research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface and frontier mol­ecular orbital analysis of 10-benzyl-9-(3-eth­­oxy-4-hy­dr­oxy­phen­yl)-3,3,6,6-tetra­methyl-3,4,6,7,9,10-hexa­hydro­acridine-1,8(2H,5H)-dione

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Government College of Engineering-Sengipatti, Thanjavur-613 402, Tamil Nadu, India, bDepartment of Chemistry, Periyar Government Arts College, Silver Beach Road, Devanampattinam, Cuddalore-607 001, Tamil Nadu, India, cDepartment of Chemistry, CK College of Engineering & Technology, Sellankuppam, Cuddalore-607 003, Tamil Nadu, India, and dDepartment of Chemistry, Annamalai University, Annamalai Nagar-608 002, Tamil Nadu, India
*Correspondence e-mail: babusuresh1982@gmail.com

Edited by H. Ishida, Okayama University, Japan (Received 3 February 2020; accepted 23 March 2020; online 27 March 2020)

In the fused ring system of the title compound, C32H37NO4, the central di­hydro­pyridine ring adopts a flattened boat conformation, the mean and maximum deviations of the di­hydro­pyridine ring being 0.1429 (2) and 0.2621 (2) Å, respectively. The two cyclo­hexenone rings adopt envelope conformations with the tetra­substituted C atoms as flap atoms. The benzene and phenyl rings form dihedral angles of 85.81 (2) and 88.90 (2)°, respectively, with the mean plane of the di­hydro­pyridine ring. In the crystal, mol­ecules are linked via an O—H⋯O hydrogen bond, forming a helical chain along the b-axis direction. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (65.2%), O⋯H/H⋯O (18.8%) and C⋯H/H⋯C (13.9%) contacts. Quantum chemical calculations for the frontier mol­ecular orbitals were undertake to determine the chemical reactivity of the title compound.

1. Chemical context

The crystal structures of acridinedione derivatives are expected to provide useful information on the mol­ecular conformation, which has a direct relationship to biological activity. Acridine derivatives (Nasim & Brychcy, 1979[Nasim, A. & Brychcy, T. (1979). Mutat. Res. 65, 261-288.]; Thull & Testa, 1994[Thull, U. & Testa, B. (1994). Biochem. Pharmacol. 47, 2307-2310.]; Mándi et al., 1994[Mándi, Y., Régely, K., Ocsovszky, I., Barbe, J., Galy, J. P. & Molnár, J. (1994). Anticancer Res. 14, 2633-2636.]), well known as therapeutic agents, are important because of their range of applications in the dye and pharmaceutical industries. Certain acridinedione derivatives exhibit good inhibition against the pathogen vibro isolate-I (Josephrajan et al., 2005[Josephrajan, T., Ramakrishnan, V. T., Kathiravan, G. & Muthumary, J. (2005). Arkivoc, 124-136.]), display anti-cancer (Sondhi et al., 2004[Sondhi, S. M., Bhattacharjee, G., Jameel, R. K., Shukla, R., Raghubir, R., Lozach, O. & Meijer, L. (2004). Cent. Eur. J. Chem. 2, 1-15.]; Sugaya et al., 1994[Sugaya, T., Mimura, Y., Shida, Y., Osawa, Y., Matsukuma, I., Ikeda, S., Akinaga, S., Morimoto, M., Ashizawa, T., Okabe, M., Ohno, H., Gomi, K. & Kasai, M. (1994). J. Med. Chem. 37, 1028-1032.]; Kimura et al., 1993[Kimura, M., Okabayashi, I. & Kato, A. (1993). J. Heterocycl. Chem. 30, 1101-1104.]) and anti­tumour (Talacki et al., 1974[Talacki, R., Carrell, H. L. & Glusker, J. P. (1974). Acta Cryst. B30, 1044-1047.]) activity and act as K-channel openers (Li et al., 1996[Li, J. H., Yasay, G. D., Kan, S. T., Ohnmacht, C. J., Trainor, D. A., Boney, A. D., Heppner, T. J. & Nelson, M. T. (1996). Drug Res. 46, 523-530.]).

[Scheme 1]

2. Structural commentary

The rings A (C18–C23), B (N1/C15/C14/C17–C19) and C (C11–C16) in the fused-ring system show total puckering amplitudes Q(T) of 0.4624 (2), 0.3888 (2) and 0.4942 (3) Å, respectively. The central ring B adopts a flattened boat conformation with a mean deviation of 0.1429 (2) Å from the mean plane and a maximum deviation of 0.2621 (2) Å for atom C17. The cyclo­hexenone rings A and C adopt envelope conformations with atoms C21 and C11 as the respective flap atoms, being situated out of the mean plane of each ring by 0.3084 (2) and 0.3341 (2) Å (Fig. 1[link]). The puckering parameters are φ = 202.98 (2)° and θ = 58.16 (2)° for A, φ = −1.87 (9)° and θ = 107.81 (3)° for B, and φ =17.95 (6)° and θ = 62.30° for C. The benzene (C1–C6) and phenyl (C27–C32) rings form dihedral angles of 85.81 (2) and 88.90 (2)°, respectively, with the di­hydro­pyridine mean plane. In the di­hydro­pyridine ring, the lengths of the C14=C15 and C18=C19 double bonds are 1.356 (3) and 1.354 (3) Å, respectively. The C15—C14—C13 [119.70 (19)]° and C19—C18—C23 [121.0 (2)°] angles are almost the same. The ethyl group is disordered over two sites with occupancies of 0.572 (11) and 0.428 (11).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Only one component of the disordered ethyl group is shown.

3. Frontier mol­ecular orbital analysis

The chemical reactivity of the title compound was studied by frontier mol­ecular orbital analysis. For the calculation, the starting structural geometry was taken from the refined experimental structure obtained from X-ray diffraction data. The energy levels for the compound were computed using the DFT-B3LYP/6-311G++(d,p) level of theory as implemented in Gaussian09W (Frisch et al., 2010[Frisch et al. (2010). Gaussian09W. Gaussian Inc., Wallingford CT, USA.]). The calculated frontier mol­ecular orbitals, HOMO-1, HOMO, LUMO and LUMO+1, are shown in Fig. 2[link]. The energies of HOMO-1, HOMO, LUMO and LUMO+1 were calculated to be −5.8632, −5.5078, −1.8307 and −1.0100 eV, respectively, and the energy required to excite one electron from HOMO to LUMO and from HOMO-1 to LUMO+1 are 3.6671 and 4.8532 eV, respectively. The chemical potential, chemical hardness, chemical softness and electrophilicity index of the title mol­ecule are listed in Table 1[link]. Parr et al. (1999[Parr, R., Szentpály, L. V., v, & Liu, S. (1999). J. Am. Chem. Soc. 121, 1922-1924.]) have proposed the electrophilicity index as a qu­anti­tative measure of the energy lowering due to the maximal electron flow between donor and acceptor orbitals. The electrophilicity index value of 3.6714 eV shows the global electrophilic nature of the mol­ecule. Based on the wide band gap and its chemical hardness value of 1.8335 eV, the title mol­ecule seems to be hard.

Table 1
The global reactivity descriptors of the title compound

Frontier mol­ecular orbitals Energy
EHOMO −5.5078
ELUMO −1.8307
EHOMO−1 −5.8632
ELUMO+1 −1.0100
(EHOMO and ELUMO) gap 3.6671
(EHOMO−1 and ELUMO+1) gap 4.8532
Chemical potential (μ) 3.6692
Chemical hardness (η) 1.8335
Chemical softness (S) 0.5454
Electrophilicity index (ω) 3.6714
[Figure 2]
Figure 2
The frontier mol­ecular orbitals of the title compound, showing positive (red) and negative (green) regions.

4. Supra­molecular features and Hirshfeld surface analysis

In the crystal, the mol­ecules are linked via O1—H1⋯O3i hydrogen bonds, forming helical chains along the b-axis direction (Table 2[link]). The chains are further connected by weak C26—H26B⋯O3ii hydrogen bonds, forming a sheet structure parallel to ([\overline{1}]01) (Fig. 3[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3i 0.85 (3) 2.23 (4) 2.893 (2) 135 (3)
C26—H26B⋯O3ii 0.97 2.40 3.258 (3) 148
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{5\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 3]
Figure 3
A packing diagram of the title compound, showing the O—H⋯O and C—H⋯O hydrogen bonds (dashed lines).

To qu­antify the inter­molecular contacts in the crystal, Hirshfeld surfaces (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and two-dimensional fingerprint plots were generated using Crystal Explorer 3.1 (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. M. A. & Spackman, M. A. (2012). Crystal Explorer 3.1. University of Western Australia.]). The Hirshfeld surfaces mapped over dnorm (Fig. 4[link]) show the inter­molecular contacts as red-coloured spots, which indicate the closer contacts of C—H⋯O and O—H⋯O hydrogen bonds. The 2D fingerprint plots are illustrated in Fig. 5[link]. The H⋯H contacts comprise 65.2% of the total inter­actions. Besides these contacts, O⋯H/H⋯O (18.8%) and C⋯H/H⋯C (13.9%) inter­actions make a significant contribution to the total Hirshfeld surface. The percentage contributions of the C⋯N/N⋯C, C⋯O/O⋯C, N⋯H/H⋯N and C⋯C contacts are 0.1, 1.3, 0.4 and 0.2%, respectively.

[Figure 4]
Figure 4
Hirshfeld surfaces of the title compound mapped over dnorm.
[Figure 5]
Figure 5
Two-dimensional fingerprint plots for the title compound.

