research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (C7H9N4O2)[ZnCl3(H2O)]

CROSSMARK_Color_square_no_text.svg

aEquipe Metallation, Complexes Moleculaires et Applications, Université Moulay Ismail, Faculté des Sciences, BP 11201 Zitoune, 50000 Meknés, Morocco, and bLaboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Batouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: elhamdanihicham40@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 29 January 2020; accepted 27 February 2020; online 10 March 2020)

In the title mol­ecular salt, 1,3-dimethyl-2,6-dioxo-2,3,6,7-tetra­hydro-1H-purin-9-ium aqua­tri­chlorido­zincate(II), (C7H9N4O2)[ZnCl3(H2O)], the fused ring system of the cation is close to planar, with the largest deviation from the mean plane being 0.037 (3) Å. In the complex anion, the ZnII cation is coordinated by three chloride ions and one oxygen atom from the water ligand in a distorted tetra­hedral geometry. In the crystal, inversion dimers between pairs of cations linked by pairwise N—H⋯O hydrogen bonds generate R22(10) rings. The anions are linked into dimers by pairs of O—H⋯Cl hydrogen bonds and the respective dimers are linked by O—H⋯O and N—H⋯Cl hydrogen bonds. Together, these generate a three-dimensional supra­molecular network. Hirshfeld surfaces were generated to gain further insight into the packing.

1. Chemical context

Theophylline, C7H8N4O2, is an alkaloid derivative of xanthine, containing a fused pyrimidine-imidazole ring system with conjugated double bonds. It has many biological and pharmacological properties (see, for example, Rao et al., 2005[Rao, F. V., Andersen, O. A., Vora, K. A., DeMartino, J. A. & van Aalten, D. M. F. (2005). Chem. Biol. 12, 973-980.]; Piosik et al., 2005[Piosik, J., Gwizdek-Wiśniewska, A., Ulanowska, K., Ochociński, J., Czyz, A. & Wegrzyn, G. (2005). Acta Biochim. Pol. 52, 923-926.]). Various studies have shown that theophylline can be used as a medicine for the treatment of asthmatic bronchitis and chronic obstructive bronchitis (under several brand names), and as anti­cancer drugs (Nafisi et al. 2003[Nafisi, S., Sadjadi, A. S., Zadeh, S. S. & Damerchelli, M. (2003). J. Biomol. Struct. Dyn. 21, 289-296.]; Rao et al. 2005[Rao, F. V., Andersen, O. A., Vora, K. A., DeMartino, J. A. & van Aalten, D. M. F. (2005). Chem. Biol. 12, 973-980.]; Piosik et al. 2005[Piosik, J., Gwizdek-Wiśniewska, A., Ulanowska, K., Ochociński, J., Czyz, A. & Wegrzyn, G. (2005). Acta Biochim. Pol. 52, 923-926.]). Furthermore, theophylline complexes with transition metals can be used in anti­cancer drugs (David et al., 1999[David, L., Cozar, O., Forizs, E., Craciun, C., Ristoiu, D. & Balan, C. (1999). Spectrochim. Acta A, 55, 2559-2564.]).

[Scheme 1]

As part of our studies in this area, we reacted theophylline with ZnCl2 under acid conditions to give the mol­ecular salt (C7H9N4O2)·[ZnCl3(H2O)] and its crystal structure is described herein.

2. Structural commentary

The asymmetric unit of the title mol­ecular salt (Fig. 1[link]) comprises one theophyllinium (C7H9N4O2)+ cation protonated at N2 and one [ZnCl3(H2O)]−1 anion. As expected, the [ZnCl3(H2O)] tetra­hedron contains one short Zn—O bond distance [2.0240 (15) Å] and three longer Zn—Cl bonds distances [in the range 2.2121 (7)–2.2745 (6) Å]. These bond lengths are consistent with the values observed in analogous compounds such as [H3N(CH2)8NH3]ZnCl4, [C6H5–C2H4–NH3]2ZnCl4, (C12H12N2)[ZnCl4] and (C10H22N2)[ZnCl4](El Mrabet et al., 2017[El Mrabet, R., Kassou, S., Tahiri, O., Belaaraj, A., El Ammari, L. & Saadi, M. (2017). J. Cryst. Growth, 472, 76-83.]), as are the Cl—Zn—Cl [111.45 (3)–116.99 (3)°] and Cl—Zn—O [101.36 (5)–108.19 (5)°] bond angles (Kassou et al., 2016[Kassou, S., El-Mrabet, R., Kaiba, A., Guionneau, P. & Belaaraj, A. (2016). Phys. Chem. Chem. Phys. 18, 9431-9436.]; Campos-Gaxiola et al., 2015[Campos-Gaxiola, J. J., Arredondo Rea, S. P., Corral Higuera, R., Höpfl, H. & Cruz Enríquez, A. (2015). Acta Cryst. C71, 48-52.]; Soudani et al., 2013[Soudani, S., Aubert, E., Jelsch, C. & Ben Nasr, C. (2013). Acta Cryst. C69, 1304-1306.]).

[Figure 1]
Figure 1
Mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

The packing is consolidated by a network of hydrogen bonds (Table 1[link], Fig. 2[link]). The cations are linked into inversion dimers by pairs of N1—H1⋯O2 hydrogen bonds, which generate R22(10) rings. The anions also form inversion dimers, being linked by pairwise O3—H3A⋯Cl3 hydrogen bonds. The anions are linked to the cations via O3—H3B⋯O1 hydrogen bonds from the water mol­ecule to a carbonyl group of the pyrimidine ring. Finally, the cations are linked to the anions via N2—H2⋯Cl2 hydrogen bonds. Taken together, these hydrogen bonds generate a three-dimensional supra­molecular network (Fig. 3[link]), which also features short Cl⋯π contacts [Cl⋯centroid distances in the range of 3.533 (2)–3.620 (2) Å].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 1.87 2.7067 (18) 163
N2—H2⋯Cl2ii 0.86 2.21 3.0652 (15) 174
C6—H6C⋯O2iii 0.96 2.65 3.431 (3) 139
O3—H3A⋯Cl3iv 0.77 2.43 3.1915 (17) 176
O3—H3B⋯O1 0.82 1.90 2.718 (2) 173
Symmetry codes: (i) -x, -y+2, -z+1; (ii) x-1, y, z; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) -x+2, -y+1, -z+1.
[Figure 2]
Figure 2
Mol­ecules linked by O–H⋯O and O–H⋯Cl strong hydrogen bonds.
[Figure 3]
Figure 3
Perspective view of the crystal structure along the c axis showing the layered organization.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, May 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for organic–inorganic compounds containing theophilinium in the cation revealed three similar structures: theophyllinium tri­chloro­theophyllineplatinum(II), bis­(theophyllinium) tetra­chloro­platinum(II) (Griffith et al., 1979[Griffith, E.H., Amma, E.L. (1979). Chem. Commun. pp. 322-324.]) and bis­(theophyllinium) tetra­bromo­palladium(II) (Salas et al., 1989[Salas, J. M., Colacio, E., Moreno, M. N., Ruiz, J., Debaerdemaeker, T., Via, J. & Arriortua, M. I. (1989). J. Crystallogr. Spectrosc. Res. 19, 755-763.]). In each of the three complexes, the metal cation is surrounded by four ligands in a planar geometry. The crystal structures of these compounds are different from that of the title compound; however, the organic–inorganic moities are linked through hydrogen bonds in all of these structures.

5. Hirshfeld surface analysis

In order to gain further insight into the inter­molecular inter­actions in the title compound, we used the program Crystal Explorer (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]), to consider separately the (C7H9N4O2)+ organic cation and the [ZnCl3(H2O)] inorganic anion.

The Hirshfeld dnorm surface of the cation is depicted in Fig. 4[link]. The most significant inter­actions are H⋯H (29.6%) contacts and the second largest percentage (25.8%) can be attributed to H⋯O inter­actions, which are responsible for the appearance of deep-red spots and correlate with the O—H⋯O and N—H⋯O hydrogen bonds. H⋯Cl (21.9%), C⋯Cl (8.1%), N⋯Cl (5.5%) and C⋯H (3.6%) inter­actions are also observed, with other contact types making a negligible contribution.

[Figure 4]
Figure 4
Hirshfeld dnorm surface of the (C7H9N4O2)+ cation in the title compound.

The Hirshfeld surface of the [ZnCl3(H2O)] anion is depicted in Fig. 5[link] and shows red spots that correspond to the strong N—H⋯Cl and O—H⋯Cl hydrogen bonds: Cl⋯H contacts are the most abundant contributor to the surface at 54.7%. Other significant contributions include Cl⋯C (10.3%), H⋯H (9.6%), Cl⋯N (7.3%), H⋯O (5.6%) and H⋯Cl (4.7%). It is notable that the Cl⋯Cl contact percentage is 0%, i.e. the chloride anions avoid each other in the crystal.

[Figure 5]
Figure 5
Hirshfeld dnorm surface of the [ZnCl3(H2O)] anion in the title compound.

6. Synthesis and crystallization

ZnCl2·6H2O (0.244 g, 1 mmol) was dissolved in 5 ml of water. Then, theophylline [C7H8N4O2] (0.180 g, 1 mmol) was dissolved in 3 ml of ethanol/water (1:1 v:v) with a few drops of conc. HCl (37%). The two solutions were mixed and after two weeks, colourless crystals of the title mol­ecular salt were obtained.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atoms were all located in a difference map, but those attached to C and N atoms were repositioned geometrically (C—H = 0.93–0.96, N—H = 0.86 Å). The water H atoms were located in a difference map and refined as riding atoms in their as-found relative positions. The constraint Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(C-meth­yl) was applied in all cases.

Table 2
Experimental details

Crystal data
Chemical formula (C7H9N4O2)[ZnCl3(H2O)]
Mr 370.92
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 8.0932 (14), 13.744 (3), 12.429 (2)
β (°) 92.290 (6)
V3) 1381.4 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.36
Crystal size (mm) 0.32 × 0.25 × 0.11
 
Data collection
Diffractometer Bruker D8 VENTURE Super DUO
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.587, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 29522, 3046, 2753
Rint 0.035
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.070, 1.04
No. of reflections 3046
No. of parameters 166
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.42, −0.26
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 (Version 5.054), SAINT (Version 6.36A), SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

1,3-Dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-9-ium aquatrichloridozincate(II) top
Crystal data top
(C7H9N4O2)[ZnCl3(H2O)]F(000) = 744
Mr = 370.92Dx = 1.783 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.0932 (14) ÅCell parameters from 3046 reflections
b = 13.744 (3) Åθ = 2.2–27.1°
c = 12.429 (2) ŵ = 2.36 mm1
β = 92.290 (6)°T = 296 K
V = 1381.4 (4) Å3Plate, colorless
Z = 40.32 × 0.25 × 0.11 mm
Data collection top
Bruker D8 VENTURE Super DUO
diffractometer
3046 independent reflections
Radiation source: INCOATEC IµS micro-focus source2753 reflections with I > 2σ(I)
HELIOS mirror optics monochromatorRint = 0.035
Detector resolution: 10.4167 pixels mm-1θmax = 27.1°, θmin = 2.2°
φ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1717
Tmin = 0.587, Tmax = 0.746l = 1515
29522 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.0361P)2 + 0.7104P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.070(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.42 e Å3
3046 reflectionsΔρmin = 0.26 e Å3
166 parametersExtinction correction: SHELXL2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0116 (9)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3890 (2)0.73981 (12)0.43314 (14)0.0328 (4)
C20.23025 (19)0.88256 (11)0.49620 (13)0.0270 (3)
C30.09587 (19)0.84313 (11)0.43243 (13)0.0275 (3)
C40.1427 (2)0.81114 (13)0.35170 (15)0.0347 (4)
H40.2521410.8162090.3265930.042*
C50.10920 (19)0.75700 (12)0.37968 (13)0.0279 (3)
C60.2625 (3)0.61496 (16)0.3140 (2)0.0534 (6)
H6A0.1750320.5712040.3313280.080*
H6B0.3673340.5842720.3295850.080*
H6C0.2531380.6312120.2388960.080*
C70.5201 (2)0.85870 (15)0.55359 (17)0.0427 (4)
H7A0.5930330.8899080.5052440.064*
H7B0.5754560.8041840.5872030.064*
H7C0.4890540.9041750.6078170.064*
N10.06417 (17)0.87524 (10)0.41341 (12)0.0314 (3)
H10.1054990.9281170.4377430.038*
N20.04038 (17)0.73720 (10)0.33052 (12)0.0317 (3)
H20.0649690.6864590.2926870.038*
N30.25046 (17)0.70379 (10)0.37848 (12)0.0316 (3)
N40.37091 (16)0.82468 (10)0.49296 (12)0.0307 (3)
O10.52249 (16)0.69911 (11)0.42937 (12)0.0463 (3)
O20.22824 (15)0.95718 (8)0.54976 (10)0.0348 (3)
O30.7194 (2)0.54071 (11)0.46116 (13)0.0567 (4)
H3A0.7914440.5600520.4969240.085*
H3B0.6538750.5862780.4544440.085*
Cl10.53785 (8)0.37606 (5)0.28558 (6)0.06943 (19)
Cl20.84322 (7)0.55879 (3)0.20036 (4)0.04325 (13)
Cl30.98173 (7)0.36721 (4)0.39782 (4)0.05047 (15)
Zn10.76669 (3)0.45595 (2)0.33282 (2)0.03798 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0309 (8)0.0313 (8)0.0364 (9)0.0047 (7)0.0020 (7)0.0003 (7)
C20.0268 (7)0.0248 (7)0.0293 (7)0.0002 (6)0.0002 (6)0.0013 (6)
C30.0244 (7)0.0245 (7)0.0333 (8)0.0023 (6)0.0005 (6)0.0009 (6)
C40.0276 (8)0.0346 (9)0.0414 (9)0.0006 (7)0.0030 (7)0.0028 (7)
C50.0289 (8)0.0250 (7)0.0299 (8)0.0004 (6)0.0014 (6)0.0003 (6)
C60.0538 (13)0.0432 (11)0.0627 (13)0.0120 (9)0.0033 (10)0.0252 (10)
C70.0269 (8)0.0451 (10)0.0551 (12)0.0004 (7)0.0089 (8)0.0086 (9)
N10.0257 (7)0.0273 (7)0.0411 (8)0.0027 (5)0.0018 (6)0.0044 (6)
N20.0307 (7)0.0281 (7)0.0359 (7)0.0026 (5)0.0021 (6)0.0055 (6)
N30.0316 (7)0.0269 (7)0.0364 (7)0.0046 (5)0.0013 (6)0.0055 (6)
N40.0246 (6)0.0305 (7)0.0366 (7)0.0018 (5)0.0027 (5)0.0025 (6)
O10.0334 (7)0.0440 (8)0.0612 (9)0.0146 (6)0.0020 (6)0.0063 (6)
O20.0335 (6)0.0302 (6)0.0401 (7)0.0031 (5)0.0052 (5)0.0086 (5)
O30.0556 (9)0.0577 (9)0.0556 (9)0.0250 (7)0.0129 (7)0.0217 (7)
Cl10.0508 (3)0.0742 (4)0.0829 (4)0.0221 (3)0.0032 (3)0.0209 (3)
Cl20.0543 (3)0.0337 (2)0.0405 (2)0.00102 (19)0.0130 (2)0.00533 (17)
Cl30.0538 (3)0.0503 (3)0.0467 (3)0.0195 (2)0.0059 (2)0.0006 (2)
Zn10.03676 (14)0.03346 (14)0.04306 (15)0.00315 (8)0.00657 (9)0.00676 (8)
Geometric parameters (Å, º) top
C1—O11.219 (2)C6—H6B0.9600
C1—N31.379 (2)C6—H6C0.9600
C1—N41.394 (2)C7—N41.474 (2)
C2—O21.223 (2)C7—H7A0.9600
C2—N41.391 (2)C7—H7B0.9600
C2—C31.427 (2)C7—H7C0.9600
C3—C51.360 (2)N1—H10.8600
C3—N11.380 (2)N2—H20.8600
C4—N11.315 (2)O3—H3A0.7665
C4—N21.343 (2)O3—H3B0.8227
C4—H40.9300Zn1—O32.0240 (15)
C5—N31.358 (2)Zn1—Cl12.2121 (7)
C5—N21.362 (2)Zn1—Cl22.2745 (6)
C6—N31.466 (2)Zn1—Cl32.2487 (6)
C6—H6A0.9600
O1—C1—N3121.36 (16)N4—C7—H7C109.5
O1—C1—N4121.10 (16)H7A—C7—H7C109.5
N3—C1—N4117.55 (14)H7B—C7—H7C109.5
O2—C2—N4121.61 (15)C4—N1—C3108.30 (14)
O2—C2—C3126.47 (15)C4—N1—H1125.8
N4—C2—C3111.92 (14)C3—N1—H1125.8
C5—C3—N1106.73 (14)C4—N2—C5107.74 (14)
C5—C3—C2121.68 (15)C4—N2—H2126.1
N1—C3—C2131.54 (15)C5—N2—H2126.1
N1—C4—N2109.50 (15)C5—N3—C1117.99 (14)
N1—C4—H4125.2C5—N3—C6121.95 (15)
N2—C4—H4125.2C1—N3—C6119.84 (15)
N3—C5—C3123.88 (15)C2—N4—C1126.70 (14)
N3—C5—N2128.42 (15)C2—N4—C7117.30 (14)
C3—C5—N2107.71 (14)C1—N4—C7115.90 (14)
N3—C6—H6A109.5Zn1—O3—H3A119.6
N3—C6—H6B109.5Zn1—O3—H3B120.0
H6A—C6—H6B109.5H3A—O3—H3B105.5
N3—C6—H6C109.5O3—Zn1—Cl3101.36 (5)
H6A—C6—H6C109.5O3—Zn1—Cl2106.16 (6)
H6B—C6—H6C109.5O3—Zn1—Cl1108.19 (5)
N4—C7—H7A109.5Cl1—Zn1—Cl2111.45 (3)
N4—C7—H7B109.5Cl3—Zn1—Cl2111.58 (2)
H7A—C7—H7B109.5Cl1—Zn1—Cl3116.99 (3)
O2—C2—C3—C5176.95 (16)N2—C5—N3—C1178.75 (17)
N4—C2—C3—C52.2 (2)C3—C5—N3—C6175.40 (18)
O2—C2—C3—N10.2 (3)N2—C5—N3—C64.0 (3)
N4—C2—C3—N1179.38 (17)O1—C1—N3—C5175.01 (17)
N1—C3—C5—N3179.06 (15)N4—C1—N3—C55.0 (2)
C2—C3—C5—N33.2 (3)O1—C1—N3—C60.2 (3)
N1—C3—C5—N20.48 (18)N4—C1—N3—C6179.78 (18)
C2—C3—C5—N2177.31 (15)O2—C2—N4—C1178.35 (16)
N2—C4—N1—C30.8 (2)C3—C2—N4—C12.4 (2)
C5—C3—N1—C40.18 (19)O2—C2—N4—C72.2 (2)
C2—C3—N1—C4177.67 (18)C3—C2—N4—C7178.56 (15)
N1—C4—N2—C51.1 (2)O1—C1—N4—C2173.82 (17)
N3—C5—N2—C4178.56 (16)N3—C1—N4—C26.1 (3)
C3—C5—N2—C40.95 (19)O1—C1—N4—C72.3 (3)
C3—C5—N3—C10.7 (2)N3—C1—N4—C7177.68 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.861.872.7067 (18)163
N2—H2···Cl2ii0.862.213.0652 (15)174
C6—H6C···O2iii0.962.653.431 (3)139
O3—H3A···Cl3iv0.772.433.1915 (17)176
O3—H3B···O10.821.902.718 (2)173
Symmetry codes: (i) x, y+2, z+1; (ii) x1, y, z; (iii) x, y+3/2, z1/2; (iv) x+2, y+1, z+1.
 

Acknowledgements

The authors thank the Faculty of Science, Mohammed V University in Rabat, Morocco for the X-ray data collection.

References

First citationBruker (2016). APEX3 (Version 5.054), SAINT (Version 6.36A), SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCampos-Gaxiola, J. J., Arredondo Rea, S. P., Corral Higuera, R., Höpfl, H. & Cruz Enríquez, A. (2015). Acta Cryst. C71, 48–52.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDavid, L., Cozar, O., Forizs, E., Craciun, C., Ristoiu, D. & Balan, C. (1999). Spectrochim. Acta A, 55, 2559–2564.  Web of Science CrossRef Google Scholar
First citationEl Mrabet, R., Kassou, S., Tahiri, O., Belaaraj, A., El Ammari, L. & Saadi, M. (2017). J. Cryst. Growth, 472, 76–83.  Web of Science CSD CrossRef CAS Google Scholar
First citationGriffith, E.H., Amma, E.L. (1979). Chem. Commun. pp. 322–324.  CSD CrossRef Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKassou, S., El-Mrabet, R., Kaiba, A., Guionneau, P. & Belaaraj, A. (2016). Phys. Chem. Chem. Phys. 18, 9431–9436.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNafisi, S., Sadjadi, A. S., Zadeh, S. S. & Damerchelli, M. (2003). J. Biomol. Struct. Dyn. 21, 289–296.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPiosik, J., Gwizdek-Wiśniewska, A., Ulanowska, K., Ochociński, J., Czyz, A. & Wegrzyn, G. (2005). Acta Biochim. Pol. 52, 923–926.  CrossRef PubMed CAS Google Scholar
First citationRao, F. V., Andersen, O. A., Vora, K. A., DeMartino, J. A. & van Aalten, D. M. F. (2005). Chem. Biol. 12, 973–980.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSalas, J. M., Colacio, E., Moreno, M. N., Ruiz, J., Debaerdemaeker, T., Via, J. & Arriortua, M. I. (1989). J. Crystallogr. Spectrosc. Res. 19, 755–763.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSoudani, S., Aubert, E., Jelsch, C. & Ben Nasr, C. (2013). Acta Cryst. C69, 1304–1306.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds