research communications
Redetermination of the R5Si4 (R = Pr, Nd) from single-crystal X-ray diffraction data
ofaDepartment of Physics, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan, bDepartment of Chemistry, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan, and cThe Institute for Solid State Physics, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
*Correspondence e-mail: watanuki-ryuta-sm@ynu.ac.jp
The crystal structures of praseodymium silicide (5/4), Pr5Si4, and neodymium silicide (5/4), Nd5Si4, were redetermined using high-quality single-crystal X-ray diffraction data. The previous structure reports of Pr5Si4 were only based on powder X-ray diffraction data [Smith et al. (1967). Acta Cryst. 22 940–943; Yang et al. (2002b). J. Alloys Compd. 339, 189–194; Yang et al., (2003). J. Alloys Compd. 263, 146–153]. On the other hand, the structure of Nd5Si4 has been determined from powder data [neutron; Cadogan et al., (2002). J. Phys. Condens. Matter, 14, 7191–7200] and X-ray [Smith et al. (1967). Acta Cryst. 22 940–943; Yang et al. (2002b). J. Alloys Compd. 339, 189–194; Yang et al., (2003). J. Alloys Compd. 263, 146–153] and single-crystal data with isotropic atomic displacement parameters [Roger et al., (2006). J. Alloys Compd. 415, 73–84]. In addition, the anisotropic atomic displacement parameters for all atomic sites have been determined for the first time. These compounds are confirmed to have the tetragonal Zr5Si4-type structure (space group: P41212), as reported previously (Smith et al., 1967). The structure is built up by distorted body-centered cubes consisting of Pr(Nd) atoms, which are linked to each other by edge-sharing to form a three-dimensional framework. This framework delimits zigzag channels in which the silicon dimers are situated.
1. Chemical context
In natural science, there are some essential concepts concerned with symmetry, among which chiral symmetry is one of the fundamentals in all fields of physics, especially magnetism in solid-state materials. A chiral magnet in solids is of great interest in both science and technology. These magnets have been studied for novel phenomena such as chiral magnetic soliton lattices and use in future spintronic devices such as magnetic memories and logic gates. The 3Al9 has a trigonal ErNi3Al9-type structure in R32, a member of the (Gladyshevskii et al., 1993). This compound exhibits a characteristic helical magnetic structure, reflecting the symmetry of the crystal (Aoki et al., 2018). To study magnetism for chiral symmetry, we focused on the intermetallic compound R5Si4 (R = Pr and Nd), which has a tetragonal Zr5Si4-type in the P41212 (Smith et al., 1967).
is that the crystal-structure affects the arrangement of magnetic moments in these materials. The symmetry of crystals plays an important role in the spatial arrangement of the magnetic moments. For example, the intermetallic compound YbNiRoger et al. (2006) isolated a small single crystal of Nd5Si4 by crushing the solidified sample and collected single-crystal X-ray data. Very recently, Sato et al. (2018) reported the single-crystal growth and magnetic properties of Ce5Si4, which has the same as Pr5Si4 and Nd5Si4. At present, there has only been a report of large-size single-crystal growth for R = Ce, and there are no reports of a large single crystal having been grown successfully for R = Pr or Nd. In particular, for Pr5Si4, the crystal-structure analysis is based only on powder XRD data (Yang et al., 2002a,b,c, 2003; Cadogan et al., 2002; Smith et al., 1967). It is still unknown, however, whether there is a relationship between chiral symmetry and electronic properties, including magnetic ones. In this paper, we report the details of crystallographic studies of single-crystal X-ray analysis of high-quality single-crystalline Pr5Si4 and Nd5Si4, which are expected to be candidate materials for chiral magnets.
2. Structural commentary
The crystal structures of Pr5Si4 and Nd5Si4 refined in this study are essentially the same as those determined previously, belonging to P41212 (No. 92) for R = La, Ce, and Nd (Yang et al., 2002a; Sato et al., 2018). The of these compounds consists of three Pr (Nd) and two Si atoms. The Pr1(Nd1) atom occupies the Wyckoff 4a site, and the Pr2 (Nd2), Pr3 (Nd3), Si1 and Si2 are located on the general position 8b sites. The principal units in the crystal structures of Pr5Si4 and Nd5Si4 are illustrated in Fig. 1, and selected bond lengths are given in Tables 1 and 2. The Pr1(Nd1) coordination environment in these compounds can be described as a distorted cube with four Pr2 (Nd2) and four Pr3 (Nd3) [Pr1—Pr2 and Pr1—Pr3 bond lengths ranging from 3.4914 (4) to 3.6423 (3) Å, Pr2—Pr3 bond lengths in the range 3.9156 (3) to 4.0074 (2) Å, Nd1—Nd2 and Nd1—Nd3 bond lengths of 3.4725 (5)–3.6265 (3) Å and Nd2—Nd3 bond lengths of 3.9094 (4)–3.9752 (2) Å]. In addition, the Pr1(Nd1)—Si bonds protruding through the distorted rectangular faces formed by two Pr2 (Nd2) and two Pr3 (Nd3) atoms have Pr1—Si bond lengths ranging from 3.0985 (13) to 3.1780 (13) Å and Nd1—Si bond lengths from 3.0744 (15) to 3.1661 (16) Å. The distorted cubes are connected through common two Pr2—Pr3 (Nd2—Nd3) edges, and Si1 (Si2) atoms form dimers with Si2 (Si1) atoms in the adjacent unit (Fig. 2). The Si1—Si2 bond length in Pr5Si4 is 2.4738 (16) Å, and that of Nd5Si4 is 2.482 (2) Å. The extended structure is shown in polyhedral representation in Fig. 3. The structure is built up by distorted body-centered cubes consisting of Pr (Nd) atoms, which are linked to each other by edge-sharing to form a three-dimensional framework. This framework delimits zigzag channels oriented along the [100] and [010] directions, in which the Si–Si dimers are situated.
|
3. Synthesis and crystallization
We have succeeded in growing single-crystalline samples of Pr5Si4 for the first time. For Nd5Si4, Roger et al. (2006) obtained a very small single crystal, but we have succeeded in growing a large single crystal. These compounds are incongruently melting compounds (Shukla et al., 2009), so we synthesized source materials with the non-stoichiometric molar ratio of Pr (Nd):Si of 58:42 in a mono-arc furnace. Each melted button of source materials was turned over and remelted three times to ensure Single crystals of Pr5Si4 and Nd5Si4 were grown by the Czochralski pulling method in a tetra arc furnace in an argon atmosphere on a water-cooled copper hearth. A tungsten rod was used as a pulling axis with no seed crystal, and after optimizing the initial conditions of the growth, the crystal was pulled at a constant rate of 12 mm hour−1. The sizes of the grown ingots were about 30 mm in length and 5 mm in diameter. The grown single-crystal samples were characterized by powder X-ray diffraction using a Rigaku MiniFlexII diffractometer with Cu Kα radiation. The powder X-ray diffraction peaks can be well indexed based on the tetragonal Zr5Si4-type structure. In addition, it has been confirmed that the whole grown crystal is a single grain crystal by means of the back-reflection Laue method.
4. Database survey
A survey of the Inorganic et al., 2002) for Pr5Si4 yielded three hits. In all three, it is reported that Pr5Si4 has a Zr5Si4-type structure (Smith et al., 1967; ICSD 649362; Yang et al., 2002b; ICSD 95099; Yang et al., 2003; ICSD 98352). On the other hand, for Nd5Si4, previous reports have shown that Nd5Si4 has two types of a Sm5Ge4 type (Raman, 1968; ICSD 645983; Roger et al., 2006; ICSD 154658 and 154659) and a Zr5Si4-type structure (Smith et al., 1967; ICSD 645939; Mokra et al., 1978; ICSD 645946; Eremenko et al., 1984; ICSD 600990; Yang et al., 2002a; ICSD 94987; Yang et al., 2002c; ICSD 190404; Cadogan et al., 2002; ICSD 190404). Roger et al. (2006) reported that Sm5Ge4-type Nd5Si4 could be obtained only with the addition of a tiny amount of boron of less than three at.% in the initial mixture, and that when synthesized with Nd and Si alone, Zr5Si4-type Nd5Si4 was obtained.
Database (ICSD; Belsky5. Refinement
Crystal data, data collection, and structure . The highest and deepest remaining difference electron density features are located at 0.90 Å from Pr2 and 1.08 Å from Pr3 for Pr5Si4, and 0.74 Å from Nd1 and 1.38 Å from Nd2 for Nd5Si4. The absolute structures of the samples were well-defined in P41212 (No. 92), although the bulk samples possibly also contain the other enantiomer; P43212 (No. 96).
details are summarized in Table 3
|
Supporting information
https://doi.org/10.1107/S2056989020002789/ru2068sup1.cif
contains datablocks global, A, B. DOI:Structure factors: contains datablock A. DOI: https://doi.org/10.1107/S2056989020002789/ru2068Asup2.hkl
Structure factors: contains datablock B. DOI: https://doi.org/10.1107/S2056989020002789/ru2068Bsup3.hkl
For both structures, data collection: CrysAlis PRO (Rigaku OD, 2019); cell
CrysAlis PRO (Rigaku OD, 2019); data reduction: CrysAlis PRO (Rigaku OD, 2019); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).Pr5Si4 | Dx = 5.813 Mg m−3 |
Mr = 816.91 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, P41212 | Cell parameters from 4009 reflections |
Hall symbol: P 4abw 2nw | θ = 3.8–30.3° |
a = 7.9001 (2) Å | µ = 26.03 mm−1 |
c = 14.9568 (6) Å | T = 223 K |
V = 933.48 (6) Å3 | Plate, metallic gray |
Z = 4 | 0.13 × 0.08 × 0.03 mm |
F(000) = 1404 |
XtaLAB AFC12 (RINC): Kappa dual offset/far diffractometer | 1260 independent reflections |
Radiation source: micro-focus sealed X-ray tube | 1225 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.025 |
Detector resolution: 5.8140 pixels mm-1 | θmax = 30.3°, θmin = 3.7° |
ω scans | h = −11→11 |
Absorption correction: analytical [CrysAlisPro (Rigaku OD, 2019) based on Clark & Reid (1995)] | k = −10→10 |
Tmin = 0.588, Tmax = 0.830 | l = −19→17 |
5553 measured reflections |
Refinement on F2 | w = 1/[σ2(Fo2) + (0.0078P)2 + 0.0556P] where P = (Fo2 + 2Fc2)/3 |
Least-squares matrix: full | (Δ/σ)max = 0.001 |
R[F2 > 2σ(F2)] = 0.013 | Δρmax = 0.69 e Å−3 |
wR(F2) = 0.026 | Δρmin = −0.85 e Å−3 |
S = 1.10 | Extinction correction: SHELXL (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
1260 reflections | Extinction coefficient: 0.00247 (9) |
43 parameters | Absolute structure: Flack x determined using 431 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
0 restraints | Absolute structure parameter: −0.04 (2) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Pr1 | 0.81086 (3) | 0.81086 (3) | 0.500000 | 0.00721 (8) | |
Pr2 | 0.51578 (3) | 0.37028 (3) | 0.12478 (2) | 0.00578 (7) | |
Pr3 | 0.51088 (3) | 0.87144 (3) | 0.04758 (2) | 0.00676 (7) | |
Si1 | 0.92537 (16) | 0.71000 (16) | 0.30916 (8) | 0.0069 (2) | |
Si2 | 0.69967 (16) | 0.66478 (16) | 0.19702 (8) | 0.0078 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pr1 | 0.00720 (10) | 0.00720 (10) | 0.00723 (16) | −0.00017 (11) | 0.00069 (9) | −0.00069 (9) |
Pr2 | 0.00587 (11) | 0.00618 (12) | 0.00529 (12) | −0.00033 (9) | 0.00050 (9) | −0.00083 (8) |
Pr3 | 0.00630 (12) | 0.00650 (12) | 0.00748 (12) | −0.00045 (7) | −0.00114 (9) | 0.00172 (9) |
Si1 | 0.0074 (5) | 0.0078 (6) | 0.0056 (6) | −0.0011 (4) | −0.0004 (4) | 0.0001 (5) |
Si2 | 0.0066 (5) | 0.0074 (6) | 0.0094 (6) | −0.0018 (4) | −0.0012 (5) | 0.0007 (5) |
Pr1—Pr2i | 3.4914 (4) | Pr2—Pr3xi | 3.9156 (3) |
Pr1—Pr2ii | 3.5319 (4) | Pr2—Si1xi | 3.0641 (13) |
Pr1—Pr2iii | 3.5319 (4) | Pr2—Si1i | 3.1005 (14) |
Pr1—Pr2iv | 3.4914 (4) | Pr2—Si1xii | 3.0668 (14) |
Pr1—Pr3v | 3.6423 (3) | Pr2—Si2 | 2.9480 (13) |
Pr1—Pr3vi | 3.6423 (3) | Pr2—Si2xi | 2.9737 (13) |
Pr1—Si1vii | 3.1756 (13) | Pr2—Si2i | 3.0730 (13) |
Pr1—Si1viii | 3.0985 (13) | Pr3—Pr3ii | 4.0074 (2) |
Pr1—Si1 | 3.0985 (13) | Pr3—Si1xiii | 3.1554 (13) |
Pr1—Si1ix | 3.1756 (13) | Pr3—Si1xii | 3.3434 (12) |
Pr1—Si2ii | 3.1780 (13) | Pr3—Si1xiv | 3.1957 (12) |
Pr1—Si2iii | 3.1780 (13) | Pr3—Si2xiii | 3.2566 (12) |
Pr2—Pr2i | 3.9561 (6) | Pr3—Si2xii | 3.1708 (12) |
Pr2—Pr3vii | 3.9414 (4) | Pr3—Si2 | 3.1442 (12) |
Pr2—Pr3x | 3.9717 (3) | Si1—Si2 | 2.4738 (16) |
Pr2i—Pr1—Pr2iv | 71.331 (11) | Si2xi—Pr2—Si2i | 124.47 (4) |
Pr2iii—Pr1—Pr2ii | 68.120 (11) | Pr1xvi—Pr3—Pr1xii | 97.461 (6) |
Pr2iv—Pr1—Pr2ii | 176.841 (6) | Pr1xvi—Pr3—Pr2x | 99.525 (8) |
Pr2i—Pr1—Pr2iii | 176.841 (6) | Pr1xii—Pr3—Pr2xvii | 158.527 (9) |
Pr2i—Pr1—Pr2ii | 110.343 (4) | Pr1xvi—Pr3—Pr2xiii | 136.554 (9) |
Pr2iv—Pr1—Pr2iii | 110.343 (4) | Pr1xii—Pr3—Pr2x | 97.821 (7) |
Pr2iv—Pr1—Pr3v | 109.131 (9) | Pr1xii—Pr3—Pr2xiii | 99.441 (7) |
Pr2iii—Pr1—Pr3vi | 74.025 (6) | Pr1xvi—Pr3—Pr2xvii | 102.639 (8) |
Pr2i—Pr1—Pr3v | 70.258 (6) | Pr1xvi—Pr3—Pr3ii | 98.905 (6) |
Pr2ii—Pr1—Pr3v | 74.025 (6) | Pr1xii—Pr3—Pr3ii | 56.190 (4) |
Pr2ii—Pr1—Pr3vi | 106.588 (8) | Pr2xiii—Pr3—Pr2xvii | 60.464 (9) |
Pr2i—Pr1—Pr3vi | 109.131 (9) | Pr2xvii—Pr3—Pr2x | 86.316 (6) |
Pr2iv—Pr1—Pr3vi | 70.258 (6) | Pr2xiii—Pr3—Pr2x | 117.252 (7) |
Pr2iii—Pr1—Pr3v | 106.588 (8) | Pr2x—Pr3—Pr3ii | 149.882 (8) |
Pr3vi—Pr1—Pr3v | 179.290 (14) | Pr2xvii—Pr3—Pr3ii | 112.494 (8) |
Si1—Pr1—Pr2iii | 122.55 (3) | Pr2xiii—Pr3—Pr3ii | 60.158 (7) |
Si1viii—Pr1—Pr2i | 127.07 (3) | Si1xii—Pr3—Pr1xvi | 89.84 (2) |
Si1—Pr1—Pr2ii | 54.63 (3) | Si1xiv—Pr3—Pr1xii | 54.18 (2) |
Si1ix—Pr1—Pr2iii | 128.63 (2) | Si1xiii—Pr3—Pr1xvi | 55.14 (2) |
Si1ix—Pr1—Pr2iv | 54.47 (2) | Si1xii—Pr3—Pr1xii | 51.84 (2) |
Si1—Pr1—Pr2i | 55.75 (3) | Si1xiii—Pr3—Pr1xii | 144.17 (3) |
Si1vii—Pr1—Pr2iv | 54.52 (2) | Si1xiv—Pr3—Pr1xvi | 53.40 (2) |
Si1viii—Pr1—Pr2iii | 54.63 (3) | Si1xiii—Pr3—Pr2xiii | 89.98 (2) |
Si1ix—Pr1—Pr2i | 54.52 (2) | Si1xiv—Pr3—Pr2xiii | 108.89 (3) |
Si1vii—Pr1—Pr2iii | 124.06 (2) | Si1xii—Pr3—Pr2xvii | 134.80 (2) |
Si1vii—Pr1—Pr2i | 54.47 (2) | Si1xiv—Pr3—Pr2x | 129.63 (3) |
Si1—Pr1—Pr2iv | 127.07 (3) | Si1xii—Pr3—Pr2xiii | 131.45 (2) |
Si1viii—Pr1—Pr2ii | 122.55 (3) | Si1xiii—Pr3—Pr2xvii | 50.33 (3) |
Si1viii—Pr1—Pr2iv | 55.75 (3) | Si1xii—Pr3—Pr2x | 48.60 (2) |
Si1ix—Pr1—Pr2ii | 124.06 (2) | Si1xiii—Pr3—Pr2x | 108.41 (2) |
Si1vii—Pr1—Pr2ii | 128.63 (2) | Si1xiv—Pr3—Pr2xvii | 136.01 (3) |
Si1—Pr1—Pr3vi | 124.12 (2) | Si1xiii—Pr3—Pr3ii | 101.66 (2) |
Si1viii—Pr1—Pr3v | 124.12 (2) | Si1xii—Pr3—Pr3ii | 108.02 (2) |
Si1vii—Pr1—Pr3v | 54.62 (2) | Si1xiv—Pr3—Pr3ii | 50.43 (2) |
Si1viii—Pr1—Pr3vi | 55.90 (2) | Si1xiv—Pr3—Si1xii | 85.949 (17) |
Si1ix—Pr1—Pr3v | 124.76 (3) | Si1xiii—Pr3—Si1xii | 137.237 (18) |
Si1ix—Pr1—Pr3vi | 54.62 (2) | Si1xiii—Pr3—Si1xiv | 90.036 (12) |
Si1vii—Pr1—Pr3vi | 124.76 (3) | Si1xiv—Pr3—Si2xiii | 90.54 (3) |
Si1—Pr1—Pr3v | 55.90 (2) | Si1xiii—Pr3—Si2xiii | 45.35 (3) |
Si1—Pr1—Si1vii | 91.45 (4) | Si1xiii—Pr3—Si2xii | 92.74 (3) |
Si1viii—Pr1—Si1ix | 91.45 (4) | Si2xii—Pr3—Pr1xii | 87.19 (2) |
Si1—Pr1—Si1ix | 90.57 (2) | Si2—Pr3—Pr1xii | 54.53 (2) |
Si1viii—Pr1—Si1vii | 90.57 (2) | Si2—Pr3—Pr1xvi | 145.87 (2) |
Si1—Pr1—Si1viii | 177.18 (5) | Si2xiii—Pr3—Pr1xii | 123.76 (2) |
Si1ix—Pr1—Si1vii | 88.74 (5) | Si2xiii—Pr3—Pr1xvi | 90.26 (2) |
Si1vii—Pr1—Si2ii | 178.20 (3) | Si2xii—Pr3—Pr1xvi | 55.08 (2) |
Si1ix—Pr1—Si2ii | 92.22 (3) | Si2xiii—Pr3—Pr2xvii | 49.43 (2) |
Si1vii—Pr1—Si2iii | 92.22 (3) | Si2xiii—Pr3—Pr2xiii | 47.45 (2) |
Si1—Pr1—Si2ii | 90.07 (3) | Si2xiii—Pr3—Pr2x | 135.71 (2) |
Si1ix—Pr1—Si2iii | 178.20 (3) | Si2xii—Pr3—Pr2xiii | 164.53 (2) |
Si1—Pr1—Si2iii | 87.88 (3) | Si2—Pr3—Pr2xiii | 48.31 (2) |
Si1viii—Pr1—Si2iii | 90.07 (3) | Si2—Pr3—Pr2xvii | 103.99 (2) |
Si1viii—Pr1—Si2ii | 87.88 (3) | Si2xii—Pr3—Pr2xvii | 110.50 (2) |
Si2iii—Pr1—Pr2ii | 54.20 (2) | Si2—Pr3—Pr2x | 103.11 (2) |
Si2iii—Pr1—Pr2iv | 127.29 (2) | Si2xii—Pr3—Pr2x | 47.59 (2) |
Si2ii—Pr1—Pr2ii | 51.80 (2) | Si2xiii—Pr3—Pr3ii | 67.57 (2) |
Si2iii—Pr1—Pr2i | 125.04 (2) | Si2—Pr3—Pr3ii | 50.90 (2) |
Si2ii—Pr1—Pr2iv | 125.04 (2) | Si2xii—Pr3—Pr3ii | 133.74 (2) |
Si2ii—Pr1—Pr2iii | 54.20 (2) | Si2xii—Pr3—Si1xiv | 86.34 (3) |
Si2iii—Pr1—Pr2iii | 51.80 (2) | Si2—Pr3—Si1xii | 86.35 (3) |
Si2ii—Pr1—Pr2i | 127.29 (2) | Si2xiii—Pr3—Si1xii | 175.55 (3) |
Si2iii—Pr1—Pr3vi | 125.73 (2) | Si2xii—Pr3—Si1xii | 44.54 (3) |
Si2ii—Pr1—Pr3vi | 54.90 (2) | Si2—Pr3—Si1xiv | 92.48 (3) |
Si2ii—Pr1—Pr3v | 125.73 (2) | Si2—Pr3—Si1xiii | 136.40 (3) |
Si2iii—Pr1—Pr3v | 54.90 (2) | Si2—Pr3—Si2xiii | 91.079 (17) |
Si2iii—Pr1—Si2ii | 86.85 (5) | Si2xii—Pr3—Si2xiii | 138.014 (18) |
Pr1xv—Pr2—Pr1xii | 103.710 (6) | Si2—Pr3—Si2xii | 130.86 (2) |
Pr1xii—Pr2—Pr2i | 55.940 (5) | Pr1—Si1—Pr1xvii | 123.37 (4) |
Pr1xv—Pr2—Pr2i | 140.135 (10) | Pr1—Si1—Pr2i | 68.56 (3) |
Pr1xv—Pr2—Pr3vii | 102.847 (8) | Pr1—Si1—Pr3ii | 70.13 (2) |
Pr1xv—Pr2—Pr3x | 106.888 (8) | Pr1xvii—Si1—Pr3ii | 134.03 (4) |
Pr1xii—Pr2—Pr3xi | 106.191 (8) | Pr1xvii—Si1—Pr3v | 71.14 (3) |
Pr1xii—Pr2—Pr3vii | 105.646 (8) | Pr1—Si1—Pr3v | 70.70 (3) |
Pr1xii—Pr2—Pr3x | 117.969 (7) | Pr1—Si1—Pr3xi | 136.94 (4) |
Pr1xv—Pr2—Pr3xi | 149.920 (8) | Pr2xiii—Si1—Pr1xvii | 68.02 (3) |
Pr2i—Pr2—Pr3x | 112.953 (9) | Pr2ii—Si1—Pr1 | 69.90 (3) |
Pr3vii—Pr2—Pr2i | 59.445 (6) | Pr2xiii—Si1—Pr1 | 139.92 (4) |
Pr3xi—Pr2—Pr2i | 60.092 (6) | Pr2ii—Si1—Pr1xvii | 67.99 (3) |
Pr3xi—Pr2—Pr3x | 61.068 (5) | Pr2i—Si1—Pr1xvii | 141.38 (4) |
Pr3xi—Pr2—Pr3vii | 65.880 (8) | Pr2xiii—Si1—Pr2i | 129.66 (4) |
Pr3vii—Pr2—Pr3x | 117.851 (7) | Pr2ii—Si1—Pr2i | 138.39 (4) |
Si1xi—Pr2—Pr1xv | 57.51 (2) | Pr2xiii—Si1—Pr2ii | 83.22 (3) |
Si1i—Pr2—Pr1xii | 96.00 (2) | Pr2xiii—Si1—Pr3xi | 82.63 (3) |
Si1xii—Pr2—Pr1xii | 55.47 (2) | Pr2xiii—Si1—Pr3ii | 76.47 (3) |
Si1xii—Pr2—Pr1xv | 57.49 (2) | Pr2ii—Si1—Pr3xi | 138.21 (4) |
Si1i—Pr2—Pr1xv | 55.69 (2) | Pr2ii—Si1—Pr3v | 87.20 (3) |
Si1xi—Pr2—Pr1xii | 147.18 (3) | Pr2ii—Si1—Pr3ii | 79.97 (3) |
Si1xii—Pr2—Pr2i | 111.25 (2) | Pr2i—Si1—Pr3xi | 78.10 (3) |
Si1xi—Pr2—Pr2i | 155.46 (3) | Pr2i—Si1—Pr3ii | 84.10 (3) |
Si1i—Pr2—Pr2i | 90.03 (3) | Pr2i—Si1—Pr3v | 81.41 (3) |
Si1xi—Pr2—Pr3vii | 104.88 (3) | Pr2xiii—Si1—Pr3v | 138.72 (4) |
Si1xi—Pr2—Pr3x | 54.93 (2) | Pr3xi—Si1—Pr1xvii | 70.24 (3) |
Si1i—Pr2—Pr3x | 145.54 (2) | Pr3xi—Si1—Pr3v | 78.24 (3) |
Si1i—Pr2—Pr3vii | 51.57 (2) | Pr3xi—Si1—Pr3ii | 133.50 (4) |
Si1xi—Pr2—Pr3xi | 97.03 (3) | Pr3v—Si1—Pr3ii | 140.82 (4) |
Si1xii—Pr2—Pr3x | 101.67 (2) | Si2—Si1—Pr1 | 116.82 (5) |
Si1xii—Pr2—Pr3xi | 147.77 (2) | Si2—Si1—Pr1xvii | 119.66 (5) |
Si1i—Pr2—Pr3xi | 117.17 (2) | Si2—Si1—Pr2xiii | 63.92 (4) |
Si1xii—Pr2—Pr3vii | 140.10 (2) | Si2—Si1—Pr2ii | 135.25 (5) |
Si1xii—Pr2—Si1i | 92.601 (18) | Si2—Si1—Pr2i | 65.79 (4) |
Si1xi—Pr2—Si1i | 93.56 (3) | Si2—Si1—Pr3v | 137.54 (6) |
Si1xi—Pr2—Si1xii | 92.85 (4) | Si2—Si1—Pr3ii | 64.03 (4) |
Si1xi—Pr2—Si2i | 140.79 (3) | Si2—Si1—Pr3xi | 69.49 (4) |
Si1xii—Pr2—Si2i | 90.38 (3) | Pr1xii—Si2—Pr3xi | 135.69 (4) |
Si2i—Pr2—Pr1xv | 92.68 (2) | Pr2—Si2—Pr1xii | 70.30 (3) |
Si2—Pr2—Pr1xii | 57.90 (2) | Pr2xiii—Si2—Pr1xii | 141.97 (4) |
Si2xi—Pr2—Pr1xii | 158.04 (2) | Pr2i—Si2—Pr1xii | 68.78 (3) |
Si2i—Pr2—Pr1xii | 57.02 (2) | Pr2—Si2—Pr2xiii | 132.15 (4) |
Si2—Pr2—Pr1xv | 152.08 (2) | Pr2—Si2—Pr2i | 82.12 (3) |
Si2xi—Pr2—Pr1xv | 98.16 (2) | Pr2xiii—Si2—Pr2i | 134.64 (4) |
Si2xi—Pr2—Pr2i | 107.11 (2) | Pr2xiii—Si2—Pr3ii | 80.47 (3) |
Si2—Pr2—Pr2i | 50.30 (2) | Pr2xiii—Si2—Pr3xi | 82.34 (3) |
Si2i—Pr2—Pr2i | 47.57 (2) | Pr2—Si2—Pr3ii | 140.09 (4) |
Si2i—Pr2—Pr3vii | 53.61 (2) | Pr2i—Si2—Pr3ii | 87.54 (3) |
Si2xi—Pr2—Pr3x | 51.94 (2) | Pr2—Si2—Pr3xi | 78.08 (3) |
Si2xi—Pr2—Pr3xi | 52.15 (2) | Pr2i—Si2—Pr3xi | 76.97 (3) |
Si2xi—Pr2—Pr3vii | 70.89 (2) | Pr2xiii—Si2—Pr3 | 79.53 (3) |
Si2i—Pr2—Pr3xi | 100.75 (2) | Pr2—Si2—Pr3 | 85.15 (3) |
Si2—Pr2—Pr3xi | 54.47 (2) | Pr2i—Si2—Pr3 | 140.56 (4) |
Si2i—Pr2—Pr3x | 160.33 (3) | Pr3—Si2—Pr1xii | 71.78 (3) |
Si2—Pr2—Pr3x | 70.64 (3) | Pr3ii—Si2—Pr1xii | 70.02 (3) |
Si2—Pr2—Pr3vii | 102.52 (2) | Pr3—Si2—Pr3xi | 136.07 (4) |
Si2—Pr2—Si1xii | 95.16 (3) | Pr3—Si2—Pr3ii | 78.78 (3) |
Si2—Pr2—Si1i | 139.57 (4) | Pr3ii—Si2—Pr3xi | 136.58 (4) |
Si2i—Pr2—Si1i | 47.24 (3) | Si1—Si2—Pr1xii | 121.26 (5) |
Si2xi—Pr2—Si1xii | 140.11 (3) | Si1—Si2—Pr2i | 66.96 (4) |
Si2xi—Pr2—Si1i | 97.97 (3) | Si1—Si2—Pr2xiii | 67.74 (4) |
Si2xi—Pr2—Si1xi | 48.35 (3) | Si1—Si2—Pr2 | 135.86 (5) |
Si2—Pr2—Si1xi | 125.48 (3) | Si1—Si2—Pr3ii | 71.43 (4) |
Si2—Pr2—Si2xi | 100.995 (18) | Si1—Si2—Pr3 | 138.49 (5) |
Si2—Pr2—Si2i | 93.03 (4) | Si1—Si2—Pr3xi | 65.16 (4) |
Symmetry codes: (i) −y+1, −x+1, −z+1/2; (ii) −y+3/2, x+1/2, z+1/4; (iii) x+1/2, −y+3/2, −z+3/4; (iv) −x+1, −y+1, z+1/2; (v) −y+2, −x+1, −z+1/2; (vi) −x+1, −y+2, z+1/2; (vii) −y+3/2, x−1/2, z+1/4; (viii) y, x, −z+1; (ix) x−1/2, −y+3/2, −z+3/4; (x) y, x, −z; (xi) −x+3/2, y−1/2, −z+1/4; (xii) y−1/2, −x+3/2, z−1/4; (xiii) −x+3/2, y+1/2, −z+1/4; (xiv) −y+1, −x+2, −z+1/2; (xv) −x+1, −y+1, z−1/2; (xvi) −x+1, −y+2, z−1/2; (xvii) y+1/2, −x+3/2, z−1/4. |
Nd5Si4 | Dx = 6.045 Mg m−3 |
Mr = 833.56 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, P41212 | Cell parameters from 3985 reflections |
Hall symbol: P 4abw 2nw | θ = 3.8–30.4° |
a = 7.8644 (2) Å | µ = 28.27 mm−1 |
c = 14.8085 (5) Å | T = 223 K |
V = 915.89 (6) Å3 | Plate, metallic gray |
Z = 4 | 0.12 × 0.09 × 0.07 mm |
F(000) = 1424 |
XtaLAB AFC12 (RINC): Kappa dual offset/far diffractometer | 1238 independent reflections |
Radiation source: micro-focus sealed X-ray tube | 1203 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.032 |
Detector resolution: 5.8140 pixels mm-1 | θmax = 30.2°, θmin = 3.7° |
ω scans | h = −11→10 |
Absorption correction: analytical [CrysAlisPro (Rigaku OD, 2019) based on Clark & Reid (1995)] | k = −10→10 |
Tmin = 0.561, Tmax = 0.702 | l = −20→19 |
6054 measured reflections |
Refinement on F2 | w = 1/[σ2(Fo2) + 0.4858P] where P = (Fo2 + 2Fc2)/3 |
Least-squares matrix: full | (Δ/σ)max = 0.001 |
R[F2 > 2σ(F2)] = 0.015 | Δρmax = 1.10 e Å−3 |
wR(F2) = 0.028 | Δρmin = −0.71 e Å−3 |
S = 1.09 | Extinction correction: SHELXL (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
1238 reflections | Extinction coefficient: 0.00090 (6) |
43 parameters | Absolute structure: Flack x determined using 422 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
0 restraints | Absolute structure parameter: −0.01 (3) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Nd1 | 0.81184 (4) | 0.81184 (4) | 0.500000 | 0.00637 (9) | |
Nd2 | 0.51490 (3) | 0.36933 (4) | 0.12498 (2) | 0.00518 (7) | |
Nd3 | 0.51034 (4) | 0.87021 (4) | 0.04676 (2) | 0.00649 (7) | |
Si1 | 0.9274 (2) | 0.7098 (2) | 0.30921 (10) | 0.0060 (3) | |
Si2 | 0.7003 (2) | 0.6636 (2) | 0.19543 (10) | 0.0078 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Nd1 | 0.00630 (11) | 0.00630 (11) | 0.00652 (17) | −0.00026 (13) | 0.00064 (11) | −0.00064 (11) |
Nd2 | 0.00538 (14) | 0.00534 (14) | 0.00483 (12) | 0.00002 (12) | 0.00035 (11) | −0.00097 (10) |
Nd3 | 0.00617 (15) | 0.00631 (14) | 0.00700 (13) | −0.00027 (9) | −0.00098 (11) | 0.00152 (11) |
Si1 | 0.0060 (7) | 0.0066 (7) | 0.0054 (6) | −0.0007 (5) | 0.0001 (5) | 0.0001 (6) |
Si2 | 0.0069 (7) | 0.0073 (7) | 0.0093 (6) | −0.0016 (5) | −0.0015 (6) | 0.0017 (6) |
Nd1—Nd2i | 3.4725 (5) | Nd2—Nd3vii | 3.9061 (4) |
Nd1—Nd2ii | 3.5021 (5) | Nd2—Si1x | 3.0366 (16) |
Nd1—Nd2iii | 3.5021 (5) | Nd2—Si1i | 3.0848 (17) |
Nd1—Nd2iv | 3.4725 (5) | Nd2—Si1xii | 3.0436 (17) |
Nd1—Nd3v | 3.6265 (3) | Nd2—Si2 | 2.9272 (17) |
Nd1—Nd3vi | 3.6265 (3) | Nd2—Si2x | 2.9533 (17) |
Nd1—Si1vii | 3.1528 (16) | Nd2—Si2i | 3.0565 (15) |
Nd1—Si1viii | 3.0744 (15) | Nd3—Nd3xii | 3.9752 (2) |
Nd1—Si1 | 3.0744 (15) | Nd3—Si1xiii | 3.1359 (15) |
Nd1—Si1ix | 3.1528 (16) | Nd3—Si1xii | 3.3315 (14) |
Nd1—Si2ii | 3.1661 (16) | Nd3—Si1xiv | 3.1748 (15) |
Nd1—Si2iii | 3.1661 (16) | Nd3—Si2xiii | 3.2425 (15) |
Nd2—Nd2i | 3.9202 (7) | Nd3—Si2xii | 3.1619 (16) |
Nd2—Nd3x | 3.9094 (4) | Nd3—Si2 | 3.1177 (14) |
Nd2—Nd3xi | 3.9378 (4) | Si1—Si2 | 2.482 (2) |
Nd2i—Nd1—Nd2iv | 71.144 (14) | Si2x—Nd2—Si2i | 123.86 (5) |
Nd2iii—Nd1—Nd2ii | 68.070 (13) | Nd1xvi—Nd3—Nd1xii | 97.355 (7) |
Nd2iv—Nd1—Nd2ii | 177.032 (7) | Nd1xvi—Nd3—Nd2xi | 99.740 (9) |
Nd2i—Nd1—Nd2iii | 177.032 (7) | Nd1xii—Nd3—Nd2xiii | 99.322 (9) |
Nd2i—Nd1—Nd2ii | 110.453 (5) | Nd1xvi—Nd3—Nd2xvii | 102.777 (9) |
Nd2iv—Nd1—Nd2iii | 110.453 (5) | Nd1xii—Nd3—Nd2xi | 97.621 (8) |
Nd2iv—Nd1—Nd3v | 70.374 (8) | Nd1xii—Nd3—Nd2xvii | 158.298 (11) |
Nd2iii—Nd1—Nd3vi | 106.665 (10) | Nd1xvi—Nd3—Nd2xiii | 136.478 (12) |
Nd2i—Nd1—Nd3v | 108.985 (11) | Nd1xvi—Nd3—Nd3xii | 57.694 (6) |
Nd2ii—Nd1—Nd3v | 106.665 (10) | Nd1xii—Nd3—Nd3xii | 137.385 (10) |
Nd2ii—Nd1—Nd3vi | 73.978 (8) | Nd2xvii—Nd3—Nd2xiii | 60.212 (10) |
Nd2i—Nd1—Nd3vi | 70.374 (8) | Nd2xiii—Nd3—Nd2xi | 117.333 (8) |
Nd2iv—Nd1—Nd3vi | 108.985 (11) | Nd2xvii—Nd3—Nd2xi | 86.968 (8) |
Nd2iii—Nd1—Nd3v | 73.978 (8) | Nd2xi—Nd3—Nd3xii | 59.212 (7) |
Nd3vi—Nd1—Nd3v | 179.256 (17) | Nd2xiii—Nd3—Nd3xii | 122.770 (9) |
Si1—Nd1—Nd2iii | 122.55 (4) | Nd2xvii—Nd3—Nd3xii | 62.562 (7) |
Si1viii—Nd1—Nd2i | 126.97 (4) | Si1xii—Nd3—Nd1xvi | 89.95 (3) |
Si1—Nd1—Nd2ii | 54.67 (3) | Si1xiv—Nd3—Nd1xii | 54.16 (3) |
Si1ix—Nd1—Nd2iii | 128.53 (3) | Si1xiii—Nd3—Nd1xvi | 55.00 (3) |
Si1ix—Nd1—Nd2iv | 54.30 (3) | Si1xii—Nd3—Nd1xii | 51.72 (3) |
Si1—Nd1—Nd2i | 55.82 (3) | Si1xiii—Nd3—Nd1xii | 143.78 (3) |
Si1vii—Nd1—Nd2iv | 54.44 (3) | Si1xiv—Nd3—Nd1xvi | 53.25 (3) |
Si1viii—Nd1—Nd2iii | 54.67 (3) | Si1xiii—Nd3—Nd2xvii | 50.52 (3) |
Si1ix—Nd1—Nd2i | 54.44 (3) | Si1xiv—Nd3—Nd2xvii | 135.69 (3) |
Si1vii—Nd1—Nd2iii | 124.35 (3) | Si1xii—Nd3—Nd2xiii | 131.30 (3) |
Si1vii—Nd1—Nd2i | 54.30 (3) | Si1xiv—Nd3—Nd2xi | 129.50 (3) |
Si1—Nd1—Nd2iv | 126.97 (4) | Si1xii—Nd3—Nd2xvii | 135.35 (3) |
Si1viii—Nd1—Nd2ii | 122.55 (4) | Si1xiii—Nd3—Nd2xiii | 90.04 (3) |
Si1viii—Nd1—Nd2iv | 55.82 (3) | Si1xii—Nd3—Nd2xi | 48.50 (3) |
Si1ix—Nd1—Nd2ii | 124.35 (3) | Si1xiii—Nd3—Nd2xi | 108.97 (3) |
Si1vii—Nd1—Nd2ii | 128.53 (3) | Si1xiv—Nd3—Nd2xiii | 108.81 (3) |
Si1—Nd1—Nd3vi | 55.83 (3) | Si1xiii—Nd3—Nd3xii | 51.39 (3) |
Si1viii—Nd1—Nd3v | 55.83 (3) | Si1xii—Nd3—Nd3xii | 91.19 (3) |
Si1vii—Nd1—Nd3v | 124.78 (3) | Si1xiv—Nd3—Nd3xii | 110.85 (3) |
Si1viii—Nd1—Nd3vi | 124.19 (3) | Si1xiv—Nd3—Si1xii | 85.88 (2) |
Si1ix—Nd1—Nd3v | 54.57 (3) | Si1xiii—Nd3—Si1xii | 137.46 (2) |
Si1ix—Nd1—Nd3vi | 124.78 (3) | Si1xiii—Nd3—Si1xiv | 89.678 (15) |
Si1vii—Nd1—Nd3vi | 54.57 (3) | Si1xiv—Nd3—Si2xiii | 90.11 (4) |
Si1—Nd1—Nd3v | 124.19 (3) | Si1xiii—Nd3—Si2xiii | 45.76 (4) |
Si1—Nd1—Si1vii | 91.21 (4) | Si1xiii—Nd3—Si2xii | 92.67 (4) |
Si1viii—Nd1—Si1ix | 91.21 (4) | Si2xii—Nd3—Nd1xii | 87.36 (3) |
Si1—Nd1—Si1ix | 90.79 (3) | Si2—Nd3—Nd1xii | 54.76 (3) |
Si1viii—Nd1—Si1vii | 90.79 (3) | Si2—Nd3—Nd1xvi | 146.00 (3) |
Si1—Nd1—Si1viii | 177.21 (7) | Si2xiii—Nd3—Nd1xii | 123.04 (3) |
Si1ix—Nd1—Si1vii | 88.51 (6) | Si2xiii—Nd3—Nd1xvi | 90.38 (3) |
Si1vii—Nd1—Si2ii | 178.58 (4) | Si2xii—Nd3—Nd1xvi | 55.09 (3) |
Si1ix—Nd1—Si2ii | 92.27 (4) | Si2xiii—Nd3—Nd2xiii | 47.19 (3) |
Si1vii—Nd1—Si2iii | 92.27 (4) | Si2xiii—Nd3—Nd2xvii | 49.57 (3) |
Si1—Nd1—Si2ii | 89.96 (4) | Si2xiii—Nd3—Nd2xi | 136.52 (3) |
Si1ix—Nd1—Si2iii | 178.58 (4) | Si2xii—Nd3—Nd2xvii | 110.79 (3) |
Si1—Nd1—Si2iii | 88.01 (4) | Si2—Nd3—Nd2xvii | 103.54 (3) |
Si1viii—Nd1—Si2iii | 89.96 (4) | Si2—Nd3—Nd2xiii | 48.09 (3) |
Si1viii—Nd1—Si2ii | 88.01 (4) | Si2xii—Nd3—Nd2xiii | 164.61 (3) |
Si2iii—Nd1—Nd2ii | 54.28 (3) | Si2—Nd3—Nd2xi | 102.77 (3) |
Si2iii—Nd1—Nd2iv | 127.09 (3) | Si2xii—Nd3—Nd2xi | 47.63 (3) |
Si2ii—Nd1—Nd2ii | 51.78 (3) | Si2xiii—Nd3—Nd3xii | 93.42 (3) |
Si2iii—Nd1—Nd2i | 125.25 (3) | Si2—Nd3—Nd3xii | 156.02 (3) |
Si2ii—Nd1—Nd2iv | 125.25 (3) | Si2xii—Nd3—Nd3xii | 50.23 (3) |
Si2ii—Nd1—Nd2iii | 54.28 (3) | Si2xii—Nd3—Si1xiv | 86.36 (4) |
Si2iii—Nd1—Nd2iii | 51.78 (3) | Si2—Nd3—Si1xii | 86.26 (4) |
Si2ii—Nd1—Nd2i | 127.09 (3) | Si2xiii—Nd3—Si1xii | 174.74 (4) |
Si2iii—Nd1—Nd3vi | 54.98 (3) | Si2xii—Nd3—Si1xii | 44.85 (4) |
Si2ii—Nd1—Nd3vi | 125.68 (3) | Si2—Nd3—Si1xiv | 92.77 (4) |
Si2ii—Nd1—Nd3v | 54.98 (3) | Si2—Nd3—Si1xiii | 136.26 (4) |
Si2iii—Nd1—Nd3v | 125.68 (3) | Si2—Nd3—Si2xiii | 90.54 (2) |
Si2iii—Nd1—Si2ii | 86.97 (6) | Si2xii—Nd3—Si2xiii | 138.34 (2) |
Nd1xv—Nd2—Nd1xii | 103.774 (8) | Si2—Nd3—Si2xii | 131.07 (3) |
Nd1xii—Nd2—Nd2i | 55.965 (6) | Nd1—Si1—Nd1xvii | 123.58 (5) |
Nd1xv—Nd2—Nd2i | 140.405 (13) | Nd1—Si1—Nd2i | 68.64 (3) |
Nd1xv—Nd2—Nd3x | 149.935 (9) | Nd1—Si1—Nd3ii | 70.00 (3) |
Nd1xv—Nd2—Nd3xi | 107.244 (10) | Nd1xvii—Si1—Nd3ii | 134.15 (5) |
Nd1xii—Nd2—Nd3vii | 106.182 (10) | Nd1xvii—Si1—Nd3vi | 71.13 (3) |
Nd1xii—Nd2—Nd3x | 106.111 (9) | Nd1—Si1—Nd3vi | 70.93 (3) |
Nd1xii—Nd2—Nd3xi | 117.604 (9) | Nd1—Si1—Nd3x | 136.75 (6) |
Nd1xv—Nd2—Nd3vii | 102.810 (9) | Nd2xiii—Si1—Nd1xvii | 68.23 (3) |
Nd2i—Nd2—Nd3xi | 112.321 (11) | Nd2ii—Si1—Nd1 | 69.84 (3) |
Nd3x—Nd2—Nd2i | 59.853 (7) | Nd2xiii—Si1—Nd1 | 139.62 (5) |
Nd3vii—Nd2—Nd2i | 59.937 (8) | Nd2ii—Si1—Nd1xvii | 68.14 (4) |
Nd3vii—Nd2—Nd3xi | 117.388 (8) | Nd2i—Si1—Nd1xvii | 141.48 (5) |
Nd3vii—Nd2—Nd3x | 65.627 (10) | Nd2xiii—Si1—Nd2i | 129.31 (5) |
Nd3x—Nd2—Nd3xi | 60.872 (7) | Nd2ii—Si1—Nd2i | 138.41 (5) |
Si1x—Nd2—Nd1xv | 57.47 (3) | Nd2xiii—Si1—Nd2ii | 83.28 (4) |
Si1i—Nd2—Nd1xii | 96.51 (3) | Nd2xiii—Si1—Nd3x | 83.05 (4) |
Si1xii—Nd2—Nd1xii | 55.49 (3) | Nd2xiii—Si1—Nd3ii | 76.24 (3) |
Si1xii—Nd2—Nd1xv | 57.42 (3) | Nd2ii—Si1—Nd3x | 138.55 (5) |
Si1i—Nd2—Nd1xv | 55.54 (3) | Nd2ii—Si1—Nd3vi | 87.22 (4) |
Si1x—Nd2—Nd1xii | 147.02 (3) | Nd2ii—Si1—Nd3ii | 80.06 (4) |
Si1xii—Nd2—Nd2i | 111.31 (3) | Nd2i—Si1—Nd3x | 77.79 (4) |
Si1x—Nd2—Nd2i | 155.46 (3) | Nd2i—Si1—Nd3ii | 83.83 (4) |
Si1i—Nd2—Nd2i | 90.59 (3) | Nd2i—Si1—Nd3vi | 81.65 (4) |
Si1x—Nd2—Nd3x | 97.14 (3) | Nd2xiii—Si1—Nd3vi | 138.92 (5) |
Si1x—Nd2—Nd3xi | 55.26 (3) | Nd3x—Si1—Nd1xvii | 70.43 (3) |
Si1i—Nd2—Nd3xi | 145.44 (3) | Nd3x—Si1—Nd3vi | 78.09 (3) |
Si1i—Nd2—Nd3x | 117.05 (3) | Nd3x—Si1—Nd3ii | 133.33 (5) |
Si1x—Nd2—Nd3vii | 104.58 (3) | Nd3vi—Si1—Nd3ii | 140.92 (5) |
Si1xii—Nd2—Nd3xi | 101.82 (3) | Si2—Si1—Nd1 | 116.71 (6) |
Si1xii—Nd2—Nd3vii | 140.39 (3) | Si2—Si1—Nd1xvii | 119.56 (6) |
Si1i—Nd2—Nd3vii | 51.69 (3) | Si2—Si1—Nd2xiii | 63.78 (5) |
Si1xii—Nd2—Nd3x | 147.88 (3) | Si2—Si1—Nd2ii | 135.29 (6) |
Si1xii—Nd2—Si1i | 92.69 (2) | Si2—Si1—Nd2i | 65.57 (5) |
Si1x—Nd2—Si1i | 93.26 (4) | Si2—Si1—Nd3vi | 137.48 (7) |
Si1x—Nd2—Si1xii | 92.72 (5) | Si2—Si1—Nd3ii | 63.95 (4) |
Si1x—Nd2—Si2i | 140.91 (4) | Si2—Si1—Nd3x | 69.39 (5) |
Si1xii—Nd2—Si2i | 90.60 (4) | Nd1xii—Si2—Nd3x | 135.36 (6) |
Si2i—Nd2—Nd1xv | 92.89 (3) | Nd2—Si2—Nd1xii | 70.04 (4) |
Si2—Nd2—Nd1xii | 58.18 (3) | Nd2xiii—Si2—Nd1xii | 142.04 (5) |
Si2x—Nd2—Nd1xii | 157.63 (3) | Nd2i—Si2—Nd1xii | 68.47 (3) |
Si2i—Nd2—Nd1xii | 57.24 (3) | Nd2—Si2—Nd2xiii | 133.24 (5) |
Si2—Nd2—Nd1xv | 151.99 (3) | Nd2—Si2—Nd2i | 81.83 (4) |
Si2x—Nd2—Nd1xv | 98.52 (3) | Nd2xiii—Si2—Nd2i | 134.00 (5) |
Si2x—Nd2—Nd2i | 106.53 (3) | Nd2xiii—Si2—Nd3ii | 80.09 (4) |
Si2—Nd2—Nd2i | 50.51 (3) | Nd2xiii—Si2—Nd3x | 82.54 (4) |
Si2i—Nd2—Nd2i | 47.66 (3) | Nd2—Si2—Nd3ii | 139.78 (6) |
Si2i—Nd2—Nd3x | 100.42 (3) | Nd2i—Si2—Nd3ii | 87.23 (4) |
Si2x—Nd2—Nd3xi | 52.28 (3) | Nd2—Si2—Nd3x | 78.46 (4) |
Si2x—Nd2—Nd3vii | 70.03 (3) | Nd2i—Si2—Nd3x | 76.59 (3) |
Si2x—Nd2—Nd3x | 51.78 (3) | Nd2xiii—Si2—Nd3 | 80.12 (4) |
Si2i—Nd2—Nd3vii | 53.85 (3) | Nd2—Si2—Nd3 | 85.51 (4) |
Si2—Nd2—Nd3vii | 102.94 (3) | Nd2i—Si2—Nd3 | 140.17 (6) |
Si2i—Nd2—Nd3xi | 159.76 (3) | Nd3—Si2—Nd1xii | 71.70 (3) |
Si2—Nd2—Nd3xi | 69.76 (3) | Nd3ii—Si2—Nd1xii | 69.93 (3) |
Si2—Nd2—Nd3x | 54.35 (3) | Nd3—Si2—Nd3x | 137.09 (5) |
Si2—Nd2—Si1xii | 95.25 (4) | Nd3—Si2—Nd3ii | 78.55 (4) |
Si2—Nd2—Si1i | 140.41 (4) | Nd3ii—Si2—Nd3x | 136.04 (5) |
Si2i—Nd2—Si1i | 47.67 (4) | Si1—Si2—Nd1xii | 120.80 (6) |
Si2x—Nd2—Si1xii | 140.61 (4) | Si1—Si2—Nd2i | 66.76 (5) |
Si2x—Nd2—Si1i | 97.55 (4) | Si1—Si2—Nd2xiii | 67.28 (5) |
Si2x—Nd2—Si1x | 48.93 (4) | Si1—Si2—Nd2 | 135.73 (6) |
Si2—Nd2—Si1x | 124.91 (4) | Si1—Si2—Nd3ii | 71.20 (5) |
Si2—Nd2—Si2x | 100.44 (2) | Si1—Si2—Nd3 | 138.40 (7) |
Si2—Nd2—Si2i | 93.45 (5) | Si1—Si2—Nd3x | 64.85 (5) |
Symmetry codes: (i) −y+1, −x+1, −z+1/2; (ii) −y+3/2, x+1/2, z+1/4; (iii) x+1/2, −y+3/2, −z+3/4; (iv) −x+1, −y+1, z+1/2; (v) −x+1, −y+2, z+1/2; (vi) −y+2, −x+1, −z+1/2; (vii) −y+3/2, x−1/2, z+1/4; (viii) y, x, −z+1; (ix) x−1/2, −y+3/2, −z+3/4; (x) −x+3/2, y−1/2, −z+1/4; (xi) y, x, −z; (xii) y−1/2, −x+3/2, z−1/4; (xiii) −x+3/2, y+1/2, −z+1/4; (xiv) −y+1, −x+2, −z+1/2; (xv) −x+1, −y+1, z−1/2; (xvi) −x+1, −y+2, z−1/2; (xvii) y+1/2, −x+3/2, z−1/4. |
Pr1—Pr2i | 3.4914 (4) | Pr1—Si1ix | 3.1756 (13) |
Pr1—Pr2ii | 3.5319 (4) | Pr1—Si2ii | 3.1780 (13) |
Pr1—Pr2iii | 3.5319 (4) | Pr1—Si2iii | 3.1780 (13) |
Pr1—Pr2iv | 3.4914 (4) | Pr2—Pr2i | 3.9561 (6) |
Pr1—Pr3v | 3.6423 (3) | Pr2—Pr3vii | 3.9414 (4) |
Pr1—Pr3vi | 3.6423 (3) | Pr2—Pr3x | 3.9717 (3) |
Pr1—Si1vii | 3.1756 (13) | Pr2—Pr3xi | 3.9156 (3) |
Pr1—Si1viii | 3.0985 (13) | Pr3—Pr3ii | 4.0074 (2) |
Pr1—Si1 | 3.0985 (13) | Si1—Si2 | 2.4738 (16) |
Symmetry codes: (i) -y+1, -x+1, -z+1/2; (ii) -y+3/2, x+1/2, z+1/4; (iii) x+1/2, -y+3/2, -z+3/4; (iv) -x+1, -y+1, z+1/2; (v) -y+2, -x+1, -z+1/2; (vi) -x+1, -y+2, z+1/2; (vii) -y+3/2, x-1/2, z+1/4; (viii) y, x, -z+1; (ix) x-1/2, -y+3/2, -z+3/4. |
Nd1—Nd2i | 3.4725 (5) | Nd1—Si1ix | 3.1528 (16) |
Nd1—Nd2ii | 3.5021 (5) | Nd1—Si2ii | 3.1661 (16) |
Nd1—Nd2iii | 3.5021 (5) | Nd1—Si2iii | 3.1661 (16) |
Nd1—Nd2iv | 3.4725 (5) | Nd2—Nd2i | 3.9202 (7) |
Nd1—Nd3v | 3.6265 (3) | Nd2—Nd3x | 3.9094 (4) |
Nd1—Nd3vi | 3.6265 (3) | Nd2—Nd3xi | 3.9378 (4) |
Nd1—Si1vii | 3.1528 (16) | Nd2—Nd3vii | 3.9061 (4) |
Nd1—Si1viii | 3.0744 (15) | Nd3—Nd3xii | 3.9752 (2) |
Nd1—Si1 | 3.0744 (15) | Si1—Si2 | 2.482 (2) |
Symmetry codes: (i) -y+1, -x+1, -z+1/2; (ii) -y+3/2, x+1/2, z+1/4; (iii) x+1/2, -y+3/2, -z+3/4; (iv) -x+1, -y+1, z+1/2; (v) -y+2, -x+1, -z+1/2; (vi) -x+1, -y+2, z+1/2; (vii) -y+3/2, x-1/2, z+1/4; (viii) y, x, -z+1; (ix) x-1/2, -y+3/2, -z+3/4. |
Acknowledgements
The authors gratefully thank the Instrumental Analysis Center of Yokohama National University for providing access to the single-crystal X-ray diffractometer.
Funding information
Funding for this research was provided by: JSPS Grant-in-Aid for Scientific Research (KAKENHI) (grant No. 18K049922 and 18K03536).
References
Aoki, R., Togawa, Y. & Ohara, S. (2018). Phys. Rev. B, 97, 214414. Web of Science CrossRef Google Scholar
Belsky, A., Hellenbrandt, M., Karen, V. L. & Luksch, P. (2002). Acta Cryst. B58, 364–369. Web of Science CrossRef CAS IUCr Journals Google Scholar
Cadogan, J. M., Ryan, D. H., Altounian, Z., Wang, H. B. & Swainson, I. P. (2002). J. Phys. Condens. Matter, 14, 7191–7200. Web of Science CrossRef ICSD CAS Google Scholar
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Eremenko, V. N., Meleshevich, K. A., Buyanov, Y. I. & Obushenko, I. M. (1984). Dokl. Akad. Nauk Ukr. SSR, Ser. A, 11, 80. Google Scholar
Gladyshevskii, R. E., Cenzual, K., Flack, H. D. & Parthé, E. (1993). Acta Cryst. B49, 468–474. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Mokra, I. R., Bodak, O. I. & Gladyshevskii, E. I. (1978). Dopovidi Akademiï Nauk Ukrains'koï RSR, Seriya A Fiziko-Mat. Tekh. Nauk, 1043–1045. Google Scholar
Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276. Web of Science CrossRef CAS IUCr Journals Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Raman, A. (1968). Trans. Indian Inst. Met. 21, 5–8. CAS Google Scholar
Rigaku OD (2019). CrysAlis PRO. Oxford Diffraction, Yarnton, England. Google Scholar
Roger, J., Babizhetskyy, V., Jardin, R., Halet, J. F. & Guérin, R. (2006). J. Alloys Compd. 415, 73–84. Web of Science CrossRef ICSD CAS Google Scholar
Sato, Y. J., Shimizu, Y., Nakamura, A., Homma, Y., Li, D., Maurya, A., Honda, F. & Aoki, D. (2018). J. Phys. Soc. Jpn, 87, 074701. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shukla, A., Kang, Y. B. & Pelton, A. D. (2009). Int. J. Mater. Res. 100, 208–217. Web of Science CrossRef CAS Google Scholar
Smith, G. S., Tharp, A. G. & Johnson, W. (1967). Acta Cryst. 22, 940–943. CrossRef ICSD IUCr Journals Web of Science Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, H. F., Rao, G. H., Chu, W. G., Liu, G. Y., Ouyang, Z. W. & Liang, J. K. (2002a). J. Alloys Compd. 334, 131–134. Web of Science CrossRef ICSD CAS Google Scholar
Yang, H. F., Rao, G. H., Chu, W. G., Liu, G. Y., Ouyang, Z. W. & Liang, J. K. (2002b). J. Alloys Compd. 339, 189–194. Web of Science CrossRef ICSD CAS Google Scholar
Yang, H. F., Rao, G. H., Liu, G. Y., Ouyang, Z. W., Liu, W. F., Feng, X. M., Chu, W. G. & Liang, J. K. (2002c). J. Alloys Compd. 346, 190–196. Web of Science CrossRef ICSD CAS Google Scholar
Yang, H. F., Rao, G. H., Liu, G. Y., Ouyang, Z. W., Liu, W. F., Feng, X. M., Chu, W. G. & Liang, J. K. (2003). J. Alloys Compd. 263, 146–153. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.