5. Database survey

The bond lengths in the title compound, are close to those reported for similar compounds, for example, 10-benzyl-9-(3,4-di­meth­oxy­phen­yl)-3,3,6,6-tetra­methyl-3,4,6,7,9,10-hexa­hydro­acridine-1,8(2H,5H)-dione (Sureshbabu & Sughanya, 2015[Sureshbabu, N. & Sughanya, V. (2015). Acta Cryst. E71, o688-o689.]) and 10-benzyl-9-(4-eth­oxy­phen­yl)-3,3,6,6-tetra­methyl-3,4,6,7,9,10-hexa­hydro­acridine-1,8(2H,5H)-dione (Sughanya & Sureshbabu, 2012[Sughanya, V. & Sureshbabu, N. (2012). Acta Cryst. E68, o2755.]).

6. Synthesis and crystallization

A mixture of 3-eth­oxy-4-hy­droxy­benzaldehyde (0.498 g, 3 mmol), 5,5-di­methyl­cyclo­hexane-1,3-dione (0.84 g, 6 mmol) and benzyl­amine (0.33 g, 3 mmol) was dissolved in 30 ml of acetic acid. The solution was refluxed for 6 h with the reaction being monitored by TLC. When the reaction was complete, the reaction mixture was poured into ice-cold water and stirred well. The formed precipitate was filtered and dried. Yellowsingle crystals suitable for X-ray diffraction were obtained from an ethanol solution at room temperature. (m.p. 471 K, 1.30 g, 2.6 mmol, yield 86%). IR (KBr): cm−1 3427, 2958, 1634, 1559, 1513, 1430, 1376, 1275, 1240, 1202, 1120, 1041, 966. 1H NMR (400 MHz, CDCl3): δ 0.89 (s, 6H), 0.99 (s, 6H), 1.39 (t, 3H), 2.20 (s, 4H), 2.39 (dd, 4H), 4.89 (s, 2H), 5.23 (s, 1H), 6.55 (d, 1H), 6.69 (d, 1H), 7.06 (s, 1H), 7.16 (d, 2H), 7.41–7.34 (m, 3H). 13C NMR (75 MHz, CDCl3): δ 14.89, 28.07&28.63, 40.27, 50.06, 64.29, 112.79–150.22, 195.77.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. C-bound H atoms were fixed in calculated positions (C—H = 0.93–0.98 Å) and allowed to ride with respect to the parent atoms with Uiso(H) = 1.2 or 1.5Ueq(C). The O-bound H atom was refined freely. For the disordered ethyl group, bond distance and displacement restraints (DFIX, SADI and SIMU) were applied.

Table 3
Experimental details

Crystal data
Chemical formula C32H37NO4
Mr 499.62
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 10.5780 (2), 18.4190 (5), 14.3980 (3)
β (°) 108.791 (1)
V3) 2655.73 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.35 × 0.30 × 0.30
 
Data collection
Diffractometer Bruker Kappa APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX3 , SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.674, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 23101, 4681, 3374
Rint 0.034
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.139, 1.02
No. of reflections 4681
No. of parameters 364
No. of restraints 39
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.37, −0.24
Computer programs: APEX3, SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX3 , SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2004); cell refinement: APEX3 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015).

10-Benzyl-9-(3-ethoxy-4-hydroxyphenyl)-3,3,6,6-tetramethyl-3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione top
Crystal data top
C32H37NO4F(000) = 1072
Mr = 499.62Dx = 1.250 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.5780 (2) ÅCell parameters from 5176 reflections
b = 18.4190 (5) Åθ = 2.1–23.3°
c = 14.3980 (3) ŵ = 0.08 mm1
β = 108.791 (1)°T = 296 K
V = 2655.73 (10) Å3Block, yellow
Z = 40.35 × 0.30 × 0.30 mm
Data collection top
Bruker Kappa APEXII
diffractometer
4681 independent reflections
Radiation source: fine-focus sealed tube3374 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω and φ scanθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1212
Tmin = 0.674, Tmax = 0.746k = 2121
23101 measured reflectionsl = 1717
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.049 w = 1/[σ2(Fo2) + (0.0564P)2 + 1.304P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.139(Δ/σ)max = 0.003
S = 1.02Δρmax = 0.37 e Å3
4681 reflectionsΔρmin = 0.24 e Å3
364 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
39 restraintsExtinction coefficient: 0.0066 (9)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.7372 (2)0.07235 (11)1.19469 (15)0.0471 (5)
C20.7273 (2)0.10618 (12)1.10816 (15)0.0488 (5)
H20.7774370.0891821.0702030.059*
C30.6443 (2)0.16503 (12)1.07625 (15)0.0461 (5)
H30.6401190.1873321.0173780.055*
C40.5675 (2)0.19150 (11)1.12980 (14)0.0407 (5)
C50.5779 (2)0.15710 (12)1.21800 (15)0.0485 (5)
H50.5270920.1738641.2556270.058*
C60.6615 (2)0.09894 (13)1.25058 (15)0.0525 (6)
C90.7670 (2)0.33092 (16)0.9497 (2)0.0704 (7)
H9A0.7544280.2974680.9971220.106*
H9B0.8410430.3622890.9808820.106*
H9C0.7850010.3044170.8979430.106*
C100.6623 (3)0.42747 (15)0.8297 (2)0.0741 (8)
H10A0.6765490.3994140.7777480.111*
H10B0.7388110.4575580.8591680.111*
H10C0.5847160.4574890.8035120.111*
C110.6411 (2)0.37629 (12)0.90727 (17)0.0524 (6)
C120.6105 (3)0.41915 (12)0.98762 (19)0.0604 (6)
H12A0.6872050.4489781.0212310.072*
H12B0.5358060.4513280.9579720.072*
C130.5775 (2)0.37160 (11)1.06128 (16)0.0465 (5)
C140.5053 (2)0.30484 (10)1.02566 (15)0.0416 (5)
C150.46639 (19)0.28917 (10)0.92851 (14)0.0397 (5)
C160.5213 (2)0.32806 (12)0.85821 (16)0.0492 (5)
H16A0.4510650.3577000.8148300.059*
H16B0.5470200.2923180.8181720.059*
C170.4695 (2)0.25444 (11)1.09529 (14)0.0426 (5)
H170.4682050.2823591.1529110.051*
C180.3300 (2)0.22705 (11)1.04337 (15)0.0432 (5)
C190.29089 (19)0.21317 (11)0.94584 (15)0.0399 (5)
C200.1604 (2)0.17691 (12)0.89287 (16)0.0473 (5)
H20A0.1766480.1383750.8522180.057*
H20B0.1020790.2121170.8496340.057*
C210.0881 (2)0.14485 (12)0.95949 (17)0.0509 (5)
C220.0967 (2)0.19754 (14)1.04238 (19)0.0624 (7)
H22A0.0470790.2411601.0153770.075*
H22B0.0553150.1757131.0867060.075*
C230.2381 (2)0.21791 (13)1.09917 (18)0.0548 (6)
C260.3491 (2)0.20767 (12)0.79067 (14)0.0455 (5)
H26A0.3578050.2469100.7482020.055*
H26B0.2593520.1882860.7644550.055*
C270.4480 (2)0.14911 (12)0.79111 (14)0.0457 (5)
C280.5291 (3)0.15385 (17)0.73326 (18)0.0697 (7)
H280.5222160.1935970.6920920.084*
C290.6213 (3)0.0992 (2)0.7363 (2)0.0898 (10)
H290.6769080.1029220.6979500.108*
C300.6304 (3)0.0403 (2)0.7953 (2)0.0856 (9)
H300.6912430.0035810.7962940.103*
C310.5509 (3)0.03490 (15)0.8525 (2)0.0720 (7)
H310.5574480.0052570.8929280.086*
C320.4609 (2)0.08898 (13)0.85044 (18)0.0568 (6)
H320.4071000.0849690.8901210.068*
N10.37004 (16)0.23636 (9)0.89039 (11)0.0398 (4)
O10.82089 (18)0.01441 (9)1.22322 (14)0.0647 (5)
O30.60779 (17)0.39009 (9)1.14761 (12)0.0612 (5)
O40.27281 (18)0.22766 (12)1.18772 (13)0.0788 (6)
O20.6794 (2)0.06291 (12)1.33650 (13)0.0898 (7)
C70.5937 (8)0.0989 (5)1.3972 (5)0.079 (2)0.572 (11)
H7A0.6119030.1505411.4053570.095*0.572 (11)
H7B0.4990430.0921461.3633670.095*0.572 (11)
C80.6318 (9)0.0638 (6)1.4895 (5)0.131 (4)0.572 (11)
H8A0.5800430.0827131.5279120.197*0.572 (11)
H8B0.7248730.0723911.5230260.197*0.572 (11)
H8C0.6162470.0125941.4801360.197*0.572 (11)
C7'0.5829 (9)0.0565 (6)1.3908 (6)0.082 (3)0.428 (11)
H7'10.4937480.0735951.3549270.099*0.428 (11)
H7'20.5807600.0090961.4194610.099*0.428 (11)
C8'0.6622 (12)0.1071 (5)1.4551 (10)0.142 (6)0.428 (11)
H8'10.6217870.1196351.5038200.213*0.428 (11)
H8'20.6704970.1498851.4193790.213*0.428 (11)
H8'30.7490650.0867851.4864810.213*0.428 (11)
C240.1545 (3)0.07364 (14)1.0030 (2)0.0769 (8)
H24A0.2472650.0821231.0379110.115*
H24B0.1466000.0393730.9511420.115*
H24C0.1116380.0545591.0472060.115*
C250.0558 (3)0.13003 (19)0.8986 (2)0.0835 (9)
H25A0.1025690.1098440.9397040.125*
H25B0.0581320.0962600.8472740.125*
H25C0.0979090.1745970.8702180.125*
H10.814 (3)0.0069 (19)1.274 (2)0.107 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0481 (12)0.0434 (12)0.0435 (12)0.0042 (10)0.0057 (10)0.0027 (9)
C20.0544 (13)0.0500 (13)0.0443 (12)0.0038 (10)0.0191 (10)0.0019 (10)
C30.0534 (13)0.0499 (12)0.0357 (11)0.0010 (10)0.0152 (10)0.0048 (9)
C40.0436 (11)0.0414 (11)0.0349 (10)0.0094 (9)0.0095 (9)0.0062 (8)
C50.0573 (13)0.0536 (13)0.0368 (11)0.0063 (11)0.0182 (10)0.0047 (10)
C60.0629 (14)0.0573 (14)0.0346 (11)0.0069 (11)0.0117 (10)0.0063 (10)
C90.0469 (14)0.0768 (18)0.0881 (19)0.0009 (13)0.0225 (13)0.0029 (15)
C100.0785 (18)0.0664 (17)0.0857 (19)0.0175 (14)0.0380 (16)0.0090 (14)
C110.0513 (13)0.0459 (12)0.0629 (14)0.0066 (10)0.0225 (11)0.0020 (11)
C120.0676 (16)0.0403 (12)0.0767 (16)0.0118 (11)0.0279 (13)0.0050 (11)
C130.0421 (12)0.0409 (11)0.0535 (13)0.0006 (9)0.0112 (10)0.0068 (10)
C140.0402 (11)0.0378 (11)0.0467 (12)0.0005 (9)0.0140 (9)0.0024 (9)
C150.0364 (10)0.0361 (10)0.0446 (11)0.0019 (8)0.0103 (9)0.0011 (9)
C160.0499 (13)0.0480 (12)0.0483 (12)0.0032 (10)0.0140 (10)0.0068 (10)
C170.0466 (12)0.0435 (11)0.0382 (11)0.0045 (9)0.0143 (9)0.0085 (9)
C180.0434 (11)0.0431 (12)0.0443 (12)0.0004 (9)0.0155 (9)0.0025 (9)
C190.0362 (11)0.0382 (11)0.0456 (11)0.0011 (8)0.0135 (9)0.0010 (9)
C200.0399 (11)0.0487 (12)0.0500 (12)0.0035 (10)0.0097 (10)0.0016 (10)
C210.0437 (12)0.0470 (12)0.0629 (14)0.0055 (10)0.0184 (11)0.0014 (11)
C220.0540 (14)0.0650 (16)0.0768 (17)0.0006 (12)0.0329 (13)0.0002 (13)
C230.0576 (14)0.0559 (14)0.0565 (14)0.0013 (11)0.0263 (12)0.0049 (11)
C260.0463 (12)0.0533 (13)0.0338 (10)0.0077 (10)0.0085 (9)0.0000 (9)
C270.0403 (11)0.0582 (13)0.0357 (11)0.0093 (10)0.0084 (9)0.0125 (10)
C280.0666 (16)0.096 (2)0.0527 (14)0.0061 (15)0.0276 (13)0.0071 (14)
C290.0633 (18)0.141 (3)0.073 (2)0.006 (2)0.0337 (16)0.026 (2)
C300.0634 (18)0.103 (2)0.083 (2)0.0173 (17)0.0123 (16)0.0294 (19)
C310.0641 (16)0.0656 (17)0.0790 (19)0.0055 (13)0.0127 (15)0.0123 (14)
C320.0535 (14)0.0560 (14)0.0615 (15)0.0020 (11)0.0191 (12)0.0089 (12)
N10.0391 (9)0.0421 (9)0.0372 (9)0.0040 (7)0.0108 (7)0.0021 (7)
O10.0711 (11)0.0564 (10)0.0623 (11)0.0109 (9)0.0154 (9)0.0187 (9)
O30.0687 (11)0.0526 (10)0.0549 (10)0.0101 (8)0.0097 (8)0.0138 (8)
O40.0754 (12)0.1155 (16)0.0554 (11)0.0146 (11)0.0348 (9)0.0161 (10)
O20.1117 (16)0.1106 (16)0.0534 (11)0.0161 (13)0.0353 (11)0.0358 (11)
C70.091 (5)0.082 (5)0.070 (4)0.018 (5)0.036 (3)0.029 (4)
C80.182 (7)0.154 (8)0.090 (5)0.087 (6)0.091 (5)0.041 (4)
C7'0.084 (5)0.059 (5)0.084 (6)0.018 (4)0.002 (4)0.027 (5)
C8'0.138 (9)0.073 (6)0.136 (9)0.032 (6)0.066 (7)0.034 (6)
C240.091 (2)0.0520 (15)0.090 (2)0.0023 (14)0.0310 (17)0.0113 (14)
C250.0545 (16)0.103 (2)0.091 (2)0.0266 (15)0.0210 (15)0.0013 (18)
Geometric parameters (Å, º) top
C1—O11.363 (3)C21—C221.518 (3)
C1—C21.367 (3)C21—C241.524 (3)
C1—C61.394 (3)C22—C231.503 (3)
C2—C31.377 (3)C22—H22A0.9700
C2—H20.9300C22—H22B0.9700
C3—C41.377 (3)C23—O41.221 (3)
C3—H30.9300C26—N11.478 (2)
C4—C51.391 (3)C26—C271.501 (3)
C4—C171.527 (3)C26—H26A0.9700
C5—C61.372 (3)C26—H26B0.9700
C5—H50.9300C27—C281.377 (3)
C6—O21.362 (3)C27—C321.378 (3)
C9—C111.524 (3)C28—C291.393 (4)
C9—H9A0.9600C28—H280.9300
C9—H9B0.9600C29—C301.362 (5)
C9—H9C0.9600C29—H290.9300
C10—C111.532 (3)C30—C311.357 (4)
C10—H10A0.9600C30—H300.9300
C10—H10B0.9600C31—C321.372 (3)
C10—H10C0.9600C31—H310.9300
C11—C121.519 (3)C32—H320.9300
C11—C161.522 (3)O1—H10.85 (3)
C12—C131.501 (3)O2—C7'1.476 (9)
C12—H12A0.9700O2—C71.592 (6)
C12—H12B0.9700C7—C81.414 (10)
C13—O31.228 (3)C7—H7A0.9700
C13—C141.451 (3)C7—H7B0.9700
C14—C151.356 (3)C8—H8A0.9600
C14—C171.502 (3)C8—H8B0.9600
C15—N11.388 (2)C8—H8C0.9600
C15—C161.501 (3)C7'—C8'1.389 (12)
C16—H16A0.9700C7'—H7'10.9700
C16—H16B0.9700C7'—H7'20.9700
C17—C181.510 (3)C8'—H8'10.9600
C17—H170.9800C8'—H8'20.9600
C18—C191.354 (3)C8'—H8'30.9600
C18—C231.456 (3)C24—H24A0.9600
C19—N11.397 (2)C24—H24B0.9600
C19—C201.502 (3)C24—H24C0.9600
C20—C211.525 (3)C25—H25A0.9600
C20—H20A0.9700C25—H25B0.9600
C20—H20B0.9700C25—H25C0.9600
C21—C251.517 (3)
O1—C1—C2118.9 (2)C25—C21—C20108.6 (2)
O1—C1—C6122.6 (2)C22—C21—C20109.37 (18)
C2—C1—C6118.5 (2)C24—C21—C20109.46 (19)
C1—C2—C3121.1 (2)C23—C22—C21112.62 (19)
C1—C2—H2119.5C23—C22—H22A109.1
C3—C2—H2119.5C21—C22—H22A109.1
C2—C3—C4121.29 (19)C23—C22—H22B109.1
C2—C3—H3119.4C21—C22—H22B109.1
C4—C3—H3119.4H22A—C22—H22B107.8
C3—C4—C5117.5 (2)O4—C23—C18122.0 (2)
C3—C4—C17123.20 (18)O4—C23—C22121.1 (2)
C5—C4—C17119.22 (18)C18—C23—C22116.9 (2)
C6—C5—C4121.3 (2)N1—C26—C27111.52 (16)
C6—C5—H5119.3N1—C26—H26A109.3
C4—C5—H5119.3C27—C26—H26A109.3
O2—C6—C5125.2 (2)N1—C26—H26B109.3
O2—C6—C1114.6 (2)C27—C26—H26B109.3
C5—C6—C1120.26 (19)H26A—C26—H26B108.0
C11—C9—H9A109.5C28—C27—C32118.0 (2)
C11—C9—H9B109.5C28—C27—C26121.4 (2)
H9A—C9—H9B109.5C32—C27—C26120.63 (19)
C11—C9—H9C109.5C27—C28—C29120.1 (3)
H9A—C9—H9C109.5C27—C28—H28120.0
H9B—C9—H9C109.5C29—C28—H28120.0
C11—C10—H10A109.5C30—C29—C28120.2 (3)
C11—C10—H10B109.5C30—C29—H29119.9
H10A—C10—H10B109.5C28—C29—H29119.9
C11—C10—H10C109.5C31—C30—C29120.2 (3)
H10A—C10—H10C109.5C31—C30—H30119.9
H10B—C10—H10C109.5C29—C30—H30119.9
C12—C11—C16107.89 (18)C30—C31—C32119.7 (3)
C12—C11—C9110.6 (2)C30—C31—H31120.1
C16—C11—C9110.84 (19)C32—C31—H31120.1
C12—C11—C10110.6 (2)C31—C32—C27121.7 (2)
C16—C11—C10108.4 (2)C31—C32—H32119.1
C9—C11—C10108.4 (2)C27—C32—H32119.1
C13—C12—C11112.95 (18)C15—N1—C19119.16 (16)
C13—C12—H12A109.0C15—N1—C26119.72 (16)
C11—C12—H12A109.0C19—N1—C26121.07 (16)
C13—C12—H12B109.0C1—O1—H1113 (2)
C11—C12—H12B109.0C6—O2—C7'127.0 (4)
H12A—C12—H12B107.8C6—O2—C7111.0 (3)
O3—C13—C14121.9 (2)C8—C7—O2106.6 (5)
O3—C13—C12120.6 (2)C8—C7—H7A110.4
C14—C13—C12117.41 (19)O2—C7—H7A110.4
C15—C14—C13119.70 (19)C8—C7—H7B110.4
C15—C14—C17119.93 (18)O2—C7—H7B110.4
C13—C14—C17120.33 (18)H7A—C7—H7B108.6
C14—C15—N1119.84 (18)C7—C8—H8A109.5
C14—C15—C16122.63 (18)C7—C8—H8B109.5
N1—C15—C16117.52 (17)H8A—C8—H8B109.5
C15—C16—C11114.24 (18)C7—C8—H8C109.5
C15—C16—H16A108.7H8A—C8—H8C109.5
C11—C16—H16A108.7H8B—C8—H8C109.5
C15—C16—H16B108.7C8'—C7'—O285.9 (9)
C11—C16—H16B108.7C8'—C7'—H7'1114.3
H16A—C16—H16B107.6O2—C7'—H7'1114.3
C14—C17—C18107.01 (16)C8'—C7'—H7'2114.3
C14—C17—C4113.31 (16)O2—C7'—H7'2114.3
C18—C17—C4111.10 (16)H7'1—C7'—H7'2111.5
C14—C17—H17108.4C7'—C8'—H8'1109.5
C18—C17—H17108.4C7'—C8'—H8'2109.5
C4—C17—H17108.4H8'1—C8'—H8'2109.5
C19—C18—C23121.0 (2)C7'—C8'—H8'3109.5
C19—C18—C17119.97 (18)H8'1—C8'—H8'3109.5
C23—C18—C17119.00 (18)H8'2—C8'—H8'3109.5
C18—C19—N1119.73 (18)C21—C24—H24A109.5
C18—C19—C20122.28 (18)C21—C24—H24B109.5
N1—C19—C20117.90 (17)H24A—C24—H24B109.5
C19—C20—C21114.70 (18)C21—C24—H24C109.5
C19—C20—H20A108.6H24A—C24—H24C109.5
C21—C20—H20A108.6H24B—C24—H24C109.5
C19—C20—H20B108.6C21—C25—H25A109.5
C21—C20—H20B108.6C21—C25—H25B109.5
H20A—C20—H20B107.6H25A—C25—H25B109.5
C25—C21—C22111.4 (2)C21—C25—H25C109.5
C25—C21—C24109.1 (2)H25A—C25—H25C109.5
C22—C21—C24108.9 (2)H25B—C25—H25C109.5
O1—C1—C2—C3179.9 (2)C17—C18—C19—N111.6 (3)
C6—C1—C2—C30.3 (3)C23—C18—C19—C209.8 (3)
C1—C2—C3—C40.6 (3)C17—C18—C19—C20171.90 (18)
C2—C3—C4—C50.7 (3)C18—C19—C20—C2110.6 (3)
C2—C3—C4—C17177.22 (19)N1—C19—C20—C21172.77 (18)
C3—C4—C5—C60.0 (3)C19—C20—C21—C25164.0 (2)
C17—C4—C5—C6178.02 (19)C19—C20—C21—C2242.2 (3)
C4—C5—C6—O2178.9 (2)C19—C20—C21—C2477.1 (2)
C4—C5—C6—C10.9 (3)C25—C21—C22—C23175.4 (2)
O1—C1—C6—O20.8 (3)C24—C21—C22—C2364.2 (3)
C2—C1—C6—O2178.8 (2)C20—C21—C22—C2355.4 (3)
O1—C1—C6—C5179.5 (2)C19—C18—C23—O4177.4 (2)
C2—C1—C6—C51.0 (3)C17—C18—C23—O44.3 (3)
C16—C11—C12—C1356.7 (3)C19—C18—C23—C224.1 (3)
C9—C11—C12—C1364.7 (3)C17—C18—C23—C22174.2 (2)
C10—C11—C12—C13175.2 (2)C21—C22—C23—O4143.8 (2)
C11—C12—C13—O3147.3 (2)C21—C22—C23—C1837.6 (3)
C11—C12—C13—C1434.7 (3)N1—C26—C27—C28124.2 (2)
O3—C13—C14—C15175.6 (2)N1—C26—C27—C3255.3 (3)
C12—C13—C14—C152.4 (3)C32—C27—C28—C290.5 (4)
O3—C13—C14—C172.3 (3)C26—C27—C28—C29179.0 (2)
C12—C13—C14—C17179.70 (19)C27—C28—C29—C301.0 (4)
C13—C14—C15—N1163.65 (18)C28—C29—C30—C310.9 (5)
C17—C14—C15—N114.2 (3)C29—C30—C31—C320.3 (4)
C13—C14—C15—C1614.9 (3)C30—C31—C32—C270.3 (4)
C17—C14—C15—C16167.17 (18)C28—C27—C32—C310.2 (3)
C14—C15—C16—C1110.5 (3)C26—C27—C32—C31179.7 (2)
N1—C15—C16—C11170.87 (18)C14—C15—N1—C1916.0 (3)
C12—C11—C16—C1544.9 (2)C16—C15—N1—C19162.68 (18)
C9—C11—C16—C1576.4 (2)C14—C15—N1—C26166.38 (18)
C10—C11—C16—C15164.7 (2)C16—C15—N1—C2615.0 (3)
C15—C14—C17—C1838.2 (2)C18—C19—N1—C1517.3 (3)
C13—C14—C17—C18139.68 (18)C20—C19—N1—C15159.41 (18)
C15—C14—C17—C484.6 (2)C18—C19—N1—C26165.12 (18)
C13—C14—C17—C497.5 (2)C20—C19—N1—C2618.2 (3)
C3—C4—C17—C1425.6 (3)C27—C26—N1—C1582.8 (2)
C5—C4—C17—C14156.47 (18)C27—C26—N1—C1999.7 (2)
C3—C4—C17—C1894.9 (2)C5—C6—O2—C7'26.6 (6)
C5—C4—C17—C1883.0 (2)C1—C6—O2—C7'153.6 (5)
C14—C17—C18—C1936.8 (2)C5—C6—O2—C72.0 (5)
C4—C17—C18—C1987.4 (2)C1—C6—O2—C7177.7 (4)
C14—C17—C18—C23141.50 (19)C6—O2—C7—C8172.7 (8)
C4—C17—C18—C2394.3 (2)C6—O2—C7'—C8'104.5 (6)
C23—C18—C19—N1166.72 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.85 (3)2.23 (4)2.893 (2)135 (3)
C26—H26B···O3ii0.972.403.258 (3)148
Symmetry codes: (i) x+3/2, y1/2, z+5/2; (ii) x1/2, y+1/2, z1/2.
The global reactivity descriptors of the title compound top
Frontier molecular orbitalsEnergy
EHOMO-5.5078
ELUMO-1.8307
EHOMO-1-5.8632
ELUMO+1-1.0100
(EHOMO and ELUMO) gap3.6671
(EHOMO-1 and ELUMO+1) gap4.8532
Chemical potential (µ)3.6692
Chemical hardness (η)1.8335
Chemical softness (S)0.5454
Electrophilicity index (ω)3.6714
 

Acknowledgements

The authors thank Dr Babu Varghese, Dr R. Jagan, Dr Sudhadevi Antharjanam and the SAIF, IIT Madras, for the data collection.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2004). APEX3 , SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch et al. (2010). Gaussian09W. Gaussian Inc., Wallingford CT, USA.  Google Scholar
First citationJosephrajan, T., Ramakrishnan, V. T., Kathiravan, G. & Muthumary, J. (2005). Arkivoc, 124–136.  Google Scholar
First citationKimura, M., Okabayashi, I. & Kato, A. (1993). J. Heterocycl. Chem. 30, 1101–1104.  CrossRef CAS Web of Science Google Scholar
First citationLi, J. H., Yasay, G. D., Kan, S. T., Ohnmacht, C. J., Trainor, D. A., Boney, A. D., Heppner, T. J. & Nelson, M. T. (1996). Drug Res. 46, 523–530.  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMándi, Y., Régely, K., Ocsovszky, I., Barbe, J., Galy, J. P. & Molnár, J. (1994). Anticancer Res. 14, 2633–2636.  PubMed Google Scholar
First citationNasim, A. & Brychcy, T. (1979). Mutat. Res. 65, 261–288.  CrossRef CAS PubMed Web of Science Google Scholar
First citationParr, R., Szentpály, L. V., v, & Liu, S. (1999). J. Am. Chem. Soc. 121, 1922–1924.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSondhi, S. M., Bhattacharjee, G., Jameel, R. K., Shukla, R., Raghubir, R., Lozach, O. & Meijer, L. (2004). Cent. Eur. J. Chem. 2, 1–15.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSugaya, T., Mimura, Y., Shida, Y., Osawa, Y., Matsukuma, I., Ikeda, S., Akinaga, S., Morimoto, M., Ashizawa, T., Okabe, M., Ohno, H., Gomi, K. & Kasai, M. (1994). J. Med. Chem. 37, 1028–1032.  CrossRef CAS PubMed Google Scholar
First citationSughanya, V. & Sureshbabu, N. (2012). Acta Cryst. E68, o2755.  CSD CrossRef IUCr Journals Google Scholar
First citationSureshbabu, N. & Sughanya, V. (2015). Acta Cryst. E71, o688–o689.  CSD CrossRef IUCr Journals Google Scholar
First citationTalacki, R., Carrell, H. L. & Glusker, J. P. (1974). Acta Cryst. B30, 1044–1047.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationThull, U. & Testa, B. (1994). Biochem. Pharmacol. 47, 2307–2310.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. M. A. & Spackman, M. A. (2012). Crystal Explorer 3.1. University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds