research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (R,S)-2-hy­dr­oxy-4-(methyl­sulfan­yl)butanoic acid

aDepartment of Biochemistry, University of Missouri, Columbia, MO 65211, USA, bExperiment Station Chemical Laboratories, University of Missouri, Columbia, MO 65211, USA, cDepartment of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65211, USA, and dDepartment of Chemistry, University of Missouri, Columbia, MO 65211, USA
*Correspondence e-mail: mossinev@missouri.edu

Edited by A. J. Lough, University of Toronto, Canada (Received 24 February 2020; accepted 5 March 2020; online 17 March 2020)

The title compound, a major animal feed supplement, abbreviated as HMTBA and alternatively called DL-me­thio­nine hy­droxy analogue, C5H10O3S, (I), was isolated in pure anhydrous monomeric form. The melting point is 302.5 K and the compound crystallizes in the monoclinic space group P21/c, with two conformationally non-equivalent mol­ecules [(IA) and (IB)] in the asymmetric unit. The crystal structure is formed by alternating polar and non-polar layers running along the bc plane and features an extensive hydrogen-bonding network within the polar layers. The Hirshfeld surface analysis revealed a significant contribution of non-polar H⋯H and H⋯S inter­actions to the packing forces for both mol­ecules.

1. Chemical context

α-Hy­droxy carb­oxy­lic acids are indispensable players in plant and animal metabolism, and many of these substances are commercially important chemicals, because of their wide use in chemical industries and as pharmaceuticals, skin-care agents, or nutritional supplements (Bhalla et al., 2013[Bhalla, T. C., Kumar, V. & Bhatia, S. K. (2013). Advances in Industrial Biotechnology, edited by R. S. Singh, A. Pandey & C. Larroche, pp. 56-76. Delhi: IK International Publishing House.]). 2-Hy­droxy-4-(methyl­sulfan­yl)butanoic acid (I) is a natural precursor in me­thio­nine biosynthesis, and, for decades, synthetic HMTBA has been used on an industrial scale as a supplement to animal feeds in order to boost me­thio­nine production, particularly in farmed poultry (Zhang et al., 2015[Gilbert, E. R. (2015). Front. Biosci. 7, 478-490.]). In spite of its large-scale manufacture and use, commercial HMTBA is supplied as a brown, syrupy, racemic mixture, and it has not been reported to crystallize, even when isolated in chromatographically and enanti­omerically pure preparations (Busto et al., 2014[Busto, E., Richter, N., Grischek, B. & Kroutil, W. (2014). Chem. Eur. J. 20, 11225-11228.]). One possible reason is that HMTBA readily forms dimeric and trimeric condensation products (Koban & Koberstein, 1984[Koban, H. G. & Koberstein, E. (1984). J. Agric. Food Chem. 32, 393-396.]) which, along with the deliquescent behavior, may impede its crystallization. Crystal structures of free aliphatic α-hy­droxy carb­oxy­lic acids are rare, as a result of their propensity to oligomerize. Metal salts provide a means for stabilization of the α-hy­droxy carboxyl­ate monomers, and structures of two HMTBA metal salts, Cu[(R,S)-HMTBA]2 (CCDC 1018852; Yang et al., 2015[Yang, Z., Aygul, N., Liu, X., Zhao, S., Zhao, W. & Yang, S. (2015). Chin. J. Struct. Chem. 34, 147-153.]) and Zn[(R,S)-HMTBA]2 (CCDC 671417; Predieri et al., 2009[Predieri, G., Beltrami, D., Pattacini, R., Parisi, M. L., Sinicropi, A., Valensin, D. & Basosi, R. (2009). Inorg. Chim. Acta, 362, 1115-1121.]), have been solved by X-ray diffraction. In our attempts to separate monomeric and oligomeric forms of HMTBA, we have successfully isolated a high-purity crystalline sample of (I), shown in Fig. 1[link], and report here its characterization by X-ray diffraction.

[Scheme 1]
[Figure 1]
Figure 1
Preparation of crystals of (I). (a) Sublimation apparatus used for short-path distillation, (b) Crystals of (R,S)-HMTBA monomer formed on sublimator's cold finger.

2. Structural commentary

(R,S)-HMTBA crystallizes in the monoclinic space group P21/c; the asymmetric unit consists of two mol­ecules in non-equivalent conformations, (IA) and (IB) (Table 1[link]). The ORTEP views of the mol­ecules and numbering of the atoms are shown in Figs. 2[link] and 3[link]. Bond lengths and valence angles in (I) are within ranges expected for the given structure. The C1–C5 backbone in (R)-(IA) is in the trans, trans, gauche+ (t, t, g+) conformation, with the chain of atoms C1A through S1A located in one plane [maximum deviation 0.144 (1) Å for C3A]. In the crystal of (R,S)-HMTBA copper salt (Yang et al., 2015[Yang, Z., Aygul, N., Liu, X., Zhao, S., Zhao, W. & Yang, S. (2015). Chin. J. Struct. Chem. 34, 147-153.]), a similar (t, t, g+) backbone rotamer exists in the (S)-HMTBA mol­ecule. Likewise, the respective (t, t, g+) conformation of the L-me­thio­nine side chain was found in the α-isoform of DL-Met crystal (CCDC 1028063; Görbitz et al., 2014[Görbitz, C. H., Qi, L., Mai, N. T. K. & Kristiansen, H. (2014). Acta Cryst. E70, 337-340.]). The backbone conformation in (R)-(IB) is the gauche+, trans, gauche+ rotamer. An identical (g+, t, g+) conformation was adopted by (R)-HMTBA, mol­ecule C, which is coordinated to the zinc ion in the crystal of (R,S)-HMTBA zinc salt trihydrate (Predieri et al., 2009[Predieri, G., Beltrami, D., Pattacini, R., Parisi, M. L., Sinicropi, A., Valensin, D. & Basosi, R. (2009). Inorg. Chim. Acta, 362, 1115-1121.]). The conformation around the C1—C2 bond in (R)-(IB) is close to eclipsed, in respect to the O1B and O3B atoms, with a O3B—C2B—C1B—O1B torsion angle of −10.81 (19)°. A similar spatial arrangement of the O1 and O3 atoms was reported in the aforementioned copper and zinc salts of HMTBA (Table 1[link]), where simultaneous coordination of the carboxyl­ate and hydroxyl oxygen atoms to the metal ions provided for the formation of nearly flat five-membered chelate rings (Yang et al., 2015[Yang, Z., Aygul, N., Liu, X., Zhao, S., Zhao, W. & Yang, S. (2015). Chin. J. Struct. Chem. 34, 147-153.]; Predieri et al., 2009[Predieri, G., Beltrami, D., Pattacini, R., Parisi, M. L., Sinicropi, A., Valensin, D. & Basosi, R. (2009). Inorg. Chim. Acta, 362, 1115-1121.]). In crystal structures of the simplest α-hy­droxy carb­oxy­lic acids, glycolic acid (CCDC 1169248; Pijper, 1971[Pijper, W. P. (1971). Acta Cryst. B27, 344-348.]) and L(+)-lactic acid (CCDC 1303177; Schouten et al., 1994[Schouten, A., Kanters, J. A. & van Krieken, J. (1994). J. Mol. Struct. 323, 165-168.]), the mol­ecular fragments including non-hydrogen atoms of the hydroxyl and carboxyl groups are also nearly flat (Table 1[link]).

Table 1
Selected torsion angles (°) in (I) and related structures

  C1—C2—C3—C4 C2—C3—C4—S1 C3—C4—S1—C5 O1—C1—C2—O3/N1b Ref.
(IA)a 179.4 (1) −164.2 (1) −62.2 (2) −27.8 (2) This work
(IB)a −62.6 (2) −178.2 (1) −69.8 (2) 10.8 (2) This work
Cu(HMTBA)2 a 175.0 (4) 164.9 (3) 63.2 (5) −14.2 (5) (Yang et al., 2015[Yang, Z., Aygul, N., Liu, X., Zhao, S., Zhao, W. & Yang, S. (2015). Chin. J. Struct. Chem. 34, 147-153.])
Zn(HMTBA)2: mol­ecule A (S) −60.6 (7) −157.5 (4) −58.8 (6) 3.9 (6) (Predieri et al., 2009[Predieri, G., Beltrami, D., Pattacini, R., Parisi, M. L., Sinicropi, A., Valensin, D. & Basosi, R. (2009). Inorg. Chim. Acta, 362, 1115-1121.])
mol­ecule B (R) 64.6 (7) −76.7 (7) −68.2 (7) 9.5 (6)  
mol­ecule C (R) 60.0 (7) 173.4 (5) 66.2 (7) 9.7 (6)  
mol­ecule D (S) −57.7 (9) −174.7 (6) −122.9 (8) −1.3 (7)  
L-Met: mol­ecule A 71.8 (3) 171.6 (3) −178.5 (3) −16.3 (2) (Dalhus & Görbitz, 1996[Dalhus, B. & Görbitz, C. H. (1996). Acta Chem. Scand. 50, 544-548.])
mol­ecule B 74.1 (3) 71.5 (3) 72.4 (3) −32.4 (2)  
α-DL-Met a −178.0 (2) 176.7 (2) 69.4 (3) −29.4 (3) (Görbitz et al., 2014[Görbitz, C. H., Qi, L., Mai, N. T. K. & Kristiansen, H. (2014). Acta Cryst. E70, 337-340.])
β-DL-Met a −173.6 (2) −179.2 (1) −175.0 (2) −32.6 (2) (Alagar et al., 2005[Alagar, M., Krishnakumar, R. V., Mostad, A. & Natarajan, S. (2005). Acta Cryst. E61, o1165-o1167.])
L-(+)-lactic acid       7.6 (1) (Schouten et al., 1994[Schouten, A., Kanters, J. A. & van Krieken, J. (1994). J. Mol. Struct. 323, 165-168.])
glycolic acid: mol­ecule A       −6.16 (2) (Pijper, 1971[Pijper, W. P. (1971). Acta Cryst. B27, 344-348.])
mol­ecule B       −2.93 (2)  
Notes: (a) Signs of the angle values are given for the (S)-enanti­omer; (b) N1 in me­thio­nine.
[Figure 2]
Figure 2
The atomic numbering and displacement ellipsoids at 50% probability level drawn for mol­ecule (IA).
[Figure 3]
Figure 3
The atomic numbering and displacement ellipsoids at 50% probability level drawn for mol­ecule (IB).

