research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A redetermination of the crystal structure of the mannitol complex NH4[Mo2O5(C6H11O6)]·H2O: hydrogen-bonding scheme and Hirshfeld surface analysis

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Ferdowsi University of Mashhad (FUM), Mashhad, PO Box 917751436, Iran, and bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: joelt@tulane.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 24 December 2019; accepted 2 March 2020; online 10 March 2020)

The redetermined structure [for the previous study, see: Godfrey & Waters (1975[Godfrey, J. E. & Waters, J. M. (1975). Cryst. Struct. Commun. 4, 5-8.]). Cryst. Struct. Commun. 4, 5–8] of ammonium μ-oxido-μ-[1,5,6-tri­hydroxy­hexane-2,3,4-tris­(olato)]bis­[dioxidomolybdenum(V)] monohydrate, NH4[Mo2(C6H11O6)O5]·H2O, was obtained from an attempt to prepare a glutamic acid complex from the [Co2Mo10H4O38]6− anion. Subsequent study indicated the complex arose from a substantial impurity of mannitol in the glutamic acid sample used. All hydrogen atoms have been located in the present study and the packing displays N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds. A Hirshfeld surface analysis was also performed.

1. Chemical context

Over the past few years, there has been considerable inter­est in derivatives of polyoxo- and heteropolyxometallates for both biological and materials applications, particularly where chirality may be conferred by the attachment of chiral ligands (Arefian et al., 2017[Arefian, M., Mirzaei, M., Eshtiagh-Hosseini, H. & Frontera, A. (2017). Dalton Trans. 46, 550-558.]; Proust et al., 2012[Proust, A., Matt, B., Villanneau, R., Guillemot, G., Gouzerh, P. & Izzet, G. (2012). Chem. Soc. Rev. 41, 7605-7622.]; Mirzaei et al., 2014[Mirzaei, M., Eshtiagh-Hosseini, H., Alipour, M. & Frontera, A. (2014). Coord. Chem. Rev. 275, 1-18.]; An et al., 2006[An, H.-Y., Wang, E.-B., Xiao, D.-R., Li, Y.-G., Su, Z.-M. & Xu, L. (2006). Angew. Chem. Int. Ed. 45, 904-908.]). Recently our group prepared the aspartate complex [Co2(C4H6NO4)2(γ-Mo8O26)(H2O)10]·4H2O from (NH4)6[Co2Mo10H4O38], and L-aspartic acid (Tahmasebi et al., 2019[Tahmasebi, M., Mirzaei, M., Eshtiagh-Hosseini, H., Mague, J. T., Bauzá, A. & Frontera, A. (2019). Acta Cryst. C75, 469-477.]) and have now proceeded to explore the generality of this reaction with other chiral amino acids. We report here on the reaction of the heteropolyoxometallate with L-glutamic acid from which a mannitol complex of molybdenum was obtained as a result of the unexpected presence of a substantial impurity of mannitol in the glutamic acid sample used.

[Scheme 1]

2. Structural commentary

Instead of the expected complex containing glutamate ligands, the crystals obtained were found to have a unit cell essentially identical to that reported previously for a compound formulated as NH4[Mo2O5(C6H12O6)]·H2O (Godfrey & Waters, 1975[Godfrey, J. E. & Waters, J. M. (1975). Cryst. Struct. Commun. 4, 5-8.]) and the structure obtained indicates that it is the same complex. Subsequent to the identification of the product as a mannitol complex, the original sample of glutamic acid was checked by 1H and 13C NMR spectroscopy and found to contain a significant amount of mannitol as an impurity, thus explaining the formation of the title complex. A comparison of the geometry of the {Mo2O9} skeleton found in the present study with that in the previous report (Table 1[link]) indicates the two to be essentially identical, although the present structure, using low-temperature data and more modern instrumentation and software, is of improved precision. A particular feature is that all hydrogen atoms could be located in a difference map and those attached to the oxygen atoms of the mannitol ligand could be refined (although we ultimately chose to fix them in idealized positions because of the presence of heavy metal atoms), making it abundantly clear that three hydroxyl groups on the ligand are deprotonated and also providing a more complete description of the inter­molecular hydrogen-bonding scheme. The terminal Mo=O distances (Table 1[link] and Fig. 1[link]) are short, indicating a degree of multiple bonding while those to O6 and O9 are longer and consistent with single bonds. For the bridging oxygen atoms, O5, O8 and O7, the Mo—O distances for O7 are about the same as for those to O6 and O9, consistent with this atom being a bridging oxide ion. Those to O8 are somewhat longer, as expected for a bridging alkoxide ion, while those to O7 are considerably longer. The previous authors (Godfrey & Waters, 1975[Godfrey, J. E. & Waters, J. M. (1975). Cryst. Struct. Commun. 4, 5-8.]) attributed this `at least in part to stereochemical strain' but there is no indication from the relevant bond angles that this is the case. Having located all of the hydrogen atoms, we see that O7 is a hydroxyl group and so would be expected to be less strongly bound to the metal than the anionic oxygen atoms. The Mo1⋯Mo2 separation is 3.1579 (7) Å.

Table 1
Comparison of the geometries of the {Mo2O9} fragment (Å, °)

  This work XMANMOa MANMOL10b
Mo1⋯Mo2 3.1579 (7) 3.147 (2) 3.1435 (3)
Mo1—O1 1.720 (2) 1.722 (5) 1.727 (3)
Mo1—O2 1.703 (2) 1.679 (5) 1.693 (3)
Mo1—O5 1.937 (2) 1.940 (5) 1.936 (2)
Mo1—O6 1.939 (2) 1.998 (5) 1.931 (2)
Mo1—O7 2.454 (2) 2.469 (5) 2.459 (2)
Mo1—O8 2.1733 (19) 2.175 (5) 2.162 (1)
Mo2—O3 1.713 (2) 1.711 (5) 1.716 (2)
Mo2—O4 1.710 (2) 1.690 (5) 1.703 (2)
Mo2—O5 1.955 (2) 1.952 (5) 1.950 (1)
Mo2—O9 1.941 (2) 1.958 (5) 1.925 (2)
Mo2—O7 2.478 (2) 2.530 (5) 2.489 (2)
Mo2—O8 2.1220 (19) 2.120 (5) 2.113 (1)
       
O1—Mo1—O2 105.18 (12) 107.0 (5) 103.00 (11)
O3—Mo2—O4 106.63 (12) 107.3 (5) 104.19 (11)
O2—Mo1—O5 104.04 (11) 103.6 (5) 105.02 (9)
O4—Mo2—O5 102.25 (11) 102.0 (5) 100.90 (8)
O5—Mo1—O8 72.27 (8) 72.9 (4) 72.33 (5)
O5—Mo2—O8 73.08 (8) 73.9 (4) 73.18 (5)
Notes: (a) Godfrey & Waters (1975[Godfrey, J. E. & Waters, J. M. (1975). Cryst. Struct. Commun. 4, 5-8.]); (b) Hedman (1977[Hedman, B. (1977). Acta Cryst. B33, 3077-3083.]).
[Figure 1]
Figure 1
The asymmetric unit with the atom-labeling scheme and 50% probability ellipsoids. The hydrogen bonds from the cation to the anion and from the anion to the water mol­ecule of crystallization are shown by dashed lines.

3. Supra­molecular features

The presence of the ammonium ion, water mol­ecule of crystallization and the remaining hydroxyl groups on the mannitol ligand generates an extensive hydrogen-bonding network in the crystal, which was alluded to in the previous work (Godfrey & Waters, 1975[Godfrey, J. E. & Waters, J. M. (1975). Cryst. Struct. Commun. 4, 5-8.]) but not described. From Table 2[link], it may be seen that each ammonium ion connects three adjacent anions through N1—H1D⋯O1i, N1—H1E⋯O2ii and N1—H1F⋯O1iii hydrogen bonds [symmetry codes: (i) −1 + x, y, z; (ii) −1 + x, −1 + y, z; (iii) 1 − x, −[{1\over 2}] + y, −z] while each water mol­ecule connects anions by O12—H12A⋯O4v and O12—H12B⋯O11vi hydrogen bonds [symmetry codes: (v) x, −1 + y, z; (vi) 1 − x, −[{1\over 2}] + y, 1 − z]. The anion at x, y, z is connected to one at (1 − x, −[{1\over 2}] + y, −z) by an O7—H7⋯O5iii hydrogen bond and to one at (1 − x, −[{1\over 2}] + y, 1 − z) by an O10—H10⋯O8iv hydrogen bond. Two C—H⋯O hydrogen bonds, one relatively strong and the other weak (Table 2[link]) complete the inter­molecular inter­actions The result is a structure in which layers of anions, formed by the O—H⋯O and C—H⋯O hydrogen bonds between them, are arranged parallel to the bc plane and are connected along the a-axis direction by the O—H⋯O and N—H⋯O hydrogen bonds to the cation and the water mol­ecule of crystallization (Figs. 2[link] and 3[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1D⋯O1i 0.88 2.46 3.272 (4) 154
N1—H1E⋯O2ii 0.88 2.22 3.066 (4) 162
N1—H1F⋯O1iii 0.88 1.95 2.831 (4) 177
O7—H7⋯O5iii 0.87 1.72 2.589 (3) 178
O10—H10⋯O8iv 0.87 2.37 3.137 (3) 148
O12—H12A⋯O4v 0.87 2.01 2.845 (4) 162
O12—H12B⋯O11vi 0.87 2.02 2.812 (3) 151
C4—H4⋯O10iv 1.00 2.37 3.243 (4) 145
C5—H5⋯O10vii 1.00 2.58 3.491 (4) 151
Symmetry codes: (i) x-1, y, z; (ii) x-1, y-1, z; (iii) [-x+1, y-{\script{1\over 2}}, -z]; (iv) [-x+1, y-{\script{1\over 2}}, -z+1]; (v) x, y-1, z; (vi) [-x, y-{\script{1\over 2}}, -z+1]; (vii) [-x+1, y+{\script{1\over 2}}, -z+1].
[Figure 2]
Figure 2
Packing viewed along the c-axis direction. O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds are shown, respectively, by red, blue and black dashed lines
[Figure 3]
Figure 3
Packing viewed along the b-axis direction with inter­molecular hydrogen bonds depicted as in Fig. 2[link].

4. Database survey

A search of the Cambridge Crystallographic Database (CSD version 5.41 updated to November 2019; Groom, et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for a triply deprotonated mannitol ion with two Group 6 metals attached found only (NH4)[Mo2O5(C6H12O6)]·H2O (XMANMO; Godfrey & Waters, 1975[Godfrey, J. E. & Waters, J. M. (1975). Cryst. Struct. Commun. 4, 5-8.]) and Na[Mo2O5(C6H12O6)]·2H2O (MANMOL10; Hedman, 1977[Hedman, B. (1977). Acta Cryst. B33, 3077-3083.]). From Table 1[link], the geometries of the {Mo2O9} core in all three structures are quite comparable. The packing in MANMOL10 is also quite similar to that seen in the present work, particularly when viewed along the b-axis direction although the channel (Fig. 2[link]) between anions contains sodium cations in place of ammonium cations so there are different hydrogen-bonding inter­actions.

5. Hirshfeld surface analysis

The calculation and analysis of the Hirshfeld surface (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spakman, M. A. (2007). Chem. Commun. pp. 3814-3816.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) can provide information on the presence and directionality of packing inter­actions in a crystal; for example, strong and weak hydrogen bonds and π-stacking and C—H⋯π(ring) inter­actions. The characteristics and appearance of the Hirshfeld surface and related surfaces and fingerprint plots that can be generated with CrystalExplorer 17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17. The University of Western Australia.]) have been fully described (Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]). Two views of the Hirshfeld surface mapped over dnorm are shown in Fig. 4[link]a and Fig. 4[link]b, which include the entities making the closest contacts as listed in Table 2[link]. The O—H⋯O and N—H⋯O hydrogen bonds to and within the asymmetric unit are clearly shown by the dark-red circles while the light-red ones indicate weak C—H⋯O inter­actions: these are consistent with the extensive hydrogen-bonding network depicted in Figs. 2[link] and 3[link]. The Hirshfeld surface mapped over shape index (Fig. 5[link]a) and curvedness (Fig. 5[link]b) indicate, as expected from the X-ray structure, that the anion is compact with relatively little flat surface exposed to its neighboring ions. Fig. 6[link]a shows the overall fingerprint plot while Fig. 6[link]b and 6c show delineation into H⋯H, and O—H⋯H—O plus N—H⋯H—O inter­actions, respectively. The former comprises 27.4% of the surface while the latter comprises 66%, again emphasizing the extensive O—H⋯O and N—H⋯O hydrogen bonding present. Of particular note in Fig. 6[link]c are the two spikes at de + di = 1.56 Å, which is over 1.3 Å less than the sum of the van der Waals radii and consistent with the prevalence of these two types of hydrogen bonding.

[Figure 4]
Figure 4
Two views of the Hirshfeld surface for the anion mapped over dnorm over the range −0.779 to +1.091 arbitrary units with the nearest hydrogen-bonded neighbors added.
[Figure 5]
Figure 5
The Hirshfeld surface for the asymmetric unit mapped over (a) the shape-index property and (b) the curvedness property.
[Figure 6]
Figure 6
The full two-dimensional fingerprint plot for (a) the anion and those delineated into (b) H⋯H and (c) O—H⋯H—O plus N—H⋯H—O contacts.

6. Synthesis and crystallization

(NH4)6[Co2Mo10H4O38]·7H2O (0.29 g, 0.15 mmol) was dissolved in 8 ml of water and 4 ml of ethanol were added, giving a solution pH above 4. Then, 8 ml of an aqueous solution of supposed L-glutamic acid, C5H9NO4 (0.13 g, 0.9 mmol), was added leading to a solution pH of 3.2. The solution was stirred for 2 h and then transferred to a Teflon-lined autoclave (30 ml) and kept at 383 K for 72 h. After the mixture had been cooled slowly to room temperature, it was filtered and with slow evaporation of the solution at room temperature, flat colorless crystals of the title compound were obtained in 73% yield (based on Mo). Subsequent to the identification of the crystals as a mannitol complex, the original sample of glutamic acid was examined by 1H and 13C NMR and these spectra clearly showed the glutamic acid to be contaminated by a substantial qu­antity of mannitol.

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms attached to carbon were placed in calculated positions (C—H = 0.99–1.00 Å) while those attached to oxygen and to nitro­gen were placed in locations derived from a difference map, refined for a few cycles to ensure that reasonable displacement parameters could be achieved, and then their coordinates were adjusted to give O—H = 0.87 and N—H = 0.88 Å. All were included as riding contributions with isotropic displacement parameters 1.2–1.5 times those of the parent atoms.

Table 3
Experimental details

Crystal data
Chemical formula NH4[Mo2(C6H11O6)O5]·H2O
Mr 487.08
Crystal system, space group Monoclinic, P21
Temperature (K) 150
a, b, c (Å) 8.1775 (17), 6.7722 (14), 12.305 (3)
β (°) 99.664 (3)
V3) 671.8 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.93
Crystal size (mm) 0.28 × 0.17 × 0.07
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.61, 0.88
No. of measured, independent and observed [I > 2σ(I)] reflections 12645, 3598, 3407
Rint 0.024
(sin θ/λ)max−1) 0.695
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.050, 1.05
No. of reflections 3598
No. of parameters 190
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.91, −0.51
Absolute structure Flack x determined using 1454 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]).
Absolute structure parameter −0.026 (16)
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Ammonium µ-oxido-µ-[1,5,6-trihydroxyhexane-2,3,4-tris(olato)]bis[dioxidomolybdenum(V)] monohydrate top
Crystal data top
NH4[Mo2(C6H11O6)O5]·H2OF(000) = 480
Mr = 487.08Dx = 2.408 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 8.1775 (17) ÅCell parameters from 9659 reflections
b = 6.7722 (14) Åθ = 2.5–29.6°
c = 12.305 (3) ŵ = 1.93 mm1
β = 99.664 (3)°T = 150 K
V = 671.8 (2) Å3Plate, colourless
Z = 20.28 × 0.17 × 0.07 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3598 independent reflections
Radiation source: fine-focus sealed tube3407 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 8.3333 pixels mm-1θmax = 29.6°, θmin = 1.7°
φ and ω scansh = 1110
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 99
Tmin = 0.61, Tmax = 0.88l = 1717
12645 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.019H-atom parameters constrained
wR(F2) = 0.050 w = 1/[σ2(Fo2) + (0.0303P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3598 reflectionsΔρmax = 0.91 e Å3
190 parametersΔρmin = 0.51 e Å3
1 restraintAbsolute structure: Flack x determined using 1454 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
Primary atom site location: dualAbsolute structure parameter: 0.026 (16)
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 10 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.99 - 1.00 Å) while those attached to nitrogen and oxygen were placed in locations derived from a difference map and their coordinates adjusted to give N—H = 0.88 and O—H = 0.87 %A. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.73216 (3)0.83802 (4)0.15779 (2)0.00976 (7)
Mo20.34681 (3)0.84715 (3)0.16065 (2)0.00929 (7)
O10.8054 (3)0.7655 (4)0.04086 (19)0.0185 (5)
O20.8566 (3)1.0290 (4)0.2099 (2)0.0189 (5)
O30.2139 (3)0.7705 (4)0.04573 (19)0.0168 (5)
O40.2581 (3)1.0501 (4)0.2096 (2)0.0182 (5)
O50.5254 (3)0.9641 (3)0.09446 (18)0.0117 (4)
O60.8084 (3)0.6119 (3)0.24906 (19)0.0127 (4)
O70.5241 (3)0.5776 (3)0.10930 (17)0.0124 (4)
H70.5063250.5416070.0404530.019*
O80.5670 (2)0.8230 (4)0.27874 (15)0.0095 (4)
O90.2980 (3)0.6327 (3)0.25489 (19)0.0131 (5)
O100.4487 (3)0.6669 (3)0.55252 (18)0.0148 (5)
H100.4037790.5700840.5835050.022*
O110.1432 (3)0.5102 (4)0.5185 (2)0.0193 (5)
H110.1427140.4061350.4770500.029*
C10.5738 (4)0.4105 (5)0.1814 (3)0.0137 (6)
H1A0.6400810.3153720.1458310.016*
H1B0.4755370.3416500.2002680.016*
C20.6776 (4)0.4998 (5)0.2839 (2)0.0123 (6)
H20.7257340.3923080.3351850.015*
C30.5819 (4)0.6456 (4)0.3449 (3)0.0107 (6)
H30.6482350.6748250.4190350.013*
C40.4041 (4)0.5921 (5)0.3577 (2)0.0116 (6)
H40.3982700.4483700.3753490.014*
C50.3477 (4)0.7141 (4)0.4496 (3)0.0119 (6)
H50.3651470.8567150.4338530.014*
C60.1656 (4)0.6852 (5)0.4567 (3)0.0160 (6)
H6A0.1243320.8014160.4927300.019*
H6B0.1004980.6738660.3814570.019*
O120.1166 (3)0.1850 (4)0.3922 (2)0.0268 (6)
H12A0.1721180.1257730.3472900.040*
H12B0.0396280.1008430.4011800.040*
N10.0369 (3)0.3889 (4)0.1356 (2)0.0167 (6)
H1C0.1070450.4573510.1831730.025*
H1D0.0509640.4613410.1113630.025*
H1E0.0065460.2822510.1679030.025*
H1F0.0853960.3542610.0798030.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.00916 (12)0.00909 (11)0.01150 (11)0.00040 (13)0.00308 (8)0.00066 (13)
Mo20.00860 (12)0.00943 (11)0.00969 (11)0.00069 (13)0.00110 (8)0.00059 (13)
O10.0198 (13)0.0200 (11)0.0174 (11)0.0015 (10)0.0078 (10)0.0001 (10)
O20.0150 (12)0.0170 (12)0.0240 (13)0.0051 (10)0.0007 (10)0.0000 (10)
O30.0140 (12)0.0201 (11)0.0154 (11)0.0008 (9)0.0007 (9)0.0013 (9)
O40.0171 (13)0.0155 (12)0.0235 (14)0.0050 (10)0.0076 (11)0.0009 (10)
O50.0123 (11)0.0098 (10)0.0132 (10)0.0010 (8)0.0026 (8)0.0013 (8)
O60.0116 (11)0.0103 (11)0.0166 (11)0.0011 (9)0.0034 (9)0.0005 (9)
O70.0177 (12)0.0097 (10)0.0100 (10)0.0007 (9)0.0026 (8)0.0022 (8)
O80.0111 (9)0.0068 (10)0.0107 (8)0.0006 (9)0.0022 (7)0.0018 (9)
O90.0134 (11)0.0113 (10)0.0144 (12)0.0025 (9)0.0020 (9)0.0006 (9)
O100.0161 (12)0.0149 (11)0.0133 (11)0.0009 (9)0.0020 (9)0.0005 (8)
O110.0227 (13)0.0148 (11)0.0227 (12)0.0041 (10)0.0104 (10)0.0012 (10)
C10.0159 (16)0.0085 (13)0.0179 (14)0.0005 (11)0.0060 (12)0.0010 (11)
C20.0128 (15)0.0108 (14)0.0142 (14)0.0011 (11)0.0051 (12)0.0027 (11)
C30.0128 (15)0.0077 (13)0.0111 (13)0.0011 (11)0.0002 (12)0.0015 (11)
C40.0144 (15)0.0093 (13)0.0113 (14)0.0001 (11)0.0025 (12)0.0007 (11)
C50.0142 (15)0.0084 (13)0.0132 (14)0.0016 (11)0.0025 (12)0.0014 (11)
C60.0132 (16)0.0177 (16)0.0175 (16)0.0003 (13)0.0035 (13)0.0005 (12)
O120.0233 (14)0.0271 (14)0.0336 (15)0.0079 (11)0.0148 (12)0.0136 (12)
N10.0136 (14)0.0153 (16)0.0215 (13)0.0004 (9)0.0043 (11)0.0041 (10)
Geometric parameters (Å, º) top
Mo1—O21.703 (2)O11—H110.8699
Mo1—O11.720 (2)C1—C21.522 (5)
Mo1—O51.937 (2)C1—H1A0.9900
Mo1—O61.939 (2)C1—H1B0.9900
Mo1—O82.1733 (19)C2—C31.532 (4)
Mo1—O72.454 (2)C2—H21.0000
Mo1—Mo23.1579 (7)C3—C41.532 (4)
Mo2—O41.710 (2)C3—H31.0000
Mo2—O31.713 (2)C4—C51.532 (4)
Mo2—O91.941 (2)C4—H41.0000
Mo2—O51.955 (2)C5—C61.519 (4)
Mo2—O82.1220 (19)C5—H51.0000
Mo2—O72.478 (2)C6—H6A0.9900
O6—C21.435 (4)C6—H6B0.9900
O7—C11.453 (4)O12—H12A0.8700
O7—H70.8700O12—H12B0.8699
O8—C31.444 (4)N1—H1C0.8800
O9—C41.436 (4)N1—H1D0.8798
O10—C51.427 (4)N1—H1E0.8800
O10—H100.8700N1—H1F0.8800
O11—C61.437 (4)
O2—Mo1—O1105.18 (12)C3—O8—Mo2115.55 (17)
O2—Mo1—O5104.04 (11)C3—O8—Mo1114.93 (17)
O1—Mo1—O5101.08 (10)Mo2—O8—Mo194.64 (7)
O2—Mo1—O6105.54 (11)C4—O9—Mo2121.01 (19)
O1—Mo1—O697.81 (11)C5—O10—H10109.5
O5—Mo1—O6139.04 (9)C6—O11—H11110.2
O2—Mo1—O8100.26 (11)O7—C1—C2104.9 (2)
O1—Mo1—O8154.56 (10)O7—C1—H1A110.8
O5—Mo1—O872.27 (8)C2—C1—H1A110.8
O6—Mo1—O875.09 (9)O7—C1—H1B110.8
O2—Mo1—O7169.57 (10)C2—C1—H1B110.8
O1—Mo1—O785.19 (10)H1A—C1—H1B108.8
O5—Mo1—O772.31 (8)O6—C2—C1107.6 (2)
O6—Mo1—O773.48 (9)O6—C2—C3105.8 (2)
O8—Mo1—O769.37 (8)C1—C2—C3113.7 (3)
O2—Mo1—Mo2121.00 (9)O6—C2—H2109.8
O1—Mo1—Mo2120.21 (8)C1—C2—H2109.8
O5—Mo1—Mo235.97 (6)C3—C2—H2109.8
O6—Mo1—Mo2103.50 (7)O8—C3—C2105.2 (2)
O8—Mo1—Mo242.05 (5)O8—C3—C4105.3 (2)
O7—Mo1—Mo250.52 (5)C2—C3—C4118.0 (3)
O4—Mo2—O3106.63 (12)O8—C3—H3109.3
O4—Mo2—O9104.41 (11)C2—C3—H3109.3
O3—Mo2—O995.78 (11)C4—C3—H3109.3
O4—Mo2—O5102.25 (11)O9—C4—C5109.6 (2)
O3—Mo2—O5101.17 (10)O9—C4—C3107.9 (2)
O9—Mo2—O5142.62 (10)C5—C4—C3110.9 (3)
O4—Mo2—O8100.51 (11)O9—C4—H4109.5
O3—Mo2—O8152.85 (11)C5—C4—H4109.5
O9—Mo2—O876.66 (9)C3—C4—H4109.5
O5—Mo2—O873.08 (8)O10—C5—C6110.3 (3)
O4—Mo2—O7169.36 (10)O10—C5—C4109.5 (2)
O3—Mo2—O783.30 (10)C6—C5—C4113.1 (3)
O9—Mo2—O777.80 (9)O10—C5—H5107.9
O5—Mo2—O771.48 (8)C6—C5—H5107.9
O8—Mo2—O769.65 (8)C4—C5—H5107.9
O4—Mo2—Mo1120.20 (9)O11—C6—C5110.5 (3)
O3—Mo2—Mo1118.74 (8)O11—C6—H6A109.6
O9—Mo2—Mo1107.31 (7)C5—C6—H6A109.6
O5—Mo2—Mo135.58 (6)O11—C6—H6B109.6
O8—Mo2—Mo143.31 (5)C5—C6—H6B109.6
O7—Mo2—Mo149.85 (5)H6A—C6—H6B108.1
Mo1—O5—Mo2108.45 (10)H12A—O12—H12B104.1
C2—O6—Mo1114.04 (18)H1C—N1—H1D109.6
C1—O7—Mo1107.42 (18)H1C—N1—H1E109.5
C1—O7—Mo2122.26 (18)H1D—N1—H1E109.5
Mo1—O7—Mo279.63 (7)H1C—N1—H1F109.3
C1—O7—H7111.1H1D—N1—H1F109.5
Mo1—O7—H7115.7H1E—N1—H1F109.4
Mo2—O7—H7116.5
Mo1—O7—C1—C225.7 (3)C1—C2—C3—C441.6 (4)
Mo2—O7—C1—C262.9 (3)Mo2—O9—C4—C588.7 (3)
Mo1—O6—C2—C164.9 (3)Mo2—O9—C4—C332.1 (3)
Mo1—O6—C2—C357.1 (3)O8—C3—C4—O938.6 (3)
O7—C1—C2—O655.2 (3)C2—C3—C4—O978.3 (3)
O7—C1—C2—C361.7 (3)O8—C3—C4—C581.4 (3)
Mo2—O8—C3—C293.0 (2)C2—C3—C4—C5161.7 (3)
Mo1—O8—C3—C215.7 (3)O9—C4—C5—O10177.4 (2)
Mo2—O8—C3—C432.3 (3)C3—C4—C5—O1063.6 (3)
Mo1—O8—C3—C4141.03 (18)O9—C4—C5—C654.0 (3)
O6—C2—C3—O842.6 (3)C3—C4—C5—C6173.0 (3)
C1—C2—C3—O875.3 (3)O10—C5—C6—O1140.3 (3)
O6—C2—C3—C4159.6 (3)C4—C5—C6—O1182.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···O1i0.882.463.272 (4)154
N1—H1E···O2ii0.882.223.066 (4)162
N1—H1F···O1iii0.881.952.831 (4)177
O7—H7···O5iii0.871.722.589 (3)178
O10—H10···O8iv0.872.373.137 (3)148
O12—H12A···O4v0.872.012.845 (4)162
O12—H12B···O11vi0.872.022.812 (3)151
C4—H4···O10iv1.002.373.243 (4)145
C5—H5···O10vii1.002.583.491 (4)151
Symmetry codes: (i) x1, y, z; (ii) x1, y1, z; (iii) x+1, y1/2, z; (iv) x+1, y1/2, z+1; (v) x, y1, z; (vi) x, y1/2, z+1; (vii) x+1, y+1/2, z+1.
Comparison of the geometries of the {Mo2O9} fragment (Å, °) top
This workXMANMOaMANMOL10b
Mo1···Mo23.1579 (7)3.147 (2)3.1435 (3)
Mo1—O11.720 (2)1.722 (5)1.727 (3)
Mo1—O21.703 (2)1.679 (5)1.693 (3)
Mo1—O51.937 (2)1.940 (5)1.936 (2)
Mo1—O61.939 (2)1.998 (5)1.931 (2)
Mo1—O72.454 (2)2.469 (5)2.459 (2)
Mo1—O82.1733 (19)2.175 (5)2.162 (1)
Mo2—O31.713 (2)1.711 (5)1.716 (2)
Mo2—O41.710 (2)1.690 (5)1.703 (2)
Mo2—O51.955 (2)1.952 (5)1.950 (1)
Mo2—O91.941 (2)1.958 (5)1.925 (2)
Mo2—O72.478 (2)2.530 (5)2.489 (2)
Mo2—O82.1220 (19)2.120 (5)2.113 (1)
O1—Mo1—O2105.18 (12)107.0 (5)103.00 (11)
O3—Mo2—O4106.63 (12)107.3 (5)104.19 (11)
O2—Mo1—O5104.04 (11)103.6 (5)105.02 (9)
O4—Mo2—O5102.25 (11)102.0 (5)100.90 (8)
O5—Mo1—O872.27 (8)72.9 (4)72.33 (5)
O5—Mo2—O873.08 (8)73.9 (4)73.18 (5)
Notes: (a) Godfrey & Waters (1975); (b) Hedman (1977).
 

Acknowledgements

MM gratefully acknowledges the financial support by the Ferdowsi University of Mashhad and the Iran Science Elites Federation (ISEF), and also thanks the Cambridge Crystallographic Data Centre (CCDC) for access to the Cambridge Structural Database. JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationAn, H.-Y., Wang, E.-B., Xiao, D.-R., Li, Y.-G., Su, Z.-M. & Xu, L. (2006). Angew. Chem. Int. Ed. 45, 904–908.  Web of Science CSD CrossRef CAS Google Scholar
First citationArefian, M., Mirzaei, M., Eshtiagh-Hosseini, H. & Frontera, A. (2017). Dalton Trans. 46, 550–558.  Web of Science CrossRef Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGodfrey, J. E. & Waters, J. M. (1975). Cryst. Struct. Commun. 4, 5–8.  CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHedman, B. (1977). Acta Cryst. B33, 3077–3083.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spakman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMirzaei, M., Eshtiagh-Hosseini, H., Alipour, M. & Frontera, A. (2014). Coord. Chem. Rev. 275, 1–18.  Web of Science CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationProust, A., Matt, B., Villanneau, R., Guillemot, G., Gouzerh, P. & Izzet, G. (2012). Chem. Soc. Rev. 41, 7605–7622.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTahmasebi, M., Mirzaei, M., Eshtiagh-Hosseini, H., Mague, J. T., Bauzá, A. & Frontera, A. (2019). Acta Cryst. C75, 469–477.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17. The University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds