research communications
7H9N4O2)[ZnCl3(H2O)]
and Hirshfeld surface analysis of (CaEquipe Metallation, Complexes Moleculaires et Applications, Université Moulay Ismail, Faculté des Sciences, BP 11201 Zitoune, 50000 Meknés, Morocco, and bLaboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Batouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: elhamdanihicham40@gmail.com
In the title molecular salt, 1,3-dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-9-ium aquatrichloridozincate(II), (C7H9N4O2)[ZnCl3(H2O)], the fused ring system of the cation is close to planar, with the largest deviation from the mean plane being 0.037 (3) Å. In the complex anion, the ZnII cation is coordinated by three chloride ions and one oxygen atom from the water ligand in a distorted tetrahedral geometry. In the crystal, inversion dimers between pairs of cations linked by pairwise N—H⋯O hydrogen bonds generate R22(10) rings. The anions are linked into dimers by pairs of O—H⋯Cl hydrogen bonds and the respective dimers are linked by O—H⋯O and N—H⋯Cl hydrogen bonds. Together, these generate a three-dimensional supramolecular network. Hirshfeld surfaces were generated to gain further insight into the packing.
Keywords: crystal structure; molecular salt; hydrogen bonding.
CCDC reference: 1986654
1. Chemical context
Theophylline, C7H8N4O2, is an alkaloid derivative of xanthine, containing a fused pyrimidine-imidazole ring system with conjugated double bonds. It has many biological and pharmacological properties (see, for example, Rao et al., 2005; Piosik et al., 2005). Various studies have shown that theophylline can be used as a medicine for the treatment of asthmatic bronchitis and chronic obstructive bronchitis (under several brand names), and as anticancer drugs (Nafisi et al. 2003; Rao et al. 2005; Piosik et al. 2005). Furthermore, theophylline complexes with transition metals can be used in anticancer drugs (David et al., 1999).
As part of our studies in this area, we reacted theophylline with ZnCl2 under acid conditions to give the molecular salt (C7H9N4O2)·[ZnCl3(H2O)] and its is described herein.
2. Structural commentary
The ) comprises one theophyllinium (C7H9N4O2)+ cation protonated at N2 and one [ZnCl3(H2O)]−1 anion. As expected, the [ZnCl3(H2O)] tetrahedron contains one short Zn—O bond distance [2.0240 (15) Å] and three longer Zn—Cl bonds distances [in the range 2.2121 (7)–2.2745 (6) Å]. These bond lengths are consistent with the values observed in analogous compounds such as [H3N(CH2)8NH3]ZnCl4, [C6H5–C2H4–NH3]2ZnCl4, (C12H12N2)[ZnCl4] and (C10H22N2)[ZnCl4](El Mrabet et al., 2017), as are the Cl—Zn—Cl [111.45 (3)–116.99 (3)°] and Cl—Zn—O [101.36 (5)–108.19 (5)°] bond angles (Kassou et al., 2016; Campos-Gaxiola et al., 2015; Soudani et al., 2013).
of the title molecular salt (Fig. 13. Supramolecular features
The packing is consolidated by a network of hydrogen bonds (Table 1, Fig. 2). The cations are linked into inversion dimers by pairs of N1—H1⋯O2 hydrogen bonds, which generate R22(10) rings. The anions also form inversion dimers, being linked by pairwise O3—H3A⋯Cl3 hydrogen bonds. The anions are linked to the cations via O3—H3B⋯O1 hydrogen bonds from the water molecule to a carbonyl group of the pyrimidine ring. Finally, the cations are linked to the anions via N2—H2⋯Cl2 hydrogen bonds. Taken together, these hydrogen bonds generate a three-dimensional supramolecular network (Fig. 3), which also features short Cl⋯π contacts [Cl⋯centroid distances in the range of 3.533 (2)–3.620 (2) Å].
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.40, May 2019; Groom et al., 2016) for organic–inorganic compounds containing theophilinium in the cation revealed three similar structures: theophyllinium trichlorotheophyllineplatinum(II), bis(theophyllinium) tetrachloroplatinum(II) (Griffith et al., 1979) and bis(theophyllinium) tetrabromopalladium(II) (Salas et al., 1989). In each of the three complexes, the metal cation is surrounded by four ligands in a planar geometry. The crystal structures of these compounds are different from that of the title compound; however, the organic–inorganic moities are linked through hydrogen bonds in all of these structures.
5. Hirshfeld surface analysis
In order to gain further insight into the intermolecular interactions in the title compound, we used the program Crystal Explorer (Spackman & Jayatilaka, 2009), to consider separately the (C7H9N4O2)+ organic cation and the [ZnCl3(H2O)]− inorganic anion.
The Hirshfeld dnorm surface of the cation is depicted in Fig. 4. The most significant interactions are H⋯H (29.6%) contacts and the second largest percentage (25.8%) can be attributed to H⋯O interactions, which are responsible for the appearance of deep-red spots and correlate with the O—H⋯O and N—H⋯O hydrogen bonds. H⋯Cl (21.9%), C⋯Cl (8.1%), N⋯Cl (5.5%) and C⋯H (3.6%) interactions are also observed, with other contact types making a negligible contribution.
The Hirshfeld surface of the [ZnCl3(H2O)] anion is depicted in Fig. 5 and shows red spots that correspond to the strong N—H⋯Cl and O—H⋯Cl hydrogen bonds: Cl⋯H contacts are the most abundant contributor to the surface at 54.7%. Other significant contributions include Cl⋯C (10.3%), H⋯H (9.6%), Cl⋯N (7.3%), H⋯O (5.6%) and H⋯Cl (4.7%). It is notable that the Cl⋯Cl contact percentage is 0%, i.e. the chloride anions avoid each other in the crystal.
6. Synthesis and crystallization
ZnCl2·6H2O (0.244 g, 1 mmol) was dissolved in 5 ml of water. Then, theophylline [C7H8N4O2] (0.180 g, 1 mmol) was dissolved in 3 ml of ethanol/water (1:1 v:v) with a few drops of conc. HCl (37%). The two solutions were mixed and after two weeks, colourless crystals of the title molecular salt were obtained.
7. Refinement
Crystal data, data collection and structure . The H atoms were all located in a difference map, but those attached to C and N atoms were repositioned geometrically (C—H = 0.93–0.96, N—H = 0.86 Å). The water H atoms were located in a difference map and refined as riding atoms in their as-found relative positions. The constraint Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(C-methyl) was applied in all cases.
details are summarized in Table 2Supporting information
CCDC reference: 1986654
https://doi.org/10.1107/S2056989020002753/hb7891sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020002753/hb7891Isup2.hkl
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).(C7H9N4O2)[ZnCl3(H2O)] | F(000) = 744 |
Mr = 370.92 | Dx = 1.783 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 8.0932 (14) Å | Cell parameters from 3046 reflections |
b = 13.744 (3) Å | θ = 2.2–27.1° |
c = 12.429 (2) Å | µ = 2.36 mm−1 |
β = 92.290 (6)° | T = 296 K |
V = 1381.4 (4) Å3 | Plate, colorless |
Z = 4 | 0.32 × 0.25 × 0.11 mm |
Bruker D8 VENTURE Super DUO diffractometer | 3046 independent reflections |
Radiation source: INCOATEC IµS micro-focus source | 2753 reflections with I > 2σ(I) |
HELIOS mirror optics monochromator | Rint = 0.035 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 27.1°, θmin = 2.2° |
φ and ω scans | h = −10→10 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −17→17 |
Tmin = 0.587, Tmax = 0.746 | l = −15→15 |
29522 measured reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.025 | w = 1/[σ2(Fo2) + (0.0361P)2 + 0.7104P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.070 | (Δ/σ)max = 0.001 |
S = 1.04 | Δρmax = 0.42 e Å−3 |
3046 reflections | Δρmin = −0.26 e Å−3 |
166 parameters | Extinction correction: SHELXL2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0116 (9) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.3890 (2) | 0.73981 (12) | 0.43314 (14) | 0.0328 (4) | |
C2 | 0.23025 (19) | 0.88256 (11) | 0.49620 (13) | 0.0270 (3) | |
C3 | 0.09587 (19) | 0.84313 (11) | 0.43243 (13) | 0.0275 (3) | |
C4 | −0.1427 (2) | 0.81114 (13) | 0.35170 (15) | 0.0347 (4) | |
H4 | −0.252141 | 0.816209 | 0.326593 | 0.042* | |
C5 | 0.10920 (19) | 0.75700 (12) | 0.37968 (13) | 0.0279 (3) | |
C6 | 0.2625 (3) | 0.61496 (16) | 0.3140 (2) | 0.0534 (6) | |
H6A | 0.175032 | 0.571204 | 0.331328 | 0.080* | |
H6B | 0.367334 | 0.584272 | 0.329585 | 0.080* | |
H6C | 0.253138 | 0.631212 | 0.238896 | 0.080* | |
C7 | 0.5201 (2) | 0.85870 (15) | 0.55359 (17) | 0.0427 (4) | |
H7A | 0.593033 | 0.889908 | 0.505244 | 0.064* | |
H7B | 0.575456 | 0.804184 | 0.587203 | 0.064* | |
H7C | 0.489054 | 0.904175 | 0.607817 | 0.064* | |
N1 | −0.06417 (17) | 0.87524 (10) | 0.41341 (12) | 0.0314 (3) | |
H1 | −0.105499 | 0.928117 | 0.437743 | 0.038* | |
N2 | −0.04038 (17) | 0.73720 (10) | 0.33052 (12) | 0.0317 (3) | |
H2 | −0.064969 | 0.686459 | 0.292687 | 0.038* | |
N3 | 0.25046 (17) | 0.70379 (10) | 0.37848 (12) | 0.0316 (3) | |
N4 | 0.37091 (16) | 0.82468 (10) | 0.49296 (12) | 0.0307 (3) | |
O1 | 0.52249 (16) | 0.69911 (11) | 0.42937 (12) | 0.0463 (3) | |
O2 | 0.22824 (15) | 0.95718 (8) | 0.54976 (10) | 0.0348 (3) | |
O3 | 0.7194 (2) | 0.54071 (11) | 0.46116 (13) | 0.0567 (4) | |
H3A | 0.791444 | 0.560052 | 0.496924 | 0.085* | |
H3B | 0.653875 | 0.586278 | 0.454444 | 0.085* | |
Cl1 | 0.53785 (8) | 0.37606 (5) | 0.28558 (6) | 0.06943 (19) | |
Cl2 | 0.84322 (7) | 0.55879 (3) | 0.20036 (4) | 0.04325 (13) | |
Cl3 | 0.98173 (7) | 0.36721 (4) | 0.39782 (4) | 0.05047 (15) | |
Zn1 | 0.76669 (3) | 0.45595 (2) | 0.33282 (2) | 0.03798 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0309 (8) | 0.0313 (8) | 0.0364 (9) | 0.0047 (7) | 0.0020 (7) | 0.0003 (7) |
C2 | 0.0268 (7) | 0.0248 (7) | 0.0293 (7) | 0.0002 (6) | 0.0002 (6) | 0.0013 (6) |
C3 | 0.0244 (7) | 0.0245 (7) | 0.0333 (8) | 0.0023 (6) | −0.0005 (6) | −0.0009 (6) |
C4 | 0.0276 (8) | 0.0346 (9) | 0.0414 (9) | −0.0006 (7) | −0.0030 (7) | −0.0028 (7) |
C5 | 0.0289 (8) | 0.0250 (7) | 0.0299 (8) | −0.0004 (6) | 0.0014 (6) | 0.0003 (6) |
C6 | 0.0538 (13) | 0.0432 (11) | 0.0627 (13) | 0.0120 (9) | −0.0033 (10) | −0.0252 (10) |
C7 | 0.0269 (8) | 0.0451 (10) | 0.0551 (12) | 0.0004 (7) | −0.0089 (8) | −0.0086 (9) |
N1 | 0.0257 (7) | 0.0273 (7) | 0.0411 (8) | 0.0027 (5) | −0.0018 (6) | −0.0044 (6) |
N2 | 0.0307 (7) | 0.0281 (7) | 0.0359 (7) | −0.0026 (5) | −0.0021 (6) | −0.0055 (6) |
N3 | 0.0316 (7) | 0.0269 (7) | 0.0364 (7) | 0.0046 (5) | 0.0013 (6) | −0.0055 (6) |
N4 | 0.0246 (6) | 0.0305 (7) | 0.0366 (7) | 0.0018 (5) | −0.0027 (5) | −0.0025 (6) |
O1 | 0.0334 (7) | 0.0440 (8) | 0.0612 (9) | 0.0146 (6) | −0.0020 (6) | −0.0063 (6) |
O2 | 0.0335 (6) | 0.0302 (6) | 0.0401 (7) | 0.0031 (5) | −0.0052 (5) | −0.0086 (5) |
O3 | 0.0556 (9) | 0.0577 (9) | 0.0556 (9) | 0.0250 (7) | −0.0129 (7) | −0.0217 (7) |
Cl1 | 0.0508 (3) | 0.0742 (4) | 0.0829 (4) | −0.0221 (3) | −0.0032 (3) | −0.0209 (3) |
Cl2 | 0.0543 (3) | 0.0337 (2) | 0.0405 (2) | −0.00102 (19) | −0.0130 (2) | −0.00533 (17) |
Cl3 | 0.0538 (3) | 0.0503 (3) | 0.0467 (3) | 0.0195 (2) | −0.0059 (2) | 0.0006 (2) |
Zn1 | 0.03676 (14) | 0.03346 (14) | 0.04306 (15) | 0.00315 (8) | −0.00657 (9) | −0.00676 (8) |
C1—O1 | 1.219 (2) | C6—H6B | 0.9600 |
C1—N3 | 1.379 (2) | C6—H6C | 0.9600 |
C1—N4 | 1.394 (2) | C7—N4 | 1.474 (2) |
C2—O2 | 1.223 (2) | C7—H7A | 0.9600 |
C2—N4 | 1.391 (2) | C7—H7B | 0.9600 |
C2—C3 | 1.427 (2) | C7—H7C | 0.9600 |
C3—C5 | 1.360 (2) | N1—H1 | 0.8600 |
C3—N1 | 1.380 (2) | N2—H2 | 0.8600 |
C4—N1 | 1.315 (2) | O3—H3A | 0.7665 |
C4—N2 | 1.343 (2) | O3—H3B | 0.8227 |
C4—H4 | 0.9300 | Zn1—O3 | 2.0240 (15) |
C5—N3 | 1.358 (2) | Zn1—Cl1 | 2.2121 (7) |
C5—N2 | 1.362 (2) | Zn1—Cl2 | 2.2745 (6) |
C6—N3 | 1.466 (2) | Zn1—Cl3 | 2.2487 (6) |
C6—H6A | 0.9600 | ||
O1—C1—N3 | 121.36 (16) | N4—C7—H7C | 109.5 |
O1—C1—N4 | 121.10 (16) | H7A—C7—H7C | 109.5 |
N3—C1—N4 | 117.55 (14) | H7B—C7—H7C | 109.5 |
O2—C2—N4 | 121.61 (15) | C4—N1—C3 | 108.30 (14) |
O2—C2—C3 | 126.47 (15) | C4—N1—H1 | 125.8 |
N4—C2—C3 | 111.92 (14) | C3—N1—H1 | 125.8 |
C5—C3—N1 | 106.73 (14) | C4—N2—C5 | 107.74 (14) |
C5—C3—C2 | 121.68 (15) | C4—N2—H2 | 126.1 |
N1—C3—C2 | 131.54 (15) | C5—N2—H2 | 126.1 |
N1—C4—N2 | 109.50 (15) | C5—N3—C1 | 117.99 (14) |
N1—C4—H4 | 125.2 | C5—N3—C6 | 121.95 (15) |
N2—C4—H4 | 125.2 | C1—N3—C6 | 119.84 (15) |
N3—C5—C3 | 123.88 (15) | C2—N4—C1 | 126.70 (14) |
N3—C5—N2 | 128.42 (15) | C2—N4—C7 | 117.30 (14) |
C3—C5—N2 | 107.71 (14) | C1—N4—C7 | 115.90 (14) |
N3—C6—H6A | 109.5 | Zn1—O3—H3A | 119.6 |
N3—C6—H6B | 109.5 | Zn1—O3—H3B | 120.0 |
H6A—C6—H6B | 109.5 | H3A—O3—H3B | 105.5 |
N3—C6—H6C | 109.5 | O3—Zn1—Cl3 | 101.36 (5) |
H6A—C6—H6C | 109.5 | O3—Zn1—Cl2 | 106.16 (6) |
H6B—C6—H6C | 109.5 | O3—Zn1—Cl1 | 108.19 (5) |
N4—C7—H7A | 109.5 | Cl1—Zn1—Cl2 | 111.45 (3) |
N4—C7—H7B | 109.5 | Cl3—Zn1—Cl2 | 111.58 (2) |
H7A—C7—H7B | 109.5 | Cl1—Zn1—Cl3 | 116.99 (3) |
O2—C2—C3—C5 | −176.95 (16) | N2—C5—N3—C1 | 178.75 (17) |
N4—C2—C3—C5 | 2.2 (2) | C3—C5—N3—C6 | −175.40 (18) |
O2—C2—C3—N1 | 0.2 (3) | N2—C5—N3—C6 | 4.0 (3) |
N4—C2—C3—N1 | 179.38 (17) | O1—C1—N3—C5 | −175.01 (17) |
N1—C3—C5—N3 | 179.06 (15) | N4—C1—N3—C5 | 5.0 (2) |
C2—C3—C5—N3 | −3.2 (3) | O1—C1—N3—C6 | −0.2 (3) |
N1—C3—C5—N2 | −0.48 (18) | N4—C1—N3—C6 | 179.78 (18) |
C2—C3—C5—N2 | 177.31 (15) | O2—C2—N4—C1 | −178.35 (16) |
N2—C4—N1—C3 | 0.8 (2) | C3—C2—N4—C1 | 2.4 (2) |
C5—C3—N1—C4 | −0.18 (19) | O2—C2—N4—C7 | −2.2 (2) |
C2—C3—N1—C4 | −177.67 (18) | C3—C2—N4—C7 | 178.56 (15) |
N1—C4—N2—C5 | −1.1 (2) | O1—C1—N4—C2 | 173.82 (17) |
N3—C5—N2—C4 | −178.56 (16) | N3—C1—N4—C2 | −6.1 (3) |
C3—C5—N2—C4 | 0.95 (19) | O1—C1—N4—C7 | −2.3 (3) |
C3—C5—N3—C1 | −0.7 (2) | N3—C1—N4—C7 | 177.68 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2i | 0.86 | 1.87 | 2.7067 (18) | 163 |
N2—H2···Cl2ii | 0.86 | 2.21 | 3.0652 (15) | 174 |
C6—H6C···O2iii | 0.96 | 2.65 | 3.431 (3) | 139 |
O3—H3A···Cl3iv | 0.77 | 2.43 | 3.1915 (17) | 176 |
O3—H3B···O1 | 0.82 | 1.90 | 2.718 (2) | 173 |
Symmetry codes: (i) −x, −y+2, −z+1; (ii) x−1, y, z; (iii) x, −y+3/2, z−1/2; (iv) −x+2, −y+1, −z+1. |
Acknowledgements
The authors thank the Faculty of Science, Mohammed V University in Rabat, Morocco for the X-ray data collection.
References
Bruker (2016). APEX3 (Version 5.054), SAINT (Version 6.36A), SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Campos-Gaxiola, J. J., Arredondo Rea, S. P., Corral Higuera, R., Höpfl, H. & Cruz Enríquez, A. (2015). Acta Cryst. C71, 48–52. Web of Science CSD CrossRef IUCr Journals Google Scholar
David, L., Cozar, O., Forizs, E., Craciun, C., Ristoiu, D. & Balan, C. (1999). Spectrochim. Acta A, 55, 2559–2564. Web of Science CrossRef Google Scholar
El Mrabet, R., Kassou, S., Tahiri, O., Belaaraj, A., El Ammari, L. & Saadi, M. (2017). J. Cryst. Growth, 472, 76–83. Web of Science CSD CrossRef CAS Google Scholar
Griffith, E.H., Amma, E.L. (1979). Chem. Commun. pp. 322–324. CSD CrossRef Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Kassou, S., El-Mrabet, R., Kaiba, A., Guionneau, P. & Belaaraj, A. (2016). Phys. Chem. Chem. Phys. 18, 9431–9436. Web of Science CrossRef CAS PubMed Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nafisi, S., Sadjadi, A. S., Zadeh, S. S. & Damerchelli, M. (2003). J. Biomol. Struct. Dyn. 21, 289–296. Web of Science CrossRef PubMed CAS Google Scholar
Piosik, J., Gwizdek-Wiśniewska, A., Ulanowska, K., Ochociński, J., Czyz, A. & Wegrzyn, G. (2005). Acta Biochim. Pol. 52, 923–926. CrossRef PubMed CAS Google Scholar
Rao, F. V., Andersen, O. A., Vora, K. A., DeMartino, J. A. & van Aalten, D. M. F. (2005). Chem. Biol. 12, 973–980. Web of Science CrossRef PubMed CAS Google Scholar
Salas, J. M., Colacio, E., Moreno, M. N., Ruiz, J., Debaerdemaeker, T., Via, J. & Arriortua, M. I. (1989). J. Crystallogr. Spectrosc. Res. 19, 755–763. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Soudani, S., Aubert, E., Jelsch, C. & Ben Nasr, C. (2013). Acta Cryst. C69, 1304–1306. Web of Science CSD CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.