3. Supra­molecular features

The crystal structure of (I) consists of alternating polar and non-polar sheets running along the bc plane (Fig. 4[link]) and containing short O—H⋯O contacts within the polar layers (Fig. 4[link] and Table 2[link]). Such a double-layered arrangement is typical for crystal structures of aliphatic L-α-amino acids and many other polar mol­ecules, and these are present in all reference structures of both HMTBA metal salts and me­thio­nine listed in Table 1[link]. Within the polar sheets, the basic hydrogen-bonding pattern features infinite homodromic chains of hydrogen bonds spiraling along the b-axis direction (Fig. 5[link]). The chains are linked through bifurcated hydrogen bonding that involves the hydroxyl O3B—H3B donor group and the carboxyl­ate O1A acceptor. One can recognize three basic motifs in the hydrogen-bonding pattern (in accordance with the topological notation system by Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]): the C44(12) motif forms homodromic infinite chains, which link similarly oriented mol­ecules; the small R22(4) ring and the large homodromic R88(24) ring, which are formed by the O3B—H3B⋯O1A links and the homodromic infinite chains that run along the b axis in opposite directions and are located on the opposite `half-sheets' of the polar layer. The resulting pattern of conjugated rings is shown in Fig. 5[link]b: it represents one of two symmetrical, in respect to the twofold screw along the b axis, systems of hydrogen bonds that penetrate the polar layers.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3A—H3A⋯O1B 0.736 (19) 2.013 (19) 2.7044 (14) 156.4 (19)
O3B—H3B⋯O1A 0.77 (2) 2.246 (19) 2.8480 (14) 135.6 (18)
O3B—H3B⋯O1Ai 0.77 (2) 2.325 (19) 2.9048 (14) 132.9 (18)
O2A—H2A⋯O3Aii 0.89 (2) 1.71 (2) 2.5995 (14) 172.7 (18)
O2B—H2B⋯O3Biii 0.86 (2) 1.79 (2) 2.6493 (14) 172.6 (19)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 4]
Figure 4
The mol­ecular packing in (I). Color code for crystallographic axes: red − a, green − b, blue − c. Highlighted are hydro­philic regions in the crystal.
[Figure 5]
Figure 5
Hydrogen bonding in crystal structure of (I). (a) A view of the unit-cell contents shown in projection down the a axis. Hydrogen bonds are shown as cyan dotted lines. (b) Hydrogen-bonding patterns in the crystal structure of (I), as viewed down the a axis.

In addition to the `classical' O—H⋯O hydrogen bonds, there is one inter­molecular C2B—HA⋯O2A contact (Fig. 6[link] and Table 3[link]) in the crystal structure of (I) that is shorter than the sum of the van der Waals radii. The Hirshfeld surface analysis (CrystalExplorer17.5; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]), however, reveals that the C—H⋯O contacts do not contribute significantly to the crystal packing forces, but that a major proportion, over 63% for (IA) and over 68% for (IB), of the inter­molecular contacts in the crystal structure of (I) is provided by non- or low-polar H⋯H and H⋯S inter­actions (Fig. 7[link] and Table 4[link]). Compared to other aforementioned structures (Table 4[link]), the relative contributions of the polar and non-polar inter­actions in (I) are similar to those found in HMTBA metal salts. The relative contribution of the polar component in me­thio­nine structures is somewhat higher, possibly because of the higher number of heteroatom-bonded hydrogen atoms, three, as compared to only two such protons present in mol­ecules of (I).

Table 3
Suspected hydrogen bonds (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2B—H2BA⋯O2Ai 0.934 (17) 2.630 (17) 3.4068 (16) 141.1 (13)
Symmetry code: (i) x, 1 + y, z.

Table 4
Contributions (%) of inter­molecular atom–atom contacts to the Hirshfeld surface in (I) and related structures

  Backbone rotamer a H⋯H S⋯H O⋯H Other      
HMTBA         O⋯O; C⋯O; C⋯H; S⋯S
(IA) ttg 48.9 14.3 32.3 1.7; 1.7; 0.9; 0.1
(IB) gtg 50.4 18.2 28.5 1.0; 1.7; 0.2; 0.1
                 
          O⋯O; C⋯O; C⋯H; Cu⋯O
Cu(HMTBA)2 ttg+ 44.0 18.0 25.2 2.9; 1.7; 1.3; 6.9
                 
Zn(HMTBA)2         O⋯O; C⋯H; S⋯S; Zn⋯O
mol­ecule A (S) gtg 48.4 18.4 22.0 2.4; 1.1; 0.3; 7.5
mol­ecule B (R) g+gg 49.2 13.9 28.0 0.9; 1.0; 1.0; 4.9
mol­ecule C (R) g+tg+ 48.2 15.7 28.7 0.8; 0.8; 0.3; 5.0
                 
L-Met         O⋯O; C⋯O; C⋯H; C⋯C
mol­ecule A g+tt 48.3 14.9 34.7 0.1; 0.6; 0.6; 0.5
mol­ecule B g + g+g+ 46.7 15.1 35.6 0.5; 0.6; 0.6; 0.5
                 
β-DL-Met ttt 48.7 14.6 35.6 0.3; 0.4; 1.3  
Note: (a) Refer to Table 1[link] for chirality of the mol­ecules and the actual torsion-angle values.
[Figure 6]
Figure 6
Views of the Hirshfeld surface for (a) mol­ecule (IA) and (b) mol­ecule (IB), mapped over the dnorm in the range 0.7691 to 1.1756 a.u. with the blue-to-red color palette reflecting distances from a point on the surface to the closest nuclei. The mol­ecular fragments involved in the shortest O—H⋯O and C—H⋯O inter­actions are shown.
[Figure 7]
Figure 7
The two-dimensional fingerprint plots for (a)–(c) mol­ecule (IA) and (d)–(f) mol­ecule (IB), delineated into specific contacts: (a,d) O⋯H/H⋯O (32.3% and 28.5% contribution to the Hirshfeld surfaces of the respective mol­ecules); (b,e) H⋯H (48.9 and 50.4%); (c,f) H⋯S/S⋯H (14.3 and 18.2%).

4. Database survey

Search of SciFinder, Google Scholar, and the Cambridge Structural Database (version 5.40, 2019 data update 3; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), by both structure and chemical names, revealed no previous structural description of 2-hy­droxy-4-(methyl­sulfan­yl)butanoic acid in the solid state. Only two HMTBA structures, both of which are metal salts, Cu[(R,S)-HMTBA]2 (CCDC 1018852, Yang et al., 2015[Yang, Z., Aygul, N., Liu, X., Zhao, S., Zhao, W. & Yang, S. (2015). Chin. J. Struct. Chem. 34, 147-153.]) and Zn[(R,S)-HMTBA]2 (CCDC 671417, Predieri et al., 2009[Predieri, G., Beltrami, D., Pattacini, R., Parisi, M. L., Sinicropi, A., Valensin, D. & Basosi, R. (2009). Inorg. Chim. Acta, 362, 1115-1121.]), have been reported. The most closely related structure to (I) is me­thio­nine, for which a number of crystallographic studies have been published and these are referenced in Table 1[link]. In addition to the structural features outlined in Tables 1[link] and 4[link], other similarities to (I) include L-me­thio­nine crystallizing in the monoclinic space group P21 (CCDC 1207980, LMETON02; CCDC 1207981, LMETON10; Torii & Iitaka, 1973[Torii, K. & Iitaka, Y. (1973). Acta Cryst. B29, 2799-2807.]; Dalhus & Görbitz, 1996[Dalhus, B. & Görbitz, C. H. (1996). Acta Chem. Scand. 50, 544-548.]). The asymmetric unit in the crystal structure of L-Met also contains two conformationally unequal mol­ecules.

5. Synthesis and crystallization

Purely monomeric HMTBA in its free acid form is not commercially available because of the known propensity of α-hy­droxy carb­oxy­lic acids to oligomerize when concentrated (Koban & Koberstein, 1984[Koban, H. G. & Koberstein, E. (1984). J. Agric. Food Chem. 32, 393-396.]); thus, we have evaluated the composition of a commercially available (R,S)-2-hy­droxy-4-(methyl­sulfan­yl)­butanoic acid (TCI America) as having 65-72% HMTBA monomer, 2.7–4.5% of its linear dimer, 0.14–0.35% of the linear trimer, and 28–35% water. A pure, anhydrous sample of racemic HMTBA monomer was prepared by employing a mild, short-path distillation technique that utilizes a sublimation apparatus (Fig. 1[link]a), half submerged in an ethyl­ene glycol bath that was maintained at 383 K. After 72 h, while under vacuum (10 torr) and the cold finger kept at 277 K, large colorless prisms of neat (I) were formed on the sublimator's condenser (Fig. 1[link]b), which melted at 302.5 K.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. O-bound H atoms were located from the difference map and those bonded to C were placed in calculated positions. The coordinates of all H atoms were refined freely while the thermal parameters were constrained to ride on the carrier atoms, Uiso(H) = 1.2–1.5Ueq(C,O).

Table 5
Experimental details

Crystal data
Chemical formula C5H10O3S
Mr 150.19
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 16.0940 (14), 8.8747 (8), 10.558 (1)
β (°) 105.654 (3)
V3) 1452.1 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.38
Crystal size (mm) 0.34 × 0.25 × 0.07
 
Data collection
Diffractometer Bruker VENTURE CMOS area detector
Absorption correction Multi-scan (AXScale; Bruker, 2017[Bruker. (2017). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.653, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 37191, 4437, 3474
Rint 0.071
(sin θ/λ)max−1) 0.715
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.106, 1.05
No. of reflections 4437
No. of parameters 223
H-atom treatment Only H-atom coordinates refined
Δρmax, Δρmin (e Å−3) 0.53, −0.47
Computer programs: APEX3 and SAINT (Bruker, 2017[Bruker. (2017). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 and SAINT (Bruker, 2017); cell refinement: APEX3 and SAINT (Bruker, 2017); data reduction: APEX3 and SAINT (Bruker, 2017); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

(R,S)-2-Hydroxy-4-(methylsulfanyl)butanoic acid top
Crystal data top
C5H10O3SF(000) = 640
Mr = 150.19Dx = 1.374 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 16.0940 (14) ÅCell parameters from 9911 reflections
b = 8.8747 (8) Åθ = 2.6–30.5°
c = 10.558 (1) ŵ = 0.38 mm1
β = 105.654 (3)°T = 100 K
V = 1452.1 (2) Å3Plate, colourless
Z = 80.34 × 0.25 × 0.07 mm
Data collection top
Bruker VENTURE CMOS area detector
diffractometer
3474 reflections with I > 2σ(I)
Radiation source: Incoatec IMuS microfocus Mo tubeRint = 0.071
shutterless ω and phi scansθmax = 30.6°, θmin = 2.6°
Absorption correction: multi-scan
(AXScale; Bruker, 2017)
h = 2223
Tmin = 0.653, Tmax = 0.746k = 1212
37191 measured reflectionsl = 1513
4437 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: mixed
wR(F2) = 0.106Only H-atom coordinates refined
S = 1.05 w = 1/[σ2(Fo2) + (0.0433P)2 + 0.6797P]
where P = (Fo2 + 2Fc2)/3
4437 reflections(Δ/σ)max = 0.001
223 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.47 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S1A0.84095 (3)0.20993 (6)0.52925 (4)0.03405 (12)
S1B0.92449 (3)0.76333 (6)0.21950 (6)0.04228 (14)
O3A0.55286 (6)0.36868 (11)0.33141 (9)0.0159 (2)
H3A0.5659 (12)0.439 (2)0.3057 (18)0.024*
O1A0.53671 (6)0.35894 (11)0.06723 (9)0.0184 (2)
O3B0.64397 (7)0.61637 (11)0.07733 (10)0.0179 (2)
H3B0.5982 (13)0.587 (2)0.0729 (19)0.027*
O2A0.56541 (7)0.11169 (10)0.08154 (10)0.0175 (2)
H2A0.5570 (11)0.123 (2)0.005 (2)0.026*
O2B0.66367 (7)0.88568 (11)0.33618 (10)0.0205 (2)
H2B0.6535 (12)0.880 (2)0.412 (2)0.031*
O1B0.60884 (7)0.65325 (11)0.31386 (10)0.0217 (2)
C2A0.59189 (8)0.24683 (14)0.28125 (13)0.0131 (2)
H2AA0.5714 (10)0.1576 (19)0.3142 (16)0.016*
C1A0.56017 (8)0.24609 (14)0.13230 (13)0.0134 (2)
C3B0.74743 (9)0.81369 (16)0.13945 (14)0.0183 (3)
H3BA0.7508 (11)0.820 (2)0.0534 (18)0.022*
H3BB0.7552 (11)0.914 (2)0.1762 (17)0.022*
C2B0.65613 (9)0.76258 (14)0.13541 (13)0.0150 (2)
H2BA0.6158 (11)0.8295 (19)0.0850 (16)0.018*
C3A0.69066 (9)0.25339 (16)0.32158 (13)0.0173 (3)
H3AA0.7133 (11)0.167 (2)0.2847 (17)0.021*
H3AB0.7095 (11)0.340 (2)0.2816 (17)0.021*
C4A0.72730 (10)0.25292 (19)0.47077 (15)0.0231 (3)
H4AA0.7001 (12)0.174 (2)0.5080 (18)0.028*
H4AB0.7168 (12)0.347 (2)0.5062 (18)0.028*
C4B0.81668 (10)0.70791 (19)0.21803 (19)0.0280 (3)
H4BA0.8093 (12)0.610 (2)0.1778 (19)0.034*
H4BB0.8140 (12)0.696 (2)0.307 (2)0.034*
C5A0.88873 (13)0.3629 (3)0.4614 (2)0.0441 (5)
H5AA0.8738 (17)0.356 (3)0.359 (3)0.066*
H5AB0.9499 (17)0.348 (3)0.497 (3)0.066*
H5AC0.8699 (16)0.455 (3)0.489 (3)0.066*
C5B0.93633 (15)0.9292 (3)0.3193 (3)0.0578 (7)
H5BA0.898 (2)1.008 (4)0.280 (3)0.087*
H5BB0.994 (2)0.959 (3)0.336 (3)0.087*
H5BC0.9255 (19)0.895 (3)0.407 (3)0.087*
C1B0.64041 (8)0.75921 (14)0.27099 (13)0.0151 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.02048 (19)0.0455 (3)0.0314 (2)0.00432 (17)0.00131 (16)0.00794 (19)
S1B0.0198 (2)0.0453 (3)0.0635 (3)0.00015 (17)0.0142 (2)0.0085 (2)
O3A0.0236 (5)0.0107 (4)0.0148 (5)0.0014 (4)0.0076 (4)0.0001 (4)
O1A0.0248 (5)0.0136 (4)0.0156 (5)0.0012 (4)0.0035 (4)0.0024 (4)
O3B0.0208 (5)0.0159 (5)0.0179 (5)0.0047 (4)0.0067 (4)0.0036 (4)
O2A0.0291 (5)0.0118 (4)0.0122 (5)0.0001 (4)0.0063 (4)0.0007 (4)
O2B0.0331 (6)0.0147 (5)0.0154 (5)0.0045 (4)0.0097 (4)0.0017 (4)
O1B0.0305 (5)0.0159 (5)0.0219 (5)0.0040 (4)0.0126 (4)0.0002 (4)
C2A0.0176 (6)0.0100 (5)0.0119 (6)0.0006 (4)0.0044 (5)0.0002 (4)
C1A0.0142 (6)0.0119 (6)0.0148 (6)0.0017 (4)0.0050 (5)0.0002 (5)
C3B0.0209 (6)0.0180 (6)0.0170 (7)0.0025 (5)0.0070 (5)0.0005 (5)
C2B0.0192 (6)0.0130 (6)0.0127 (6)0.0002 (5)0.0045 (5)0.0011 (5)
C3A0.0184 (6)0.0185 (6)0.0148 (6)0.0003 (5)0.0043 (5)0.0005 (5)
C4A0.0193 (7)0.0309 (8)0.0175 (7)0.0011 (6)0.0021 (5)0.0003 (6)
C4B0.0212 (7)0.0227 (7)0.0392 (10)0.0007 (6)0.0067 (7)0.0013 (7)
C5A0.0252 (9)0.0575 (13)0.0474 (12)0.0085 (9)0.0058 (8)0.0033 (10)
C5B0.0321 (10)0.0452 (12)0.0835 (19)0.0106 (9)0.0059 (11)0.0134 (12)
C1B0.0170 (6)0.0137 (6)0.0143 (6)0.0006 (5)0.0040 (5)0.0005 (5)
Geometric parameters (Å, º) top
S1A—C5A1.801 (2)C3B—C2B1.5273 (19)
S1A—C4A1.8063 (15)C3B—H3BA0.926 (18)
S1B—C5B1.791 (3)C3B—H3BB0.967 (17)
S1B—C4B1.7995 (16)C2B—C1B1.5197 (19)
O3A—C2A1.4227 (15)C2B—H2BA0.934 (17)
O3A—H3A0.736 (19)C3A—C4A1.526 (2)
O1A—C1A1.2155 (16)C3A—H3AA0.974 (18)
O3B—C2B1.4259 (16)C3A—H3AB0.968 (18)
O3B—H3B0.77 (2)C4A—H4AA0.967 (19)
O2A—C1A1.3197 (15)C4A—H4AB0.95 (2)
O2A—H2A0.89 (2)C4B—H4BA0.96 (2)
O2B—C1B1.3171 (16)C4B—H4BB0.95 (2)
O2B—H2B0.86 (2)C5A—H5AA1.04 (3)
O1B—C1B1.2131 (16)C5A—H5AB0.96 (3)
C2A—C1A1.5167 (18)C5A—H5AC0.95 (3)
C2A—C3A1.5318 (19)C5B—H5BA0.95 (3)
C2A—H2AA0.959 (17)C5B—H5BB0.94 (3)
C3B—C4B1.521 (2)C5B—H5BC1.03 (3)
C5A—S1A—C4A101.91 (9)C4A—C3A—H3AB111.9 (10)
C5B—S1B—C4B100.32 (10)C2A—C3A—H3AB109.5 (10)
C2A—O3A—H3A108.2 (15)H3AA—C3A—H3AB105.0 (15)
C2B—O3B—H3B110.7 (14)C3A—C4A—S1A115.28 (11)
C1A—O2A—H2A108.0 (12)C3A—C4A—H4AA109.3 (11)
C1B—O2B—H2B109.6 (13)S1A—C4A—H4AA103.5 (11)
O3A—C2A—C1A109.29 (10)C3A—C4A—H4AB110.1 (11)
O3A—C2A—C3A113.39 (11)S1A—C4A—H4AB108.8 (11)
C1A—C2A—C3A108.79 (10)H4AA—C4A—H4AB109.5 (16)
O3A—C2A—H2AA105.3 (10)C3B—C4B—S1B113.51 (11)
C1A—C2A—H2AA108.7 (10)C3B—C4B—H4BA109.5 (12)
C3A—C2A—H2AA111.3 (10)S1B—C4B—H4BA104.8 (11)
O1A—C1A—O2A124.01 (12)C3B—C4B—H4BB112.4 (12)
O1A—C1A—C2A123.28 (11)S1B—C4B—H4BB108.6 (12)
O2A—C1A—C2A112.61 (11)H4BA—C4B—H4BB107.6 (17)
C4B—C3B—C2B112.94 (12)S1A—C5A—H5AA111.3 (15)
C4B—C3B—H3BA110.1 (11)S1A—C5A—H5AB104.0 (16)
C2B—C3B—H3BA107.5 (11)H5AA—C5A—H5AB109 (2)
C4B—C3B—H3BB110.7 (10)S1A—C5A—H5AC108.7 (16)
C2B—C3B—H3BB107.7 (10)H5AA—C5A—H5AC112 (2)
H3BA—C3B—H3BB107.7 (15)H5AB—C5A—H5AC112 (2)
O3B—C2B—C1B110.41 (10)S1B—C5B—H5BA113.0 (18)
O3B—C2B—C3B107.56 (11)S1B—C5B—H5BB106.3 (19)
C1B—C2B—C3B112.52 (11)H5BA—C5B—H5BB112 (3)
O3B—C2B—H2BA109.9 (10)S1B—C5B—H5BC105.4 (17)
C1B—C2B—H2BA106.4 (10)H5BA—C5B—H5BC111 (3)
C3B—C2B—H2BA110.0 (10)H5BB—C5B—H5BC108 (2)
C4A—C3A—C2A111.71 (11)O1B—C1B—O2B123.66 (12)
C4A—C3A—H3AA109.2 (10)O1B—C1B—C2B124.04 (12)
C2A—C3A—H3AA109.3 (10)O2B—C1B—C2B112.30 (11)
O3A—C2A—C1A—O1A27.77 (17)C2A—C3A—C4A—S1A164.16 (10)
C3A—C2A—C1A—O1A96.52 (15)C5A—S1A—C4A—C3A62.16 (15)
O3A—C2A—C1A—O2A155.72 (10)C2B—C3B—C4B—S1B178.17 (10)
C3A—C2A—C1A—O2A79.99 (13)C5B—S1B—C4B—C3B69.76 (16)
C4B—C3B—C2B—O3B59.22 (16)O3B—C2B—C1B—O1B10.81 (19)
C4B—C3B—C2B—C1B62.59 (16)C3B—C2B—C1B—O1B130.99 (14)
O3A—C2A—C3A—C4A58.73 (15)O3B—C2B—C1B—O2B170.24 (11)
C1A—C2A—C3A—C4A179.44 (11)C3B—C2B—C1B—O2B50.06 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3A—H3A···O1B0.736 (19)2.013 (19)2.7044 (14)156.4 (19)
O3B—H3B···O1A0.77 (2)2.246 (19)2.8480 (14)135.6 (18)
O3B—H3B···O1Ai0.77 (2)2.325 (19)2.9048 (14)132.9 (18)
O2A—H2A···O3Aii0.89 (2)1.71 (2)2.5995 (14)172.7 (18)
O2B—H2B···O3Biii0.86 (2)1.79 (2)2.6493 (14)172.6 (19)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1/2, z1/2; (iii) x, y+3/2, z+1/2.
Selected torsion angles (°) in (I) and related structures top
C1—C2—C3—C4C2—C3—C4—S1C3—C4—S1—C5O1—C1—C2—O3/N1bRef
(IA)a179.4 (1)-164.2 (1)-62.2 (2)-27.8 (2)This work
(IB)a-62.6 (2)-178.2 (1)-69.8 (2)10.8 (2)This work
Cu(HMTBA)2 a175.0 (4)164.9 (3)63.2 (5)-14.2 (5)(Yang et al., 2015)
Zn(HMTBA)2 : molecule A (S)-60.6 (7)-157.5 (4)-58.8 (6)3.9 (6)(Predieri et al., 2009)
molecule B (R)64.6 (7)-76.7 (7)-68.2 (7)9.5 (6)
molecule C (R)60.0 (7)173.4 (5)66.2 (7)9.7 (6)
molecule D (S)-57.7 (9)-174.7 (6)-122.9 (8)-1.3 (7)
L-Met: molecule A71.8 (3)171.6 (3)-178.5 (3)-16.3 (2)(Dalhus & Görbitz, 1996)
molecule B74.1 (3)71.5 (3)72.4 (3)-32.4 (2)
α-DL-Met a-178.0 (2)176.7 (2)69.4 (3)-29.4 (3)(Görbitz et al., 2014)
β-DL-Met a-173.6 (2)-179.2 (1)-175.0 (2)-32.6 (2)(Alagar et al., 2005)
L-(+)-lactic acid7.6 (1)(Schouten et al., 1994)
glycolic acid: molecule A-6.16 (2)(Pijper, 1971)
molecule B-2.93 (2)
Notes: (a) Signs of the angle values are given for the (S)-enantiomer; (b) N1 in methionine.
Suspected hydrogen bonds (Å, °) top
D—H···AD—HH···AD···AD—H···A
C2B—H2BA···O2Ai0.933 (17)2.630 (17)3.4068 (16)141.1 (13)
Symmetry code: (i) x, 1 + y, z.
Contributions (%) of intermolecular atom–atom contacts to the Hirshfeld surface in (I) and related structures top
Backbone rotamer aH···HS···HO···HOther
HMTBAO···O;C···O;C···H;S···S
(IA)ttg-48.914.332.31.7;1.7;0.9;0.1
(IB)g-tg-50.418.228.51.0;1.7;0.2;0.1
O···O;C···O;C···H;Cu···O
Cu(HMTBA)2ttg+44.018.025.22.9;1.7;1.3;6.9
Zn(HMTBA)2O···O;C···H;S···S;Zn···O
molecule A (S)g-tg-48.418.422.02.4;1.1;0.3;7.5
molecule B (R)g+g-g-49.213.928.00.9;1.0;1.0;4.9
molecule C (R)g+tg+48.215.728.70.8;0.8;0.3;5.0
L-MetO···O;C···O;C···H;C···C
molecule Ag+tt48.314.934.70.1;0.6;0.6;0.5
molecule Bg+g+g+46.715.135.60.5;0.6;0.6;0.5
β-DL-Metttt48.714.635.60.3;0.4;1.3
Note: (a) Refer to Table 1 for chirality of the molecules and the actual torsion-angle values.
 

Funding information

Funding for this research was provided by: University of Missouri Agriculture Experiment Station Chemical Laboratories ; National Institute of Food and Agriculture (grant No. MO-HABC0002).

References

First citationAlagar, M., Krishnakumar, R. V., Mostad, A. & Natarajan, S. (2005). Acta Cryst. E61, o1165–o1167.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBhalla, T. C., Kumar, V. & Bhatia, S. K. (2013). Advances in Industrial Biotechnology, edited by R. S. Singh, A. Pandey & C. Larroche, pp. 56–76. Delhi: IK International Publishing House.  Google Scholar
First citationBruker. (2017). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBusto, E., Richter, N., Grischek, B. & Kroutil, W. (2014). Chem. Eur. J. 20, 11225–11228.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDalhus, B. & Görbitz, C. H. (1996). Acta Chem. Scand. 50, 544–548.  CSD CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGilbert, E. R. (2015). Front. Biosci. 7, 478–490.  CrossRef Google Scholar
First citationGörbitz, C. H., Qi, L., Mai, N. T. K. & Kristiansen, H. (2014). Acta Cryst. E70, 337–340.  CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKoban, H. G. & Koberstein, E. (1984). J. Agric. Food Chem. 32, 393–396.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPijper, W. P. (1971). Acta Cryst. B27, 344–348.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationPredieri, G., Beltrami, D., Pattacini, R., Parisi, M. L., Sinicropi, A., Valensin, D. & Basosi, R. (2009). Inorg. Chim. Acta, 362, 1115–1121.  Web of Science CSD CrossRef CAS Google Scholar
First citationSchouten, A., Kanters, J. A. & van Krieken, J. (1994). J. Mol. Struct. 323, 165–168.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTorii, K. & Iitaka, Y. (1973). Acta Cryst. B29, 2799–2807.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, Z., Aygul, N., Liu, X., Zhao, S., Zhao, W. & Yang, S. (2015). Chin. J. Struct. Chem. 34, 147–153.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds