research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (4-chloro­phen­yl)(4-methyl­piperidin-1-yl)methanone

CROSSMARK_Color_square_no_text.svg

aPG and Research Department of Physics, Queen Mary's College, Affiliated to University of Madras, Chennai-4, Tamilnadu, India, bDepartment of Chemistry, Madras Christian College, Affiliated to University of Madras, Chennai-59, Tamilnadu, India, cDepartment of Physics, Madras Christian College, Affiliated to University of Madras, Chennai-59, Tamilnadu, India, dPG and Research Department of Physics, Presidency College, Affiliated to University of Madras, Chennai-5, Tamilnadu, India, and eDepartment of Nuclear Physics, University of Madras, Chennai-25, Tamilnadu, India
*Correspondence e-mail: anbu24663@yahoo.co.in

Edited by J. Jasinsk, Keene State College, USA (Received 27 January 2020; accepted 10 February 2020; online 13 March 2020)

The title compound, C13H16ClNO, contains a methyl­piperidine ring in the stable chair conformation. The mean plane of the twisted piperidine ring subtends a dihedral angle of 39.89 (7)° with that of the benzene ring. In the crystal, weak C—H⋯O inter­actions link the mol­ecules along the a-axis direction to form infinite mol­ecular chains. H⋯H inter­atomic inter­actions, C—H⋯O inter­molecular inter­actions and weak dispersive forces stabilize mol­ecular packing and form a supra­molecular network, as established by Hirshfeld surface analysis.

1. Chemical context

The structures of a wide variety of heterocyclic derivatives have been analysed for their pharma-potentiality over the past three decades (Katritzky, 2010[Katritzky, A. (2010). Advances in Heterocyclic Chemistry pp. 42-89. Amsterdam: Elsevier/Academic Press.]). Among them, derivatives of the six-membered heterocyclic base piperidine have proven to be successful pharmacophores. Naturally existing in abundance, alkaloids of substituted piperidine compounds exhibit a wide range of biological activities (Yunusov & Azimova, 2013[Yunusov, M. & Azimova, S. S. (2013). Natural Compounds Alkaloids, pp. 497-526. New York: Springer.]). Anti-convulsant (Santucci et al., 1986[Santucci, V., Rocher, D., Veyrun, J. & Bizière, K. (1986). Naunyn-Schmiedeberg's Arch. Pharmacol. 333, 186-189.]), anti-tumor, anti-bacterial (Vinaya et al., 2009[Vinaya, K., Kavitha, R., Ananda Kumar, C. S., Benaka Prasad, S. B., Chandrappa, S., Deepak, S. A., Nanjunda Swamy, S., Umesha, S. & Rangappa, K. S. (2009). Arch. Pharm. Res. 32, 1, 33-41.]), anti-viral (Abdel-Aziza et al., 2010[Abdel-Aziza, H. A., Abdel-Wahab, B. F. & Badria, F. A. (2010). Arch. Pharm. Chem. Life Sci. 343, 152-159.]), anti-fungal (Rafiq et al., 2013[Rafiq, K., Saify, Z. S., Vaid, F., Khan, S., Akhtar, F. & Kausar, R. (2013). Br. Biomed. Bull. 1, 64-72.]) and plasma triglyceride-lowering (Uto et al., 2010[Uto, Y., Ogata, T., Kiyotsuka, Y., Ueno, Y., Miyazawa, Y., Kurata, H., Deguchi, T., Watanabe, N., Konishi, M., Okuyama, R., Kurikawa, N., Takagi, T., Wakimoto, S. & Ohsumi, J. (2010). Bioorg. Med. Chem. Lett. 20, 341-345.]) activities, along with their antagon­ist activity as anti-HIV-1 agents (Imamura et al., 2005[Imamura, S., Nishikawa, Y., Ichikawa, T., Hattori, T., Matsushita, Y., Hashiguchi, S., Kanzaki, N., Iizawa, Y., Baba, M. & Sugihara, Y. (2005). Bioorg. Med. Chem. 13, 397-416.]) are deserving of mention. Piperidin-1-yl derivatives have proven vital in the field of neuropsychosis due to their potent biological activity. They act as either central nervous system (CNS) depressants or as stimuli, based on dosage levels (Ramalingan et al., 2004[Ramalingan, C., Balasubramanian, S., Kabilan, S. & Vasudevan, M. (2004). Eur. J. Med. Chem. 39, 527-533.]), and also show anti-tubercular (Patel et al., 2011[Patel, V. R., Kumari, P., Rajani, D. P. & Chikhalia, H. K. (2011). J. Enzym. Inhib. Med. Ch. 3, 370-379.]), anti-cancer (Lefranc et al., 2013[Lefranc, F., Xu, Z., Burth, P., Mathieu, V., Revelant, G., Velho de Castro Faria, M., Noyon, C., Garcia, D. G., Dufour, D., Bruyère, C., Gonçalves-de-Albuquerque, C. F., Van Antwerpen, P., Rogister, B., Hesse, S., Kirsch, G. & Kiss, R. (2013). Eur. J. Med. Chem. 63, 213-223.]), anti-tumor (da Silveira et al., 2017[Silveira, E. F. da, Azambuja, J. H., de Carvalho, T. R., Kunzler, A., da Silva, D. S., Teixeira, F. C., Rodrigues, R., Beira, F. T., de CassiaSantAnnaAlves, R., Spanevello, R. M., Cunico, W., Stefanello, F. M., Horn, A. P. & Braganhol, E. (2017). Chem. Biol. Interact. 25, 266, 1-9.]) and, in particular, anti-leukemic (Vinaya et al., 2011[Vinaya, K., Kavitha, C. V., Chandrappa, S., Prasanna, D. S., Raghavan, S. C. & Rangappa, K. S. (2011). Chem. Biol. Drug Des. 78, 622-630.]) activities. One such active piperidin-1-yl derivative is the title compound, (4-chloro­phen­yl)(4-methyl piperidin-1-yl)methanone.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound, which features a chloro­benzene ring and a methyl­piperidine ring, is shown in Fig. 1[link]. The C—N distances [1.343 (3)–1.462 (3) Å], C=O distance [1.233 (3) Å] and all other primary bond lengths along with bond angles are well within the range reported for similar structures (Prathebha et al., 2015[Prathebha, K., Reuben Jonathan, D., Revathi, B. K., Sathya, S. & Usha, G. (2015). Acta Cryst. E71, o39-o40.]). The ring puckering parameters [q2 = 0.005 (3), q3 = −0.551 (3), QT = 0.551 (3) Å, φ2 = 203 (32)° and θ = 180.0 (3)°] confirm that the piperidine ring adopts a chair conformation. The C1—N1—C6—O1 and O1—C6—C7—C8 torsion angles are −167.4 (2) and 50.7 (3)°, respectively. The C1—C2—C3—C13 torsion angle [177.7 (2)°] reveals the anti-periplanar (+ap) orientation of the methyl group with respect to the piperidine ring.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound showing the atom-labelling scheme with displacement ellipsoids drawn at the 30% probability level.

3. Supra­molecular features

In the crystal, weak C11—H11⋯O1 inter­actions link translation-related mol­ecules (x − 1, y, z), forming chains parallel to the a axis (Table 1[link], Fig. 2[link]a). Weak C—H⋯π close contacts between H5A and the benzene ring of an adjacent (1 − x, −y, −z) mol­ecule provide linkage between inversion-related (i.e., head-to-tail) chains (Table 1[link], Fig. 2[link]b). Analysis of the Hirshfeld surface (Spackman et al., 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were performed with CrystalExplorer 17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer 17. The University of Western Australia.]). Hirshfeld surfaces mapped over dnorm, were generated using TONTO (Jayatilaka et al., 2005[Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/]) computations with B3LYP/6-31G(d,p) basis sets (Fig. 3[link]). Among the major non-bonding inter­actions (Fig. 4[link]), H⋯H contacts have the highest percentage contribution of 52.1%, followed by Cl⋯H/H⋯Cl (18.8%), C⋯H/H⋯C (16.3%), O⋯H/H⋯O (10.4%) and C⋯O/O⋯C (1.1%) inter­actions. The electrostatic and the polarization energies observed among the mol­ecules are compensated by the repulsive components, while the C—H⋯O inter­actions along with van der Waals dispersive forces contribute to form the supra­molecular network.

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C7–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O1i 0.93 2.46 3.166 (3) 132
C2—H2ACg2ii 0.97 2.95 3.843 (3) 154
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y, -z.
[Figure 2]
Figure 2
(a) The mol­ecular packing viewed perpendicular to the ac plane, showing the formation of chains along the a axis. Dotted lines indicate weak C—H⋯O inter­actions. (b) The crystal packing viewed along the a axis, showing the weak C—H⋯π close contacts (green dotted line).
[Figure 3]
Figure 3
Hirshfeld surfaces mapped over dnorm showing weak C—H⋯O inter­actions on either side of the mol­ecule.
[Figure 4]
Figure 4
Two-dimensional fingerprint plots illustrating the percentage contributions of contacts within the crystal: (a) all inter­molecular inter­actions, (b) H⋯H contacts, (c) H⋯Cl/Cl⋯H contacts, (d) Outward Cl⋯H and C⋯H inter­actions, (e) H⋯C/C⋯H contacts, (f) O⋯H/H⋯O contacts, (g) C⋯O/O⋯C contacts and (h) N⋯H/H⋯N contacts. The Hirshfeld surfaces mapped over dnorm are displayed in grey, with the relevant surface patches associated with the specific contacts highlighted in colour.

4. Database survey

The Cambridge Structural Database (version 5.40, Nov. 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) includes various structural analogues of substituted piperidin-1-yl compounds, which include EYIXIT (Schmittel et al., 2004[Schmittel, M., Lal, M., Schlosser, M. & Deiseroth, H.-J. (2004). Acta Cryst. C60, o589-o591.]), AFETUB (Rao et al., 2007[Rao, X.-P., Song, Z.-Q., Jia, W.-H. & Shang, S.-B. (2007). Acta Cryst. E63, o3886.]), IJUZAP (Betz et al., 2011[Betz, R., Gerber, T. & Schalekamp, H. (2011). Acta Cryst. E67, o397.]), NIPCAS (Prathebha et al., 2013[Prathebha, K., Revathi, B. K., Usha, G., Ponnuswamy, S. & Abdul Basheer, S. (2013). Acta Cryst. E69, o1424.]), QUTGOD (Revathi et al., 2015c[Revathi, B. K., Reuben Jonathan, D., Kalai Sevi, K., Dhanalakshmi, K. & Usha, G. (2015c). Acta Cryst. E71, o896-o897.]), NUKDUU (Revathi et al., 2015d[Revathi, B. K., Reuben Jonathan, D., Sathya, S., Prathebha, K. & Usha, G. (2015d). Acta Cryst. E71, o359-o360.]), BEBFEW (Mohamooda Sumaya et al., 2017[Mohamooda Sumaya, U., Reuben Jonathan, D., Era, D. T., Gomathi, S. & Usha, G. (2017). IUCrData, 2, x170813-x170813.]), GUVXAY (Revathi et al., 2015a[Revathi, B. K., Reuben Jonathan, D., Kalai Sevi, K., Dhanalakshmi, K. & Usha, G. (2015a). Acta Cryst. E71, o790-o791.]) and LUPDUX (Revathi et al., 2015b[Revathi, B. K., Reuben Jonathan, D., Kalai Sevi, K., Dhanalakshmi, K. & Usha, G. (2015b). Acta Cryst. E71, o817-o818.]).

5. Synthesis and crystallization

The title compound was synthesized using the published procedure (Revathi et al., 2018[Revathi, B. K., Reuben Jonathan, D., Sathya, S. & Usha, G. (2018). J. Mol. Struct. 1154, 496-503.]) via a Scholten–Boumann condensation reaction (Fig. 5[link]). A homogeneous mixture of the reagent, 4-methyl­piperidine (0.04mol) was prepared with 150ml of methyl ethyl ketone in a round-bottomed flask by stirring it at room temperature for a few minutes. Then 0.04mol of tri­ethyl­amine was added, followed by stirring for 20min. An equal amount of 2-chloro­benzoyl chloride (0.04mol) was then added slowly under constant stirring and the mixture was then refluxed for 3h at room temperature. The precipitate of tri­ethyl­ammonium chloride formed was filtered off and the filtrate was allowed to evaporate to obtain the title compound. The product was then recrystallized three times from chloro­form to obtain block-like single crystals of the title compound, m.p. 325K.

[Figure 5]
Figure 5
Reaction scheme.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.5Ueq(C-meth­yl) or 1.2Ueq(C) for all other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C13H16ClNO
Mr 237.72
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 6.6286 (4), 8.1569 (5), 12.0061 (8)
α, β, γ (°) 96.803 (3), 101.506 (3), 98.511 (3)
V3) 621.73 (7)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.29
Crystal size (mm) 0.25 × 0.20 × 0.15
 
Data collection
Diffractometer Bruker Kappa-axis
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX3, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, USA.])
Tmin, Tmax 0.840, 0.842
No. of measured, independent and observed [I > 2σ(I)] reflections 11137, 2178, 1687
Rint 0.061
(sin θ/λ)max−1) 0.596
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.144, 1.05
No. of reflections 2178
No. of parameters 147
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.18, −0.25
Computer programs: APEX3, SAINT and XPREP (Bruker, 2012[Bruker (2012). APEX3, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2012); cell refinement: APEX3/SAINT (Bruker, 2012); data reduction: SAINT/XPREP (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015\bbr06); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

(4-Chlorophenyl)(4-methylpiperidin-1-yl)methanone top
Crystal data top
C13H16ClNOZ = 2
Mr = 237.72F(000) = 252
Triclinic, P1Dx = 1.270 Mg m3
a = 6.6286 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.1569 (5) ÅCell parameters from 6685 reflections
c = 12.0061 (8) Åθ = 2.9–25.1°
α = 96.803 (3)°µ = 0.29 mm1
β = 101.506 (3)°T = 296 K
γ = 98.511 (3)°Block, colourless
V = 621.73 (7) Å30.25 × 0.20 × 0.15 mm
Data collection top
Bruker Kappa APEX3 CMOS
diffractometer
1687 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.061
ω and φ scanθmax = 25.1°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 77
Tmin = 0.840, Tmax = 0.842k = 99
11137 measured reflectionsl = 1414
2178 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.144 w = 1/[σ2(Fo2) + (0.0575P)2 + 0.3053P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2178 reflectionsΔρmax = 0.18 e Å3
147 parametersΔρmin = 0.25 e Å3
0 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.108 (19)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.24442 (13)0.18102 (11)0.44227 (6)0.0859 (4)
O11.1366 (2)0.3558 (2)0.04876 (15)0.0658 (5)
N10.9452 (3)0.2267 (2)0.06264 (17)0.0550 (5)
C10.7665 (4)0.1096 (3)0.0775 (2)0.0568 (6)
H1A0.81060.00550.09470.068*
H1B0.66010.08480.00650.068*
C20.6753 (4)0.1832 (3)0.1740 (2)0.0592 (6)
H2A0.56350.10050.18580.071*
H2B0.61580.27950.15230.071*
C30.8399 (4)0.2370 (3)0.2863 (2)0.0627 (7)
H30.88850.13620.31040.075*
C41.0257 (4)0.3522 (4)0.2649 (2)0.0699 (8)
H4A0.98370.45710.24780.084*
H4B1.13570.37700.33430.084*
C51.1111 (4)0.2761 (4)0.1664 (2)0.0672 (7)
H5A1.22200.35720.15210.081*
H5B1.16960.17870.18690.081*
C60.9693 (3)0.2802 (3)0.0362 (2)0.0511 (6)
C70.7827 (3)0.2502 (3)0.1352 (2)0.0488 (5)
C80.8006 (4)0.1799 (3)0.2430 (2)0.0557 (6)
H80.92590.14730.25180.067*
C90.6368 (4)0.1573 (3)0.3373 (2)0.0609 (7)
H90.64940.10710.40870.073*
C100.4536 (4)0.2104 (3)0.3242 (2)0.0566 (6)
C110.4326 (4)0.2848 (3)0.2191 (2)0.0551 (6)
H110.30920.32210.21180.066*
C120.5960 (3)0.3036 (3)0.1249 (2)0.0521 (6)
H120.58160.35250.05350.062*
C130.7481 (6)0.3170 (4)0.3813 (3)0.0895 (10)
H13A0.63450.23860.39350.134*
H13B0.69780.41560.35930.134*
H13C0.85430.34750.45110.134*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0826 (6)0.1031 (7)0.0649 (5)0.0208 (4)0.0003 (4)0.0062 (4)
O10.0437 (9)0.0777 (12)0.0767 (12)0.0028 (8)0.0272 (8)0.0079 (9)
N10.0407 (10)0.0592 (12)0.0636 (12)0.0009 (8)0.0120 (9)0.0143 (9)
C10.0479 (13)0.0535 (13)0.0664 (15)0.0048 (10)0.0135 (11)0.0140 (11)
C20.0474 (13)0.0637 (15)0.0682 (16)0.0030 (11)0.0162 (11)0.0194 (12)
C30.0659 (15)0.0614 (15)0.0615 (15)0.0072 (12)0.0129 (12)0.0197 (12)
C40.0630 (16)0.0730 (17)0.0637 (16)0.0050 (13)0.0014 (12)0.0171 (13)
C50.0413 (12)0.0772 (18)0.0788 (18)0.0013 (12)0.0037 (12)0.0266 (14)
C60.0451 (12)0.0480 (12)0.0637 (14)0.0078 (10)0.0223 (10)0.0046 (10)
C70.0457 (12)0.0451 (12)0.0577 (13)0.0025 (9)0.0208 (10)0.0076 (10)
C80.0533 (13)0.0574 (14)0.0620 (15)0.0083 (11)0.0280 (12)0.0075 (11)
C90.0714 (16)0.0623 (15)0.0521 (14)0.0101 (12)0.0251 (12)0.0033 (11)
C100.0596 (14)0.0567 (14)0.0534 (13)0.0056 (11)0.0150 (11)0.0092 (11)
C110.0481 (12)0.0586 (14)0.0606 (14)0.0084 (10)0.0172 (11)0.0100 (11)
C120.0497 (13)0.0542 (13)0.0545 (13)0.0061 (10)0.0218 (11)0.0037 (10)
C130.104 (2)0.094 (2)0.074 (2)0.0115 (19)0.0294 (18)0.0131 (17)
Geometric parameters (Å, º) top
Cl1—C101.740 (3)C5—H5A0.9700
O1—C61.233 (3)C5—H5B0.9700
N1—C61.343 (3)C6—C71.502 (3)
N1—C51.459 (3)C7—C81.388 (3)
N1—C11.462 (3)C7—C121.394 (3)
C1—C21.513 (3)C8—C91.377 (3)
C1—H1A0.9700C8—H80.9300
C1—H1B0.9700C9—C101.379 (4)
C2—C31.527 (3)C9—H90.9300
C2—H2A0.9700C10—C111.376 (3)
C2—H2B0.9700C11—C121.378 (3)
C3—C41.519 (4)C11—H110.9300
C3—C131.522 (4)C12—H120.9300
C3—H30.9800C13—H13A0.9600
C4—C51.517 (4)C13—H13B0.9600
C4—H4A0.9700C13—H13C0.9600
C4—H4B0.9700
C6—N1—C5120.52 (19)N1—C5—H5B109.6
C6—N1—C1125.8 (2)C4—C5—H5B109.6
C5—N1—C1113.55 (19)H5A—C5—H5B108.1
N1—C1—C2110.72 (19)O1—C6—N1123.0 (2)
N1—C1—H1A109.5O1—C6—C7118.5 (2)
C2—C1—H1A109.5N1—C6—C7118.53 (19)
N1—C1—H1B109.5C8—C7—C12118.3 (2)
C2—C1—H1B109.5C8—C7—C6119.34 (19)
H1A—C1—H1B108.1C12—C7—C6122.1 (2)
C1—C2—C3111.9 (2)C9—C8—C7121.4 (2)
C1—C2—H2A109.2C9—C8—H8119.3
C3—C2—H2A109.2C7—C8—H8119.3
C1—C2—H2B109.2C8—C9—C10118.9 (2)
C3—C2—H2B109.2C8—C9—H9120.5
H2A—C2—H2B107.9C10—C9—H9120.5
C4—C3—C13112.4 (2)C11—C10—C9121.2 (2)
C4—C3—C2109.3 (2)C11—C10—Cl1119.38 (19)
C13—C3—C2111.4 (2)C9—C10—Cl1119.45 (19)
C4—C3—H3107.9C10—C11—C12119.4 (2)
C13—C3—H3107.9C10—C11—H11120.3
C2—C3—H3107.9C12—C11—H11120.3
C5—C4—C3112.6 (2)C11—C12—C7120.8 (2)
C5—C4—H4A109.1C11—C12—H12119.6
C3—C4—H4A109.1C7—C12—H12119.6
C5—C4—H4B109.1C3—C13—H13A109.5
C3—C4—H4B109.1C3—C13—H13B109.5
H4A—C4—H4B107.8H13A—C13—H13B109.5
N1—C5—C4110.3 (2)C3—C13—H13C109.5
N1—C5—H5A109.6H13A—C13—H13C109.5
C4—C5—H5A109.6H13B—C13—H13C109.5
C6—N1—C1—C2126.7 (2)O1—C6—C7—C850.7 (3)
C5—N1—C1—C257.3 (3)N1—C6—C7—C8130.7 (2)
N1—C1—C2—C355.0 (3)O1—C6—C7—C12123.7 (2)
C1—C2—C3—C452.9 (3)N1—C6—C7—C1254.8 (3)
C1—C2—C3—C13177.7 (2)C12—C7—C8—C92.3 (3)
C13—C3—C4—C5177.3 (2)C6—C7—C8—C9176.9 (2)
C2—C3—C4—C553.1 (3)C7—C8—C9—C101.8 (4)
C6—N1—C5—C4126.9 (2)C8—C9—C10—C110.0 (4)
C1—N1—C5—C456.8 (3)C8—C9—C10—Cl1179.41 (19)
C3—C4—C5—N154.8 (3)C9—C10—C11—C121.3 (4)
C5—N1—C6—O18.4 (4)Cl1—C10—C11—C12178.09 (18)
C1—N1—C6—O1167.4 (2)C10—C11—C12—C70.8 (3)
C5—N1—C6—C7170.0 (2)C8—C7—C12—C110.9 (3)
C1—N1—C6—C714.2 (3)C6—C7—C12—C11175.4 (2)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
C11—H11···O1i0.932.463.166 (3)132
C2—H2A···Cg2ii0.972.953.843 (3)154
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
The surface property statistics for the generated Hirshfeld Surface top
Surface parameterMinMeanMax
di (Å)1.0301.6962.851
de1.0311.6992.694
dnorm (Å)-0.1760.5371.463

Acknowledgements

The authors thank the Central Instrumentation Facility, DST–FIST, Queen Mary's College, Chennai-4, for the computing facilities and SAIF, IIT, Madras, for the X-ray data collection.

References

First citationAbdel-Aziza, H. A., Abdel-Wahab, B. F. & Badria, F. A. (2010). Arch. Pharm. Chem. Life Sci. 343, 152–159.  CAS Google Scholar
First citationBetz, R., Gerber, T. & Schalekamp, H. (2011). Acta Cryst. E67, o397.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2012). APEX3, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationImamura, S., Nishikawa, Y., Ichikawa, T., Hattori, T., Matsushita, Y., Hashiguchi, S., Kanzaki, N., Iizawa, Y., Baba, M. & Sugihara, Y. (2005). Bioorg. Med. Chem. 13, 397–416.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO – A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/  Google Scholar
First citationKatritzky, A. (2010). Advances in Heterocyclic Chemistry pp. 42–89. Amsterdam: Elsevier/Academic Press.  Google Scholar
First citationLefranc, F., Xu, Z., Burth, P., Mathieu, V., Revelant, G., Velho de Castro Faria, M., Noyon, C., Garcia, D. G., Dufour, D., Bruyère, C., Gonçalves-de-Albuquerque, C. F., Van Antwerpen, P., Rogister, B., Hesse, S., Kirsch, G. & Kiss, R. (2013). Eur. J. Med. Chem. 63, 213–223.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMohamooda Sumaya, U., Reuben Jonathan, D., Era, D. T., Gomathi, S. & Usha, G. (2017). IUCrData, 2, x170813–x170813.  Google Scholar
First citationPatel, V. R., Kumari, P., Rajani, D. P. & Chikhalia, H. K. (2011). J. Enzym. Inhib. Med. Ch. 3, 370–379.  Google Scholar
First citationPrathebha, K., Reuben Jonathan, D., Revathi, B. K., Sathya, S. & Usha, G. (2015). Acta Cryst. E71, o39–o40.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPrathebha, K., Revathi, B. K., Usha, G., Ponnuswamy, S. & Abdul Basheer, S. (2013). Acta Cryst. E69, o1424.  CSD CrossRef IUCr Journals Google Scholar
First citationRafiq, K., Saify, Z. S., Vaid, F., Khan, S., Akhtar, F. & Kausar, R. (2013). Br. Biomed. Bull. 1, 64–72.  CAS Google Scholar
First citationRamalingan, C., Balasubramanian, S., Kabilan, S. & Vasudevan, M. (2004). Eur. J. Med. Chem. 39, 527–533.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRao, X.-P., Song, Z.-Q., Jia, W.-H. & Shang, S.-B. (2007). Acta Cryst. E63, o3886.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRevathi, B. K., Reuben Jonathan, D., Kalai Sevi, K., Dhanalakshmi, K. & Usha, G. (2015a). Acta Cryst. E71, o790–o791.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRevathi, B. K., Reuben Jonathan, D., Kalai Sevi, K., Dhanalakshmi, K. & Usha, G. (2015b). Acta Cryst. E71, o817–o818.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRevathi, B. K., Reuben Jonathan, D., Kalai Sevi, K., Dhanalakshmi, K. & Usha, G. (2015c). Acta Cryst. E71, o896–o897.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRevathi, B. K., Reuben Jonathan, D., Sathya, S., Prathebha, K. & Usha, G. (2015d). Acta Cryst. E71, o359–o360.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRevathi, B. K., Reuben Jonathan, D., Sathya, S. & Usha, G. (2018). J. Mol. Struct. 1154, 496–503.  Web of Science CSD CrossRef CAS Google Scholar
First citationSantucci, V., Rocher, D., Veyrun, J. & Bizière, K. (1986). Naunyn-Schmiedeberg's Arch. Pharmacol. 333, 186–189.  CrossRef CAS Web of Science Google Scholar
First citationSchmittel, M., Lal, M., Schlosser, M. & Deiseroth, H.-J. (2004). Acta Cryst. C60, o589–o591.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSilveira, E. F. da, Azambuja, J. H., de Carvalho, T. R., Kunzler, A., da Silva, D. S., Teixeira, F. C., Rodrigues, R., Beira, F. T., de CassiaSantAnnaAlves, R., Spanevello, R. M., Cunico, W., Stefanello, F. M., Horn, A. P. & Braganhol, E. (2017). Chem. Biol. Interact. 25, 266, 1–9.  Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer 17. The University of Western Australia.  Google Scholar
First citationUto, Y., Ogata, T., Kiyotsuka, Y., Ueno, Y., Miyazawa, Y., Kurata, H., Deguchi, T., Watanabe, N., Konishi, M., Okuyama, R., Kurikawa, N., Takagi, T., Wakimoto, S. & Ohsumi, J. (2010). Bioorg. Med. Chem. Lett. 20, 341–345.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVinaya, K., Kavitha, C. V., Chandrappa, S., Prasanna, D. S., Raghavan, S. C. & Rangappa, K. S. (2011). Chem. Biol. Drug Des. 78, 622–630.  Web of Science CrossRef CAS PubMed Google Scholar
First citationVinaya, K., Kavitha, R., Ananda Kumar, C. S., Benaka Prasad, S. B., Chandrappa, S., Deepak, S. A., Nanjunda Swamy, S., Umesha, S. & Rangappa, K. S. (2009). Arch. Pharm. Res. 32, 1, 33–41.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYunusov, M. & Azimova, S. S. (2013). Natural Compounds Alkaloids, pp. 497–526. New York: Springer.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds