research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 3,4-di­hydro-2H-anthra[1,2-b][1,4]dioxepine-8,13-dione

CROSSMARK_Color_square_no_text.svg

aLaboratory of Sustainable Development, Sultan Moulay Slimane University, Faculty of Sciences and Technologies, BP 523, 23000 Beni-Mellal, Morocco, bLaboratory of Organic and Analytical Chemistry, University Sultan Moulay Slimane, Faculty of Science and Technology, PO Box 523, Beni-Mellal, Morocco, and cMolecular Tectonics Laboratory, Université de Strasbourg, CNRS, CMC UMR 7140, F-67000 Strasbourg, France
*Correspondence e-mail: szazouli@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 5 March 2020; accepted 18 March 2020; online 27 March 2020)

The title compound, C17H12O4, was synthesized from the dye alizarin. The dihedral angle between the mean plane of the anthra­quinone ring system (r.m.s. deviation = 0.039 Å) and the dioxepine ring is 16.29 (8)°. In the crystal, the mol­ecules are linked by C—H⋯O hydrogen bonds, forming sheets lying parallel to the ab plane. The sheets are connected through ππ and C=O⋯π inter­actions to generate a three-dimensional supra­molecular network. Hirshfeld surface analysis was used to investigate inter­molecular inter­actions in the solid-state: the most important contributions are from H⋯H (43.0%), H⋯O/O⋯H (27%), H⋯C/C⋯H (13.8%) and C⋯C (12.4%) contacts.

1. Chemical context

Anthra­quinone derivatives, which are extracted from the seeds of the Rubiaceae family of shrubs, include alizarin (1,2-di­hydroxy­anthra­quinone; C14H8O4) and other polycyclic aromatic hydro­carbons. The colour of anthra­quinone-based compounds can be modified by the type and position of the substituents attached to the anthra­quinone nucleus (Nakagawa et al. 2017[Nakagawa, H. & Kitamura, C. (2017). Acta Cryst. E73, 1845-1849.]; Cheuk et al., 2015[Cheuk, D., Svärd, M., Seaton, C., McArdle, P. & Rasmuson, C. (2015). CrystEngComm, 17, 3985-3997.]; Tonin et al., 2017[Tonin, M. D. L., Garden, S. J., Jotani, M. M., Wardell, S. M. S. V., Wardell, J. L. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 738-745.]). Besides their application as pigments or dyes in textile, photographic, cosmetic and other industries (Wang et al., 2011[Wang, Y., Zhu, K., Zheng, Y., Wang, H., Dong, G., He, N. & Li, Q. (2011). Molecules, 16, 9838-9849.]), anthra­quinone derivatives have been used for centuries for medical applications, for example, as laxatives (Oshio et al., 1985[Oshio, H. & Kawamura, N. (1985). Shoyakugaku Zasshi, 39, 131-138.]), anti­oxidants (Yen et al., 2000[Yen, G. C., Duh, P. D. & Chuang, D. Y. (2000). Food Chem. 70, 437-441.]), anti­microbial (Xiang et al., 2008[Xiang, W., Song, Q. S., Zhang, H. J. & Guo, S. P. (2008). Fitoterapia, 79, 501-504.]; Yadav et al., 2010[Yadav, J. P., Arya, V., Yadav, S., Panghal, M., Kumar, S. & Dhankhar, S. (2010). Fitoterapia, 81, 223-230.]) and anitiviral (Alves et al., 2004[Alves, D. S., Pérez-Fons, L., Estepa, A. & Micol, V. (2004). Biochem. Pharmacol. 68, 549-561.]) agents. Their redox properties and cytotoxicity have been investigated recently (Okumura et al., 2019[Okumura, N., Mizutani, H., Ishihama, T., Ito, M., Hashibe, A., Nakayama, T. & Uno, B. (2019). Chem. Pharm. Bull. 67, 717-720.]). Anthra­quinone derivatives exhibit various applications in supra­molecular and electro-analytical chemistry (Czupryniak et al., 2012[Czupryniak, J., Niedziałkowski, P., Karbarz, M., Ossowski, T. & Stojek, Z. (2012). Electroanalysis, 24, 975-982.]).

[Scheme 1]

As part of our studies in this area, the synthesis and structure of the title compound, (I)[link], are described along with a detailed analysis of its supra­molecular associations through an analysis of the Hirshfeld surfaces.

2. Structural commentary

Compound (I)[link] crystallizes in space group P21/n with one mol­ecule in the asymmetric unit: it consists of three fused six-membered rings and one seven-membered ring as shown in Fig. 1[link]. The fused-ring system is close to planar with an r.m.s. deviation for all non-hydrogen atoms of 0.039 Å (the dihedral angle between the aromatic rings of the anthra­quinone unit and the central ring range from 1.5 to 1.9°). The dioxepine ring is inclined to the mean plane of the anthra­quinone ring system by 16.29 (8)°.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link] with displacement ellipsoids drawn at the 50% probability level.

A puckering analysis of the seven-membered ring yielded the parameters q2 = 0.896 (2) Å, φ2 = 113.50 (12)°, q3 = 0.358 (2) Å, and φ3 = 217.8 (3)°. These metrics indicate that the ring adopts a screw boat conformation. The C—O and C=O bond lengths lie within the ranges 1.355 (2)–1.457 (2) Å and 1.216 (2)–1.226 (2) Å, respectively, confirming their single and double-bond character.

3. Supra­molecular features

In the extended structure of (I)[link], C15—H15B⋯O1 hydrogen bonds form inversion dimers with an R22(14) ring motif. Adjacent dimers are linked by C15—H15A⋯O3 contacts, thereby generating corrugated chains of mol­ecules (Fig. 2[link]a). A C17—H17B⋯O2 hydrogen bond links the chains together (Table 1[link]; Fig. 2[link]b and 2c), forming sheets propagating in the ab plane. These sheets are supported by extensive ππ contacts between adjacent rings, with centroid-to-centroid distances Cg1⋯Cg2 = 3.599 (2) and Cg2⋯Cg3 = 3.683 (2) Å [Cg1, Cg2 and Cg3 are the centroids of the rings C1–C4/C13–C14, C4–C6/C11–C13 and C6–C11, respectively] and weak C12=O1⋯π [oxygen–centroid distance = 3.734 (2) Å] inter­actions (Fig. 3[link]), linking the slabs to form a three-dimensional supra­molecular network.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15B⋯O1i 0.99 2.43 3.248 (2) 139
C15—H15A⋯O3ii 0.99 2.48 3.461 (3) 171
C17—H17A⋯O4iii 0.99 2.59 3.580 (3) 174
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x+1, y, z; (iii) x-1, y, z.
[Figure 2]
Figure 2
(a) Inversion dimers with R22(14) ring motifs; (b) and (c) packing diagrams of the title compound, viewed along the a and b axes, respectively. Dotted lines indicate C—H⋯O hydrogen bonds.
[Figure 3]
Figure 3
Partial crystal packing for (I)[link] showing the C—H⋯O hydrogen bonds and the offset ππ (purple) and C=O⋯π (green) inter­actions between inversion-related mol­ecules.

4. Database survey

A search in the Cambridge Structural Database (CSD, Version 5.40, updated to February 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed 55 alizarin-ring motifs incorporated in more complex mol­ecules or bearing functional groups. These include several compounds with a different substituent in place of the dioxepine in the title compound, viz. 1-hy­droxy-2-meth­oxy-6-methyl (BOTXUE; Ismail et al., 2009[Ismail, N. H., Osman, C. P., Ahmad, R., Awang, K. & Ng, S. W. (2009). Acta Cryst. E65, o1435.]), 1,2-dimeth­oxy (refcode: KIBHUZ; Kar et al., 2007[Kar, P., Suresh, M., Krishna Kumar, D., Amilan Jose, D., Ganguly, B. & Das, A. (2007). Polyhedron, 26, 1317-1322.]) and 3-hy­droxy-1,2-dimeth­oxy (BOVVEO; Xu et al., 2009[Xu, Y.-J., Yang, X.-X. & Zhao, H.-B. (2009). Acta Cryst. E65, o1524.]). In these compounds, the anthra­quinone ring system are almost planar, the dihedral angle between the benzene rings for BOTXUE, KIBHUZ and BOVVEO being 3.49, 2.83 and 1.12°, respectively. The meth­oxy groups in position 1 (C14) in KIBHUZ and BOVVEO are almost perpendicular to the anthra­quinone ring plane. The other compound belongs to the same class of alizarins with different substituents.

5. Hirshfeld surface analysis

The nature of the inter­molecular inter­actions in (I)[link] have been examined with CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17.5. University of Western Australia, Perth, Australia.]), using Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) mapped over dnorm, with a fixed colour scale of −0.1779 to 1.3612 a.u (see Fig. S1a in the supporting information) and two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]). The intense red spots on the surface are due to the C—H⋯O hydrogen bonds (Fig. 4[link]). Fig. S2 (supporting information) shows the mol­ecular electrostatic potential surface generated using TONTO with a STO-3G basis set in the range −0.050 to 0.050 a.u. within the Hartree–Fock level of theory. Mol­ecular sites evidenced in red correspond to positive potential energy and in blue to negative potential energy (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]).

[Figure 4]
Figure 4
Views of the Hirshfeld surface for (I)[link] mapped over (a) dnorm showing the C—H⋯O contacts as green dashed lines and short C⋯H/H⋯C contacts as cyan dashed lines; and (b) shape-index highlighting the ππ stacking (black lines).

As illustrated in Fig. 5[link], the overall fingerprint plot for (I)[link] and those delineated into H⋯H, H⋯O/O⋯H, C⋯H/H⋯C and C⋯C show characteristic pseudo-symmetric wings in the de and di diagonal axes. The most important inter­action is H⋯H, contributing 43% to the overall crystal packing, which is reflected in Fig. 5[link]b as widely scattered points of high density due to the large hydrogen content of the mol­ecule, with small split tips at dedi ≃ 1.2 Å. The contribution from the O⋯H/H⋯O contacts (27%) [note that the O⋯H interactions make a larger contribution (14.6%) than the H⋯O interactions (12.4%)], corresponding to C—H⋯O inter­actions, is represented by a pair of sharp spikes characteristic of a strong hydrogen-bond inter­action, de + di ≃ 2.35 Å (Fig. 5[link]c). The significant contribution from C⋯H/H⋯C contacts (13.8%) to the Hirshfeld surface of (I)[link] reflect the short C⋯H/H⋯C contacts, and the distribution of points has characteristic wings, Fig. 5[link]d, with de + di ≃2.55 Å. The distribution of points in the de = di ≃ 1.75 Å range in the fingerprint plot delineated into C⋯C contacts indicates the existence of weak ππ stacking inter­actions between the central anthracene ring and the C6–C11 and C1–C4/C13–C14 rings (Fig. 4[link]b and 5e). Aromatic ππ inter­actions are indicated by adjacent red and blue triangles in the shape-index map (Fig. S1b)and also by the flat region around these rings in the Hirshfeld surfaces mapped over curvedness in Fig. S1c.

[Figure 5]
Figure 5
The full two-dimensional fingerprint plots for (I)[link] showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯O/O⋯H, (d) H⋯C/C⋯H, (e) C⋯C and (f) O⋯C/C⋯O inter­actions.

The contribution of 3.2% from C⋯O/O⋯C contacts is due to the presence of short inter­atomic C=O⋯π contacts, and is apparent as the pair of parabolic tips at de + di ≃ 3.2 Å in Fig. 5[link]f.

6. Synthesis and crystallization

Under argon, alizarin (0.50 g, 2.0 mmol) was treated with 1,3-di­bromo-propane (0.42 g, 2.0 mmol) in di­methyl­formamide (30 ml) in the presence of anhydrous potassium carbonate (1.0 g, 7.2 mmol) with stirring and heated to 393 K for 24 h. The reaction mixture was evaporated to dryness under vacuum and the resulting crude product was acidified with 12 N hydro­chloric acid, extracted with chloro­form (3 × 30 ml) and then chromatographed on a silica gel column with di­chloro­methane/petroleum ether (1/1) as eluent, which yielded 200 mg (35%) of 1,2-propyl­ene­dioxy­anthra­quinone as a yellow compound (Fig. 6[link]). Colourless needles were obtained by slow evaporation of a di­chloro­methane/petroleum ether (1:1) solution.

[Figure 6]
Figure 6
Synthesis pathway leading to the formation of the title compound.

1H NMR (CDCl3, 500 MHz): δ (ppm): 8.21 (m, 2H), 7.95 (d, J = 8.5 Hz, 1H), 7.72 (m, 2H), 7.26 (d, J = 8.5 Hz, 1H), 4.48 (t, J = 6 Hz, 2H), 4.43 (t, J = 6 Hz, 2H), 2.34 (qt, J = 6 Hz, 2H); 13C NMR (CDCl3, 126 MHz): δ (ppm): 182.9, 182.5, 157.3, 151.3, 135.2, 133.9, 133.4, 132.6, 129.6, 127.1, 126.5, 126.0, 125.9, 123.3, 70.5, 70.2, 30.0. Analysis calculated for C17H12O4: C, 72.85%; H, 4.32%; found: C, 72.82%; H, 4.29%.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were placed in calculated positions and refined in the riding model: C—H = 0.95–0.99 Å with Uiso(H) = 1.2Ueq(C). The reflection (011), affected by the beam-stop, was removed during refinement.

Table 2
Experimental details

Crystal data
Chemical formula C17H12O4
Mr 280.27
Crystal system, space group Monoclinic, P21/n
Temperature (K) 173
a, b, c (Å) 4.2951 (2), 16.7714 (9), 18.0537 (11)
β (°) 95.941 (2)
V3) 1293.51 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.12 × 0.10 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.988, 0.990
No. of measured, independent and observed [I > 2σ(I)] reflections 19692, 3436, 2309
Rint 0.044
(sin θ/λ)max−1) 0.697
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.149, 1.03
No. of reflections 3436
No. of parameters 190
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.41, −0.32
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg et al., 2012[Brandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg et al., 2012); software used to prepare material for publication: PLATON (Spek, 2020) and publCIF (Westrip, 2010).

3,4-Dihydro-2H-anthra[1,2-b][1,4]dioxepine-8,13-dione top
Crystal data top
C17H12O4F(000) = 584
Mr = 280.27Dx = 1.439 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 4.2951 (2) ÅCell parameters from 3436 reflections
b = 16.7714 (9) Åθ = 2.4–29.7°
c = 18.0537 (11) ŵ = 0.10 mm1
β = 95.941 (2)°T = 173 K
V = 1293.51 (12) Å3Prism, colorless
Z = 40.12 × 0.10 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
2309 reflections with I > 2σ(I)
φ and ω scansRint = 0.044
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
θmax = 29.7°, θmin = 2.4°
Tmin = 0.988, Tmax = 0.990h = 54
19692 measured reflectionsk = 2323
3436 independent reflectionsl = 2425
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.149 w = 1/[σ2(Fo2) + (0.0548P)2 + 0.8849P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3436 reflectionsΔρmax = 0.41 e Å3
190 parametersΔρmin = 0.32 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2635 (5)0.49906 (10)0.64736 (8)0.0546 (5)
O20.1717 (4)0.34277 (9)0.89646 (7)0.0449 (4)
O30.0471 (3)0.40325 (8)0.56747 (6)0.0293 (3)
O40.4204 (4)0.25897 (8)0.56830 (7)0.0356 (3)
C10.3367 (5)0.29496 (11)0.63141 (10)0.0274 (4)
C20.4523 (5)0.26018 (11)0.69817 (11)0.0321 (4)
H20.5903160.2159320.6979090.038*
C30.3704 (5)0.28874 (11)0.76486 (10)0.0302 (4)
H30.4510850.2640920.8102090.036*
C40.1701 (4)0.35347 (10)0.76600 (9)0.0244 (4)
C50.0822 (5)0.37964 (11)0.83960 (10)0.0285 (4)
C60.1143 (5)0.45162 (10)0.84226 (9)0.0269 (4)
C70.1904 (5)0.47948 (12)0.91105 (10)0.0351 (5)
H70.1210460.4512640.9553310.042*
C80.3662 (6)0.54788 (13)0.91472 (11)0.0407 (5)
H80.4139920.5673940.9616210.049*
C90.4731 (5)0.58819 (12)0.85004 (11)0.0377 (5)
H90.5956420.6350450.8527810.045*
C100.4023 (5)0.56056 (11)0.78134 (11)0.0308 (4)
H100.4781590.5881300.7371510.037*
C110.2198 (4)0.49227 (10)0.77718 (9)0.0248 (4)
C120.1467 (5)0.46397 (10)0.70231 (9)0.0271 (4)
C130.0595 (4)0.39292 (10)0.69919 (9)0.0227 (4)
C140.1495 (4)0.36425 (10)0.63107 (9)0.0238 (4)
C150.2543 (5)0.40456 (12)0.50847 (10)0.0331 (4)
H15A0.4748230.4052800.5307660.040*
H15B0.2160630.4536070.4783960.040*
C160.1997 (6)0.33217 (13)0.45871 (11)0.0389 (5)
H16A0.0015840.3387860.4260470.047*
H16B0.3722740.3272390.4266490.047*
C170.1829 (6)0.25735 (13)0.50493 (11)0.0384 (5)
H17A0.0269300.2531400.5226920.046*
H17B0.2148390.2100270.4738180.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0835 (14)0.0550 (10)0.0254 (7)0.0370 (9)0.0062 (8)0.0053 (6)
O20.0590 (12)0.0499 (9)0.0257 (7)0.0106 (8)0.0036 (7)0.0110 (6)
O30.0301 (8)0.0378 (7)0.0201 (6)0.0062 (6)0.0029 (5)0.0009 (5)
O40.0345 (9)0.0386 (8)0.0346 (7)0.0062 (6)0.0078 (6)0.0075 (6)
C10.0248 (10)0.0272 (9)0.0307 (9)0.0022 (7)0.0053 (7)0.0040 (7)
C20.0296 (11)0.0267 (9)0.0394 (10)0.0036 (7)0.0010 (8)0.0015 (7)
C30.0297 (11)0.0283 (9)0.0313 (9)0.0005 (7)0.0030 (8)0.0054 (7)
C40.0245 (10)0.0230 (8)0.0252 (8)0.0033 (7)0.0002 (7)0.0022 (6)
C50.0314 (11)0.0298 (9)0.0237 (8)0.0042 (7)0.0002 (7)0.0022 (7)
C60.0309 (11)0.0278 (8)0.0220 (8)0.0070 (7)0.0025 (7)0.0014 (6)
C70.0445 (14)0.0376 (10)0.0238 (9)0.0053 (9)0.0064 (8)0.0010 (7)
C80.0538 (16)0.0407 (11)0.0295 (10)0.0035 (10)0.0143 (9)0.0078 (8)
C90.0429 (14)0.0317 (10)0.0402 (11)0.0007 (9)0.0126 (9)0.0054 (8)
C100.0342 (12)0.0264 (9)0.0322 (9)0.0008 (7)0.0054 (8)0.0002 (7)
C110.0274 (10)0.0233 (8)0.0239 (8)0.0051 (7)0.0027 (7)0.0011 (6)
C120.0304 (11)0.0274 (9)0.0234 (8)0.0015 (7)0.0015 (7)0.0006 (6)
C130.0233 (10)0.0213 (8)0.0231 (8)0.0039 (6)0.0010 (6)0.0006 (6)
C140.0218 (10)0.0255 (8)0.0236 (8)0.0033 (7)0.0005 (7)0.0003 (6)
C150.0353 (12)0.0407 (11)0.0246 (9)0.0002 (8)0.0085 (8)0.0014 (7)
C160.0396 (14)0.0525 (12)0.0256 (9)0.0027 (10)0.0080 (8)0.0079 (8)
C170.0376 (13)0.0428 (11)0.0357 (10)0.0027 (9)0.0078 (9)0.0145 (8)
Geometric parameters (Å, º) top
O1—C121.216 (2)C7—H70.9500
O2—C51.226 (2)C8—C91.386 (3)
O3—C141.355 (2)C8—H80.9500
O3—C151.457 (2)C9—C101.387 (3)
O4—C11.370 (2)C9—H90.9500
O4—C171.452 (3)C10—C111.394 (3)
C1—C21.384 (3)C10—H100.9500
C1—C141.413 (3)C11—C121.496 (2)
C2—C31.375 (3)C12—C131.489 (2)
C2—H20.9500C13—C141.411 (2)
C3—C41.387 (3)C15—C161.514 (3)
C3—H30.9500C15—H15A0.9900
C4—C131.414 (2)C15—H15B0.9900
C4—C51.485 (2)C16—C171.513 (3)
C5—C61.477 (3)C16—H16A0.9900
C6—C111.393 (2)C16—H16B0.9900
C6—C71.397 (2)C17—H17A0.9900
C7—C81.379 (3)C17—H17B0.9900
C14—O3—C15117.23 (15)C11—C10—H10120.0
C1—O4—C17116.12 (16)C6—C11—C10119.49 (16)
O4—C1—C2115.92 (17)C6—C11—C12121.76 (16)
O4—C1—C14123.85 (16)C10—C11—C12118.75 (15)
C2—C1—C14120.22 (16)O1—C12—C13123.57 (16)
C3—C2—C1120.95 (18)O1—C12—C11118.43 (17)
C3—C2—H2119.5C13—C12—C11117.99 (14)
C1—C2—H2119.5C14—C13—C4119.06 (16)
C2—C3—C4120.08 (17)C14—C13—C12121.55 (15)
C2—C3—H3120.0C4—C13—C12119.39 (15)
C4—C3—H3120.0O3—C14—C13118.68 (15)
C3—C4—C13120.52 (16)O3—C14—C1122.38 (15)
C3—C4—C5117.40 (15)C13—C14—C1118.92 (15)
C13—C4—C5122.07 (16)O3—C15—C16110.66 (16)
O2—C5—C6121.06 (17)O3—C15—H15A109.5
O2—C5—C4120.92 (18)C16—C15—H15A109.5
C6—C5—C4118.02 (15)O3—C15—H15B109.5
C11—C6—C7120.04 (18)C16—C15—H15B109.5
C11—C6—C5120.65 (16)H15A—C15—H15B108.1
C7—C6—C5119.31 (16)C17—C16—C15110.55 (16)
C8—C7—C6120.04 (18)C17—C16—H16A109.5
C8—C7—H7120.0C15—C16—H16A109.5
C6—C7—H7120.0C17—C16—H16B109.5
C7—C8—C9120.06 (18)C15—C16—H16B109.5
C7—C8—H8120.0H16A—C16—H16B108.1
C9—C8—H8120.0O4—C17—C16110.46 (18)
C8—C9—C10120.42 (19)O4—C17—H17A109.6
C8—C9—H9119.8C16—C17—H17A109.6
C10—C9—H9119.8O4—C17—H17B109.6
C9—C10—C11119.94 (18)C16—C17—H17B109.6
C9—C10—H10120.0H17A—C17—H17B108.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15B···O1i0.992.433.248 (2)139
C15—H15A···O3ii0.992.483.461 (3)171
C17—H17A···O4iii0.992.593.580 (3)174
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z; (iii) x1, y, z.
 

References

First citationAlves, D. S., Pérez-Fons, L., Estepa, A. & Micol, V. (2004). Biochem. Pharmacol. 68, 549–561.  CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheuk, D., Svärd, M., Seaton, C., McArdle, P. & Rasmuson, C. (2015). CrystEngComm, 17, 3985–3997.  CSD CrossRef CAS Google Scholar
First citationCzupryniak, J., Niedziałkowski, P., Karbarz, M., Ossowski, T. & Stojek, Z. (2012). Electroanalysis, 24, 975–982.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIsmail, N. H., Osman, C. P., Ahmad, R., Awang, K. & Ng, S. W. (2009). Acta Cryst. E65, o1435.  CSD CrossRef IUCr Journals Google Scholar
First citationKar, P., Suresh, M., Krishna Kumar, D., Amilan Jose, D., Ganguly, B. & Das, A. (2007). Polyhedron, 26, 1317–1322.  CSD CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationNakagawa, H. & Kitamura, C. (2017). Acta Cryst. E73, 1845–1849.  CSD CrossRef IUCr Journals Google Scholar
First citationOkumura, N., Mizutani, H., Ishihama, T., Ito, M., Hashibe, A., Nakayama, T. & Uno, B. (2019). Chem. Pharm. Bull. 67, 717–720.  CrossRef CAS PubMed Google Scholar
First citationOshio, H. & Kawamura, N. (1985). Shoyakugaku Zasshi, 39, 131–138.  CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTonin, M. D. L., Garden, S. J., Jotani, M. M., Wardell, S. M. S. V., Wardell, J. L. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 738–745.  CSD CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17.5. University of Western Australia, Perth, Australia.  Google Scholar
First citationWang, Y., Zhu, K., Zheng, Y., Wang, H., Dong, G., He, N. & Li, Q. (2011). Molecules, 16, 9838–9849.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiang, W., Song, Q. S., Zhang, H. J. & Guo, S. P. (2008). Fitoterapia, 79, 501–504.  CrossRef PubMed CAS Google Scholar
First citationXu, Y.-J., Yang, X.-X. & Zhao, H.-B. (2009). Acta Cryst. E65, o1524.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYadav, J. P., Arya, V., Yadav, S., Panghal, M., Kumar, S. & Dhankhar, S. (2010). Fitoterapia, 81, 223–230.  CrossRef PubMed CAS Google Scholar
First citationYen, G. C., Duh, P. D. & Chuang, D. Y. (2000). Food Chem. 70, 437–441.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds