research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Unexpected formation of a co-crystal containing the chalcone (E)-1-(5-chloro­thio­phen-2-yl)-3-(3-methyl­thio­phen-2-yl)prop-2-en-1-one and the keto–enol tautomer (Z)-1-(5-chloro­thio­phen-2-yl)-3-(3-methyl­thio­phen-2-yl)prop-1-en-1-ol

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Al al-Bayt University, Mafraq 25113, Jordan, and bFaculty of Chemistry, Philipps University Marburg, Hans-Meerwein-Strasse 4, 35032, Marburg, Germany
*Correspondence e-mail: mahmoud_alrefai@aabu.edu.jo, bfali@aabu.edu.jo

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 17 February 2020; accepted 24 February 2020; online 3 March 2020)

The title crystal structure is assembled from the superposition of two mol­ecular structures, (E)-1-(5-chloro­thio­phen-2-yl)-3-(3-methyl­thio­phen-2-yl)prop-2-en-1-one, C12H9ClOS2 (93%), and (Z)-1-(5-chloro­thio­phen-2-yl)-3-(3-methyl­thio­phen-2-yl)prop-1-en-1-ol, C12H11ClOS2 (7%), 0.93C12H9ClOS2·0.07C12H11ClOS2. Both were obtained from the reaction of 3-methyl­thio­phene-2-carbaldehyde and 1-(5-chloro­thio­phen-2-yl)ethanone. In the extended structure of the major chalcone component, mol­ecules are linked by a combination of C—H⋯O/S, Cl⋯Cl, Cl⋯π and ππ inter­actions, leading to a compact three-dimensional supra­molecular assembly.

1. Chemical context

Chalcones exhibit a wide spectrum of pharmacological activities, including anti­bacterial (Tran et al., 2012[Tran, T. D., Nguyen, T. T., Do, T. H., Huynh, T. N., Tran, C. D. & Thai, K. M. (2012). Molecules, 17, 6684-6696.]), anti­cancer (Shin et al., 2013[Shin, S. Y., Yoon, H., Hwang, D., Ahn, S., Kim, D.-W., Koh, D., Lee, Y. H. & Lim, Y. (2013). Bioorg. Med. Chem. 21, 7018-7024.]), anti­fungal (López et al., 2001[López, S. N., Castelli, M., Zacchino, S. A., Domínguez, J. N., Lobo, G., Charris-Charris, J., Cortés, J. C. G., Ribas, J. C., Devia, C., Rodríguez, A. M. & Enriz, R. D. (2001). Bioorg. Med. Chem. 9, 1999-2013.]) and anti-inflammatory properties (Fang et al., 2015[Fang, Q., Zhao, L., Wang, Y., Zhang, Y., Li, Z., Pan, Y., Kanchana, K., Wang, J., Tong, C., Li, D. & Liang, G. (2015). Toxicol. Appl. Pharmacol. 282, 129-138.]). On the other hand, thio­phene derivatives display a wide range of biological activities such as anti­microbial (Mishra et al., 2012[Mishra, R., Tomer, I. & Kumar, S. (2012). Der Pharmacia Sinica, 3, 332-336.]), anti­allergic (Gillespie et al., 1985[Gillespie, E., Dungan, K. W., Gomoll, A. W. & Seidehamel, R. J. (1985). Int. J. Immunopharmacol. 7, 655-660.]), anti-inflammatory (Molvi et al., 2007[Molvi, K. I., Vasu, K. K., Yerande, S. G., Sudarsanam, V. & Haque, N. (2007). Eur. J. Med. Chem. 42, 1049-1058.]), anti­oxidant and anti­tumor agents (Jarak et al., 2005[Jarak, I., Kralj, M., Šuman, L., Pavlović, G., Dogan, J., Piantanida, I., Žinić, M., Pavelić, K. & Karminski-Zamola, G. (2005). J. Med. Chem. 48, 2346-2360.]). Combining thio­phenes and chalcones could result in compounds with inter­esting new structures and properties: Al-Maqtari et al. (2015[Al-Maqtari, H. M., Jamalis, J. & Sirat, H. M. (2015). Jurnal Teknologi, 77, 55-59.]) reported the synthesis of thio­phene–chalcones containing two thio­phene rings and their anti­microbial and anti­cancer activities. One of their reported structures is (E)-1-(5-chloro­thio­phen-2-yl)-3-(3-methyl­thio­phen-2-yl)prop-2-en-1-one. However, the crystal structure of this thio­phene-based chalcone has not yet been determined.

[Scheme 1]

As a part of our ongoing research in this area (Ibrahim et al., 2019[Ibrahim, M. M., Al-Refai, M., Ali, B. F., Geyer, A., Harms, K. & Marsch, M. (2019). IUCrData, 4, x191046.]), we report herein the crystal structure of a chalcone containing two terminal-substituted thio­phene rings, namely (E)-1-(5-chloro­thio­phen-2-yl)-3-(3-methyl­thio­phen-2-yl)prop-2-en-1-one, which crystallized as a co-crystal in an unexpected superposition with the keto–enol tautomer (Z)-1-(5-chloro­thio­phen-2-yl)-3-(3-methyl­thio­phen-2-yl)prop-1-en-1-ol as a minor component.

2. Structural commentary

The crystal structure (Fig. 1[link]) exhibits two superimposed mol­ecules with occupancies of 93% and 7%: this was surprising since the formation of the minor (enol) component was quite unexpected. A possible mechanism for the formation of this component is shown in Fig. 2[link]. Equilibria between keto and enol isomers are regularly observed in solution but not in crystals. This issue needs a thorough exploration, which is beyond the scope of this report.

[Figure 1]
Figure 1
(a) The mol­ecular structure of the title co-crystal showing the superposition of the two components, whose occupancies are 93% (black bonds) and 7% (white bonds), (b) the mol­ecular structure with the atom-labelling scheme of the major component and (c) the minor component. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
Possible mechanism for the formation of the minor enol component.

The mol­ecular structures show similar conformations but differ in bond lengths and the carbon-atom geometry (hybridization), which we will describe for the major component in more detail. The mol­ecular structure (Fig. 1[link]) is composed of two substituted thio­phene rings, 5-chloro­thio­phen-2-yl and 3-methyl­thio­phen-2-yl, which are linked by the central –CO—CH=CH– spacer. The configuration about the C=C bond [1.344 (3) Å] is E and the carbonyl group is syn with respect to the C=C bond. The mol­ecule is effectively planar as indicated by the torsion angles O1—C1—C10—C14 = 175.0 (3), C2—C1—C10—C14 = −5.2 (3), C10—C1—C2—C3 = 176.41 (19), O1—C1—C2—C3 = −3.8 (3), C1—C2—C3—C4 = 179.37 (19) and C2—C3—C4—C8 = −177.5 (2)°. The hydrogen atoms of the propenone unit are trans configured and each is involved in an intra­molecular short contact that forms an S(5) motif (Fig. 1[link], Table 1[link]). The bond lengths and angles are consistent with those in related structures (Vu Quoc et al., 2019[Vu Quoc, T., Tran Thi Thuy, D., Dang Thanh, T., Phung Ngoc, T., Nguyen Thien, V., Nguyen Thuy, C. & Van Meervelt, L. (2019). Acta Cryst. E75, 957-963.]; Yesilyurt et al., 2018[Yesilyurt, F., Aydin, A., Gul, H. I., Akkurt, M. & Ozcelik, N. D. (2018). Acta Cryst. E74, 960-963.]; Sreenatha et al., 2018[Sreenatha, N. R., Lakshminarayana, B. N., Ganesha, D. P., Vijayshankar, S. & Nagaraju, S. (2018). X-ray Struct. Anal. Online, 34, 23-24.]). The S atoms of the terminal 5-chloro­thio­phen-2-yl (S11/C10/C12–C14) and 3-methyl­thio­phen-2-yl (S5/C4/C6–C8) rings are anti and the rings are inclined slightly to each other [dihedral angle = 6.92 (13)°].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1 0.95 2.48 2.818 (3) 101
C2—H2⋯S5 0.95 2.80 3.166 (2) 104
C13—H13⋯O1i 0.95 2.35 3.184 (4) 146
C9—H9C⋯O1ii 0.98 2.58 3.488 (4) 154
C6—H6⋯S11iii 0.95 3.04 3.948 (2) 160
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y, -z+1; (iii) x, y, z-1.

3. Supra­molecular features

The extended structure exhibits several hydrogen-bonding contacts (Table 1[link]). The hydrogen bonds involve a carbonyl O atom serving as a double-acceptor with H atoms from the chloro­thio­phenyl unit, and a methyl group from the methyl­thio­phenyl unit of a neighbouring mol­ecule. Additional C—H⋯S contacts are also present (Table 1[link]). Further inter­actions are detected, namely Cl⋯Cl [C12—Cl1⋯Cl1i of 3.3907 (8) Å and 142.92 (8)°; symmetry code: (i) −x, 2 − y, 2 − z], C—Cl⋯π [C12—Cl15⋯Cgii = 3.6536 (14) Å]; symmetry code: (ii) 1 − x, 1 − y, 1 − z; Cg1 is the centroid of the S5/C4/C6–C8 ring] as well as ππ contacts [Cg1⋯Cg2iii of 4.0139 (15) Å; symmetry code: (iii) −x, 1 − y, 1 − z; Cg2 is the centroid of the S11/C10/C12–C14 ring], which connect neighbouring mol­ecules, consolidating a rather compact three-dimensional supra­molecular network (Fig. 3[link]).

[Figure 3]
Figure 3
Overall packing of the major component with all inter­molecular inter­actions (dotted and dashed lines) shown.

4. Database survey

Similar structures to the title compound (major component) with the same chalcone skeleton and one or two thio­phenyl rings include the following, which are identified by their CSD (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) reference codes. In all compounds, the mol­ecular skeletons are approximately planar, and have an E configuration about the C=C bond.

The structures containing one thio­phenyl rings include: 1-(5-chloro-2-thien­yl)-3-(2,3,4-tri­meth­oxy­phen­yl)prop-2-en-1-one (refcode LOVHAH; Chidan Kumar et al., 2015[Chidan Kumar, C. S., Govindarasu, K., Fun, H.-K., Kavitha, E., Chandraju, S. & Quah, C. K. (2015). J. Mol. Struct. 1085, 63-77.]), where the mol­ecular structure features intra­molecular C—H⋯O inter­actions. The mol­ecules in 1-(4-bromo­phen­yl)-3-(3-meth­yl-2-thien­yl)prop-2-en-1-one (XICNON; Fun et al., 2007[Fun, H.-K., Chantrapromma, S., Patil, P. S. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2724-o2725.]), feature short intra­molecular C—H⋯O/S contacts, which form S(5) rings. In the crystal structure, the mol­ecules are linked into layers by weak C—H⋯O hydrogen bonds, and short Br⋯O contacts are also observed. In 1-(2-hy­droxy­phen­yl)-3-(5-methyl­thio­phen-2-yl)prop-2-en-1-one (AGE­FUQ; Sreenatha et al., 2018[Sreenatha, N. R., Lakshminarayana, B. N., Ganesha, D. P., Vijayshankar, S. & Nagaraju, S. (2018). X-ray Struct. Anal. Online, 34, 23-24.]), the structure exhibits O—H⋯O and C—H⋯O/S intra­molecular inter­actions.

The structures of bis-thio­phenyl chalcones include 2,6-(E,E)-bis­[(thio­phene-2-yl)methyl­ene]cyclo­hexa­none (BOQ­YAK; Yakalı et al., 2019[Yakalı, G., Biçer, A. & Cin, G. T. (2019). Turk. C. Theo. Chem. 3, 47-58.]) in which the terminal thio­phene rings adopt a syn orientation. In the structure, the mol­ecules display weak C—H⋯S and C—H⋯O intra­molecular and only C—H⋯O inter­molecular hydrogen bonds. In addition, ππ inter­actions are found between the thio­phene rings. In 1,5-bis­(3-methyl-2-thien­yl)penta-1,4-dien-3-one (RUZCIZ; Con­treras et al., 2009[Contreras, D., Moreno, Y., Soto, C., Saavedra, M., Brovelli, F. & Baggio, R. (2009). J. Chil. Chem. Soc. 54, 470-472.]), the mol­ecule consists of terminal methyl­thio­phenyl rings with the two S atoms being in a syn arrangement and trans to the carbonyl oxygen atom. The mol­ecule is almost planar, with a slight twist along the bridging unit, leading to a small rotation between the terminal thio­phenyl rings. The mol­ecules are connected via various types of inter­molecular inter­actions, namely C—H⋯O, C—H⋯π and ππ, leading to a three-dimensional supra­molecular network. The mol­ecule of (2E,6E)-2,6-bis­[(5-methyl­thio­phen-2-yl)methyl­ene]cyclo­hexa­none (XILXUM; Liang et al., 2007[Liang, G., Yang, S.-L., Wang, X.-H., Li, Y.-R. & Li, X.-K. (2007). Acta Cryst. E63, o4118.]) displays two slightly twisted syn terminal methyl­thio­phenyl rings in an anti-arrangement with respect to the carbonyl oxygen atom. In 1,5-bis­(thio­phen-3-yl)penta-1,4-dien-3-one (AYUPIU; Shalini et al., 2011[Shalini, S., Girija, C. R., Jotani, M. M., Rajashekhar, B., Rao, N. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2354.]), the dihedral angle between the thio­phenyl rings is 15.45 (10)°. The mol­ecules features both C—H⋯O and C—H⋯π inter­actions. Both thio­phene rings in 3-hy­droxy-1-(thio­phen-2-yl)-3-(thio­phen-3-yl)prop-2-en-1-one (IBIRUJ; Oyarce et al., 2017[Oyarce, J., Hernández, L., Ahumada, G., Soto, J. P., del Valle, M. A., Dorcet, V., Carrillo, D., Hamon, J.-R. & Manzur, C. (2017). Polyhedron, 123, 277-284.]) are disordered with the major-disorder components inclined to each other by 12.1 (3)°. In the crystal, the mol­ecules are connected through C—H⋯O inter­actions. In the crystal of 1,3-bis­(3-thien­yl)prop-2-en-1-one (UNAJIE; Baggio et al., 2016[Baggio, R., Brovelli, F., Moreno, Y., Pinto, M. & Soto-Delgado, J. (2016). J. Mol. Struct. 1123, 1-7.]), the thio­phene rings are inclined to each other by a dihedral angle of 8.88 (10)°. The structure exhibits ππ inter­actions together with C—H⋯O inter­actions and short S⋯S contacts also occur.

5. Synthesis and crystallization

The synthesis was carried out using a reported method (Al-Maqtari et al., 2015[Al-Maqtari, H. M., Jamalis, J. & Sirat, H. M. (2015). Jurnal Teknologi, 77, 55-59.]). Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation, at room temperature, of a solution in ethanol.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms were included in calculated positions (C—H = 0.95–0.98 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl). Methyl groups were allowed to rotate about the bond to their next atom to fit the electron density.

Table 2
Experimental details

Crystal data
Chemical formula 0.93C12H9ClOS2·0.07C12H11ClOS2
Mr 268.90
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 7.3709 (4), 7.5063 (4), 12.4247 (6)
α, β, γ (°) 84.126 (4), 76.694 (4), 62.372 (4)
V3) 592.69 (6)
Z 2
Radiation type Cu Kα
μ (mm−1) 5.93
Crystal size (mm) 0.25 × 0.21 × 0.14
 
Data collection
Diffractometer Stoe Stadivari
Absorption correction Multi-scan (LANA; Stoe, 2016[Stoe & Cie (2016). X-AREA and LANA. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.079, 0.352
No. of measured, independent and observed [I > 2σ(I)] reflections 10865, 2398, 2221
Rint 0.024
(sin θ/λ)max−1) 0.628
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.088, 1.06
No. of reflections 2398
No. of parameters 291
No. of restraints 754
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.27, −0.28
Computer programs: X-AREA (Stoe & Cie, 2016[Stoe & Cie (2016). X-AREA and LANA. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and DIAMOND (Putz & Brandenburg, 2014[Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

The crystal structure was refined as a superposition of two mol­ecular structures with formulae C12H9ClOS2 (93% occupancy component) and C12H11ClOS2 (7% occupancy component), respectively. Restraints were necessary during the refinement of geometric and anisotropic displacement parameters.

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2016); cell refinement: X-AREA (Stoe & Cie, 2016); data reduction: X-AREA (Stoe & Cie, 2016); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Putz & Brandenburg, 2014); software used to prepare material for publication: X-AREA (Stoe & Cie, 2016).

(E)-1-(5-Chlorothiophen-2-yl)-3-(3-methylthiophen-2-yl)prop-2-en-1-\ one–(Z)-1-(5-chlorothiophen-2-yl)-3-(3-methylthiophen-2-yl)prop-\ 1-en-1-ol (0.93/0/07) top
Crystal data top
0.93C12H9ClOS2·0.07C12H11ClOS2Z = 2
Mr = 268.90F(000) = 276
Triclinic, P1Dx = 1.507 Mg m3
a = 7.3709 (4) ÅCu Kα radiation, λ = 1.54186 Å
b = 7.5063 (4) ÅCell parameters from 17498 reflections
c = 12.4247 (6) Åθ = 3.7–76.0°
α = 84.126 (4)°µ = 5.93 mm1
β = 76.694 (4)°T = 100 K
γ = 62.372 (4)°Plate, yellow
V = 592.69 (6) Å30.25 × 0.21 × 0.14 mm
Data collection top
Stoe Stadivari
diffractometer
2398 independent reflections
Radiation source: GeniX 3D HF Cu2221 reflections with I > 2σ(I)
Detector resolution: 5.81 pixels mm-1Rint = 0.024
rotation method, ω scansθmax = 75.5°, θmin = 6.7°
Absorption correction: multi-scan
(LANA; Stoe, 2016)
h = 59
Tmin = 0.079, Tmax = 0.352k = 89
10865 measured reflectionsl = 1315
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.048P)2 + 0.4005P]
where P = (Fo2 + 2Fc2)/3
2398 reflections(Δ/σ)max < 0.001
291 parametersΔρmax = 0.27 e Å3
754 restraintsΔρmin = 0.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The crystal structure is an overlay of two molecular structure with ratio 93:7.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.3137 (4)0.2710 (3)0.5851 (2)0.0314 (5)0.93
C10.2726 (3)0.4337 (3)0.53882 (16)0.0247 (4)0.93
C20.2535 (3)0.4652 (3)0.42238 (15)0.0259 (4)0.93
H20.2131370.5956280.3912420.031*0.93
C30.2928 (3)0.3105 (3)0.35969 (16)0.0259 (4)0.93
H30.3341200.1825390.3940940.031*0.93
C40.2784 (3)0.3201 (3)0.24557 (16)0.0256 (4)0.93
S50.21123 (9)0.54296 (8)0.17199 (4)0.03242 (16)0.93
C60.2248 (4)0.4291 (4)0.05595 (18)0.0348 (5)0.93
H60.1983130.4966770.0118890.042*0.93
C70.2777 (4)0.2310 (3)0.07204 (18)0.0314 (4)0.93
H70.2912830.1451320.0164180.038*0.93
C80.3110 (3)0.1643 (3)0.18065 (17)0.0262 (4)0.93
C90.3748 (4)0.0483 (3)0.21906 (19)0.0312 (5)0.93
H9A0.4224230.1367160.1549930.047*0.93
H9B0.2548520.0571610.2686180.047*0.93
H9C0.4887380.0901230.2586670.047*0.93
C100.2397 (3)0.6067 (3)0.60062 (16)0.0233 (4)0.93
S110.24466 (9)0.57165 (8)0.74011 (4)0.02410 (15)0.93
C120.1984 (3)0.8151 (3)0.75171 (17)0.0251 (4)0.93
C130.1837 (3)0.9193 (3)0.65490 (19)0.0276 (4)0.93
H130.1611821.0548530.6469740.033*0.93
C140.2066 (4)0.7980 (3)0.56787 (18)0.0268 (4)0.93
H140.1997240.8442590.4941190.032*0.93
Cl10.17230 (10)0.90570 (8)0.87916 (4)0.03112 (15)0.93
O1A0.354 (6)0.286 (4)0.602 (3)0.035 (6)0.07
H1A0.3437050.2155730.5573400.053*0.07
C1A0.257 (5)0.496 (4)0.569 (2)0.028 (3)0.07
C2A0.126 (4)0.535 (4)0.497 (2)0.029 (3)0.07
H2A0.0319130.6711060.4872440.035*0.07
C3A0.121 (5)0.385 (4)0.435 (2)0.034 (3)0.07
H3A0.0221910.3973170.4581630.041*0.07
H3B0.2162090.2522740.4608740.041*0.07
C4A0.175 (5)0.377 (3)0.3079 (17)0.032 (3)0.07
S5A0.1043 (15)0.6046 (12)0.2374 (7)0.0485 (18)0.07
C6A0.200 (5)0.482 (3)0.1107 (16)0.034 (3)0.07
H6A0.2093190.5475650.0415330.041*0.07
C7A0.260 (5)0.281 (3)0.1218 (18)0.035 (3)0.07
H7A0.2960910.1927280.0620460.042*0.07
C8A0.261 (5)0.219 (3)0.2331 (19)0.032 (3)0.07
C9A0.331 (5)0.001 (3)0.272 (3)0.036 (5)0.07
H9AA0.3707440.0862680.2088330.053*0.07
H9AB0.2148150.0080580.3259110.053*0.07
H9AC0.4505220.0410720.3073670.053*0.07
C10A0.262 (5)0.615 (4)0.6395 (18)0.029 (2)0.07
S11A0.3211 (17)0.5574 (13)0.7707 (9)0.0450 (19)0.07
C12A0.238 (5)0.810 (3)0.7933 (17)0.031 (3)0.07
C13A0.213 (5)0.918 (4)0.6986 (19)0.032 (3)0.07
H13A0.1861431.0543080.6943110.039*0.07
C14A0.228 (5)0.812 (4)0.6075 (19)0.029 (3)0.07
H14A0.2170230.8654570.5352530.034*0.07
Cl1A0.255 (2)0.8778 (18)0.9186 (11)0.067 (3)0.07
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0477 (13)0.0282 (8)0.0229 (10)0.0213 (8)0.0077 (7)0.0027 (6)
C10.0291 (10)0.0248 (10)0.0217 (10)0.0149 (8)0.0016 (8)0.0017 (7)
C20.0297 (9)0.0260 (9)0.0215 (9)0.0130 (8)0.0042 (7)0.0013 (7)
C30.0287 (10)0.0281 (9)0.0216 (9)0.0146 (8)0.0034 (7)0.0017 (7)
C40.0308 (10)0.0251 (9)0.0214 (9)0.0141 (8)0.0040 (8)0.0013 (7)
S50.0476 (3)0.0276 (3)0.0260 (3)0.0194 (2)0.0118 (2)0.0051 (2)
C60.0465 (12)0.0405 (12)0.0214 (9)0.0218 (10)0.0108 (9)0.0027 (9)
C70.0373 (11)0.0359 (11)0.0224 (9)0.0177 (9)0.0050 (8)0.0031 (8)
C80.0273 (10)0.0290 (10)0.0221 (9)0.0132 (8)0.0025 (8)0.0028 (8)
C90.0366 (12)0.0267 (10)0.0285 (11)0.0132 (9)0.0047 (9)0.0028 (9)
C100.0282 (10)0.0259 (9)0.0156 (9)0.0130 (7)0.0027 (8)0.0001 (8)
S110.0318 (3)0.0229 (2)0.0182 (2)0.0139 (2)0.0033 (2)0.00121 (18)
C120.0315 (10)0.0249 (9)0.0207 (9)0.0146 (8)0.0030 (8)0.0036 (8)
C130.0327 (11)0.0245 (9)0.0252 (10)0.0136 (8)0.0049 (9)0.0016 (8)
C140.0329 (10)0.0280 (10)0.0201 (9)0.0154 (8)0.0048 (8)0.0035 (8)
Cl10.0378 (3)0.0319 (3)0.0246 (3)0.0173 (2)0.0021 (2)0.00631 (19)
O1A0.045 (11)0.024 (6)0.034 (10)0.013 (7)0.008 (8)0.002 (7)
C1A0.033 (4)0.027 (4)0.022 (4)0.013 (4)0.002 (4)0.002 (4)
C2A0.034 (4)0.028 (4)0.022 (4)0.015 (4)0.002 (4)0.005 (4)
C3A0.038 (5)0.030 (5)0.027 (4)0.011 (4)0.002 (4)0.000 (4)
C4A0.039 (4)0.028 (4)0.026 (4)0.014 (4)0.001 (4)0.002 (4)
S5A0.057 (4)0.035 (3)0.036 (3)0.014 (3)0.006 (3)0.005 (3)
C6A0.047 (4)0.032 (4)0.022 (4)0.016 (4)0.009 (4)0.002 (4)
C7A0.041 (4)0.035 (4)0.026 (4)0.015 (4)0.006 (4)0.001 (4)
C8A0.035 (4)0.032 (4)0.025 (4)0.012 (4)0.005 (4)0.000 (3)
C9A0.031 (9)0.035 (7)0.039 (10)0.014 (7)0.007 (9)0.002 (7)
C10A0.034 (4)0.027 (3)0.023 (4)0.013 (3)0.004 (3)0.000 (3)
S11A0.045 (4)0.040 (3)0.044 (4)0.018 (3)0.005 (3)0.008 (3)
C12A0.036 (4)0.031 (4)0.027 (4)0.018 (4)0.004 (4)0.001 (4)
C13A0.038 (5)0.029 (4)0.024 (4)0.012 (4)0.004 (4)0.001 (4)
C14A0.035 (4)0.028 (4)0.020 (4)0.014 (4)0.003 (4)0.002 (4)
Cl1A0.059 (6)0.068 (6)0.070 (7)0.030 (5)0.004 (5)0.001 (5)
Geometric parameters (Å, º) top
O1—C11.227 (3)O1A—H1A0.8400
C1—C101.470 (3)C1A—C10A1.328 (10)
C1—C21.470 (3)C1A—C2A1.38 (4)
C2—C31.344 (3)C2A—C3A1.44 (4)
C2—H20.9500C2A—H2A0.9500
C3—C41.438 (3)C3A—C4A1.54 (3)
C3—H30.9500C3A—H3A0.9900
C4—C81.385 (3)C3A—H3B0.9900
C4—S51.734 (2)C4A—C8A1.386 (18)
S5—C61.711 (2)C4A—S5A1.744 (16)
C6—C71.356 (3)S5A—C6A1.734 (18)
C6—H60.9500C6A—C7A1.367 (18)
C7—C81.425 (3)C6A—H6A0.9500
C7—H70.9500C7A—C8A1.414 (18)
C8—C91.499 (3)C7A—H7A0.9500
C9—H9A0.9800C8A—C9A1.531 (17)
C9—H9B0.9800C9A—H9AA0.9800
C9—H9C0.9800C9A—H9AB0.9800
C10—C141.374 (3)C9A—H9AC0.9800
C10—S111.732 (2)C10A—C14A1.412 (18)
S11—C121.712 (2)C10A—S11A1.743 (18)
C12—C131.364 (3)S11A—C12A1.735 (17)
C12—Cl11.722 (2)C12A—C13A1.356 (18)
C13—C141.415 (3)C12A—Cl1A1.732 (17)
C13—H130.9500C13A—C14A1.399 (19)
C14—H140.9500C13A—H13A0.9500
O1A—C1A1.453 (10)C14A—H14A0.9500
O1—C1—C10119.75 (19)C10A—C1A—O1A112 (2)
O1—C1—C2122.7 (2)C2A—C1A—O1A113 (2)
C10—C1—C2117.52 (17)C1A—C2A—C3A126 (3)
C3—C2—C1120.42 (18)C1A—C2A—H2A117.2
C3—C2—H2119.8C3A—C2A—H2A117.2
C1—C2—H2119.8C2A—C3A—C4A123 (2)
C2—C3—C4126.27 (19)C2A—C3A—H3A106.7
C2—C3—H3116.9C4A—C3A—H3A106.7
C4—C3—H3116.9C2A—C3A—H3B106.7
C8—C4—C3127.20 (18)C4A—C3A—H3B106.7
C8—C4—S5111.23 (14)H3A—C3A—H3B106.6
C3—C4—S5121.56 (15)C8A—C4A—C3A132.5 (18)
C6—S5—C491.72 (10)C8A—C4A—S5A110.0 (13)
C7—C6—S5112.16 (16)C3A—C4A—S5A117.4 (16)
C7—C6—H6123.9C6A—S5A—C4A91.4 (10)
S5—C6—H6123.9C7A—C6A—S5A112.2 (15)
C6—C7—C8113.4 (2)C7A—C6A—H6A123.9
C6—C7—H7123.3S5A—C6A—H6A123.9
C8—C7—H7123.3C6A—C7A—C8A111.7 (18)
C4—C8—C7111.53 (18)C6A—C7A—H7A124.2
C4—C8—C9124.48 (19)C8A—C7A—H7A124.2
C7—C8—C9123.99 (19)C4A—C8A—C7A113.9 (16)
C8—C9—H9A109.5C4A—C8A—C9A121.3 (19)
C8—C9—H9B109.5C7A—C8A—C9A125 (2)
H9A—C9—H9B109.5C8A—C9A—H9AA109.5
C8—C9—H9C109.5C8A—C9A—H9AB109.5
H9A—C9—H9C109.5H9AA—C9A—H9AB109.5
H9B—C9—H9C109.5C8A—C9A—H9AC109.5
C14—C10—C1131.62 (19)H9AA—C9A—H9AC109.5
C14—C10—S11111.50 (16)H9AB—C9A—H9AC109.5
C1—C10—S11116.88 (14)C1A—C10A—C14A120 (2)
C12—S11—C1090.29 (10)C1A—C10A—S11A128.3 (19)
C13—C12—S11114.16 (16)C14A—C10A—S11A111.9 (14)
C13—C12—Cl1126.56 (16)C12A—S11A—C10A89.6 (10)
S11—C12—Cl1119.28 (12)C13A—C12A—Cl1A129.0 (16)
C12—C13—C14110.72 (18)C13A—C12A—S11A111.6 (14)
C12—C13—H13124.6Cl1A—C12A—S11A117.7 (12)
C14—C13—H13124.6C12A—C13A—C14A115.1 (17)
C10—C14—C13113.32 (18)C12A—C13A—H13A122.4
C10—C14—H14123.3C14A—C13A—H13A122.4
C13—C14—H14123.3C13A—C14A—C10A109.6 (17)
C1A—O1A—H1A109.5C13A—C14A—H14A125.2
C10A—C1A—C2A131 (3)C10A—C14A—H14A125.2
O1—C1—C2—C33.8 (3)C10A—C1A—C2A—C3A171 (3)
C10—C1—C2—C3176.41 (19)O1A—C1A—C2A—C3A16 (5)
C1—C2—C3—C4179.37 (19)C1A—C2A—C3A—C4A117 (3)
C2—C3—C4—C8177.5 (2)C2A—C3A—C4A—C8A150 (3)
C2—C3—C4—S51.6 (3)C2A—C3A—C4A—S5A35 (4)
C8—C4—S5—C60.42 (17)C8A—C4A—S5A—C6A2 (3)
C3—C4—S5—C6178.88 (18)C3A—C4A—S5A—C6A178 (3)
C4—S5—C6—C70.04 (19)C4A—S5A—C6A—C7A7 (3)
S5—C6—C7—C80.5 (3)S5A—C6A—C7A—C8A10 (4)
C3—C4—C8—C7178.5 (2)C3A—C4A—C8A—C7A172 (3)
S5—C4—C8—C70.7 (2)S5A—C4A—C8A—C7A3 (4)
C3—C4—C8—C91.9 (3)C3A—C4A—C8A—C9A2 (6)
S5—C4—C8—C9178.87 (17)S5A—C4A—C8A—C9A178 (2)
C6—C7—C8—C40.8 (3)C6A—C7A—C8A—C4A9 (4)
C6—C7—C8—C9178.8 (2)C6A—C7A—C8A—C9A177 (3)
O1—C1—C10—C14175.0 (3)C2A—C1A—C10A—C14A41 (6)
C2—C1—C10—C145.2 (3)O1A—C1A—C10A—C14A163 (3)
O1—C1—C10—S114.2 (3)C2A—C1A—C10A—S11A143 (3)
C2—C1—C10—S11175.62 (15)O1A—C1A—C10A—S11A13 (5)
C14—C10—S11—C120.86 (17)C1A—C10A—S11A—C12A170 (4)
C1—C10—S11—C12179.83 (17)C14A—C10A—S11A—C12A13 (3)
C10—S11—C12—C131.24 (18)C10A—S11A—C12A—C13A12 (3)
C10—S11—C12—Cl1178.05 (14)C10A—S11A—C12A—Cl1A179 (2)
S11—C12—C13—C141.3 (3)Cl1A—C12A—C13A—C14A173 (3)
Cl1—C12—C13—C14177.96 (16)S11A—C12A—C13A—C14A9 (4)
C1—C10—C14—C13179.5 (2)C12A—C13A—C14A—C10A2 (4)
S11—C10—C14—C130.3 (2)C1A—C10A—C14A—C13A172 (3)
C12—C13—C14—C100.6 (3)S11A—C10A—C14A—C13A11 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O10.952.482.818 (3)101
C2—H2···S50.952.803.166 (2)104
C13—H13···O1i0.952.353.184 (4)146
C9—H9C···O1ii0.982.583.488 (4)154
C6—H6···S11iii0.953.043.948 (2)160
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+1; (iii) x, y, z1.
 

Funding information

The authors thank Al al-Bayt University (Mafraq, Jordan) for financial support.

References

First citationAl-Maqtari, H. M., Jamalis, J. & Sirat, H. M. (2015). Jurnal Teknologi, 77, 55–59.  Google Scholar
First citationBaggio, R., Brovelli, F., Moreno, Y., Pinto, M. & Soto-Delgado, J. (2016). J. Mol. Struct. 1123, 1–7.  Web of Science CSD CrossRef CAS Google Scholar
First citationChidan Kumar, C. S., Govindarasu, K., Fun, H.-K., Kavitha, E., Chandraju, S. & Quah, C. K. (2015). J. Mol. Struct. 1085, 63–77.  Web of Science CSD CrossRef CAS Google Scholar
First citationContreras, D., Moreno, Y., Soto, C., Saavedra, M., Brovelli, F. & Baggio, R. (2009). J. Chil. Chem. Soc. 54, 470–472.  CAS Google Scholar
First citationFang, Q., Zhao, L., Wang, Y., Zhang, Y., Li, Z., Pan, Y., Kanchana, K., Wang, J., Tong, C., Li, D. & Liang, G. (2015). Toxicol. Appl. Pharmacol. 282, 129–138.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFun, H.-K., Chantrapromma, S., Patil, P. S. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2724–o2725.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGillespie, E., Dungan, K. W., Gomoll, A. W. & Seidehamel, R. J. (1985). Int. J. Immunopharmacol. 7, 655–660.  CrossRef CAS PubMed Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIbrahim, M. M., Al-Refai, M., Ali, B. F., Geyer, A., Harms, K. & Marsch, M. (2019). IUCrData, 4, x191046.  Google Scholar
First citationJarak, I., Kralj, M., Šuman, L., Pavlović, G., Dogan, J., Piantanida, I., Žinić, M., Pavelić, K. & Karminski-Zamola, G. (2005). J. Med. Chem. 48, 2346–2360.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLiang, G., Yang, S.-L., Wang, X.-H., Li, Y.-R. & Li, X.-K. (2007). Acta Cryst. E63, o4118.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLópez, S. N., Castelli, M., Zacchino, S. A., Domínguez, J. N., Lobo, G., Charris-Charris, J., Cortés, J. C. G., Ribas, J. C., Devia, C., Rodríguez, A. M. & Enriz, R. D. (2001). Bioorg. Med. Chem. 9, 1999–2013.  Web of Science PubMed Google Scholar
First citationMishra, R., Tomer, I. & Kumar, S. (2012). Der Pharmacia Sinica, 3, 332–336.  CAS Google Scholar
First citationMolvi, K. I., Vasu, K. K., Yerande, S. G., Sudarsanam, V. & Haque, N. (2007). Eur. J. Med. Chem. 42, 1049–1058.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOyarce, J., Hernández, L., Ahumada, G., Soto, J. P., del Valle, M. A., Dorcet, V., Carrillo, D., Hamon, J.-R. & Manzur, C. (2017). Polyhedron, 123, 277–284.  Web of Science CSD CrossRef CAS Google Scholar
First citationPutz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationShalini, S., Girija, C. R., Jotani, M. M., Rajashekhar, B., Rao, N. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2354.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShin, S. Y., Yoon, H., Hwang, D., Ahn, S., Kim, D.-W., Koh, D., Lee, Y. H. & Lim, Y. (2013). Bioorg. Med. Chem. 21, 7018–7024.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSreenatha, N. R., Lakshminarayana, B. N., Ganesha, D. P., Vijayshankar, S. & Nagaraju, S. (2018). X-ray Struct. Anal. Online, 34, 23–24.  Web of Science CSD CrossRef CAS Google Scholar
First citationStoe & Cie (2016). X-AREA and LANA. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTran, T. D., Nguyen, T. T., Do, T. H., Huynh, T. N., Tran, C. D. & Thai, K. M. (2012). Molecules, 17, 6684–6696.  Web of Science CrossRef CAS PubMed Google Scholar
First citationVu Quoc, T., Tran Thi Thuy, D., Dang Thanh, T., Phung Ngoc, T., Nguyen Thien, V., Nguyen Thuy, C. & Van Meervelt, L. (2019). Acta Cryst. E75, 957–963.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYakalı, G., Biçer, A. & Cin, G. T. (2019). Turk. C. Theo. Chem. 3, 47–58.  Google Scholar
First citationYesilyurt, F., Aydin, A., Gul, H. I., Akkurt, M. & Ozcelik, N. D. (2018). Acta Cryst. E74, 960–963.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds