7 | 0.0281 (6) | 0.0466 (7) | 0.0299 (6) | 0.0056 (5) | 0.0145 (5) | −0.0019 (5) |
N1—C8 | 1.3288 (17) | C2—C7 | 1.3906 (18) |
N1—C9 | 1.4631 (18) | C2—C3 | 1.3938 (18) |
N1—C12 | 1.4674 (17) | C2—C1 | 1.4836 (17) |
C9—C10 | 1.501 (2) | C5—C6 | 1.3937 (18) |
C9—H9A | 1.00 (2) | C5—C4 | 1.3948 (18) |
C9—H9B | 0.98 (2) | C5—C8 | 1.4973 (17) |
C10—O3 | 1.4202 (19) | O1—C1 | 1.2664 (17) |
C10—H10A | 1.03 (2) | O1—H1A | 0.926 (19) |
C10—H10B | 1.00 (2) | C1—O2 | 1.2681 (18) |
C11—O3 | 1.426 (2) | O2—H1B | 0.93 (2) |
C11—C12 | 1.503 (3) | C4—C3 | 1.3881 (18) |
C11—H11A | 0.98 (2) | C4—H4 | 0.91 (2) |
C11—H11B | 1.08 (2) | C6—C7 | 1.3841 (18) |
C12—H12B | 0.99 (3) | C6—H6 | 0.89 (2) |
C12—H12A | 1.04 (3) | C3—H3 | 0.94 (2) |
S1—C8 | 1.6700 (13) | C7—H7 | 0.95 (2) |
C8—N1—C9 | 125.87 (11) | C10—O3—C11 | 111.19 (13) |
C8—N1—C12 | 123.12 (12) | C7—C2—C3 | 119.70 (11) |
C9—N1—C12 | 110.80 (12) | C7—C2—C1 | 119.55 (11) |
N1—C9—C10 | 109.51 (12) | C3—C2—C1 | 120.68 (11) |
N1—C9—H9A | 109.5 (12) | C6—C5—C4 | 119.66 (11) |
C10—C9—H9A | 110.8 (12) | C6—C5—C8 | 119.52 (11) |
N1—C9—H9B | 109.0 (13) | C4—C5—C8 | 120.72 (11) |
C10—C9—H9B | 109.6 (12) | C1—O1—H1A | 112 (3) |
H9A—C9—H9B | 108.4 (17) | O1—C1—O2 | 122.96 (12) |
O3—C10—C9 | 112.31 (14) | O1—C1—C2 | 118.70 (12) |
O3—C10—H10A | 109.0 (13) | O2—C1—C2 | 118.31 (12) |
C9—C10—H10A | 104.7 (13) | C1—O2—H1B | 115 (3) |
O3—C10—H10B | 105.9 (13) | C3—C4—C5 | 120.32 (12) |
C9—C10—H10B | 111.0 (13) | C3—C4—H4 | 120.4 (13) |
H10A—C10—H10B | 114.1 (18) | C5—C4—H4 | 119.3 (13) |
O3—C11—C12 | 111.86 (15) | C7—C6—C5 | 119.89 (12) |
O3—C11—H11A | 107.6 (14) | C7—C6—H6 | 120.1 (13) |
C12—C11—H11A | 108.8 (14) | C5—C6—H6 | 119.9 (13) |
O3—C11—H11B | 109.5 (13) | N1—C8—C5 | 117.32 (11) |
C12—C11—H11B | 109.6 (13) | N1—C8—S1 | 124.75 (10) |
H11A—C11—H11B | 109.5 (18) | C5—C8—S1 | 117.81 (9) |
N1—C12—C11 | 109.05 (14) | C4—C3—C2 | 119.84 (12) |
N1—C12—H12B | 108.6 (14) | C4—C3—H3 | 119.8 (13) |
C11—C12—H12B | 110.5 (13) | C2—C3—H3 | 120.4 (13) |
N1—C12—H12A | 108.2 (15) | C6—C7—C2 | 120.56 (12) |
C11—C12—H12A | 109.0 (15) | C6—C7—H7 | 121.0 (13) |
H12B—C12—H12A | 111.5 (19) | C2—C7—H7 | 118.5 (13) |
C8—N1—C9—C10 | 118.33 (16) | C8—C5—C6—C7 | 175.39 (13) |
C12—N1—C9—C10 | −56.57 (18) | C9—N1—C8—C5 | 8.5 (2) |
N1—C9—C10—O3 | 55.99 (19) | C12—N1—C8—C5 | −177.18 (14) |
C8—N1—C12—C11 | −117.94 (17) | C9—N1—C8—S1 | −175.68 (12) |
C9—N1—C12—C11 | 57.12 (19) | C12—N1—C8—S1 | −1.4 (2) |
O3—C11—C12—N1 | −57.0 (2) | C6—C5—C8—N1 | 64.84 (17) |
C9—C10—O3—C11 | −56.2 (2) | C4—C5—C8—N1 | −118.65 (15) |
C12—C11—O3—C10 | 56.8 (2) | C6—C5—C8—S1 | −111.26 (13) |
C7—C2—C1—O1 | −173.78 (14) | C4—C5—C8—S1 | 65.25 (15) |
C3—C2—C1—O1 | 9.1 (2) | C5—C4—C3—C2 | 0.9 (2) |
C7—C2—C1—O2 | 8.3 (2) | C7—C2—C3—C4 | −1.9 (2) |
C3—C2—C1—O2 | −168.82 (14) | C1—C2—C3—C4 | 175.16 (13) |
C6—C5—C4—C3 | 0.6 (2) | C5—C6—C7—C2 | 0.1 (2) |
C8—C5—C4—C3 | −175.88 (13) | C3—C2—C7—C6 | 1.4 (2) |
C4—C5—C6—C7 | −1.2 (2) | C1—C2—C7—C6 | −175.72 (14) |
Cg is the centroid of the C2–C7 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9B···O1i | 0.98 (2) | 2.47 (2) | 3.2985 (19) | 142.1 (16) |
C12—H12B···S1 | 0.99 (3) | 2.55 (2) | 3.0860 (18) | 113.8 (17) |
O2—H1B···O1ii | 0.93 (2) | 1.75 (2) | 2.6661 (15) | 165 (5) |
O1—H1A···O2ii | 0.93 (2) | 1.78 (2) | 2.6661 (15) | 160 (4) |
C3—H3···O3iii | 0.94 (2) | 2.64 (2) | 3.536 (2) | 158 (2) |
C6—H6···S1iv | 0.89 (2) | 2.996 (2) | 3.8650 (14) | 166 (2) |
C10—H10B···Cgv | 1.00 (2) | 2.74 (2) | 3.6180 (18) | 147 (2) |
Symmetry codes: (i) x, y, z−1; (ii) −x, −y+1, −z+2; (iii) x, y, z+1; (iv) x−1/2, −y+1/2, z−1/2; (v) −x+1, −y+1, −z+1. |
Acknowledgements
We gratefully acknowledge Professor Georges Coffi Accrombessi of the Laboratoire de Chimie Organique Physique et de Synthèse (Bénin) and Professor Jacques H. Poupaert of the Laboratoire de Chimie Thérapeutique, Ecole de Pharmacie de l'Université Catholique de Louvain, Belgium for the reagents and solvents. We also thank the X-TechLab platform at the Agence de développement de Sèmè City in Benin and the IUCr–UNESCO OpenLab for funding through the IUCr Africa fund. We also particularly thank Drs R. Durst and J. Guillin (Bruker) for the free loan of the D8 diffractometer during the Sèmè city OpenLab.
References
Agnimonhan, H. F., Ahoussi, L. A., Glinma, B., Kohoudé, J. M., Gbaguidi, F. A., Kpoviessi, S. D. S., Poupaert, J. H. & Accrombessi, G. C. (2017). Organic Chemistry: Current Research. 6, 2, 1–5. Google Scholar
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Benali-Cherif, R., Takouachet, R., Bendeif, E.-E. & Benali-Cherif, N. (2014). Acta Cryst. C70, 323–325. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bruker (2019). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, S., Li, Y., Chen, J., Xu, X., Su, L., Tang, Z., Au, C. & Qiu, R. (2016). Synlett, 27, 2339–2344. CAS Google Scholar
Draoui Nihed (2009). Memory Master in Pharmaceutical Sciences, Université Catholique de Louvain (UCL), Belgium. Google Scholar
El–Sayed, A., El–Samanody. (2018). Appl. Organomet. Chem. 32 1–13. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gilli, G. & Gilli, P. (2000). J. Mol. Struct. 552, 1–15. Web of Science CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Guntreddi, T., Vanjari, R. & Singh, K. N. (2014). Org. Lett. 16, 3624–3627. CSD CrossRef CAS PubMed Google Scholar
Kapanda, C. N., Muccioli, G. G., Labar, G., Draoui, N., Lambert, D. M. & Poupaert, J. H. (2009). Med. Chem. Res. 18, 243–245. CrossRef CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mechoulam, R., Ben-Shabat, S., Hanus, L., Ligumsky, M., Kaminski, N. E., Schatz, A. R., Gopher, A., Almog, S., Martin, B. R., Compton, D. R., Pertwee, R. G., Griffin, G., Bayewitch, M., Barg, J. & Vogel, Z. (1995). Biochem. Pharmacol. 50, 83–90. CrossRef CAS PubMed Google Scholar
Muthuraj, V., Ramu, A., Thamaraichelvan, A., Athimoolam, S. & Natarajan, S. (2007). Acta Cryst. E63, o2873–o2874. CSD CrossRef IUCr Journals Google Scholar
Patra, M., Hess, J., Konatschnig, S., Spingler, B. & Gasser, G. (2013). Organometallics, 32, 6098–6105. CSD CrossRef CAS Google Scholar
Ray, S., Bhaumik, A., Dutta, A., Butcher, R. J. & Mukhopadhyay, C. (2013). Tetrahedron Lett. 54, 2164–2170. CSD CrossRef CAS Google Scholar
Scherma, M., Medalie, J., Fratta, W., Vadivel, S. K., Makriyannis, A., Piomelli, D., Mikics, E., Haller, J., Yasar, S., Tanda, G. & Goldberg, S. R. (2008). Neuropharmacology, 54, 129–140. CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Singh, N. K., Singh, M., Srivastava, A. K., Shrivastav, A. & Sharma, R. K. (2007). Acta Cryst. E63, o4895. Web of Science CSD CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Walker, J. M., Huang, S. M., Strangman, N. M. & Sanudo-Pena, M. C. (2000). J. Pain, 1, 20–32. CrossRef Google Scholar
Zvonok, N., Pandarinathan, L., Williams, J., Johnston, M., Karageorgos, I., Janero, D. R., Krishnan, S. C. & Makriyannis, A. (2008). Chem. Biol. 15, 854–862. CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.