research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of ethyl 2-(5-amino-1-benzene­sulfonyl-3-oxo-2,3-di­hydro-1H-pyrazol-2-yl)acetate

aChemistry Department, Faculty of Science, Cairo University, Giza, Egypt, bChemistry Department, Faculty of Science, Helwan University, Cairo, Egypt, and cInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-bs.de

Edited by M. Nieger, University of Helsinki, Finland (Received 27 January 2020; accepted 26 February 2020; online 3 March 2020)

In the title compound, C13H15N3O5S, the two rings face each other in a `V′ form at the S atom, with one N—H⋯O=S and one C—H⋯O=S contact from the pyrazolyl substituents to the sulfonyl group. Two classical hydrogen bonds from the amine group, one of the form N—H⋯O=S and one N—H⋯O=Coxo, link the mol­ecules to form layers parallel to the bc plane.

1. Chemical context

We are inter­ested in the development of innovative synthetic strategies for N-sulfonyl- and N-sulfonyl­amino-based heterocyclic ring systems that have found application as new anti­microbial and anti-viral agents (Azzam et al., 2017[Azzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017). Acta Cryst. E73, 1820-1822.], 2019a[Azzam, R. A., Elgemeie, G. H. & Osman, R. R. (2019a). J. Mol. Struct. 1173, 707-742.]b[Azzam, R. A., Elgemeie, G. H., Osman, R. R. & Jones, P. G. (2019b). Acta Cryst. E75, 367-371.]; Elgemeie et al., 2017[Elgemeie, G. H., Altalbawy, F., Alfaidi, M., Azab, R. & Hassan, A. (2017). Drug. Des. Dev. Ther. 11, 3389-3399.], 2019[Elgemeie, G. H., Azzam, R. A. & Elsayed, R. E. (2019). Med. Chem. Res. 28, 1099-1131.]; Zhu et al., 2013[Zhu, Y., Lu, W., Sun, H. & Zhan, Z. (2013). Org. Lett. 15, 4146-4149.]). Michael et al. (2007[Michael, C. M., Andrew, D. N., Nuzhat, M., Parag, P. S., Chun-Hao, C., Mary, P. B., Scott, L. D., Donna, M. H. & Amos, B. S. (2007). Bioorg. Med. Chem. Lett. 17, 4761-4766.]) investigated the inhibition capabilities of a novel series of our reported N-sulfonyl­pyrazoles (Elgemeie et al., 1998[Elgemeie, G. E. H., Hanfy, N., Hopf, H. & Jones, P. G. (1998). Acta Cryst. C54, 136-138.], 1999[Elgemeie, G. H. & Hanfy, N. (1999). J. Chem. Res. (S), pp. 385-386.], 2013[Elgemeie, G. H., Sayed, S. H. & Jones, P. G. (2013). Acta Cryst. C69, 90-92.]) towards the enzyme cathepsin B16. Shyama et al. (2009[Shyama, S., Sergey, A. S., Boris, I. R., Ananda, H., Ying, S., Alex, Y. S. & Nicholas, D. P. C. (2009). Bioorg. Med. Chem. Lett. 19, 5773-5777.]) also identified some of our reported N-aryl­sulfonyl­pyrazole series to be active inhibitors of the NS2B-NS3 virus. These promising results led our research group to investigate new approaches to other derivatives of N-sulfonyl­pyrazoles, thereby seeking alternative scaffolds for use as promising chemotherapeutics (Azzam & Elgemeie, 2019[Azzam, R. A. & Elgemeie, G. H. (2019). Med. Chem. Res. 28, 62-70.]; Elgemeie & Jones, 2002[Elgemeie, G. H. & Jones, P. G. (2002). Acta Cryst. E58, o1250-o1252.]; Zhang et al., 2020[Zhang, Q., Hu, B., Zhao, Y., Zhao, S., Wang, Y., Zhang, B., Yan, S. & Yu, F. (2020). Eur. J. Org. Chem. 10, 1002eoc. 201901886.]). Accordingly, we synthesized the N-1-substituted derivative of N-sulfonyl­pyrazole 1.

[Scheme 1]

The reaction 1 with ethyl bromo­acetate 2 in the presence of anhydrous potassium carbonate in dry N,N-di­methyl­formamide at room temperature produced an adduct for which two possible isomers, the O-alkyl­ated or N-alkyl­ated N-sulfonyl­pyrazole structures 3 or 4, were considered. The 1H NMR spectra of the product revealed the presence of an amino group at 7.34 ppm and a pyrazole CH at 4.34 ppm, but spectroscopic data cannot differentiate between structures 3 and 4. The crystal structure determination indicated unambiguously the formation of the N-alkyl­ated N-sulfonyl­pyrazole 4 as the only product in the solid state.

2. Structural commentary

The structure analysis confirms the formation of compound 4 (Fig. 1[link]). The mol­ecule displays an intra­molecular hydrogen bond of the form N—H⋯O=S, and the intra­molecular contact H12A⋯O2 is also quite short at 2.38 Å (Table 1[link]). Accordingly, the two rings face each other in a roughly `V-shaped' form around the central SO2 unit, with an inter­planar angle of 53.45 (5)° and torsion angles C7—C6⋯N1—N2 = −13.10 (10) and C11—C6⋯N1—C5 = 21.26 (11)°. The corresponding angle N1—S1—C6 is the narrowest at S1 (the largest is, as expected, O1=S=O2). In the pyrazole ring, the bond C4—C5 is the shortest, consistent with a major contribution from the resonance form shown in the Scheme. The exocyclic C5—N3 bond is appreciably shorter than the two C—N bonds in the ring. The side-chain atom sequence C12—C13—O5—C14—C15 displays an extended conformation. See Table 2[link] for selected mol­ecular dimensions.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H01⋯O1 0.866 (19) 2.355 (19) 2.8296 (15) 114.8 (15)
N3—H01⋯O1i 0.866 (19) 2.593 (19) 3.3644 (15) 148.8 (16)
N3—H02⋯O3ii 0.871 (19) 1.961 (19) 2.8257 (15) 171.5 (17)
C12—H12A⋯O2 0.99 2.38 3.0214 (16) 122
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 2
Selected geometric parameters (Å, °)

N1—C5 1.4305 (15) N3—C5 1.3306 (16)
N1—N2 1.4313 (14) C3—C4 1.4184 (18)
N2—C3 1.4139 (15) C4—C5 1.3640 (17)
       
O2—S1—O1 120.63 (6) N1—S1—C6 104.30 (5)
       
C14—O5—C13—C12 −175.81 (11) C13—O5—C14—C15 158.95 (12)
[Figure 1]
Figure 1
Structure of the title compound 4 in the crystal. Ellipsoids represent 50% probability levels. The dashed line indicates the intra­molecular hydrogen bond.

3. Supra­molecular features

Two classical hydrogen bonds (Table 1[link]) are observed, one from each hydrogen atom of the amino group; the contact H01⋯O1i, involving the same hydrogen atom that forms the intra­molecular hydrogen bond, is however much longer than H02⋯O3ii. The mol­ecules are thereby connected to form layers parallel to the bc plane (Fig. 2[link]).

[Figure 2]
Figure 2
Packing diagram of 4 projected parallel to the bc plane. Dashed lines indicate inter­molecular hydrogen bonds (intra­molecular H bonds are omitted). Hydrogen atoms not involved in this hydrogen bonding system are omitted.

4. Database survey

A search of the Cambridge Database (Version 5.4; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the fragment Ar-SO2 bonded to one nitro­gen atom of an NNCCC ring (all atoms three-coordinate, any bond orders and any or no other substituents) gave only two hits, our previously reported structures NARCOY (Ar = Ph; Elgemeie et al., 1998[Elgemeie, G. E. H., Hanfy, N., Hopf, H. & Jones, P. G. (1998). Acta Cryst. C54, 136-138.]) and LERBIV (Ar = p-Tol; Elgemeie et al., 2013[Elgemeie, G. H., Sayed, S. H. & Jones, P. G. (2013). Acta Cryst. C69, 90-92.]). These are closely related, but the former is pseudosymmetric; for a detailed discussion, see Elgemeie et al. (2013[Elgemeie, G. H., Sayed, S. H. & Jones, P. G. (2013). Acta Cryst. C69, 90-92.]). Both bear the same oxo and amino substituents as in the current structure; the latter is, however, substituted at N2, so that one fewer hydrogen-bond donor is available and the packing is different from those of the previous structures.

5. Synthesis and crystallization

A mixture of compound 1 (0.01 mol), ethyl bromo­acetate 2 (0.01 mol) and anhydrous potassium carbonate (0.01 mol) in N,N-di­methyl­formamide (5 mL) was stirred at room temperature for 2 h. The mixture was poured onto ice–water; the solid thus formed was filtered off and recrystallized from ethanol to give pale yellow crystals in 60% yield, m.p. = 394 K. IR (KBr, cm−1): ν 3330, 3250 (NH2), 1730 (ester C=O), 1690 (ring C=O); 1H NMR (DMSO-d6): δ = 1.17 (t, 3H, J = 7.2 Hz, CH3), 4.07 (q, 2H, J = 7.2 Hz, CH2), 4.34 (s, 1H, CH), 4.43 (s, 2H, CH2), 7.34 (s, 2H, NH2), 7.63–7.88 (m, 5H, Ar). Analysis calculated C13H15N3O5S (325.34); C, 47.99; H, 4.65; N, 12.92; S, 9.85. Found: C, 48.17; H, 4.84; N, 13.15; S, 9.67%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The NH hydrogen atoms were refined freely. The methyl group was refined as an idealized rigid group allowed to rotate but not tip (`AFIX 137′; C—H 0.98 Å, H—C—H 109.5°). Other hydrogen atoms were included using a riding model starting from calculated positions (C—Haromatic = 0.95, C—Hmethyl­ene = 0.99 Å). The U(H) values were fixed at 1.5 (for the methyl H) or 1.2 times the equivalent Uiso value of the parent carbon atoms.

Table 3
Experimental details

Crystal data
Chemical formula C13H15N3O5S
Mr 325.34
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 9.2139 (4), 8.8122 (4), 18.3486 (7)
β (°) 104.521 (4)
V3) 1442.22 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.25
Crystal size (mm) 0.35 × 0.30 × 0.15
 
Data collection
Diffractometer Oxford Diffraction Xcalibur Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.964, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 74051, 4193, 3708
Rint 0.044
(sin θ/λ)max−1) 0.704
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.085, 1.11
No. of reflections 4193
No. of parameters 208
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.47, −0.31
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2017 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-Ray Instruments, Madison, Wisconsin, USA.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL2017 (Sheldrick, 2015).

Ethyl 2-(5-amino-1-benzenesulfonyl-3-oxo-2,3-dihydro-1H-pyrazol-2-yl)acetate top
Crystal data top
C13H15N3O5SF(000) = 680
Mr = 325.34Dx = 1.498 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.2139 (4) ÅCell parameters from 16307 reflections
b = 8.8122 (4) Åθ = 2.6–30.3°
c = 18.3486 (7) ŵ = 0.25 mm1
β = 104.521 (4)°T = 100 K
V = 1442.22 (11) Å3Tablet, colourless
Z = 40.35 × 0.30 × 0.15 mm
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
4193 independent reflections
Radiation source: fine-focus sealed X-ray tube3708 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.044
ω–scanθmax = 30.0°, θmin = 2.3°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
h = 1212
Tmin = 0.964, Tmax = 1.000k = 1212
74051 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: mixed
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0304P)2 + 0.8673P]
where P = (Fo2 + 2Fc2)/3
4193 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.31 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The NH hydrogens were refined freely. The methyl was refined as an idealized rigid group allowed to rotate but not tip. Other hydrogens were included using a riding model starting from calculated positions.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.21827 (3)0.35269 (3)0.02872 (2)0.01371 (8)
N10.33782 (11)0.22191 (12)0.08270 (6)0.01304 (19)
N20.25215 (11)0.11750 (12)0.11476 (6)0.0142 (2)
N30.54212 (13)0.38935 (14)0.13239 (7)0.0187 (2)
H010.547 (2)0.411 (2)0.0871 (11)0.029 (5)*
H020.602 (2)0.431 (2)0.1716 (11)0.027 (4)*
O10.31374 (10)0.45322 (11)0.00110 (5)0.01845 (19)
O20.10901 (10)0.26285 (11)0.02197 (5)0.01864 (19)
O30.27967 (10)0.00832 (11)0.23139 (5)0.0201 (2)
O40.32627 (13)0.17922 (12)0.00343 (6)0.0282 (2)
O50.46016 (11)0.09414 (11)0.10922 (5)0.0206 (2)
C30.32177 (13)0.10511 (15)0.19250 (7)0.0151 (2)
C40.43781 (13)0.21500 (15)0.20999 (7)0.0159 (2)
H40.4974200.2380130.2589570.019*
C50.44943 (13)0.28208 (14)0.14470 (7)0.0139 (2)
C60.13579 (13)0.44475 (14)0.09267 (7)0.0148 (2)
C70.00733 (14)0.38207 (15)0.10759 (7)0.0187 (2)
H70.0388520.2949670.0811230.022*
C80.05126 (15)0.45024 (17)0.16212 (8)0.0219 (3)
H80.1379450.4087310.1737350.026*
C90.01580 (15)0.57863 (17)0.19982 (8)0.0223 (3)
H90.0256850.6246030.2368660.027*
C100.14298 (15)0.64049 (16)0.18388 (7)0.0206 (3)
H100.1875880.7289620.2096250.025*
C110.20494 (14)0.57298 (15)0.13031 (7)0.0173 (2)
H110.2928290.6134920.1195390.021*
C120.20730 (14)0.01978 (15)0.07046 (7)0.0189 (2)
H12A0.1361240.0083680.0223670.023*
H12B0.1536890.0872540.0980870.023*
C130.33651 (15)0.10706 (15)0.05324 (7)0.0185 (2)
C140.59637 (16)0.16389 (17)0.09781 (8)0.0225 (3)
H14A0.6024320.1493400.0451510.027*
H14B0.5966920.2741250.1082550.027*
C150.72666 (16)0.08824 (19)0.15109 (8)0.0263 (3)
H15A0.7244850.0208570.1405130.039*
H15B0.8205260.1316240.1445660.039*
H15C0.7200470.1045630.2029950.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01461 (14)0.01428 (15)0.01147 (13)0.00241 (10)0.00185 (10)0.00165 (10)
N10.0123 (4)0.0133 (5)0.0126 (4)0.0006 (4)0.0014 (3)0.0012 (4)
N20.0141 (5)0.0141 (5)0.0136 (4)0.0002 (4)0.0021 (4)0.0024 (4)
N30.0174 (5)0.0223 (6)0.0158 (5)0.0045 (4)0.0029 (4)0.0011 (4)
O10.0216 (4)0.0181 (5)0.0170 (4)0.0021 (4)0.0074 (3)0.0038 (3)
O20.0191 (4)0.0197 (5)0.0137 (4)0.0022 (4)0.0021 (3)0.0003 (3)
O30.0190 (4)0.0245 (5)0.0177 (4)0.0022 (4)0.0060 (3)0.0066 (4)
O40.0372 (6)0.0253 (5)0.0202 (5)0.0032 (4)0.0037 (4)0.0071 (4)
O50.0211 (5)0.0230 (5)0.0167 (4)0.0060 (4)0.0029 (3)0.0030 (4)
C30.0134 (5)0.0183 (6)0.0136 (5)0.0055 (4)0.0035 (4)0.0017 (4)
C40.0150 (5)0.0199 (6)0.0120 (5)0.0025 (5)0.0017 (4)0.0010 (4)
C50.0112 (5)0.0154 (6)0.0144 (5)0.0025 (4)0.0019 (4)0.0025 (4)
C60.0145 (5)0.0155 (6)0.0143 (5)0.0042 (4)0.0033 (4)0.0020 (4)
C70.0147 (5)0.0191 (6)0.0210 (6)0.0019 (5)0.0023 (5)0.0017 (5)
C80.0157 (6)0.0273 (7)0.0243 (6)0.0040 (5)0.0078 (5)0.0047 (5)
C90.0226 (6)0.0265 (7)0.0187 (6)0.0086 (5)0.0070 (5)0.0018 (5)
C100.0238 (6)0.0186 (6)0.0186 (6)0.0035 (5)0.0039 (5)0.0007 (5)
C110.0177 (6)0.0155 (6)0.0184 (6)0.0016 (5)0.0039 (4)0.0020 (5)
C120.0183 (6)0.0160 (6)0.0194 (6)0.0026 (5)0.0010 (5)0.0006 (5)
C130.0250 (6)0.0130 (6)0.0163 (6)0.0026 (5)0.0029 (5)0.0018 (4)
C140.0249 (7)0.0235 (7)0.0206 (6)0.0084 (5)0.0086 (5)0.0015 (5)
C150.0221 (6)0.0333 (8)0.0242 (7)0.0047 (6)0.0074 (5)0.0012 (6)
Geometric parameters (Å, º) top
S1—O21.4268 (9)C6—C71.3941 (17)
S1—O11.4280 (10)C7—C81.3871 (19)
S1—N11.7249 (10)C7—H70.9500
S1—C61.7491 (12)C8—C91.388 (2)
N1—C51.4305 (15)C8—H80.9500
N1—N21.4313 (14)C9—C101.388 (2)
N2—C31.4139 (15)C9—H90.9500
N2—C121.4583 (16)C10—C111.3883 (18)
N3—C51.3306 (16)C10—H100.9500
N3—H010.866 (19)C11—H110.9500
N3—H020.871 (19)C12—C131.5156 (19)
O3—C31.2353 (16)C12—H12A0.9900
O4—C131.2023 (16)C12—H12B0.9900
O5—C131.3338 (16)C14—C151.501 (2)
O5—C141.4589 (16)C14—H14A0.9900
C3—C41.4184 (18)C14—H14B0.9900
C4—C51.3640 (17)C15—H15A0.9800
C4—H40.9500C15—H15B0.9800
C6—C111.3926 (18)C15—H15C0.9800
O2—S1—O1120.63 (6)C7—C8—H8119.8
O2—S1—N1104.37 (5)C9—C8—H8119.8
O1—S1—N1104.88 (5)C8—C9—C10120.59 (12)
O2—S1—C6109.90 (6)C8—C9—H9119.7
O1—S1—C6111.12 (6)C10—C9—H9119.7
N1—S1—C6104.30 (5)C11—C10—C9119.97 (13)
C5—N1—N2105.78 (9)C11—C10—H10120.0
C5—N1—S1115.93 (8)C9—C10—H10120.0
N2—N1—S1109.08 (7)C10—C11—C6118.73 (12)
C3—N2—N1107.87 (9)C10—C11—H11120.6
C3—N2—C12119.46 (10)C6—C11—H11120.6
N1—N2—C12114.36 (10)N2—C12—C13114.18 (10)
C5—N3—H01120.9 (12)N2—C12—H12A108.7
C5—N3—H02117.4 (12)C13—C12—H12A108.7
H01—N3—H02121.5 (17)N2—C12—H12B108.7
C13—O5—C14116.94 (10)C13—C12—H12B108.7
O3—C3—N2120.48 (12)H12A—C12—H12B107.6
O3—C3—C4131.97 (12)O4—C13—O5125.29 (13)
N2—C3—C4107.53 (10)O4—C13—C12123.59 (12)
C5—C4—C3108.53 (11)O5—C13—C12111.11 (11)
C5—C4—H4125.7O5—C14—C15107.20 (11)
C3—C4—H4125.7O5—C14—H14A110.3
N3—C5—C4130.69 (12)C15—C14—H14A110.3
N3—C5—N1119.50 (11)O5—C14—H14B110.3
C4—C5—N1109.80 (11)C15—C14—H14B110.3
C11—C6—C7121.97 (12)H14A—C14—H14B108.5
C11—C6—S1119.17 (9)C14—C15—H15A109.5
C7—C6—S1118.76 (10)C14—C15—H15B109.5
C8—C7—C6118.25 (12)H15A—C15—H15B109.5
C8—C7—H7120.9C14—C15—H15C109.5
C6—C7—H7120.9H15A—C15—H15C109.5
C7—C8—C9120.49 (12)H15B—C15—H15C109.5
O2—S1—N1—C5172.95 (9)O2—S1—C6—C11159.28 (10)
O1—S1—N1—C559.29 (9)O1—S1—C6—C1123.16 (12)
C6—S1—N1—C557.61 (10)N1—S1—C6—C1189.33 (10)
O2—S1—N1—N253.74 (9)O2—S1—C6—C724.42 (12)
O1—S1—N1—N2178.50 (8)O1—S1—C6—C7160.54 (10)
C6—S1—N1—N261.60 (9)N1—S1—C6—C786.97 (10)
C5—N1—N2—C35.93 (12)C11—C6—C7—C80.47 (19)
S1—N1—N2—C3131.28 (8)S1—C6—C7—C8175.72 (10)
C5—N1—N2—C12141.43 (10)C6—C7—C8—C90.85 (19)
S1—N1—N2—C1293.23 (10)C7—C8—C9—C100.3 (2)
N1—N2—C3—O3171.44 (11)C8—C9—C10—C110.6 (2)
C12—N2—C3—O338.61 (17)C9—C10—C11—C60.97 (19)
N1—N2—C3—C47.23 (13)C7—C6—C11—C100.44 (19)
C12—N2—C3—C4140.06 (11)S1—C6—C11—C10176.61 (10)
O3—C3—C4—C5172.70 (13)C3—N2—C12—C1374.54 (14)
N2—C3—C4—C55.75 (14)N1—N2—C12—C1355.45 (14)
C3—C4—C5—N3179.13 (13)C14—O5—C13—O45.0 (2)
C3—C4—C5—N12.02 (14)C14—O5—C13—C12175.81 (11)
N2—N1—C5—N3176.57 (11)N2—C12—C13—O4147.96 (13)
S1—N1—C5—N355.56 (13)N2—C12—C13—O532.79 (15)
N2—N1—C5—C42.43 (13)C13—O5—C14—C15158.95 (12)
S1—N1—C5—C4123.44 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H01···O10.866 (19)2.355 (19)2.8296 (15)114.8 (15)
N3—H01···O1i0.866 (19)2.593 (19)3.3644 (15)148.8 (16)
N3—H02···O3ii0.871 (19)1.961 (19)2.8257 (15)171.5 (17)
C12—H12A···O20.992.383.0214 (16)122
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1/2, z+1/2.
 

References

First citationAzzam, R. A. & Elgemeie, G. H. (2019). Med. Chem. Res. 28, 62–70.  Web of Science CrossRef CAS Google Scholar
First citationAzzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017). Acta Cryst. E73, 1820–1822.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAzzam, R. A., Elgemeie, G. H. & Osman, R. R. (2019a). J. Mol. Struct. 1173, 707–742.  Google Scholar
First citationAzzam, R. A., Elgemeie, G. H., Osman, R. R. & Jones, P. G. (2019b). Acta Cryst. E75, 367–371.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationElgemeie, G. H., Altalbawy, F., Alfaidi, M., Azab, R. & Hassan, A. (2017). Drug. Des. Dev. Ther. 11, 3389–3399.  Web of Science CrossRef CAS Google Scholar
First citationElgemeie, G. H., Azzam, R. A. & Elsayed, R. E. (2019). Med. Chem. Res. 28, 1099–1131.  Web of Science CrossRef CAS Google Scholar
First citationElgemeie, G. H. & Hanfy, N. (1999). J. Chem. Res. (S), pp. 385–386.  Google Scholar
First citationElgemeie, G. E. H., Hanfy, N., Hopf, H. & Jones, P. G. (1998). Acta Cryst. C54, 136–138.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationElgemeie, G. H. & Jones, P. G. (2002). Acta Cryst. E58, o1250–o1252.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationElgemeie, G. H., Sayed, S. H. & Jones, P. G. (2013). Acta Cryst. C69, 90–92.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMichael, C. M., Andrew, D. N., Nuzhat, M., Parag, P. S., Chun-Hao, C., Mary, P. B., Scott, L. D., Donna, M. H. & Amos, B. S. (2007). Bioorg. Med. Chem. Lett. 17, 4761–4766.  Web of Science PubMed Google Scholar
First citationRigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShyama, S., Sergey, A. S., Boris, I. R., Ananda, H., Ying, S., Alex, Y. S. & Nicholas, D. P. C. (2009). Bioorg. Med. Chem. Lett. 19, 5773–5777.  Web of Science PubMed Google Scholar
First citationSiemens (1994). XP. Siemens Analytical X-Ray Instruments, Madison, Wisconsin, USA.  Google Scholar
First citationZhang, Q., Hu, B., Zhao, Y., Zhao, S., Wang, Y., Zhang, B., Yan, S. & Yu, F. (2020). Eur. J. Org. Chem. 10, 1002eoc. 201901886.  Google Scholar
First citationZhu, Y., Lu, W., Sun, H. & Zhan, Z. (2013). Org. Lett. 15, 4146–4149.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds