research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and photoluminescent properties of bis­­(4′-chloro-2,2′:6′,2′′-terpyrid­yl)cobalt(II) dichloride tetra­hydrate

aDepartment of Chemistry, University College of Science, Tumkur University, Tumkur, Karnataka 572 103, India, bDepartment of Chemistry, Government Science College, Chitradurga, 577501, India, cDepartment of Chemistry, Kuvempu University, P. G. Centre, Kadur-577548, India, and dProf. C. N. R Rao Centre for Advanced Materials Research, Tumkur University, Tumkur-572 103, India
*Correspondence e-mail: vijaykumargr18@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 23 December 2019; accepted 1 March 2020; online 5 March 2020)

In the title hydrated complex, [Co(C15H10ClN3)2]Cl2·4H2O, the complete dication is generated by [\overline{4}] symmetry. The CoN6 moiety shows distortion from regular octa­hedral geometry with the trans bond angles of two N—Co—N units being 160.62 (9)°. In the crystal, O—H⋯Cl and C—H⋯O inter­actions link the components into (001) sheets. The title compound exhibits blue-light emission, as indicated by photoluminescence data, and a HOMO–LUMO energy separation of 2.23 eV was obtained from its diffuse reflectance spectrum.

1. Chemical context

Since the pioneering work of Tang et al. (1987[Tang, C. W. & VanSlyke, S. A. (1987). Appl. Phys. Lett. 51, 913-915.]), there has been increasing inter­est in chelating organic compounds being employed as charge-transporting materials in electronic devices such as OLEDs. Transition-metal complexes are promising candidates for use as hole-transporting materials as the metal ions can assume variable oxidation states and are found to exhibit low kinetic barriers for self-exchange reactions (Marcus, 1965[Marcus, R. A. (1965). J. Chem. Phys. 43, 679-701.]).

As 2,2′-bi­pyridine (bpy) is reported to show both σ-donor and π-acceptor capabilities, disubstituted 4,4′-, 5,5′- and 6,6′-derivatives of bpy have been widely employed in supra­molecular and coordination chemistry (Kaes et al., 2000[Kaes, C., Katz, A. & Hosseini, M. W. (2000). Chem. Rev. 100, 3553-3590.]; Williams et al., 2002[Williams, R. M., De Cola, L., Hartl, F., Lagref, J.-J., Planeix, J.-M., Cian, A. D. & Hosseini, M. W. (2002). Coord. Chem. Rev. 230, 253-261.]). Materials incorporating pyridine have also been shown to perform well in electron-transporting layers in OLEDs because of their high electron mobility (Ichikawa et al., 2010[Ichikawa, M., Wakabayashi, K., Hayashi, S., Yokoyama, N., Koyama, T. & Taniguchi, Y. (2010). Org. Electron. 11, 1966-1973.]).

Single-layer device structures that make use of RuII complexes involving bi­pyridine and its derivatives not only show the potential to transport both holes and electrons but also exhibit luminescent properties (Rudmann & Rubner, 2001[Rudmann, H. & Rubner, M. F. (2001). J. Appl. Phys. 90, 4338-4345.]; Gao & Bard, 2000[Gao, F. G. & Bard, A. J. (2000). J. Am. Chem. Soc. 122, 7426-7427.]). Reports of the application of cyclo­metalated IrIII complexes in vapour-deposited OLEDs both as efficient emissive and charge-transporting materials (Adamovich et al., 2003[Adamovich, V. I., Cordero, S. R., Djurovich, P. I., Tamayo, A., Thompson, M. E., D'Andrade, B. W. & Forrest, S. R. (2003). Org. Electron. 4, 77-87.]; Grushin et al., 2001[Grushin, V. V., Herron, N., LeCloux, D. D., Marshall, W. J., Petrov, V. A. & Wang, Y. (2001). Chem. Commun. pp. 1494-1495.]) and the luminescent properties of a distorted octa­hedral NiII complex with 5,5′-dimethyl-2,2′-bi­pyridine have been published (Abedi et al., 2015[Abedi, A., Saemian, E. & Amani, V. (2015). J. Struct. Chem. 56, 1545-1549.]). The synthesis and a study of the thermal and luminescent properties of d8 transition-metal complexes with the incorporation of substituted 2,2′;6′,2′′-terpyridine ligands were described by Momeni et al. (2017[Momeni, B. Z., Rahimi, F., Jebraeil, S. M. & Janczak, J. (2017). J. Mol. Struct. 1150, 196-205.]).

As an extension of such studies, we now report the synthesis, structure, spectroscopic characterization and thermal behaviour of the title complex, (I)[link].

[Scheme 1]

2. Structural commentary

The [Co(C15H10N3)2Cl2]2+ cation in (I)[link] is symmetric (the metal atom lies on a special position with [\overline{4}] site symmetry; atoms N2, C8 and Cl1 lie on a crystallographic twofold axis), thus the asymmetric unit contains half of the ligand coordinated to the cobalt ion, one water mol­ecule of crystallization (O atom site symmetry 1) and half of a chloride counter-ion (site symmetry 2) (Fig. 1[link]). The complex shows distortion from an ideal octa­hedral geometry for the metal ion with two N1—Co1—N1 bond angles being 160.62 (9)°. However, the N2—Co1—N2 bond angle is 180°, as it lies on the rotoinversion axis. The coordinated ligand is almost planar with the r.m.s. deviation of all the non-hydrogen atoms being 0.025 Å. Moreover, the dihedral angle between the ligands is 90.0°, as constrained by the presence of the rotoinversion axis.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link] with displacement ellipsoids drawn at the 50% probability level. The complete cation of the complex is generated by applying the symmetry operations (a) −y + [{5\over 4}], x + [{1\over 4}], −z + [{5\over 4}], (b) −x + 1, −y + [{3\over 2}], z and (c) y − [{1\over 4}], −x + [{5\over 4}], −z + [{5\over 4}].

3. Supra­molecular features

The unit cell of (I)[link] contains four cations, which are electrically balanced by eight chloride ions along with sixteen water mol­ecules of crystallization (Fig. 2[link]). In the crystal structure, two pairs of O—H⋯Cl hydrogen bonds between water mol­ecules and chloride ions [O2—H2O1⋯Cl2 and O2—H1O1⋯Cl2] link the components into infinite (001) sheets (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H2O1⋯Cl2 0.82 2.35 3.1735 177
O1—H1O1⋯Cl2i 0.84 2.43 3.2607 170
C7—H7⋯O1ii 0.93 2.44 3.334 (4) 161
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [x, y+{\script{1\over 2}}, -z+1].
[Figure 2]
Figure 2
A partial view of the crystal packing of (I)[link] viewed down [100]. Hydrogen bonds are shown as thin blue lines.

4. Thermal and photoluminescence studies

Thermogravimetry (TG) and differential thermal analysis (DTA) on (I)[link] show progressive decomposition in several steps. The first mass loss (obs. 10.0%, calc. 9.8% over the temperature range 60–140°C) is attributed to the loss of the water mol­ecules of crystallization, accompanied by endotherms at 78 and 134°C. The second mass loss over the temperature range 200–310°C accompanied by a DTA peak at 306°C is probably due to the decomposition of one ligand with an estimated mass loss of 36.1% (calcd. mass loss 36.2%). Powder XRD of the final residue after heating to 800°C indicated the presence of cobalt oxy hydroxide, CoO(OH) and Co3O4 (Sulikowska et al., 2000[Sulikowska, D. C., Malinowska, A. & Doczekalska, J. R. (2000). Pol. J. Chem. 74, 607-614.]).

The diffuse reflectance (DR) spectrum of (I)[link] was scanned in the wavelength range 200–1100 nm and an absorption band appeared in the visible region as shown in Fig. 3[link]a. A prominent peak with a diffuse reflectance percentage of 5.4 is observed at 640 nm. The Kubelka–Munk function (Harry, 1976[Harry, G. H. (1976). J. Res. Natl Bur. Stand. 80A, 567-583.]) (Fig. 3[link]b) was used in order to determine the HOMO–LUMO gap for (I)[link]: the band gap energy obtained from the plot was found to be 2.23 eV (Morales et al., 2007[Morales, A. E., Mora, E. S. & Pal, U. (2007). Rev. Mex. Fis., 53, 18-22.]).

[Figure 3]
Figure 3
(a) Diffuse reflectance spectrum of (I)[link] (b) Plot of [F(R)hν]1/2 versus energy for (I)

The excitation and emission spectra of (I)[link] recorded at room temperature are shown in Fig. 4[link]a and b. The excitation spectrum shows features at 318, 339, 382 and 395 nm. From the emission spectrum, three well-defined peaks at 436, 541 and 653 nm are apparent for (I)[link]. The determination of chromaticity co-ordinates [Publication CIE No 15.2 (1986[Publication CIE No. 15.2 (1986). Colorimetry, 2nd ed.. Vienna: Central Bureau of the Commission Internationale de L'Eclairage.]) and 17.4 (1987[Publication CIE No. 17.4 (1987). International Lighting Vocabulary. Vienna: Central Bureau of the Commission Internationale de L'Eclairage.])] was carried out at an excitation wavelength of 395 nm. The estimated CIE values for the probable excitation are incorporated in the left corner of Fig. 4[link]c. The colour of emission for the highlighted phosphor is indicated in the chromaticity diagram by the solid circle sign (star), which indicates that the emission colour is blue.

[Figure 4]
Figure 4
Photoluminescence spectra of (I)[link]; (a) excitation spectrum (b) emission spectrum (c) CIE graph

5. Database survey

A search of the Cambridge Structural Database gave 90 matches for crystal structures containing the 4′-chloro-2,2′;6′,2′′-terpyridine (L) ligand. Closely related complexes to (I)[link] with a pair of chelating L ligands generating an MN6 coordination sphere include the nickel and iron complexes [Ni(L-κ3N,N′,N′′)2]Cl2·3H2O (CCDC refcode HIVPUY; Huang et al., 2008[Huang, W. & Qian, H. (2008). J. Mol. Struct. 874, 64-76.]) and [Fe(L-κ3N,N′,N′′)2]Cl2·4H2O (HIVQEJ; Huang et al., 2008[Huang, W. & Qian, H. (2008). J. Mol. Struct. 874, 64-76.]); the latter complex is isostructural with (I)[link]. The structure of [Ru(L-κ3N,N′,N′′)2]Cl2·2H2O (PAYMOT; Wang et al., 2012[Wang, Y., Jiao, R., Qiu, X.-L., Wang, J. & Huang, W. (2012). Acta Cryst. E68, m777-m778.]) has also been described. The dihedral angles between the L ligands in HIVPUY, HIVQEJ and PAYMOT are 94.9 (3), 86.1 (3) and 87.0 (3)°, respectively. The crystals of both HIVPUY and HIVQEJ display three-dimensional networks arising from O—H⋯Cl and C—H⋯O inter­actions. In PAYMOT, the cations, anions and water mol­ecules are linked into a three-dimensional network by C—H⋯Cl, C—H⋯O and O—H⋯Cl hydrogen bonds.

6. Synthesis and crystallization

A solution of 4′-chloro-2,2′;6′,2′′-terpyridine (2) (0.535 g, 2.00 mmol) in 3 ml of ethanol was stirred at 333 K for about 30 min and an aqueous solution of cobalt(II) chloride hexa­hydrate (1) (0.2379 g, 1.00 mmol) dissolved in 2 ml of water was added slowly and the resulting solution was refluxed for one h. The brown solution obtained was subjected to slow evaporation at room temperature and was finally triturated with toluene to recover the powdered form of the title complex. The solid product was then kept in a desiccator in order to achieve constant weight (yield 0.584 g; 87.8%).

The product was recrystallized from a mixed methanol–aceto­nitrile (1:9) solvent system and brown prisms of (I)[link] were obtained. IR (KBr, cm−1): 3039 (CH aromatic), 1595 (C=N aromatic), 1416–1554 (C=C aromatic), 491 and 409 (Co—N symmetric and asymmetric bending, respectively). The broad band centred near 3423 cm−1 can be ascribed to ν(O—H) vibrations.

Simultaneous TG/DTA measurements were carried out using a Perkin–Elmer Diamond TG/DTA analyser. A Perkin–Elmer Lambda-35 UV-visible spectrophotometer and Moriba spectrofluorimeter equipped with a 450 W xenon lamp as an excitation source were used to obtain the diffuse reflectance and photoluminescence spectra, respectively.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The oxygen-bound H atoms were located from difference-Fourier maps and refined as riding: O—H = 0.82 (2) Å. The carbon-bound H atoms were placed in calculated positions (C—H = 0.93 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set to 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula [Co(C15H10ClN3)2]Cl2·4H2O
Mr 737.31
Crystal system, space group Tetragonal, I41/a
Temperature (K) 296
a, c (Å) 9.2846 (7), 38.069 (4)
V3) 3281.7 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.89
Crystal size (mm) 0.35 × 0.35 × 0.30
 
Data collection
Diffractometer Bruker APEXII CCD area
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.739, 0.765
No. of measured, independent and observed [I > 2σ(I)] reflections 12778, 2054, 1628
Rint 0.031
(sin θ/λ)max−1) 0.669
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.127, 1.08
No. of reflections 2054
No. of parameters 112
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.69, −0.41
Computer programs: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2016/4 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/4 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus (Bruker, 2009); program(s) used to solve structure: SHELXT2016/4 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/4 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2016/4 (Sheldrick, 2015b).

Bis(4'-chloro-2,2':6',2''-terpyridyl)cobalt(II) dichloride tetrahydrate top
Crystal data top
[Co(C15H10ClN3)2]Cl2·4H2OPrism
Mr = 737.31Dx = 1.492 Mg m3
Tetragonal, I41/aMo Kα radiation, λ = 0.71073 Å
Hall symbol: -I 4adCell parameters from 143 reflections
a = 9.2846 (7) Åθ = 2.1–28.4°
c = 38.069 (4) ŵ = 0.89 mm1
V = 3281.7 (6) Å3T = 296 K
Z = 4Prism, brown
F(000) = 15080.35 × 0.35 × 0.30 mm
Data collection top
Bruker APEXII CCD area
diffractometer
2054 independent reflections
Radiation source: fine-focus sealed tube1628 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
phi and φ scansθmax = 28.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1012
Tmin = 0.739, Tmax = 0.765k = 1112
12778 measured reflectionsl = 5050
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0659P)2 + 2.6119P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2054 reflectionsΔρmax = 0.69 e Å3
112 parametersΔρmin = 0.41 e Å3
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.5000000.7500000.6250000.03266 (18)
Cl10.5000000.7500000.45878 (2)0.0973 (5)
Cl20.0000000.2500000.51848 (4)0.0902 (4)
N20.5000000.7500000.57542 (6)0.0327 (5)
N10.3088 (2)0.8560 (2)0.61590 (4)0.0374 (4)
O10.1904 (3)0.5302 (3)0.52954 (7)0.0799 (7)
C60.3905 (2)0.8121 (2)0.55799 (5)0.0368 (4)
C50.2786 (2)0.8709 (2)0.58127 (5)0.0396 (5)
C10.2131 (3)0.9052 (3)0.63940 (6)0.0463 (5)
H10.2337710.8962680.6632000.056*
C70.3886 (3)0.8165 (3)0.52162 (5)0.0488 (6)
H70.3148900.8626690.5094850.059*
C80.5000000.7500000.50418 (8)0.0516 (9)
C20.0868 (3)0.9678 (4)0.62963 (7)0.0616 (7)
H20.0220441.0000780.6465380.074*
C40.1537 (3)0.9336 (4)0.56990 (7)0.0700 (9)
H40.1347700.9430430.5460160.084*
C30.0559 (3)0.9828 (5)0.59462 (7)0.0816 (11)
H30.0298091.0256720.5875280.098*
H2O10.142 (3)0.457 (2)0.5273 (8)0.057 (9)*
H1O10.151 (4)0.589 (3)0.5157 (8)0.085 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0358 (2)0.0358 (2)0.0263 (3)0.0000.0000.000
Cl10.1200 (10)0.1498 (13)0.0220 (4)0.0660 (9)0.0000.000
Cl20.1157 (11)0.0514 (6)0.1035 (10)0.0010 (6)0.0000.000
N20.0373 (12)0.0359 (12)0.0249 (10)0.0001 (9)0.0000.000
N10.0424 (10)0.0422 (10)0.0274 (8)0.0000 (7)0.0015 (7)0.0003 (7)
O10.0732 (16)0.0850 (19)0.0814 (16)0.0034 (14)0.0074 (13)0.0058 (15)
C60.0405 (11)0.0418 (11)0.0282 (9)0.0017 (8)0.0022 (8)0.0011 (8)
C50.0408 (11)0.0490 (12)0.0292 (10)0.0040 (9)0.0027 (8)0.0004 (8)
C10.0541 (14)0.0557 (14)0.0292 (10)0.0014 (11)0.0042 (9)0.0005 (9)
C70.0536 (14)0.0648 (15)0.0281 (10)0.0148 (11)0.0063 (9)0.0012 (9)
C80.065 (2)0.069 (2)0.0210 (13)0.0163 (17)0.0000.000
C20.0535 (15)0.085 (2)0.0462 (14)0.0173 (14)0.0114 (11)0.0033 (13)
C40.0591 (17)0.116 (3)0.0346 (12)0.0347 (17)0.0058 (11)0.0014 (14)
C30.0580 (17)0.135 (3)0.0519 (16)0.0430 (19)0.0035 (13)0.0036 (17)
Geometric parameters (Å, º) top
Co1—N2i1.888 (2)C6—C71.385 (3)
Co1—N21.888 (2)C6—C51.471 (3)
Co1—N12.0591 (18)C5—C41.368 (3)
Co1—N1i2.0591 (18)C1—C21.361 (4)
Co1—N1ii2.0591 (18)C1—H10.9300
Co1—N1iii2.0591 (18)C7—C81.376 (3)
Cl1—C81.728 (3)C7—H70.9300
N2—C61.344 (2)C8—C7iii1.376 (3)
N2—C6iii1.344 (2)C2—C31.370 (4)
N1—C11.341 (3)C2—H20.9300
N1—C51.355 (3)C4—C31.385 (4)
O1—H2O10.824 (18)C4—H40.9300
O1—H1O10.843 (18)C3—H30.9300
N2i—Co1—N2180.0N2—C6—C5113.33 (18)
N2i—Co1—N199.69 (5)C7—C6—C5125.58 (19)
N2—Co1—N180.31 (5)N1—C5—C4121.8 (2)
N2i—Co1—N1i80.31 (5)N1—C5—C6113.71 (18)
N2—Co1—N1i99.69 (5)C4—C5—C6124.48 (19)
N1—Co1—N1i91.623 (15)N1—C1—C2122.3 (2)
N2i—Co1—N1ii80.31 (5)N1—C1—H1118.8
N2—Co1—N1ii99.69 (5)C2—C1—H1118.8
N1—Co1—N1ii91.623 (15)C8—C7—C6117.3 (2)
N1i—Co1—N1ii160.62 (9)C8—C7—H7121.3
N2i—Co1—N1iii99.69 (5)C6—C7—H7121.3
N2—Co1—N1iii80.31 (5)C7iii—C8—C7122.3 (3)
N1—Co1—N1iii160.62 (9)C7iii—C8—Cl1118.85 (14)
N1i—Co1—N1iii91.623 (16)C7—C8—Cl1118.86 (14)
N1ii—Co1—N1iii91.623 (15)C1—C2—C3119.3 (2)
C6—N2—C6iii120.8 (2)C1—C2—H2120.4
C6—N2—Co1119.59 (12)C3—C2—H2120.4
C6iii—N2—Co1119.60 (12)C5—C4—C3118.7 (2)
C1—N1—C5118.49 (19)C5—C4—H4120.6
C1—N1—Co1128.45 (15)C3—C4—H4120.6
C5—N1—Co1113.02 (14)C2—C3—C4119.4 (3)
H2O1—O1—H1O1103 (3)C2—C3—H3120.3
N2—C6—C7121.1 (2)C4—C3—H3120.3
N1—Co1—N2—C60.56 (12)N2—C6—C5—N12.1 (3)
N1i—Co1—N2—C689.44 (12)C7—C6—C5—N1178.2 (2)
N1ii—Co1—N2—C690.56 (12)N2—C6—C5—C4177.1 (3)
N1iii—Co1—N2—C6179.44 (12)C7—C6—C5—C42.6 (4)
N1—Co1—N2—C6iii179.44 (12)C5—N1—C1—C20.7 (4)
N1i—Co1—N2—C6iii90.56 (12)Co1—N1—C1—C2176.8 (2)
N1ii—Co1—N2—C6iii89.44 (12)N2—C6—C7—C82.5 (3)
N1iii—Co1—N2—C6iii0.56 (12)C5—C6—C7—C8177.14 (19)
C6iii—N2—C6—C71.31 (17)C6—C7—C8—C7iii1.23 (15)
Co1—N2—C6—C7178.69 (16)C6—C7—C8—Cl1178.78 (15)
C6iii—N2—C6—C5178.4 (2)N1—C1—C2—C30.7 (5)
Co1—N2—C6—C51.6 (2)N1—C5—C4—C30.1 (5)
C1—N1—C5—C40.4 (4)C6—C5—C4—C3179.0 (3)
Co1—N1—C5—C4177.5 (2)C1—C2—C3—C40.2 (6)
C1—N1—C5—C6179.6 (2)C5—C4—C3—C20.1 (6)
Co1—N1—C5—C61.7 (2)
Symmetry codes: (i) y1/4, x+5/4, z+5/4; (ii) y+5/4, x+1/4, z+5/4; (iii) x+1, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H2O1···Cl20.822.353.1735177
O1—H1O1···Cl2iv0.842.433.2607170
C7—H7···O1v0.932.443.334 (4)161
Symmetry codes: (iv) x, y+1, z+1; (v) x, y+1/2, z+1.
 

Acknowledgements

The authors thank Tumkur University administration for their support and encouragement. BT is thankful to the Principal and the staff of Government Science College, Chithradurga-577501.

References

First citationAbedi, A., Saemian, E. & Amani, V. (2015). J. Struct. Chem. 56, 1545–1549.  Web of Science CSD CrossRef CAS Google Scholar
First citationAdamovich, V. I., Cordero, S. R., Djurovich, P. I., Tamayo, A., Thompson, M. E., D'Andrade, B. W. & Forrest, S. R. (2003). Org. Electron. 4, 77–87.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGao, F. G. & Bard, A. J. (2000). J. Am. Chem. Soc. 122, 7426–7427.  Web of Science CrossRef CAS Google Scholar
First citationGrushin, V. V., Herron, N., LeCloux, D. D., Marshall, W. J., Petrov, V. A. & Wang, Y. (2001). Chem. Commun. pp. 1494–1495.  Web of Science CSD CrossRef Google Scholar
First citationHarry, G. H. (1976). J. Res. Natl Bur. Stand. 80A, 567–583.  Google Scholar
First citationHuang, W. & Qian, H. (2008). J. Mol. Struct. 874, 64–76.  Web of Science CSD CrossRef CAS Google Scholar
First citationIchikawa, M., Wakabayashi, K., Hayashi, S., Yokoyama, N., Koyama, T. & Taniguchi, Y. (2010). Org. Electron. 11, 1966–1973.  Web of Science CrossRef CAS Google Scholar
First citationKaes, C., Katz, A. & Hosseini, M. W. (2000). Chem. Rev. 100, 3553–3590.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMarcus, R. A. (1965). J. Chem. Phys. 43, 679–701.  CrossRef CAS Web of Science Google Scholar
First citationMomeni, B. Z., Rahimi, F., Jebraeil, S. M. & Janczak, J. (2017). J. Mol. Struct. 1150, 196–205.  Web of Science CSD CrossRef CAS Google Scholar
First citationMorales, A. E., Mora, E. S. & Pal, U. (2007). Rev. Mex. Fis., 53, 18–22.  CAS Google Scholar
First citationPublication CIE No. 15.2 (1986). Colorimetry, 2nd ed.. Vienna: Central Bureau of the Commission Internationale de L'Eclairage.  Google Scholar
First citationPublication CIE No. 17.4 (1987). International Lighting Vocabulary. Vienna: Central Bureau of the Commission Internationale de L'Eclairage.  Google Scholar
First citationRudmann, H. & Rubner, M. F. (2001). J. Appl. Phys. 90, 4338–4345.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSulikowska, D. C., Malinowska, A. & Doczekalska, J. R. (2000). Pol. J. Chem. 74, 607–614.  Google Scholar
First citationTang, C. W. & VanSlyke, S. A. (1987). Appl. Phys. Lett. 51, 913–915.  CrossRef CAS Web of Science Google Scholar
First citationWang, Y., Jiao, R., Qiu, X.-L., Wang, J. & Huang, W. (2012). Acta Cryst. E68, m777–m778.  CSD CrossRef IUCr Journals Google Scholar
First citationWilliams, R. M., De Cola, L., Hartl, F., Lagref, J.-J., Planeix, J.-M., Cian, A. D. & Hosseini, M. W. (2002). Coord. Chem. Rev. 230, 253–261.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds