research communications
Unexpected formation of a E)-1-(5-chlorothiophen-2-yl)-3-(3-methylthiophen-2-yl)prop-2-en-1-one and the keto–enol tautomer (Z)-1-(5-chlorothiophen-2-yl)-3-(3-methylthiophen-2-yl)prop-1-en-1-ol
containing the chalcone (aDepartment of Chemistry, Al al-Bayt University, Mafraq 25113, Jordan, and bFaculty of Chemistry, Philipps University Marburg, Hans-Meerwein-Strasse 4, 35032, Marburg, Germany
*Correspondence e-mail: mahmoud_alrefai@aabu.edu.jo, bfali@aabu.edu.jo
The title E)-1-(5-chlorothiophen-2-yl)-3-(3-methylthiophen-2-yl)prop-2-en-1-one, C12H9ClOS2 (93%), and (Z)-1-(5-chlorothiophen-2-yl)-3-(3-methylthiophen-2-yl)prop-1-en-1-ol, C12H11ClOS2 (7%), 0.93C12H9ClOS2·0.07C12H11ClOS2. Both were obtained from the reaction of 3-methylthiophene-2-carbaldehyde and 1-(5-chlorothiophen-2-yl)ethanone. In the extended structure of the major chalcone component, molecules are linked by a combination of C—H⋯O/S, Cl⋯Cl, Cl⋯π and π–π interactions, leading to a compact three-dimensional supramolecular assembly.
is assembled from the superposition of two molecular structures, (CCDC reference: 1986074
1. Chemical context
et al., 2012), anticancer (Shin et al., 2013), antifungal (López et al., 2001) and anti-inflammatory properties (Fang et al., 2015). On the other hand, thiophene derivatives display a wide range of biological activities such as antimicrobial (Mishra et al., 2012), antiallergic (Gillespie et al., 1985), anti-inflammatory (Molvi et al., 2007), antioxidant and antitumor agents (Jarak et al., 2005). Combining thiophenes and could result in compounds with interesting new structures and properties: Al-Maqtari et al. (2015) reported the synthesis of thiophene–chalcones containing two thiophene rings and their antimicrobial and anticancer activities. One of their reported structures is (E)-1-(5-chlorothiophen-2-yl)-3-(3-methylthiophen-2-yl)prop-2-en-1-one. However, the of this thiophene-based chalcone has not yet been determined.
exhibit a wide spectrum of pharmacological activities, including antibacterial (TranAs a part of our ongoing research in this area (Ibrahim et al., 2019), we report herein the of a chalcone containing two terminal-substituted thiophene rings, namely (E)-1-(5-chlorothiophen-2-yl)-3-(3-methylthiophen-2-yl)prop-2-en-1-one, which crystallized as a in an unexpected superposition with the keto–enol tautomer (Z)-1-(5-chlorothiophen-2-yl)-3-(3-methylthiophen-2-yl)prop-1-en-1-ol as a minor component.
2. Structural commentary
The ) exhibits two superimposed molecules with occupancies of 93% and 7%: this was surprising since the formation of the minor (enol) component was quite unexpected. A possible mechanism for the formation of this component is shown in Fig. 2. Equilibria between keto and enol isomers are regularly observed in solution but not in crystals. This issue needs a thorough exploration, which is beyond the scope of this report.
(Fig. 1The molecular structures show similar conformations but differ in bond lengths and the carbon-atom geometry (hybridization), which we will describe for the major component in more detail. The molecular structure (Fig. 1) is composed of two substituted thiophene rings, 5-chlorothiophen-2-yl and 3-methylthiophen-2-yl, which are linked by the central –CO—CH=CH– spacer. The configuration about the C=C bond [1.344 (3) Å] is E and the carbonyl group is syn with respect to the C=C bond. The molecule is effectively planar as indicated by the torsion angles O1—C1—C10—C14 = 175.0 (3), C2—C1—C10—C14 = −5.2 (3), C10—C1—C2—C3 = 176.41 (19), O1—C1—C2—C3 = −3.8 (3), C1—C2—C3—C4 = 179.37 (19) and C2—C3—C4—C8 = −177.5 (2)°. The hydrogen atoms of the propenone unit are trans configured and each is involved in an intramolecular short contact that forms an S(5) motif (Fig. 1, Table 1). The bond lengths and angles are consistent with those in related structures (Vu Quoc et al., 2019; Yesilyurt et al., 2018; Sreenatha et al., 2018). The S atoms of the terminal 5-chlorothiophen-2-yl (S11/C10/C12–C14) and 3-methylthiophen-2-yl (S5/C4/C6–C8) rings are anti and the rings are inclined slightly to each other [dihedral angle = 6.92 (13)°].
3. Supramolecular features
The extended structure exhibits several hydrogen-bonding contacts (Table 1). The hydrogen bonds involve a carbonyl O atom serving as a double-acceptor with H atoms from the chlorothiophenyl unit, and a methyl group from the methylthiophenyl unit of a neighbouring molecule. Additional C—H⋯S contacts are also present (Table 1). Further interactions are detected, namely Cl⋯Cl [C12—Cl1⋯Cl1i of 3.3907 (8) Å and 142.92 (8)°; symmetry code: (i) −x, 2 − y, 2 − z], C—Cl⋯π [C12—Cl15⋯Cgii = 3.6536 (14) Å]; symmetry code: (ii) 1 − x, 1 − y, 1 − z; Cg1 is the centroid of the S5/C4/C6–C8 ring] as well as π–π contacts [Cg1⋯Cg2iii of 4.0139 (15) Å; symmetry code: (iii) −x, 1 − y, 1 − z; Cg2 is the centroid of the S11/C10/C12–C14 ring], which connect neighbouring molecules, consolidating a rather compact three-dimensional supramolecular network (Fig. 3).
4. Database survey
Similar structures to the title compound (major component) with the same chalcone skeleton and one or two thiophenyl rings include the following, which are identified by their CSD (Groom et al., 2016) reference codes. In all compounds, the molecular skeletons are approximately planar, and have an E configuration about the C=C bond.
The structures containing one thiophenyl rings include: 1-(5-chloro-2-thienyl)-3-(2,3,4-trimethoxyphenyl)prop-2-en-1-one (refcode LOVHAH; Chidan Kumar et al., 2015), where the molecular structure features intramolecular C—H⋯O interactions. The molecules in 1-(4-bromophenyl)-3-(3-methyl-2-thienyl)prop-2-en-1-one (XICNON; Fun et al., 2007), feature short intramolecular C—H⋯O/S contacts, which form S(5) rings. In the the molecules are linked into layers by weak C—H⋯O hydrogen bonds, and short Br⋯O contacts are also observed. In 1-(2-hydroxyphenyl)-3-(5-methylthiophen-2-yl)prop-2-en-1-one (AGEFUQ; Sreenatha et al., 2018), the structure exhibits O—H⋯O and C—H⋯O/S intramolecular interactions.
The structures of bis-thiophenyl E,E)-bis[(thiophene-2-yl)methylene]cyclohexanone (BOQYAK; Yakalı et al., 2019) in which the terminal thiophene rings adopt a syn orientation. In the structure, the molecules display weak C—H⋯S and C—H⋯O intramolecular and only C—H⋯O intermolecular hydrogen bonds. In addition, π–π interactions are found between the thiophene rings. In 1,5-bis(3-methyl-2-thienyl)penta-1,4-dien-3-one (RUZCIZ; Contreras et al., 2009), the molecule consists of terminal methylthiophenyl rings with the two S atoms being in a syn arrangement and trans to the carbonyl oxygen atom. The molecule is almost planar, with a slight twist along the bridging unit, leading to a small rotation between the terminal thiophenyl rings. The molecules are connected via various types of intermolecular interactions, namely C—H⋯O, C—H⋯π and π–π, leading to a three-dimensional supramolecular network. The molecule of (2E,6E)-2,6-bis[(5-methylthiophen-2-yl)methylene]cyclohexanone (XILXUM; Liang et al., 2007) displays two slightly twisted syn terminal methylthiophenyl rings in an anti-arrangement with respect to the carbonyl oxygen atom. In 1,5-bis(thiophen-3-yl)penta-1,4-dien-3-one (AYUPIU; Shalini et al., 2011), the dihedral angle between the thiophenyl rings is 15.45 (10)°. The molecules features both C—H⋯O and C—H⋯π interactions. Both thiophene rings in 3-hydroxy-1-(thiophen-2-yl)-3-(thiophen-3-yl)prop-2-en-1-one (IBIRUJ; Oyarce et al., 2017) are disordered with the major-disorder components inclined to each other by 12.1 (3)°. In the crystal, the molecules are connected through C—H⋯O interactions. In the crystal of 1,3-bis(3-thienyl)prop-2-en-1-one (UNAJIE; Baggio et al., 2016), the thiophene rings are inclined to each other by a dihedral angle of 8.88 (10)°. The structure exhibits π–π interactions together with C—H⋯O interactions and short S⋯S contacts also occur.
include 2,6-(5. Synthesis and crystallization
The synthesis was carried out using a reported method (Al-Maqtari et al., 2015). Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation, at room temperature, of a solution in ethanol.
6. Refinement
Crystal data, data collection and structure . Hydrogen atoms were included in calculated positions (C—H = 0.95–0.98 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-methyl). Methyl groups were allowed to rotate about the bond to their next atom to fit the electron density.
details are summarized in Table 2The 12H9ClOS2 (93% occupancy component) and C12H11ClOS2 (7% occupancy component), respectively. Restraints were necessary during the of geometric and anisotropic displacement parameters.
was refined as a superposition of two molecular structures with formulae CSupporting information
CCDC reference: 1986074
https://doi.org/10.1107/S2056989020002583/hb7894sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020002583/hb7894Isup2.hkl
Data collection: X-AREA (Stoe & Cie, 2016); cell
X-AREA (Stoe & Cie, 2016); data reduction: X-AREA (Stoe & Cie, 2016); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Putz & Brandenburg, 2014); software used to prepare material for publication: X-AREA (Stoe & Cie, 2016).0.93C12H9ClOS2·0.07C12H11ClOS2 | Z = 2 |
Mr = 268.90 | F(000) = 276 |
Triclinic, P1 | Dx = 1.507 Mg m−3 |
a = 7.3709 (4) Å | Cu Kα radiation, λ = 1.54186 Å |
b = 7.5063 (4) Å | Cell parameters from 17498 reflections |
c = 12.4247 (6) Å | θ = 3.7–76.0° |
α = 84.126 (4)° | µ = 5.93 mm−1 |
β = 76.694 (4)° | T = 100 K |
γ = 62.372 (4)° | Plate, yellow |
V = 592.69 (6) Å3 | 0.25 × 0.21 × 0.14 mm |
Stoe Stadivari diffractometer | 2398 independent reflections |
Radiation source: GeniX 3D HF Cu | 2221 reflections with I > 2σ(I) |
Detector resolution: 5.81 pixels mm-1 | Rint = 0.024 |
rotation method, ω scans | θmax = 75.5°, θmin = 6.7° |
Absorption correction: multi-scan (LANA; Stoe, 2016) | h = −5→9 |
Tmin = 0.079, Tmax = 0.352 | k = −8→9 |
10865 measured reflections | l = −13→15 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.088 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.048P)2 + 0.4005P] where P = (Fo2 + 2Fc2)/3 |
2398 reflections | (Δ/σ)max < 0.001 |
291 parameters | Δρmax = 0.27 e Å−3 |
754 restraints | Δρmin = −0.28 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The crystal structure is an overlay of two molecular structure with ratio 93:7. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.3137 (4) | 0.2710 (3) | 0.5851 (2) | 0.0314 (5) | 0.93 |
C1 | 0.2726 (3) | 0.4337 (3) | 0.53882 (16) | 0.0247 (4) | 0.93 |
C2 | 0.2535 (3) | 0.4652 (3) | 0.42238 (15) | 0.0259 (4) | 0.93 |
H2 | 0.213137 | 0.595628 | 0.391242 | 0.031* | 0.93 |
C3 | 0.2928 (3) | 0.3105 (3) | 0.35969 (16) | 0.0259 (4) | 0.93 |
H3 | 0.334120 | 0.182539 | 0.394094 | 0.031* | 0.93 |
C4 | 0.2784 (3) | 0.3201 (3) | 0.24557 (16) | 0.0256 (4) | 0.93 |
S5 | 0.21123 (9) | 0.54296 (8) | 0.17199 (4) | 0.03242 (16) | 0.93 |
C6 | 0.2248 (4) | 0.4291 (4) | 0.05595 (18) | 0.0348 (5) | 0.93 |
H6 | 0.198313 | 0.496677 | −0.011889 | 0.042* | 0.93 |
C7 | 0.2777 (4) | 0.2310 (3) | 0.07204 (18) | 0.0314 (4) | 0.93 |
H7 | 0.291283 | 0.145132 | 0.016418 | 0.038* | 0.93 |
C8 | 0.3110 (3) | 0.1643 (3) | 0.18065 (17) | 0.0262 (4) | 0.93 |
C9 | 0.3748 (4) | −0.0483 (3) | 0.21906 (19) | 0.0312 (5) | 0.93 |
H9A | 0.422423 | −0.136716 | 0.154993 | 0.047* | 0.93 |
H9B | 0.254852 | −0.057161 | 0.268618 | 0.047* | 0.93 |
H9C | 0.488738 | −0.090123 | 0.258667 | 0.047* | 0.93 |
C10 | 0.2397 (3) | 0.6067 (3) | 0.60062 (16) | 0.0233 (4) | 0.93 |
S11 | 0.24466 (9) | 0.57165 (8) | 0.74011 (4) | 0.02410 (15) | 0.93 |
C12 | 0.1984 (3) | 0.8151 (3) | 0.75171 (17) | 0.0251 (4) | 0.93 |
C13 | 0.1837 (3) | 0.9193 (3) | 0.65490 (19) | 0.0276 (4) | 0.93 |
H13 | 0.161182 | 1.054853 | 0.646974 | 0.033* | 0.93 |
C14 | 0.2066 (4) | 0.7980 (3) | 0.56787 (18) | 0.0268 (4) | 0.93 |
H14 | 0.199724 | 0.844259 | 0.494119 | 0.032* | 0.93 |
Cl1 | 0.17230 (10) | 0.90570 (8) | 0.87916 (4) | 0.03112 (15) | 0.93 |
O1A | 0.354 (6) | 0.286 (4) | 0.602 (3) | 0.035 (6) | 0.07 |
H1A | 0.343705 | 0.215573 | 0.557340 | 0.053* | 0.07 |
C1A | 0.257 (5) | 0.496 (4) | 0.569 (2) | 0.028 (3) | 0.07 |
C2A | 0.126 (4) | 0.535 (4) | 0.497 (2) | 0.029 (3) | 0.07 |
H2A | 0.031913 | 0.671106 | 0.487244 | 0.035* | 0.07 |
C3A | 0.121 (5) | 0.385 (4) | 0.435 (2) | 0.034 (3) | 0.07 |
H3A | −0.022191 | 0.397317 | 0.458163 | 0.041* | 0.07 |
H3B | 0.216209 | 0.252274 | 0.460874 | 0.041* | 0.07 |
C4A | 0.175 (5) | 0.377 (3) | 0.3079 (17) | 0.032 (3) | 0.07 |
S5A | 0.1043 (15) | 0.6046 (12) | 0.2374 (7) | 0.0485 (18) | 0.07 |
C6A | 0.200 (5) | 0.482 (3) | 0.1107 (16) | 0.034 (3) | 0.07 |
H6A | 0.209319 | 0.547565 | 0.041533 | 0.041* | 0.07 |
C7A | 0.260 (5) | 0.281 (3) | 0.1218 (18) | 0.035 (3) | 0.07 |
H7A | 0.296091 | 0.192728 | 0.062046 | 0.042* | 0.07 |
C8A | 0.261 (5) | 0.219 (3) | 0.2331 (19) | 0.032 (3) | 0.07 |
C9A | 0.331 (5) | 0.001 (3) | 0.272 (3) | 0.036 (5) | 0.07 |
H9AA | 0.370744 | −0.086268 | 0.208833 | 0.053* | 0.07 |
H9AB | 0.214815 | −0.008058 | 0.325911 | 0.053* | 0.07 |
H9AC | 0.450522 | −0.041072 | 0.307367 | 0.053* | 0.07 |
C10A | 0.262 (5) | 0.615 (4) | 0.6395 (18) | 0.029 (2) | 0.07 |
S11A | 0.3211 (17) | 0.5574 (13) | 0.7707 (9) | 0.0450 (19) | 0.07 |
C12A | 0.238 (5) | 0.810 (3) | 0.7933 (17) | 0.031 (3) | 0.07 |
C13A | 0.213 (5) | 0.918 (4) | 0.6986 (19) | 0.032 (3) | 0.07 |
H13A | 0.186143 | 1.054308 | 0.694311 | 0.039* | 0.07 |
C14A | 0.228 (5) | 0.812 (4) | 0.6075 (19) | 0.029 (3) | 0.07 |
H14A | 0.217023 | 0.865457 | 0.535253 | 0.034* | 0.07 |
Cl1A | 0.255 (2) | 0.8778 (18) | 0.9186 (11) | 0.067 (3) | 0.07 |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0477 (13) | 0.0282 (8) | 0.0229 (10) | −0.0213 (8) | −0.0077 (7) | 0.0027 (6) |
C1 | 0.0291 (10) | 0.0248 (10) | 0.0217 (10) | −0.0149 (8) | −0.0016 (8) | −0.0017 (7) |
C2 | 0.0297 (9) | 0.0260 (9) | 0.0215 (9) | −0.0130 (8) | −0.0042 (7) | 0.0013 (7) |
C3 | 0.0287 (10) | 0.0281 (9) | 0.0216 (9) | −0.0146 (8) | −0.0034 (7) | 0.0017 (7) |
C4 | 0.0308 (10) | 0.0251 (9) | 0.0214 (9) | −0.0141 (8) | −0.0040 (8) | 0.0013 (7) |
S5 | 0.0476 (3) | 0.0276 (3) | 0.0260 (3) | −0.0194 (2) | −0.0118 (2) | 0.0051 (2) |
C6 | 0.0465 (12) | 0.0405 (12) | 0.0214 (9) | −0.0218 (10) | −0.0108 (9) | 0.0027 (9) |
C7 | 0.0373 (11) | 0.0359 (11) | 0.0224 (9) | −0.0177 (9) | −0.0050 (8) | −0.0031 (8) |
C8 | 0.0273 (10) | 0.0290 (10) | 0.0221 (9) | −0.0132 (8) | −0.0025 (8) | −0.0028 (8) |
C9 | 0.0366 (12) | 0.0267 (10) | 0.0285 (11) | −0.0132 (9) | −0.0047 (9) | −0.0028 (9) |
C10 | 0.0282 (10) | 0.0259 (9) | 0.0156 (9) | −0.0130 (7) | −0.0027 (8) | 0.0001 (8) |
S11 | 0.0318 (3) | 0.0229 (2) | 0.0182 (2) | −0.0139 (2) | −0.0033 (2) | 0.00121 (18) |
C12 | 0.0315 (10) | 0.0249 (9) | 0.0207 (9) | −0.0146 (8) | −0.0030 (8) | −0.0036 (8) |
C13 | 0.0327 (11) | 0.0245 (9) | 0.0252 (10) | −0.0136 (8) | −0.0049 (9) | 0.0016 (8) |
C14 | 0.0329 (10) | 0.0280 (10) | 0.0201 (9) | −0.0154 (8) | −0.0048 (8) | 0.0035 (8) |
Cl1 | 0.0378 (3) | 0.0319 (3) | 0.0246 (3) | −0.0173 (2) | −0.0021 (2) | −0.00631 (19) |
O1A | 0.045 (11) | 0.024 (6) | 0.034 (10) | −0.013 (7) | −0.008 (8) | −0.002 (7) |
C1A | 0.033 (4) | 0.027 (4) | 0.022 (4) | −0.013 (4) | −0.002 (4) | 0.002 (4) |
C2A | 0.034 (4) | 0.028 (4) | 0.022 (4) | −0.015 (4) | −0.002 (4) | 0.005 (4) |
C3A | 0.038 (5) | 0.030 (5) | 0.027 (4) | −0.011 (4) | −0.002 (4) | 0.000 (4) |
C4A | 0.039 (4) | 0.028 (4) | 0.026 (4) | −0.014 (4) | −0.001 (4) | 0.002 (4) |
S5A | 0.057 (4) | 0.035 (3) | 0.036 (3) | −0.014 (3) | 0.006 (3) | 0.005 (3) |
C6A | 0.047 (4) | 0.032 (4) | 0.022 (4) | −0.016 (4) | −0.009 (4) | −0.002 (4) |
C7A | 0.041 (4) | 0.035 (4) | 0.026 (4) | −0.015 (4) | −0.006 (4) | −0.001 (4) |
C8A | 0.035 (4) | 0.032 (4) | 0.025 (4) | −0.012 (4) | −0.005 (4) | 0.000 (3) |
C9A | 0.031 (9) | 0.035 (7) | 0.039 (10) | −0.014 (7) | −0.007 (9) | −0.002 (7) |
C10A | 0.034 (4) | 0.027 (3) | 0.023 (4) | −0.013 (3) | −0.004 (3) | 0.000 (3) |
S11A | 0.045 (4) | 0.040 (3) | 0.044 (4) | −0.018 (3) | −0.005 (3) | 0.008 (3) |
C12A | 0.036 (4) | 0.031 (4) | 0.027 (4) | −0.018 (4) | −0.004 (4) | 0.001 (4) |
C13A | 0.038 (5) | 0.029 (4) | 0.024 (4) | −0.012 (4) | −0.004 (4) | 0.001 (4) |
C14A | 0.035 (4) | 0.028 (4) | 0.020 (4) | −0.014 (4) | −0.003 (4) | 0.002 (4) |
Cl1A | 0.059 (6) | 0.068 (6) | 0.070 (7) | −0.030 (5) | −0.004 (5) | −0.001 (5) |
O1—C1 | 1.227 (3) | O1A—H1A | 0.8400 |
C1—C10 | 1.470 (3) | C1A—C10A | 1.328 (10) |
C1—C2 | 1.470 (3) | C1A—C2A | 1.38 (4) |
C2—C3 | 1.344 (3) | C2A—C3A | 1.44 (4) |
C2—H2 | 0.9500 | C2A—H2A | 0.9500 |
C3—C4 | 1.438 (3) | C3A—C4A | 1.54 (3) |
C3—H3 | 0.9500 | C3A—H3A | 0.9900 |
C4—C8 | 1.385 (3) | C3A—H3B | 0.9900 |
C4—S5 | 1.734 (2) | C4A—C8A | 1.386 (18) |
S5—C6 | 1.711 (2) | C4A—S5A | 1.744 (16) |
C6—C7 | 1.356 (3) | S5A—C6A | 1.734 (18) |
C6—H6 | 0.9500 | C6A—C7A | 1.367 (18) |
C7—C8 | 1.425 (3) | C6A—H6A | 0.9500 |
C7—H7 | 0.9500 | C7A—C8A | 1.414 (18) |
C8—C9 | 1.499 (3) | C7A—H7A | 0.9500 |
C9—H9A | 0.9800 | C8A—C9A | 1.531 (17) |
C9—H9B | 0.9800 | C9A—H9AA | 0.9800 |
C9—H9C | 0.9800 | C9A—H9AB | 0.9800 |
C10—C14 | 1.374 (3) | C9A—H9AC | 0.9800 |
C10—S11 | 1.732 (2) | C10A—C14A | 1.412 (18) |
S11—C12 | 1.712 (2) | C10A—S11A | 1.743 (18) |
C12—C13 | 1.364 (3) | S11A—C12A | 1.735 (17) |
C12—Cl1 | 1.722 (2) | C12A—C13A | 1.356 (18) |
C13—C14 | 1.415 (3) | C12A—Cl1A | 1.732 (17) |
C13—H13 | 0.9500 | C13A—C14A | 1.399 (19) |
C14—H14 | 0.9500 | C13A—H13A | 0.9500 |
O1A—C1A | 1.453 (10) | C14A—H14A | 0.9500 |
O1—C1—C10 | 119.75 (19) | C10A—C1A—O1A | 112 (2) |
O1—C1—C2 | 122.7 (2) | C2A—C1A—O1A | 113 (2) |
C10—C1—C2 | 117.52 (17) | C1A—C2A—C3A | 126 (3) |
C3—C2—C1 | 120.42 (18) | C1A—C2A—H2A | 117.2 |
C3—C2—H2 | 119.8 | C3A—C2A—H2A | 117.2 |
C1—C2—H2 | 119.8 | C2A—C3A—C4A | 123 (2) |
C2—C3—C4 | 126.27 (19) | C2A—C3A—H3A | 106.7 |
C2—C3—H3 | 116.9 | C4A—C3A—H3A | 106.7 |
C4—C3—H3 | 116.9 | C2A—C3A—H3B | 106.7 |
C8—C4—C3 | 127.20 (18) | C4A—C3A—H3B | 106.7 |
C8—C4—S5 | 111.23 (14) | H3A—C3A—H3B | 106.6 |
C3—C4—S5 | 121.56 (15) | C8A—C4A—C3A | 132.5 (18) |
C6—S5—C4 | 91.72 (10) | C8A—C4A—S5A | 110.0 (13) |
C7—C6—S5 | 112.16 (16) | C3A—C4A—S5A | 117.4 (16) |
C7—C6—H6 | 123.9 | C6A—S5A—C4A | 91.4 (10) |
S5—C6—H6 | 123.9 | C7A—C6A—S5A | 112.2 (15) |
C6—C7—C8 | 113.4 (2) | C7A—C6A—H6A | 123.9 |
C6—C7—H7 | 123.3 | S5A—C6A—H6A | 123.9 |
C8—C7—H7 | 123.3 | C6A—C7A—C8A | 111.7 (18) |
C4—C8—C7 | 111.53 (18) | C6A—C7A—H7A | 124.2 |
C4—C8—C9 | 124.48 (19) | C8A—C7A—H7A | 124.2 |
C7—C8—C9 | 123.99 (19) | C4A—C8A—C7A | 113.9 (16) |
C8—C9—H9A | 109.5 | C4A—C8A—C9A | 121.3 (19) |
C8—C9—H9B | 109.5 | C7A—C8A—C9A | 125 (2) |
H9A—C9—H9B | 109.5 | C8A—C9A—H9AA | 109.5 |
C8—C9—H9C | 109.5 | C8A—C9A—H9AB | 109.5 |
H9A—C9—H9C | 109.5 | H9AA—C9A—H9AB | 109.5 |
H9B—C9—H9C | 109.5 | C8A—C9A—H9AC | 109.5 |
C14—C10—C1 | 131.62 (19) | H9AA—C9A—H9AC | 109.5 |
C14—C10—S11 | 111.50 (16) | H9AB—C9A—H9AC | 109.5 |
C1—C10—S11 | 116.88 (14) | C1A—C10A—C14A | 120 (2) |
C12—S11—C10 | 90.29 (10) | C1A—C10A—S11A | 128.3 (19) |
C13—C12—S11 | 114.16 (16) | C14A—C10A—S11A | 111.9 (14) |
C13—C12—Cl1 | 126.56 (16) | C12A—S11A—C10A | 89.6 (10) |
S11—C12—Cl1 | 119.28 (12) | C13A—C12A—Cl1A | 129.0 (16) |
C12—C13—C14 | 110.72 (18) | C13A—C12A—S11A | 111.6 (14) |
C12—C13—H13 | 124.6 | Cl1A—C12A—S11A | 117.7 (12) |
C14—C13—H13 | 124.6 | C12A—C13A—C14A | 115.1 (17) |
C10—C14—C13 | 113.32 (18) | C12A—C13A—H13A | 122.4 |
C10—C14—H14 | 123.3 | C14A—C13A—H13A | 122.4 |
C13—C14—H14 | 123.3 | C13A—C14A—C10A | 109.6 (17) |
C1A—O1A—H1A | 109.5 | C13A—C14A—H14A | 125.2 |
C10A—C1A—C2A | 131 (3) | C10A—C14A—H14A | 125.2 |
O1—C1—C2—C3 | −3.8 (3) | C10A—C1A—C2A—C3A | −171 (3) |
C10—C1—C2—C3 | 176.41 (19) | O1A—C1A—C2A—C3A | −16 (5) |
C1—C2—C3—C4 | 179.37 (19) | C1A—C2A—C3A—C4A | −117 (3) |
C2—C3—C4—C8 | −177.5 (2) | C2A—C3A—C4A—C8A | 150 (3) |
C2—C3—C4—S5 | 1.6 (3) | C2A—C3A—C4A—S5A | −35 (4) |
C8—C4—S5—C6 | 0.42 (17) | C8A—C4A—S5A—C6A | −2 (3) |
C3—C4—S5—C6 | −178.88 (18) | C3A—C4A—S5A—C6A | −178 (3) |
C4—S5—C6—C7 | 0.04 (19) | C4A—S5A—C6A—C7A | 7 (3) |
S5—C6—C7—C8 | −0.5 (3) | S5A—C6A—C7A—C8A | −10 (4) |
C3—C4—C8—C7 | 178.5 (2) | C3A—C4A—C8A—C7A | 172 (3) |
S5—C4—C8—C7 | −0.7 (2) | S5A—C4A—C8A—C7A | −3 (4) |
C3—C4—C8—C9 | −1.9 (3) | C3A—C4A—C8A—C9A | −2 (6) |
S5—C4—C8—C9 | 178.87 (17) | S5A—C4A—C8A—C9A | −178 (2) |
C6—C7—C8—C4 | 0.8 (3) | C6A—C7A—C8A—C4A | 9 (4) |
C6—C7—C8—C9 | −178.8 (2) | C6A—C7A—C8A—C9A | −177 (3) |
O1—C1—C10—C14 | 175.0 (3) | C2A—C1A—C10A—C14A | −41 (6) |
C2—C1—C10—C14 | −5.2 (3) | O1A—C1A—C10A—C14A | 163 (3) |
O1—C1—C10—S11 | −4.2 (3) | C2A—C1A—C10A—S11A | 143 (3) |
C2—C1—C10—S11 | 175.62 (15) | O1A—C1A—C10A—S11A | −13 (5) |
C14—C10—S11—C12 | 0.86 (17) | C1A—C10A—S11A—C12A | −170 (4) |
C1—C10—S11—C12 | −179.83 (17) | C14A—C10A—S11A—C12A | 13 (3) |
C10—S11—C12—C13 | −1.24 (18) | C10A—S11A—C12A—C13A | −12 (3) |
C10—S11—C12—Cl1 | 178.05 (14) | C10A—S11A—C12A—Cl1A | −179 (2) |
S11—C12—C13—C14 | 1.3 (3) | Cl1A—C12A—C13A—C14A | 173 (3) |
Cl1—C12—C13—C14 | −177.96 (16) | S11A—C12A—C13A—C14A | 9 (4) |
C1—C10—C14—C13 | −179.5 (2) | C12A—C13A—C14A—C10A | 2 (4) |
S11—C10—C14—C13 | −0.3 (2) | C1A—C10A—C14A—C13A | 172 (3) |
C12—C13—C14—C10 | −0.6 (3) | S11A—C10A—C14A—C13A | −11 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O1 | 0.95 | 2.48 | 2.818 (3) | 101 |
C2—H2···S5 | 0.95 | 2.80 | 3.166 (2) | 104 |
C13—H13···O1i | 0.95 | 2.35 | 3.184 (4) | 146 |
C9—H9C···O1ii | 0.98 | 2.58 | 3.488 (4) | 154 |
C6—H6···S11iii | 0.95 | 3.04 | 3.948 (2) | 160 |
Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y, −z+1; (iii) x, y, z−1. |
Funding information
The authors thank Al al-Bayt University (Mafraq, Jordan) for financial support.
References
Al-Maqtari, H. M., Jamalis, J. & Sirat, H. M. (2015). Jurnal Teknologi, 77, 55–59. Google Scholar
Baggio, R., Brovelli, F., Moreno, Y., Pinto, M. & Soto-Delgado, J. (2016). J. Mol. Struct. 1123, 1–7. Web of Science CSD CrossRef CAS Google Scholar
Chidan Kumar, C. S., Govindarasu, K., Fun, H.-K., Kavitha, E., Chandraju, S. & Quah, C. K. (2015). J. Mol. Struct. 1085, 63–77. Web of Science CSD CrossRef CAS Google Scholar
Contreras, D., Moreno, Y., Soto, C., Saavedra, M., Brovelli, F. & Baggio, R. (2009). J. Chil. Chem. Soc. 54, 470–472. CAS Google Scholar
Fang, Q., Zhao, L., Wang, Y., Zhang, Y., Li, Z., Pan, Y., Kanchana, K., Wang, J., Tong, C., Li, D. & Liang, G. (2015). Toxicol. Appl. Pharmacol. 282, 129–138. Web of Science CrossRef CAS PubMed Google Scholar
Fun, H.-K., Chantrapromma, S., Patil, P. S. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2724–o2725. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gillespie, E., Dungan, K. W., Gomoll, A. W. & Seidehamel, R. J. (1985). Int. J. Immunopharmacol. 7, 655–660. CrossRef CAS PubMed Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Ibrahim, M. M., Al-Refai, M., Ali, B. F., Geyer, A., Harms, K. & Marsch, M. (2019). IUCrData, 4, x191046. Google Scholar
Jarak, I., Kralj, M., Šuman, L., Pavlović, G., Dogan, J., Piantanida, I., Žinić, M., Pavelić, K. & Karminski-Zamola, G. (2005). J. Med. Chem. 48, 2346–2360. Web of Science CSD CrossRef PubMed CAS Google Scholar
Liang, G., Yang, S.-L., Wang, X.-H., Li, Y.-R. & Li, X.-K. (2007). Acta Cryst. E63, o4118. Web of Science CSD CrossRef IUCr Journals Google Scholar
López, S. N., Castelli, M., Zacchino, S. A., Domínguez, J. N., Lobo, G., Charris-Charris, J., Cortés, J. C. G., Ribas, J. C., Devia, C., Rodríguez, A. M. & Enriz, R. D. (2001). Bioorg. Med. Chem. 9, 1999–2013. Web of Science PubMed Google Scholar
Mishra, R., Tomer, I. & Kumar, S. (2012). Der Pharmacia Sinica, 3, 332–336. CAS Google Scholar
Molvi, K. I., Vasu, K. K., Yerande, S. G., Sudarsanam, V. & Haque, N. (2007). Eur. J. Med. Chem. 42, 1049–1058. Web of Science CrossRef PubMed CAS Google Scholar
Oyarce, J., Hernández, L., Ahumada, G., Soto, J. P., del Valle, M. A., Dorcet, V., Carrillo, D., Hamon, J.-R. & Manzur, C. (2017). Polyhedron, 123, 277–284. Web of Science CSD CrossRef CAS Google Scholar
Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Shalini, S., Girija, C. R., Jotani, M. M., Rajashekhar, B., Rao, N. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2354. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shin, S. Y., Yoon, H., Hwang, D., Ahn, S., Kim, D.-W., Koh, D., Lee, Y. H. & Lim, Y. (2013). Bioorg. Med. Chem. 21, 7018–7024. Web of Science CrossRef CAS PubMed Google Scholar
Sreenatha, N. R., Lakshminarayana, B. N., Ganesha, D. P., Vijayshankar, S. & Nagaraju, S. (2018). X-ray Struct. Anal. Online, 34, 23–24. Web of Science CSD CrossRef CAS Google Scholar
Stoe & Cie (2016). X-AREA and LANA. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Tran, T. D., Nguyen, T. T., Do, T. H., Huynh, T. N., Tran, C. D. & Thai, K. M. (2012). Molecules, 17, 6684–6696. Web of Science CrossRef CAS PubMed Google Scholar
Vu Quoc, T., Tran Thi Thuy, D., Dang Thanh, T., Phung Ngoc, T., Nguyen Thien, V., Nguyen Thuy, C. & Van Meervelt, L. (2019). Acta Cryst. E75, 957–963. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yakalı, G., Biçer, A. & Cin, G. T. (2019). Turk. C. Theo. Chem. 3, 47–58. Google Scholar
Yesilyurt, F., Aydin, A., Gul, H. I., Akkurt, M. & Ozcelik, N. D. (2018). Acta Cryst. E74, 960–963. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.