research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Silver(I) nitrate two-dimensional coordination polymers of two new pyrazine­thio­phane ligands: 5,7-di­hydro-1H,3H-dithieno[3,4-b:3′,4′-e]pyrazine and 3,4,8,10,11,13-hexa­hydro-1H,6H-bis­­([1,4]di­thio­cino)[6,7-b:6′,7′-e]pyrazine

CROSSMARK_Color_square_no_text.svg

aInstitute of Chemistry, University of Neuchâtel, Av. de Bellevax 51, CH-2000 Neuchâtel, Switzerland, and bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: helen.stoeckli-evans@unine.ch

Edited by A. J. Lough, University of Toronto, Canada (Received 5 March 2020; accepted 10 March 2020; online 13 March 2020)

The two new pyrazine­ophanes, 5,7-di­hydro-1H,3H-dithieno[3,4-b:3′,4′-e]pyrazine, C8H8N2S2, L1, and 3,4,8,10,11,13-hexa­hydro-1H,6H-bis­([1,4]di­thio­cino)[6,7-b:6′,7′-e]pyrazine, C12H16N2S4, L2, both crystallize with half a mol­ecule in the asymmetric unit; the whole mol­ecules are generated by inversion symmetry. The mol­ecule of L1, which is planar (r.m.s. deviation = 0.008 Å), consists of two sulfur atoms linked by a rigid tetra-2,3,5,6-methyl­ene­pyrazine unit, forming planar five-membered rings. The mol­ecule of L2 is step-shaped and consists of two S–CH2–CH2–S chains linked by the central rigid tetra-2,3,5,6-methyl­ene­pyrazine unit, forming eight-membered rings that have twist-boat-chair con­fig­urations. In the crystals of both compounds, there are no significant inter­molecular inter­actions present. The reaction of L1 with silver nitrate leads to the formation of a two-dimensional coordination polymer, poly[(μ-5,7-di­hydro-1H,3H-dithieno[3,4-b;3′,4′-e]pyrazine-κ2S:S′)(μ-nitrato-κ2O:O′)silver(I)], [Ag(NO3)(C8H8N2S2)]n, (I), with the nitrato anion bridging two equivalent silver atoms. The central pyrazine ring is situated about an inversion center and the silver atom lies on a twofold rotation axis that bis­ects the nitrato anion. The silver atom has a fourfold AgO2S2 coordination sphere with a distorted shape. The reaction of L2 with silver nitrate also leads to the formation of a two-dimensional coordination polymer, poly[[μ33,4,8,10,11,13-hexa­hydro-1H,6H-bis­([1,4]di­thio­cino)[6,7-b;6′,7′-e]pyrazine-κ3S:S′:S′′](nitrato-κO)silver(I)], [Ag(NO3)(C12H16N2S4)]n, (II), with the nitrate anion coordinating in a monodentate manner to the silver atom. The silver atom has a fourfold AgOS3 coordination sphere with a distorted shape. In the crystals of both complexes, the networks are linked by C—H⋯O hydrogen bonds, forming supra­molecular frameworks. There are additional C—H⋯S contacts present in the supra­molecular framework of II.

1. Chemical context

Ligands with mixed hard and soft binding characters, such as N and S donor atoms, are known to display diverse coordin­ation properties, either by binding selectively to metal centers or by coordination to a wide range of metal cations giving rise to unusual coordination geometries. The title compounds 5,7-di­hydro-1H,3H-dithieno[3,4-b:3′,4′-e]pyrazine (L1), and 3,4,8,10,11,13-hexa­hydro-1H,6H-bis­([1,4]di­thio­cino)[6,7-b:6′,7′-e]pyrazine (L2), are new N2Sx (x = 2 in L1 and = 4 in L2) ligands designed for the formation of coordination polymers (Assoumatine, 1999[Assoumatine, T. (1999). PhD Thesis, University of Neuchâtel, Switzerland.]). In L1, both the nitro­gen and sulfur potential coordination sites are orientated exo to their respective rings. Because of this and the rigidity of the entire mol­ecule, the potential chelating ability appears compromised, as stated by Shimizu and colleagues, who prepared a number of AgI polymer networks with the benzene analogue of L1, 5,7-di­hydro-1H,3H-benzo[1,2-c:4,5-c′]di­thio­phene (Shim­izu et al., 1998[Shimizu, G. K. H., Enright, G. D., Ratcliffe, C. I., Ripmeester, J. A. & Wayner, D. D. M. (1998). Angew. Chem. Int. Ed. 37, 1407-1409.]; 1999[Shimizu, G. K. H., Enright, G. D., Ratcliffe, C. I. & Ripmeester, J. A. (1999). Chem. Commun. pp. 461-462.]; Melcer et al., 2001[Melcer, N. J., Enright, G. D., Ripmeester, J. A. & Shimizu, G. K. H. (2001). Inorg. Chem. 40, 4641-4648.]). A search of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed that L2 is unique and no benzene analogue or complexes of this analogue have been described. Using the nomenclature of the group of Shim Sung Lee (Siewe et al., 2014[Siewe, A. D., Kim, J.-Y., Kim, S., Park, I.-H. & Lee, S. S. (2014). Inorg. Chem. 53, 393-398.]; Kim et al., 2016[Kim, S., Siewe, A. D., Lee, E., Ju, H., Park, I.-H., Park, K.-M., Ikeda, M., Habata, Y. & Lee, S. S. (2016). Inorg. Chem. 55, 2018-2022.], 2018[Kim, S., Siewe, A. D., Lee, E., Ju, H., Park, I.-H., Jung, J. H., Habata, Y. & Lee, S. S. (2018). Cryst. Growth Des. 18, 2424-2431.]), L2 can be described as the bis-ortho-L regioisomer. Although, in view of the small size of the macrocycles, it is unlikely that either a meta- or a para-bis-L regioisomer could be formed.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of ligand L1 is illustrated in Fig. 1[link]. The mol­ecule possesses inversion symmetry and consists of two sulfur atoms linked by a rigid tetra-2,3,5,6-methyl­ene­pyrazine unit. The mol­ecule is planar (r.m.s. deviation = 0.008 Å) with the pyrazine ring being located about a center of symmetry. Both the nitro­gen and sulfur potential coordination sites are orientated exo to their respective rings.

[Figure 1]
Figure 1
The mol­ecular structure of L1, with atom labelling [symmetry code: (i) −x + 1, −y + 1, −z + 1]. Displacement ellipsoids are drawn at the 30% probability level.

The mol­ecular structure of ligand L2 is illustrated in Fig. 2[link]. The mol­ecule also possesses inversion symmetry with the pyrazine ring being located about a center of symmetry. It consists of two S–CH2–CH2–S chains linked by the central rigid tetra-2,3,5,6-methyl­ene­pyrazine unit, forming eight-membered rings. The configuration of these rings fits best to the definition for a twist-boat-chair (Evans & Boeyens, 1988[Evans, D. G. & Boeyens, J. C. A. (1988). Acta Cryst. B44, 663-671.]; Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), with a pseudo twofold rotation axis bis­ecting the C1—C2 and C4—C5 bonds and their symmetry equivalents. The mol­ecule is step-shaped with six potential sites for coordination.

[Scheme 2]
[Figure 2]
Figure 2
The mol­ecular structure of L2, with atom labelling; symmetry code: (i) −x + [{3\over 2}], −y + [{1\over 2}], −z + 1]. Displacement ellipsoids are drawn at the 30% probability level.

The reaction of L1 with silver nitrate leads to the formation of a two-dimensional coordination polymer, (I), with the nitrato anion bridging two equivalent silver atoms (Fig. 3[link]). Selected bond lengths and bond angles are given in Table 1[link]. The central pyrazine ring is situated about an inversion center and the silver atom Ag1 and atoms N2 and O2 of the nitrato anion lie on a twofold rotation axis. Atom Ag1 has a fourfold AgO2S2 coordination sphere with a distorted shape. The fourfold geometry index τ4 has a value of 0.74 (τ4 = 1 for a perfect tetra­hedral geometry, 0 for a perfect square-planar geometry and 0.85 for perfect trigonal–pyramidal geometry; Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]). The inter­mediate value of 0.74 tends towards a see-saw arrangement. This seems reasonable in view of the fact that atom Ag1 is located on a twofold rotation axis.

Table 1
Selected geometric parameters (Å, °) for I[link]

Ag1—S1 2.4696 (5) Ag1—O1 2.5849 (15)
       
S1—Ag1—S1i 152.57 (2) S1—Ag1—O1i 103.30 (3)
S1—Ag1—O1 97.62 (3) O1—Ag1—O1i 80.24 (7)
Symmetry code: (i) [-x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}].
[Figure 3]
Figure 3
The asymmetric unit of complex I, with atom labelling [symmetry codes: (i) −x + [{1\over 2}], y, −z + [{3\over 2}]; (ii) −x + 1, −y, −z + 2; (iii) −x + 1, −y + 1, −z + 2; (iv) −x + [{3\over 2}], y, −z + [{3\over 2}]; (v) x + 1, y, z]. Displacement ellipsoids are drawn at the 30% probability level.

The reaction of L2 with silver nitrate also leads to the formation of a two-dimensional coordination polymer (II, Fig. 4[link]). Selected bond lengths and bond angles are given in Table 2[link]. While the ligand has a step-shape in the solid state with one eight-membered ring directed above the pyrazine ring and the other below (Fig. 2[link]), in the complex it has a boat shape with both eight-membered rings directed to the same side of the pyrazine ring (Fig. 4[link]). The configuration of these rings again fits best to the definition for a twist-boat-chair (Evans & Boeyens, 1988[Evans, D. G. & Boeyens, J. C. A. (1988). Acta Cryst. B44, 663-671.]; Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), with a pseudo twofold rotation axis bis­ecting bonds C1—C2 and C7—C8 and bonds C3—C4 and C10—C11. The nitrato anion coordinates to the silver atom in a monodentate manner via atom O11 (Fig. 4[link], Table 2[link]). The silver atom Ag1 has a fourfold AgOS3 coord­in­ation sphere with a distorted shape. The fourfold geometry index τ4 has a value of 0.75, which again tends towards a see-saw arrangement.

Table 2
Selected geometric parameters (Å, °) for II[link]

Ag1—S1 2.5927 (10) Ag1—S3ii 2.5382 (9)
Ag1—S2i 2.4760 (10) Ag1—O11 2.492 (3)
       
S2i—Ag1—S1 132.51 (3) O11—Ag1—S1 93.62 (8)
S3ii—Ag1—S1 97.47 (3) S2i—Ag1—O11 97.12 (8)
S2i—Ag1—S3ii 121.65 (3) O11—Ag1—S3ii 109.25 (8)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 4]
Figure 4
The asymmetric unit of complex II, with atom labelling [symmetry codes: (i) −x + 1, y − [{1\over 2}], −z + [{1\over 2}]; (ii) −x, y − [{1\over 2}], −z + [{1\over 2}]); (iii) −x, y + [{1\over 2}], −z + [{1\over 2}]; (iv) −x + 1, y + [{1\over 2}], −z + [{1\over 2}]]. Displacement ellipsoids are drawn at the 30% probability level.

The pyrazine N atoms are not involved in coordination to the silver atom in either I or II; the silver atom prefers coord­ination to the S atoms in both complexes. The role of the nitrato anion in I is essential in forming the two-dimensional network, bridging two equivalent silver atoms, while in II the nitrato anion coordinates to atom Ag1 in a monodentate manner. There is a significant difference in the Ag—S bond lengths and the Ag—O bond lengths in compounds I and II (cf. Tables 1[link] and 2[link]), which are discussed in §5. Database survey.

3. Supra­molecular features

In the crystals of both L1 and L2, there are no significant inter­molecular inter­actions present (Figs. 5[link] and 6[link], respectively).

[Figure 5]
Figure 5
Crystal packing of L1 viewed along the c axis. The mol­ecules stack in columns up the a axis.
[Figure 6]
Figure 6
Crystal packing of L2 viewed along the b axis. The mol­ecules stack in columns up the c axis.

In the crystal of I, the coordination networks lie parallel to the ac plane (Fig. 7[link]) and are linked by C—H⋯O hydrogen bonds, forming a supra­molecular framework (Fig. 8[link] and Table 3[link]).

Table 3
Hydrogen-bond geometry (Å, °) for I[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3B⋯O1ii 0.98 2.50 3.379 (2) 150
Symmetry code: (ii) x, y-1, z.
[Figure 7]
Figure 7
A view along the b axis of the crystal packing of complex I, illustrating the formation of the metal–organic network. The silver atoms are shown as grey balls.
[Figure 8]
Figure 8
A view along the a axis of the crystal packing of complex I. The hydrogen bonds are shown as dashed lines (Table 3[link]).

In the crystal of II, the coordination networks lie parallel to the ab plane (Fig. 9[link]). They are linked by C—H⋯O and C—H⋯S hydrogen bonds, forming a supra­molecular framework (Fig. 10[link] and Table 4[link]).

Table 4
Hydrogen-bond geometry (Å, °) for II[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯O13 0.97 2.51 3.239 (5) 132
C6—H6A⋯O12iii 0.97 2.56 3.442 (5) 150
C8—H8B⋯S4i 0.97 2.74 3.696 (4) 169
C12—H12B⋯O12iv 0.97 2.37 3.177 (4) 140
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x+1, y, z; (iv) -x, -y, -z+1.
[Figure 9]
Figure 9
A view along the c axis of the crystal packing of complex II, illustrating the formation of the metal–organic network. The silver atoms are shown as grey balls. For clarity, the H atoms have been omitted.
[Figure 10]
Figure 10
A view along the a axis of the crystal packing of complex II. The hydrogen bonds are shown as dashed lines (Table 4[link]). For clarity, only the H atoms involved in these inter­actions have been included.

4. Hirshfeld surface analysis and two-dimensional fingerprint plots

The Hirshfeld surface (HS) analyses (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were performed with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net]) following the protocol of Tiekink and collaborators (Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]). A summary of the short inter­atomic contacts in L1 and L2 is given in Table 5[link].

Table 5
Short inter­atomic contactsa (Å) in L1 and L2

Atom 1 Atom 2 Length Length − vdW Symm. op. 1 Symm. op. 2
L1          
H3A H3A 2.313 −0.087 1 − x, 1 − y, −z x, y, −1 + z
H3B C1 2.876 −0.024 x, y, z −1 + x, y, z
S1 H3A 3.000 0.000 1 − x, 1 − y, −z x, y, −1 + z
H3B N1 2.757 0.007 x, y, z −1 + x, y, z
S1 C3 3.515 0.015 x, y, z x, 1 − y, 1 − z
N1 S1 3.379 0.029 x, y, z [{1\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] − z
S1 C2 3.537 0.037 x, y, z −1 + x, y, z
H3B H4B 2.452 0.052 x, y, z [{1\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] − z
C3 H3A 2.998 0.098 1 − x, 1 − y, −z x, y, −1 + z
           
L2          
H6B C2 2.699 −0.201 x, y, z [{3\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] − z
S1 H6A 2.919 −0.081 [{3\over 2}] − x, [{1\over 2}] − y, 1 − z [{3\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] − z
S1 H5A 2.992 −0.008 [{3\over 2}] − x, [{1\over 2}] − y, 1 − z [{1\over 2}] + x, −[{1\over 2}] + y, z
S2 H4B 3.017 0.017 x, y, z x, −y, −[{1\over 2}] + z
S1 C5 3.525 0.025 [{3\over 2}] − x, [{1\over 2}] − y, 1 − z [{1\over 2}] + x, −[{1\over 2}] + y, z
Note: (a) Calculated using Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

The Hirshfeld surfaces of L1 and L2 mapped over dnorm are given in Fig. 11[link]a and b, respectively. They show that there are no short significant inter­atomic contacts present in the crystal of L1, while the red spots indicate that short contacts are significant in the crystal of L2.

[Figure 11]
Figure 11
(a) The Hirshfeld surface of L1, mapped over dnorm in the colour range 0.0058 to 0.9525 a.u. and (b) the Hirshfeld surface of compound L2, mapped over dnorm in the colour range −0.1279 to 1.1192 a.u..

The full two-dimensional fingerprint plots for L1 and L2 are given in Figs. 12[link] and 13[link], respectively. The principal inter­molecular inter­actions for L1 are delineated into the following contacts: H⋯H at 41.7%, S⋯H/H⋯S at 25.3%, N⋯H/H⋯N at 17.1%, C⋯H/H⋯C at 6.5% and N⋯S at 3.7%. For L2, the principal inter­molecular inter­actions are delineated into H⋯H contacts at 45.2%, S⋯H/H⋯S at 36.6%, N⋯H/H⋯N at 11.7%, C⋯H/H⋯C at 4.7% and S⋯S at 1.8%. The S⋯H/H⋯S contacts, with the sharp spikes at de + di ≃ 2.9 Å in Fig. 12[link]c for L1 and at ≃ 2.80 Å in Fig. 13[link]c for L2, make significant contributions, especially for L2, which corresponds to the indications given in Fig. 11[link]b, the HS of L2 mapped over dnorm, and in Table 5[link]. In Fig. 13[link]e the sharp spikes at de + di ≃ 2.6 Å indicate the significant contribution of the C⋯H/H⋯C contacts in the crystal of L2.

[Figure 12]
Figure 12
The full two-dimensional fingerprint plot for L1, and fingerprint plots delineated into H⋯H, S⋯H/H⋯S, N⋯H/H⋯N, C⋯H/H⋯C, and N⋯S contacts.
[Figure 13]
Figure 13
The full two-dimensional fingerprint plot for L2, and fingerprint plots delineated into H⋯H, S⋯H/H⋯S, N⋯H/H⋯N, C⋯H/H⋯C, and S⋯S contacts.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.41, last update November 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the benzene analogue of L1, i.e. 5,7-di­hydro-1H,3H-benzo[1,2-c:4,5-c′]di­thio­phene, gave ten hits. Five compounds concern silver(I) coordination complexes involving various anions, viz. catena-[[μ2-5,7-di­hydro-1H,3H-thieneo(3,4-f)(2)benzo­thio­phene]­bis­(aceto­nitrile)­silver(I) hexa­fluorido­phos­phate] (MIZHAE; Melcer et al., 2001[Melcer, N. J., Enright, G. D., Ripmeester, J. A. & Shimizu, G. K. H. (2001). Inorg. Chem. 40, 4641-4648.]), catena-[[μ3-1,2:4,5-di­thiolo(c)benzene-S,S,S′]bis­(aceto­nitrile)­silver(I) tetra­fluor­ido­borate] (NUTBUZ; Shimizu et al., 1998[Shimizu, G. K. H., Enright, G. D., Ratcliffe, C. I., Ripmeester, J. A. & Wayner, D. D. M. (1998). Angew. Chem. Int. Ed. 37, 1407-1409.]], catena-[[μ3-1,2:4,5-di­thiolo(c)benzene-S,S,S′]benzo­nitrilo­silver tetra­fluor­ido­borate benzo­nitrile solvate] (NUTCAG; Shimizu et al., 1998[Shimizu, G. K. H., Enright, G. D., Ratcliffe, C. I., Ripmeester, J. A. & Wayner, D. D. M. (1998). Angew. Chem. Int. Ed. 37, 1407-1409.])], catena-[[μ3-benzene-1,2:4,5-bis­(3′,4′-thiol­ane)](p-tolylsulfonato)­silver(I) benzene clathrate] (QACYUO; Shimizu et al., 1999[Shimizu, G. K. H., Enright, G. D., Ratcliffe, C. I. & Ripmeester, J. A. (1999). Chem. Commun. pp. 461-462.]) and catena-[bis­(μ2-5,7-di­hydro-1H,3H-thieno(3,4-f)(2)benzo­thio­phene)­bis­(p-tos­yloxy)disilver(I) benzene solv­ate] (QACYUO01; Melcer et al., 2001[Melcer, N. J., Enright, G. D., Ripmeester, J. A. & Shimizu, G. K. H. (2001). Inorg. Chem. 40, 4641-4648.]). The latter are two reports of the same compound, cf. unit-cell parameters and space group.

The compound MIZHAE is a three-dimensional coordin­ation polymer with a fourfold geometry index τ4 value of 0.80 (close to a trigonal–pyramidal geometry) for the silver atom, which has an AgN2S2coordination sphere. NUTBUZ is a two-dimensional coordination polymer. Here, the silver atom has a fivefold AgN2S3 coordination sphere with a distorted shape; the fivefold geometry index τ5 is 0.77 (τ5 = 1 for perfect trigonal–pyramidal geometry and = 0 for perfect square-pyramidal geometry; Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). NUTCAG is a two-dimensional coordination polymer with a τ4 value of 0.73 for the silver atom, which has an AgNS3 coordination sphere. QACYUO (and QACYUO0) is a two-dimensional coordination polymer, with the silver atom having a fourfold AgOS3 coordination sphere with a trigonal–pyramidal geometry, the fourfold geometry index τ4 being 0.83. The Ag—S bond lengths involving the fourfold coordinated silver atoms vary from 2.4708 (13) Å in NUTCAG to 2.6077 (7) Å in QACYUO/01. The values of the various Ag—S bond lengths in I and II fall within these limits (see Tables 1[link] and 2[link]). While in the ligand L1 the five-membered thio­phene rings are planar, in the above mentioned structures and in complex I they have envelope configurations with the S atom as the flap.

The nitrate anion can coordinate in at least ten different ways and is extremely useful for designing multi-dimensional coordination polymers, as shown by a search of the CSD. We have previously examined the role of the nitrate anion in the formation of coordination polymers when reporting on the results of the reaction of silver nitrate with some tetra­kis-thio­ether-substituted pyrazine ligands (Assoumatine & Stoeckli-Evans, 2017[Assoumatine, T. & Stoeckli-Evans, H. (2017). Acta Cryst. E73, 434-440.]). For the two-dimensional coordination polymer (CSD refcode XALPOS) poly[di-μ-nitrato-bis­{μ-2,3,5,6-tetra­kis­[(phenyl­sulfan­yl)meth­yl]pyraz­ine}­disilver(I)] the Ag—O bond lengths vary from 2.507 (4) to 2.551 (4) Å. For the three-dimensional coordination polymer (XALPUY) poly[trinitrato{μ6-2,3,5,6-tetra­kis­[(pyridin-2-yl­sulfan­yl)meth­yl]pyrazine}­tris­ilver(I)], the Ag—O bond lengths vary from 2.567 (5) to 2.752 (5) Å. The values observed for I and II, 2.5849 (15) and 2.492 (3) Å, respectively, are similar to those mentioned above.

A search of the CSD for the benzene analogue of L2, or complexes of this analogue, gave zero hits.

6. Synthesis and crystallization

The reagent tetra-2,3,5,6-bromo­methyl-pyrazine (TBr) was first synthesized by Ferigo et al. (1994[Ferigo, M., Bonhôte, P., Marty, W. & Stoeckli-Evans, H. (1994). J. Chem. Soc. Dalton Trans. pp. 1549-1554.]), and its crystal structure has been reported (CSD refcode: TOJXUN; Assoumatine & Stoeckli-Evans, 2014[Assoumatine, T. & Stoeckli-Evans, H. (2014). Acta Cryst. E70, 51-53.]). The IR spectra for ligands L1 and L2, and for complexes I and II, are given in Fig. S1 in the supporting information.

Synthesis of 5,7-di­hydro-1H,3H-dithieno[3,4-b:3′,4′-e]pyrazine (L1):

Ligand L1 was first prepared by the reaction of TBr with Na2S·9H2O, using the procedure of Shimizu et al. (1998[Shimizu, G. K. H., Enright, G. D., Ratcliffe, C. I., Ripmeester, J. A. & Wayner, D. D. M. (1998). Angew. Chem. Int. Ed. 37, 1407-1409.]). This gave a crude brown solid, which was chromatographed on deactivated silica gel with CH2Cl2 as eluent to yield 35% of a white solid.

The yield could be increased by as much as 11% using a method similar to that described by Boekelheide et al. (1973[Boekelheide, V. & Hollins, R. A. J. (1973). J. Am. Chem. Soc. 95, 3201-3208.]). Well-ground Na2S·9H2O (1.06 g, 4.42 mmol, Aldrich 99%) was dissolved in a solution of MeOH/CH2Cl2 (100 ml, 1/1 v/v) in a three-necked flask (500 ml) equipped with a reflux condenser topped by a CaCl2 drying tube, an addition funnel (50 ml) and a magnetic stirring bar. To this mixture was added slowly through the addition funnel a solution of TBr (1 g, 2.21 mmol) in CH2Cl2 (25 ml). The reaction mixture was stirred vigorously for 3 h. Removal of the solvent resulted in a brown residue that was extracted into CH2Cl2 (200 ml), washed with water (3 × 30 ml), dried over anhydrous MgSO4 and then, after filtration, evaporated to dryness. The resultant residue was chromatographed over deactivated silica gel using CH2Cl2 as eluent. The main eluted fraction was evaporated to give a white solid that was dried under vacuum yielding pure L1 (m.p. 518–521 K, with decomposition). Colourless rod-like crystals were formed from a concentrated solution of pure L1 in CH2Cl2, after standing for one week at 278 K.

1H NMR (CDCl3, 400 MHz): δ 4.22 (s, 8H, Pz–CH2–S) ppm. 13C NMR (CDCl3, 100 MHz): δ 152.30, 34.44 ppm. Analysis for C8H8N2S2 (Mr = 196.30 g mol−1). Calculated (%): C 48.95, H 4.11, N 14.27, S 32.67. Found (%): C 49.02, H 4.23, N 14.04, S 32.60. MS (EI, 70 eV), m/z (%): 196 ([M+], 100).

Synthesis of 3,4,8,10,11,13-hexa­hydro-1H,6H-bis­([1,4]di­thio­cino)[6,7-b:6′,7′-e]pyrazine (L2):

A 500 ml three-necked flask was equipped with a reflux condenser, a 50 ml addition funnel, and a magnetic stirring bar. The entire system was purged and kept under a nitro­gen atmosphere using vacuum line techniques. Then well-ground Cs2CO3 (3.52 g, 10.80 mmol, Fluka 99%) was suspended in DMF (250 ml) in the flask. To this well-stirred suspension was added dropwise through the addition funnel a solution of TBr (1 g, 2.21 mmol) and 1,2-ethane­dithiol (0.4 ml, 4.76 mmol, 98%) dissolved in DMF (50 ml), at a rate of about 10 ml h−1. The mixture was stirred for a further 20 h and then filtered. The orange filtrate was evaporated under reduced pressure. The residue was extracted into CH2Cl2 (300 ml) then washed with water (3 × 30 ml), dried over anhydrous MgSO4 and then, after filtration, evaporated to dryness. The resultant residue was chromatographed over deactivated silica gel using CH2Cl2 as eluent. The main eluted fraction was evaporated to give a white solid that was dried under vacuum to obtain 0.35 g (50% yield) of pure L2 (m.p. 541–544 K, with decomposition). Slow evaporation at room temperature of a solution of L2 in CHCl3 in a 5 mm diameter glass tube gave colourless plate-like crystals.

1H NMR (CDCl3, 400 MHz): δ 4.08 (s, 8H, Pz–CH2–S), 2.92 (s, 8H, S–CH2–CH2–S) ppm. 13C NMR (CDCl3, 100 MHz): δ 151.15, 34.40, 34.09 ppm. Analysis for C12H16N2S4 (Mr = 316.54 g mol−1). Calculated (%): C 45.53, H 5.09, N 8.85, S 40.52. Found (%): C 45.34, H 5.30, N 8.68, S 40.33. MS (EI, 70 eV), m/z (%): 316 ([M+], 98.7).

Synthesis of complex I:

A solution of L1 (15 mg, 0.08 mmol) in THF (5 ml) was introduced into a 16 mm diameter glass tube and layered with MeCN (2 ml) as a buffer zone. Then a solution of AgNO3 (14 mg, 0.08 mmol) in MeCN (5 ml) was added very gently to avoid possible mixing. The glass tube was sealed and left in the dark at room temperature for at least two weeks, whereupon colourless needle-like crystals of complex I were isolated in the buffer zone.

Analysis for C8H8N3O3S2Ag (Mr = 366.18 g mol−1). Calculated (%): C 26.24, H 2.21, N 11.48, S 17.51. Found (%): C 26.27, H 2.10, N 11.29, S 17.19.

Synthesis of complex II:

A solution of L2 (20 mg, 0.06 mmol) in CH2Cl2 (10 ml) was introduced into a 16 mm diameter glass tube and layered with MeCN (2 ml) as a buffer zone. Then a solution of AgNO3 (10 mg, 0.06 mmol) in MeCN (5 ml) was added very gently to avoid possible mixing. The glass tube was sealed and left in the dark at room temperature for at least three weeks, whereupon thin, colourless plate-like crystals of complex II were isolated at the inter­face between the two solutions. No analytical data are available for this complex.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 6[link]. The C-bound H atoms were included in calculated positions and treated as riding on the parent atoms: C—H = 0.97–0.98 Å with Uiso(H) = 1.2Ueq(C). For L1, the rather high Rint value of 0.159 is due to the poor quality, viz. large mosaic spread, of the crystal.

Table 6
Experimental details

  L1 L2 I II
Crystal data
Chemical formula [Ag(NO3)(C8H8N2S2)] [Ag(NO3)(C12H16N2S4)] [C8H8N2S2]AgNO3 [C12H16N2S4]AgNO3
Mr 196.28 316.51 366.16 486.39
Crystal system, space group Monoclinic, P21/n Monoclinic, C2/c Monoclinic, P2/n Monoclinic, P21/c
Temperature (K) 223 223 223 293
a, b, c (Å) 4.1027 (4), 12.1789 (18), 8.1014 (8) 21.1618 (18), 7.0585 (5), 9.5057 (7) 3.8995 (3), 6.3902 (6), 20.5741 (18) 7.0777 (6), 12.0654 (7), 19.5725 (18)
β (°) 95.780 (12) 94.47 (1) 93.121 (9) 90.446 (10)
V3) 402.74 (8) 1415.55 (19) 511.92 (8) 1671.3 (2)
Z 2 4 2 4
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.60 0.65 2.37 1.72
Crystal size (mm) 0.45 × 0.13 × 0.10 0.40 × 0.30 × 0.10 0.45 × 0.10 × 0.10 0.50 × 0.23 × 0.08
 
Data collection
Diffractometer STOE IPDS 1 STOE IPDS 1 STOE IPDS 1 STOE IPDS 1
Absorption correction Multi-scan (MULABS; Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) Multi-scan (MULABS; Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.])
Tmin, Tmax 0.932, 1.000 0.939, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 3025, 744, 590 5086, 1367, 1174 3795, 958, 905 12808, 3222, 2226
Rint 0.159 0.029 0.021 0.051
(sin θ/λ)max−1) 0.611 0.615 0.613 0.614
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.180, 1.03 0.026, 0.071, 1.05 0.016, 0.041, 1.15 0.029, 0.059, 0.85
No. of reflections 744 1367 958 3222
No. of parameters 55 82 79 208
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.77, −0.55 0.31, −0.25 0.31, −0.27 0.61, −0.42
Computer programs: EXPOSE, CELL and INTEGRATE in IPDS1 (Stoe & Cie, 1998[Stoe & Cie (1998). IPDS-1 Software. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For all structures, data collection: EXPOSE in IPDS1 (Stoe & Cie, 1998); cell refinement: CELL in IPDS1 (Stoe & Cie, 1998); data reduction: INTEGRATE in IPDS1 (Stoe & Cie, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL-2018/3 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL-2018/3 (Sheldrick, 2015), PLATON (Spek, 2020) and publCIF (Westrip, 2010).

Poly[(µ-5,7-dihydro-1H,3H-dithieno[3,4-b;3',4'-e]pyrazine-κ2S:S')(µ-nitrato-κ2O:O')silver(I)] (L1) top
Crystal data top
[Ag(NO3)(C8H8N2S2)]F(000) = 204
Mr = 196.28Dx = 1.619 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 4.1027 (4) ÅCell parameters from 3541 reflections
b = 12.1789 (18) Åθ = 3.1–25.7°
c = 8.1014 (8) ŵ = 0.60 mm1
β = 95.780 (12)°T = 223 K
V = 402.74 (8) Å3Rod, colourless
Z = 20.45 × 0.13 × 0.10 mm
Data collection top
STOE IPDS 1
diffractometer
590 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.159
Plane graphite monochromatorθmax = 25.8°, θmin = 3.0°
φ rotation scansh = 44
3025 measured reflectionsk = 1414
744 independent reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.180H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.1296P)2]
where P = (Fo2 + 2Fc2)/3
744 reflections(Δ/σ)max < 0.001
55 parametersΔρmax = 0.77 e Å3
0 restraintsΔρmin = 0.55 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.1126 (2)0.62437 (7)0.34804 (9)0.0363 (5)
N10.4717 (8)0.3945 (2)0.0713 (4)0.0320 (7)
C10.3670 (8)0.4860 (3)0.1411 (3)0.0296 (9)
C20.3971 (9)0.5902 (3)0.0708 (4)0.0303 (8)
C30.2147 (9)0.4824 (3)0.3009 (3)0.0341 (9)
H3A0.3686950.4519190.3894720.041*
H3B0.0168980.4368350.2896320.041*
C40.2721 (10)0.6844 (3)0.1673 (4)0.0356 (9)
H4A0.0989630.7240600.0995630.043*
H4B0.4500570.7358670.2012620.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0477 (8)0.0408 (6)0.0219 (6)0.0041 (3)0.0106 (4)0.0011 (3)
N10.0412 (18)0.0333 (14)0.0219 (15)0.0007 (11)0.0049 (11)0.0019 (10)
C10.034 (2)0.0354 (18)0.0197 (17)0.0011 (12)0.0062 (13)0.0012 (11)
C20.039 (2)0.0349 (17)0.0161 (15)0.0014 (14)0.0007 (12)0.0031 (12)
C30.048 (2)0.0363 (17)0.0187 (18)0.0023 (14)0.0061 (15)0.0031 (12)
C40.048 (2)0.0328 (17)0.0268 (16)0.0012 (14)0.0096 (15)0.0010 (12)
Geometric parameters (Å, º) top
S1—C41.817 (4)C2—C41.507 (5)
S1—C31.828 (3)C3—H3A0.9800
N1—C2i1.332 (4)C3—H3B0.9800
N1—C11.340 (4)C4—H4A0.9800
C1—C21.401 (5)C4—H4B0.9800
C1—C31.494 (4)
C4—S1—C395.95 (14)S1—C3—H3A110.5
C2i—N1—C1115.0 (3)C1—C3—H3B110.5
N1—C1—C2122.5 (3)S1—C3—H3B110.5
N1—C1—C3121.4 (3)H3A—C3—H3B108.7
C2—C1—C3116.1 (3)C2—C4—S1106.3 (2)
N1i—C2—C1122.5 (3)C2—C4—H4A110.5
N1i—C2—C4122.0 (3)S1—C4—H4A110.5
C1—C2—C4115.5 (3)C2—C4—H4B110.5
C1—C3—S1106.1 (2)S1—C4—H4B110.5
C1—C3—H3A110.5H4A—C4—H4B108.7
C2i—N1—C1—C20.8 (5)N1—C1—C3—S1179.8 (3)
C2i—N1—C1—C3179.9 (3)C2—C1—C3—S10.7 (4)
N1—C1—C2—N1i0.8 (6)C4—S1—C3—C11.1 (3)
C3—C1—C2—N1i180.0 (3)N1i—C2—C4—S1179.2 (3)
N1—C1—C2—C4178.9 (3)C1—C2—C4—S11.0 (4)
C3—C1—C2—C40.3 (5)C3—S1—C4—C21.2 (3)
Symmetry code: (i) x+1, y+1, z.
Poly[[µ33,4,8,10,11,13-hexahydro-1H,6H-bis([1,4]dithiocino)[6,7-b;6',7'-e]pyrazine-κ3S:S':S''](nitrato-κO)silver(I)] (L2) top
Crystal data top
[Ag(NO3)(C12H16N2S4)]F(000) = 664
Mr = 316.51Dx = 1.485 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 21.1618 (18) ÅCell parameters from 5000 reflections
b = 7.0585 (5) Åθ = 3.0–25.9°
c = 9.5057 (7) ŵ = 0.65 mm1
β = 94.47 (1)°T = 223 K
V = 1415.55 (19) Å3Colourless, plate
Z = 40.40 × 0.30 × 0.10 mm
Data collection top
STOE IPDS 1
diffractometer
1174 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
Plane graphite monochromatorθmax = 25.9°, θmin = 3.0°
φ rotation scansh = 2525
5086 measured reflectionsk = 88
1367 independent reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0427P)2 + 0.461P]
where P = (Fo2 + 2Fc2)/3
1367 reflections(Δ/σ)max = 0.001
82 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.90795 (2)0.54315 (6)0.52645 (5)0.03312 (15)
S20.89795 (2)0.01187 (6)0.34452 (5)0.03987 (16)
N10.75497 (6)0.42931 (19)0.55990 (14)0.0268 (3)
C10.78592 (7)0.1989 (2)0.39521 (15)0.0253 (3)
C20.79056 (6)0.3798 (2)0.45558 (15)0.0246 (3)
C30.83585 (8)0.5281 (2)0.41003 (18)0.0303 (4)
H3A0.8146370.6516380.4072310.036*
H3B0.8470380.4988720.3142910.036*
C40.93325 (8)0.2996 (2)0.54130 (17)0.0323 (4)
H4A0.9708470.2931570.6081870.039*
H4B0.8996940.2259550.5811540.039*
C50.94907 (7)0.2061 (2)0.40278 (18)0.0319 (4)
H5A0.9927940.1594970.4141650.038*
H5B0.9470610.3028400.3286480.038*
C60.82558 (7)0.1326 (3)0.27995 (17)0.0332 (4)
H6A0.8367290.2423640.2237840.040*
H6B0.8001620.0466200.2175000.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0246 (2)0.0341 (2)0.0413 (3)0.01170 (15)0.00595 (17)0.01108 (17)
S20.0336 (3)0.0307 (2)0.0562 (3)0.00329 (16)0.0090 (2)0.01143 (19)
N10.0215 (6)0.0287 (7)0.0300 (7)0.0059 (5)0.0004 (5)0.0012 (5)
C10.0196 (7)0.0326 (8)0.0231 (8)0.0055 (6)0.0017 (6)0.0008 (6)
C20.0186 (7)0.0295 (8)0.0252 (8)0.0058 (6)0.0013 (6)0.0032 (6)
C30.0266 (8)0.0289 (8)0.0356 (9)0.0071 (6)0.0044 (6)0.0035 (7)
C40.0292 (8)0.0375 (9)0.0296 (8)0.0063 (7)0.0008 (6)0.0047 (7)
C50.0226 (7)0.0330 (8)0.0402 (9)0.0016 (6)0.0039 (6)0.0010 (7)
C60.0281 (8)0.0435 (9)0.0283 (8)0.0109 (7)0.0038 (6)0.0085 (7)
Geometric parameters (Å, º) top
S1—C41.8025 (17)C3—H3A0.9800
S1—C31.8168 (17)C3—H3B0.9800
S2—C51.8062 (16)C4—C51.533 (2)
S2—C61.8171 (18)C4—H4A0.9800
N1—C21.338 (2)C4—H4B0.9800
N1—C1i1.3443 (19)C5—H5A0.9800
C1—C21.401 (2)C5—H5B0.9800
C1—C61.506 (2)C6—H6A0.9800
C2—C31.506 (2)C6—H6B0.9800
C4—S1—C3102.85 (8)S1—C4—H4A108.5
C5—S2—C6102.50 (8)C5—C4—H4B108.5
C2—N1—C1i118.24 (14)S1—C4—H4B108.5
N1i—C1—C2120.67 (14)H4A—C4—H4B107.5
N1i—C1—C6115.54 (14)C4—C5—S2115.13 (11)
C2—C1—C6123.79 (13)C4—C5—H5A108.5
N1—C2—C1121.09 (13)S2—C5—H5A108.5
N1—C2—C3116.07 (14)C4—C5—H5B108.5
C1—C2—C3122.83 (14)S2—C5—H5B108.5
C2—C3—S1112.86 (11)H5A—C5—H5B107.5
C2—C3—H3A109.0C1—C6—S2113.75 (11)
S1—C3—H3A109.0C1—C6—H6A108.8
C2—C3—H3B109.0S2—C6—H6A108.8
S1—C3—H3B109.0C1—C6—H6B108.8
H3A—C3—H3B107.8S2—C6—H6B108.8
C5—C4—S1115.28 (11)H6A—C6—H6B107.7
C5—C4—H4A108.5
C1i—N1—C2—C10.5 (2)C4—S1—C3—C249.78 (13)
C1i—N1—C2—C3179.60 (14)C3—S1—C4—C561.99 (13)
N1i—C1—C2—N10.6 (2)S1—C4—C5—S2115.40 (11)
C6—C1—C2—N1178.56 (14)C6—S2—C5—C474.34 (13)
N1i—C1—C2—C3179.55 (14)N1i—C1—C6—S286.52 (14)
C6—C1—C2—C30.4 (2)C2—C1—C6—S292.63 (17)
N1—C2—C3—S180.06 (15)C5—S2—C6—C177.62 (13)
C1—C2—C3—S198.99 (15)
Symmetry code: (i) x+3/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4B···S2ii0.983.023.7465 (17)132
C5—H5A···S1iii0.982.993.5248 (16)115
C6—H6A···S1iv0.982.923.8389 (18)157
Symmetry codes: (ii) x, y, z+1/2; (iii) x+2, y+1, z+1; (iv) x, y+1, z1/2.
(I) top
Crystal data top
[C8H8N2S2]AgNO3F(000) = 360
Mr = 366.16Dx = 2.375 Mg m3
Monoclinic, P2/nMo Kα radiation, λ = 0.71073 Å
a = 3.8995 (3) ÅCell parameters from 5000 reflections
b = 6.3902 (6) Åθ = 3.2–25.8°
c = 20.5741 (18) ŵ = 2.37 mm1
β = 93.121 (9)°T = 223 K
V = 511.92 (8) Å3Needle, colourless
Z = 20.45 × 0.10 × 0.10 mm
Data collection top
STOE IPDS 1
diffractometer
958 independent reflections
Radiation source: fine-focus sealed tube905 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.021
φ rotation scansθmax = 25.8°, θmin = 3.2°
Absorption correction: multi-scan
(MULABS; Spek, 2020)
h = 44
Tmin = 0.932, Tmax = 1.000k = 77
3795 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.016Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.041H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.020P)2 + 0.3928P]
where P = (Fo2 + 2Fc2)/3
958 reflections(Δ/σ)max = 0.001
79 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.27 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.2500000.73580 (3)0.7500000.02211 (9)
S10.02263 (12)0.64417 (7)0.85176 (2)0.01302 (12)
O10.6178 (4)1.0451 (2)0.79516 (7)0.0274 (3)
O20.7500001.3371 (3)0.7500000.0262 (5)
N10.4947 (4)0.2874 (2)0.97975 (7)0.0136 (3)
N20.7500001.1423 (3)0.7500000.0157 (5)
C10.3461 (5)0.4408 (3)0.94406 (8)0.0126 (4)
C20.3516 (5)0.6499 (3)0.96379 (8)0.0124 (4)
C30.1666 (5)0.3949 (3)0.87926 (9)0.0143 (4)
H3A0.0122080.2888470.8836530.017*
H3B0.3300730.3440620.8483440.017*
C40.1801 (5)0.8040 (3)0.91737 (9)0.0148 (4)
H4A0.3491760.8998580.9001920.018*
H4B0.0074360.8860250.9390850.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.03440 (16)0.01965 (13)0.01297 (13)0.0000.00761 (9)0.000
S10.0137 (2)0.0144 (2)0.0109 (2)0.00041 (16)0.00013 (16)0.00061 (15)
O10.0383 (9)0.0218 (7)0.0230 (7)0.0058 (7)0.0090 (7)0.0021 (6)
O20.0451 (14)0.0098 (9)0.0228 (10)0.0000.0058 (9)0.000
N10.0155 (8)0.0134 (7)0.0118 (7)0.0009 (6)0.0015 (6)0.0001 (6)
N20.0175 (12)0.0146 (11)0.0144 (11)0.0000.0040 (9)0.000
C10.0127 (9)0.0145 (9)0.0106 (8)0.0012 (7)0.0021 (6)0.0009 (7)
C20.0136 (9)0.0134 (9)0.0104 (8)0.0005 (7)0.0020 (7)0.0005 (7)
C30.0175 (9)0.0125 (8)0.0126 (8)0.0007 (7)0.0014 (7)0.0010 (7)
C40.0198 (10)0.0128 (8)0.0114 (8)0.0006 (7)0.0015 (7)0.0013 (7)
Geometric parameters (Å, º) top
Ag1—S12.4696 (5)N1—C2ii1.339 (2)
Ag1—S1i2.4696 (5)C1—C21.397 (3)
Ag1—O12.5849 (15)C1—C31.501 (2)
Ag1—O1i2.5849 (15)C2—C41.503 (3)
S1—C31.8322 (19)C3—H3A0.9800
S1—C41.8368 (19)C3—H3B0.9800
O1—N21.2517 (18)C4—H4A0.9800
O2—N21.245 (3)C4—H4B0.9800
N1—C11.337 (2)
S1—Ag1—S1i152.57 (2)C2—C1—C3116.38 (16)
S1—Ag1—O197.62 (3)N1ii—C2—C1122.49 (17)
S1i—Ag1—O1103.30 (4)N1ii—C2—C4121.21 (16)
S1—Ag1—O1i103.30 (3)C1—C2—C4116.29 (16)
S1i—Ag1—O1i97.62 (3)C1—C3—S1105.36 (12)
O1—Ag1—O1i80.24 (7)C1—C3—H3A110.7
C3—S1—C496.12 (9)S1—C3—H3A110.7
C3—S1—Ag1106.45 (6)C1—C3—H3B110.7
C4—S1—Ag1107.66 (6)S1—C3—H3B110.7
N2—O1—Ag1110.82 (11)H3A—C3—H3B108.8
C1—N1—C2ii114.66 (16)C2—C4—S1105.17 (12)
O2—N2—O1119.74 (11)C2—C4—H4A110.7
O2—N2—O1iii119.74 (11)S1—C4—H4A110.7
O1—N2—O1iii120.5 (2)C2—C4—H4B110.7
N1—C1—C2122.85 (17)S1—C4—H4B110.7
N1—C1—C3120.77 (16)H4A—C4—H4B108.8
Ag1—O1—N2—O2136.46 (5)N1—C1—C3—S1175.73 (14)
Ag1—O1—N2—O1iii43.54 (5)C2—C1—C3—S15.08 (19)
C2ii—N1—C1—C20.3 (3)C4—S1—C3—C17.26 (14)
C2ii—N1—C1—C3179.41 (16)Ag1—S1—C3—C1117.73 (11)
N1—C1—C2—N1ii0.3 (3)N1ii—C2—C4—S1175.17 (14)
C3—C1—C2—N1ii179.47 (16)C1—C2—C4—S15.9 (2)
N1—C1—C2—C4178.56 (17)C3—S1—C4—C27.54 (14)
C3—C1—C2—C40.6 (2)Ag1—S1—C4—C2116.99 (11)
Symmetry codes: (i) x+1/2, y, z+3/2; (ii) x+1, y+1, z+2; (iii) x+3/2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3B···O1iv0.982.503.379 (2)150
C4—H4A···O10.982.623.475 (2)146
Symmetry code: (iv) x, y1, z.
(II) top
Crystal data top
[C12H16N2S4]AgNO3F(000) = 976
Mr = 486.39Dx = 1.933 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.0777 (6) ÅCell parameters from 5000 reflections
b = 12.0654 (7) Åθ = 2.1–25.9°
c = 19.5725 (18) ŵ = 1.72 mm1
β = 90.446 (10)°T = 293 K
V = 1671.3 (2) Å3Plate, colourless
Z = 40.50 × 0.23 × 0.08 mm
Data collection top
STOE IPDS 1
diffractometer
3222 independent reflections
Radiation source: fine-focus sealed tube2226 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.051
φ rotation scansθmax = 25.9°, θmin = 2.7°
Absorption correction: multi-scan
(MULABS; Spek, 2020)
h = 88
Tmin = 0.939, Tmax = 1.000k = 1414
12808 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H-atom parameters constrained
S = 0.85 w = 1/[σ2(Fo2) + (0.0288P)2]
where P = (Fo2 + 2Fc2)/3
3222 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.42 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.13078 (4)0.29440 (2)0.19436 (2)0.04241 (10)
S10.24146 (12)0.10620 (8)0.24454 (5)0.0373 (2)
S20.77716 (12)0.01162 (8)0.28097 (4)0.0348 (2)
S30.06576 (11)0.27177 (7)0.42666 (4)0.0339 (2)
S40.47060 (13)0.37232 (8)0.47535 (5)0.0393 (2)
N10.1835 (4)0.0237 (2)0.40414 (13)0.0291 (6)
N20.5521 (4)0.0911 (2)0.42978 (13)0.0286 (6)
C10.3289 (4)0.0297 (3)0.37562 (15)0.0274 (7)
C20.5158 (4)0.0053 (3)0.38798 (15)0.0258 (7)
C30.4069 (4)0.1436 (3)0.45887 (15)0.0251 (7)
C40.2197 (4)0.1106 (3)0.44487 (15)0.0263 (7)
C50.2793 (5)0.1318 (3)0.33509 (17)0.0358 (8)
H5A0.1655630.1642380.3538510.043*
H5B0.3803410.1855220.3404080.043*
C60.6852 (5)0.0512 (3)0.35795 (16)0.0329 (8)
H6A0.6518040.1274950.3478660.039*
H6B0.7850520.0525150.3921700.039*
C70.5692 (5)0.0204 (3)0.22688 (18)0.0426 (9)
H7A0.4772040.0677320.2489480.051*
H7B0.6038720.0554610.1841700.051*
C80.4763 (5)0.0915 (3)0.21101 (18)0.0445 (10)
H8A0.5551590.1500610.2296590.053*
H8B0.4710270.1012110.1618360.053*
C90.0521 (4)0.1650 (3)0.47689 (16)0.0307 (8)
H9A0.0924720.1976920.5198700.037*
H9B0.0397490.1079620.4873950.037*
C100.1189 (5)0.3706 (3)0.40868 (19)0.0465 (10)
H10A0.2087980.3360510.3781790.056*
H10B0.0632850.4329880.3846150.056*
C110.2260 (5)0.4144 (3)0.4709 (2)0.0446 (10)
H11A0.1626980.3891160.5117790.054*
H11B0.2204460.4947330.4704350.054*
C120.4591 (5)0.2326 (3)0.50841 (16)0.0310 (8)
H12A0.5814140.2144250.5280930.037*
H12B0.3681410.2315240.5452260.037*
O110.1700 (4)0.2945 (3)0.25969 (17)0.0690 (9)
O120.2807 (5)0.3358 (3)0.35741 (16)0.0861 (11)
O130.0187 (5)0.3523 (3)0.33897 (16)0.0757 (9)
N100.1430 (5)0.3274 (3)0.31906 (19)0.0530 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.04418 (16)0.03874 (17)0.04419 (16)0.00539 (15)0.00744 (11)0.00304 (14)
S10.0316 (5)0.0397 (6)0.0405 (5)0.0017 (4)0.0032 (4)0.0104 (4)
S20.0278 (5)0.0356 (6)0.0413 (5)0.0012 (4)0.0058 (4)0.0033 (4)
S30.0279 (4)0.0339 (5)0.0399 (5)0.0004 (4)0.0040 (3)0.0003 (4)
S40.0372 (5)0.0287 (5)0.0519 (6)0.0055 (4)0.0073 (4)0.0004 (4)
N10.0302 (15)0.0290 (17)0.0282 (14)0.0054 (13)0.0028 (12)0.0022 (12)
N20.0258 (14)0.0285 (17)0.0316 (15)0.0003 (12)0.0009 (11)0.0027 (12)
C10.0330 (18)0.0262 (19)0.0231 (16)0.0051 (15)0.0021 (14)0.0008 (14)
C20.0311 (17)0.0220 (18)0.0242 (16)0.0009 (15)0.0008 (13)0.0013 (13)
C30.0309 (18)0.0196 (18)0.0249 (16)0.0026 (14)0.0009 (13)0.0024 (13)
C40.0340 (18)0.0227 (18)0.0222 (16)0.0017 (15)0.0016 (13)0.0020 (13)
C50.040 (2)0.028 (2)0.040 (2)0.0070 (17)0.0053 (16)0.0069 (15)
C60.0317 (18)0.030 (2)0.0373 (19)0.0046 (15)0.0020 (15)0.0016 (15)
C70.042 (2)0.051 (3)0.034 (2)0.0075 (19)0.0032 (16)0.0043 (17)
C80.043 (2)0.055 (3)0.036 (2)0.0053 (19)0.0005 (16)0.0116 (17)
C90.0309 (17)0.031 (2)0.0305 (18)0.0019 (15)0.0047 (14)0.0017 (14)
C100.046 (2)0.040 (2)0.053 (2)0.0089 (19)0.0150 (18)0.0132 (19)
C110.042 (2)0.027 (2)0.065 (3)0.0001 (17)0.0138 (19)0.0052 (18)
C120.0354 (18)0.029 (2)0.0286 (17)0.0012 (15)0.0050 (14)0.0029 (14)
O110.0629 (19)0.068 (2)0.077 (2)0.0157 (18)0.0216 (16)0.0230 (19)
O120.085 (2)0.104 (3)0.070 (2)0.020 (2)0.0425 (19)0.0283 (19)
O130.063 (2)0.085 (3)0.079 (2)0.0113 (19)0.0004 (17)0.0053 (18)
N100.055 (2)0.039 (2)0.066 (3)0.0064 (17)0.021 (2)0.0154 (17)
Geometric parameters (Å, º) top
Ag1—S12.5927 (10)C5—H5A0.9700
Ag1—S2i2.4760 (10)C5—H5B0.9700
Ag1—S3ii2.5382 (9)C6—H6A0.9700
Ag1—O112.492 (3)C6—H6B0.9700
S1—C81.801 (4)C7—C81.533 (5)
S1—C51.817 (3)C7—H7A0.9700
S2—C71.809 (4)C7—H7B0.9700
S2—C61.812 (3)C8—H8A0.9700
S3—C101.805 (4)C8—H8B0.9700
S3—C91.819 (3)C9—H9A0.9700
S4—C111.806 (4)C9—H9B0.9700
S4—C121.807 (3)C10—C111.524 (5)
N1—C11.340 (4)C10—H10A0.9700
N1—C41.341 (4)C10—H10B0.9700
N2—C31.338 (4)C11—H11A0.9700
N2—C21.343 (4)C11—H11B0.9700
C1—C21.408 (4)C12—H12A0.9700
C1—C51.505 (4)C12—H12B0.9700
C2—C61.503 (4)O11—N101.241 (4)
C3—C41.409 (4)O12—N101.239 (4)
C3—C121.491 (4)O13—N101.243 (4)
C4—C91.498 (4)
S2i—Ag1—S1132.51 (3)H6A—C6—H6B107.5
S3ii—Ag1—S197.47 (3)C8—C7—S2114.4 (3)
S2i—Ag1—S3ii121.65 (3)C8—C7—H7A108.7
O11—Ag1—S193.62 (8)S2—C7—H7A108.7
S2i—Ag1—O1197.12 (8)C8—C7—H7B108.7
O11—Ag1—S3ii109.25 (8)S2—C7—H7B108.7
C8—S1—C5104.04 (16)H7A—C7—H7B107.6
C8—S1—Ag1103.02 (12)C7—C8—S1114.1 (3)
C5—S1—Ag1105.21 (11)C7—C8—H8A108.7
C7—S2—C6102.43 (16)S1—C8—H8A108.7
C7—S2—Ag1iii105.67 (13)C7—C8—H8B108.7
C6—S2—Ag1iii109.21 (12)S1—C8—H8B108.7
C10—S3—C9104.08 (16)H8A—C8—H8B107.6
C10—S3—Ag1iv98.75 (13)C4—C9—S3116.5 (2)
C9—S3—Ag1iv111.15 (11)C4—C9—H9A108.2
C11—S4—C12103.52 (17)S3—C9—H9A108.2
C1—N1—C4118.7 (3)C4—C9—H9B108.2
C3—N2—C2118.7 (3)S3—C9—H9B108.2
N1—C1—C2120.5 (3)H9A—C9—H9B107.3
N1—C1—C5115.9 (3)C11—C10—S3115.5 (3)
C2—C1—C5123.5 (3)C11—C10—H10A108.4
N2—C2—C1120.7 (3)S3—C10—H10A108.4
N2—C2—C6116.0 (3)C11—C10—H10B108.4
C1—C2—C6123.2 (3)S3—C10—H10B108.4
N2—C3—C4120.5 (3)H10A—C10—H10B107.5
N2—C3—C12115.5 (3)C10—C11—S4114.3 (3)
C4—C3—C12123.9 (3)C10—C11—H11A108.7
N1—C4—C3120.8 (3)S4—C11—H11A108.7
N1—C4—C9116.3 (3)C10—C11—H11B108.7
C3—C4—C9122.8 (3)S4—C11—H11B108.7
C1—C5—S1114.0 (2)H11A—C11—H11B107.6
C1—C5—H5A108.7C3—C12—S4116.8 (2)
S1—C5—H5A108.7C3—C12—H12A108.1
C1—C5—H5B108.7S4—C12—H12A108.1
S1—C5—H5B108.7C3—C12—H12B108.1
H5A—C5—H5B107.6S4—C12—H12B108.1
C2—C6—S2115.3 (2)H12A—C12—H12B107.3
C2—C6—H6A108.4N10—O11—Ag1110.8 (2)
S2—C6—H6A108.4O12—N10—O11118.5 (4)
C2—C6—H6B108.4O12—N10—O13121.1 (4)
S2—C6—H6B108.4O11—N10—O13120.4 (3)
C4—N1—C1—C20.4 (4)C1—C2—C6—S297.0 (3)
C4—N1—C1—C5175.3 (3)C7—S2—C6—C252.5 (3)
C3—N2—C2—C10.8 (4)Ag1iii—S2—C6—C259.2 (3)
C3—N2—C2—C6179.0 (3)C6—S2—C7—C860.0 (3)
N1—C1—C2—N21.6 (5)Ag1iii—S2—C7—C8174.3 (2)
C5—C1—C2—N2173.7 (3)S2—C7—C8—S1115.8 (3)
N1—C1—C2—C6179.7 (3)C5—S1—C8—C776.5 (3)
C5—C1—C2—C64.3 (5)Ag1—S1—C8—C7173.9 (2)
C2—N2—C3—C41.1 (4)N1—C4—C9—S386.5 (3)
C2—N2—C3—C12175.8 (3)C3—C4—C9—S396.9 (3)
C1—N1—C4—C31.6 (4)C10—S3—C9—C456.6 (3)
C1—N1—C4—C9178.3 (3)Ag1iv—S3—C9—C448.7 (3)
N2—C3—C4—N12.4 (4)C9—S3—C10—C1154.1 (3)
C12—C3—C4—N1174.3 (3)Ag1iv—S3—C10—C11168.6 (3)
N2—C3—C4—C9178.9 (3)S3—C10—C11—S4113.1 (3)
C12—C3—C4—C92.2 (5)C12—S4—C11—C1079.7 (3)
N1—C1—C5—S192.7 (3)N2—C3—C12—S494.2 (3)
C2—C1—C5—S191.7 (3)C4—C3—C12—S489.0 (3)
C8—S1—C5—C177.0 (3)C11—S4—C12—C378.9 (3)
Ag1—S1—C5—C1175.0 (2)Ag1—O11—N10—O12177.6 (3)
N2—C2—C6—S284.9 (3)Ag1—O11—N10—O131.7 (4)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y1/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O130.972.513.239 (5)132
C6—H6A···O12v0.972.563.442 (5)150
C8—H8B···S4i0.972.743.696 (4)169
C11—H11B···S4vi0.972.913.508 (4)121
C12—H12B···O12vii0.972.373.177 (4)140
Symmetry codes: (i) x+1, y1/2, z+1/2; (v) x+1, y, z; (vi) x+1, y+1, z+1; (vii) x, y, z+1.
Short interatomic contactsa (Å) in L1 and L2. top
Atom1Atom2LengthLength-vdWSymm. op. 1Symm. op. 2
L1
H3AH3A2.313-0.0871 - x, 1 - y, -zx, y, -1 + z
H3BC12.876-0.024x, y, z-1 + x, y, z
S1H3A3.0000.0001 - x, 1 - y, -zx, y, -1 + z
H3BN12.7570.007x, y, z-1 + x, y, z
S1C33.5150.015x, y, z-x, 1 - y, 1 - z
N1S13.3790.029x, y, z1/2 - x, -1/2 + y, 1/2 - z
S1C23.5370.037x, y, z-1 + x, y, z
H3BH4B2.4520.052x, y, z1/2 - x, -1/2 + y, 1/2 - z
C3H3A2.9980.0981 - x, 1 - y, -zx, y, -1 + z
L2
H6BC22.699-0.201x, y, z3/2 - x, -1/2 + y, 1/2 - z
S1H6A2.919-0.0813/2 - x, 1/2 - y, 1 - z1.5-x,-1/2+y,1/2-z
S1H5A2.992-0.0083/2 - x, 1/2 - y, 1 - z-1/2 + x, -1/2 + y, z
S2H4B3.0170.017x, y, zx, -y, -1/2 + z
S1C53.5250.0253/2 - x, 1/2 - y, 1 - z-1/2 + x, -1/2 + y, z
Note: (a) Calculated using Mercury (Macrae et al., 2020).
 

Acknowledgements

HSE is grateful to the University of Neuchâtel for their support over the years.

Funding information

Funding for this research was provided by the Swiss National Science Foundation and the University of Neuchâtel.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAssoumatine, T. (1999). PhD Thesis, University of Neuchâtel, Switzerland.  Google Scholar
First citationAssoumatine, T. & Stoeckli-Evans, H. (2014). Acta Cryst. E70, 51–53.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationAssoumatine, T. & Stoeckli-Evans, H. (2017). Acta Cryst. E73, 434–440.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBoekelheide, V. & Hollins, R. A. J. (1973). J. Am. Chem. Soc. 95, 3201–3208.  CrossRef CAS Web of Science Google Scholar
First citationEvans, D. G. & Boeyens, J. C. A. (1988). Acta Cryst. B44, 663–671.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFerigo, M., Bonhôte, P., Marty, W. & Stoeckli-Evans, H. (1994). J. Chem. Soc. Dalton Trans. pp. 1549–1554.  CSD CrossRef Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKim, S., Siewe, A. D., Lee, E., Ju, H., Park, I.-H., Jung, J. H., Habata, Y. & Lee, S. S. (2018). Cryst. Growth Des. 18, 2424–2431.  Web of Science CSD CrossRef CAS Google Scholar
First citationKim, S., Siewe, A. D., Lee, E., Ju, H., Park, I.-H., Park, K.-M., Ikeda, M., Habata, Y. & Lee, S. S. (2016). Inorg. Chem. 55, 2018–2022.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMelcer, N. J., Enright, G. D., Ripmeester, J. A. & Shimizu, G. K. H. (2001). Inorg. Chem. 40, 4641–4648.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShimizu, G. K. H., Enright, G. D., Ratcliffe, C. I. & Ripmeester, J. A. (1999). Chem. Commun. pp. 461–462.  Web of Science CSD CrossRef Google Scholar
First citationShimizu, G. K. H., Enright, G. D., Ratcliffe, C. I., Ripmeester, J. A. & Wayner, D. D. M. (1998). Angew. Chem. Int. Ed. 37, 1407–1409.  CrossRef CAS Google Scholar
First citationSiewe, A. D., Kim, J.-Y., Kim, S., Park, I.-H. & Lee, S. S. (2014). Inorg. Chem. 53, 393–398.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (1998). IPDS-1 Software. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds