research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Intra­molecular 1,5-S⋯N σ-hole inter­action in (E)-N′-(pyridin-4-yl­methyl­­idene)thio­phene-2-carbohydrazide

CROSSMARK_Color_square_no_text.svg

aDepartment of Biochemistry, University of Missouri, Columbia, MO 65211, USA, and bDepartment of Chemistry, University of Missouri, Columbia, MO 65211, USA
*Correspondence e-mail: mossinev@missouri.edu

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 17 February 2020; accepted 3 March 2020; online 17 March 2020)

The title compound, C11H9N3OS, (I), crystallizes in the monoclinic space group P21/n. The mol­ecular conformation is nearly planar and features an intra­molecular chalcogen bond between the thio­phene S and the imine N atoms. Within the crystal, the strongest inter­actions between mol­ecules are the N—H⋯O hydrogen bonds, which organize them into inversion dimers. The dimers are linked through short C—H⋯N contacts and are stacked into layers propagating in the (001) plane. The crystal structure features ππ stacking between the pyridine aromatic ring and the azomethine double bond. The calculated energies of pairwise inter­molecular inter­actions within the stacks are considerably larger than those found for the inter­actions between the layers.

1. Chemical context

Hydrazones are a versatile group of organic structures that have been the subject of numerous studies in chemical (Barluenga & Valdés, 2011[Barluenga, J. & Valdés, C. (2011). Angew. Chem. Int. Ed. 50, 7486-7500.]), biomedical (Narang et al., 2012[Narang, R., Narasimhan, B. & Sharma, S. (2012). Curr. Med. Chem. 19, 569-612.]), and materials (Serbutoviez et al., 1995[Serbutoviez, C., Bosshard, C., Knoepfle, G., Wyss, P., Pretre, P., Guenter, P., Schenk, K., Solari, E. & Chapuis, G. (1995). Chem. Mater. 7, 1198-1206.]) sciences for decades. For example, hydrazone-based iron chelators have found applications as analytical reagents (Singh et al., 1982[Singh, R. B., Jain, P. & Singh, R. P. (1982). Talanta, 29, 77-84.]) and have been proposed for the treatment of bacterial, fungal, and protozoan infections (Narang et al., 2012[Narang, R., Narasimhan, B. & Sharma, S. (2012). Curr. Med. Chem. 19, 569-612.]; Rzhepishevska et al., 2014[Rzhepishevska, O., Hakobyan, S., Ekstrand-Hammarström, B., Nygren, Y., Karlsson, T., Bucht, A., Elofsson, M., Boily, J.-F. & Ramstedt, M. (2014). J. Inorg. Biochem. 138, 1-8.]), as well as health disorders involving alterations in iron metabolism, such as hemochromatosis (Jansová & Šimůnek, 2019[Jansová, H. & Šimůnek, T. (2019). Curr. Med. Chem. 26, 288-301.]), cancer (Lovejoy & Richardson, 2003[Lovejoy, D. B. & Richardson, D. R. (2003). Curr. Med. Chem. 10, 1035-1049.]), and neurodegenerative diseases (Richardson, 2004[Richardson, D. R. (2004). Ann. N. Y. Acad. Sci. 1012, 326-341.]). In addition, since iron has been identified as a critical co-factor of bacterial phenazine cytotoxicity to mammalian host cells (Mossine et al., 2016[Mossine, V. V., Waters, J. K., Chance, D. L. & Mawhinney, T. P. (2016). Toxicol. Sci. 154, 403-415.]), the application of efficient iron chelators to the infection sites could not only restrict proliferation of the pathogen but also protect the infected tissue from injury caused by toxic bacterial metabolites (Mossine et al., 2018[Mossine, V. V., Chance, D. L., Waters, J. K. & Mawhinney, T. P. (2018). Antimicrob. Agents Chemother. 62, e02349.]).

[Scheme 1]

As a part of our search for potent inhibitors of cytotoxic virulence factors from drug-resistant Pseudomonas aeruginosa, we have prepared 4-pyridine­carboxaldehyde 2-thienyl hydrazone (I), a structural analog of a series of hydrazide-hydrazones that have proved to be pharmacologically active in vivo. Here we report on the mol­ecular and crystal structures of (I), with an emphasis on the non-covalent inter­actions in the structure.

2. Structural commentary

The mol­ecular structure and atomic numbering are shown in Fig. 1[link]. The mol­ecule is essentially flat, with exception of the H2 and the thio­phene ring carbon and hydrogen atoms, which deviate from the mol­ecular plane by more than 0.1 Å; the dihedral angle between the planes formed by the pyridine and the thio­phene rings is only 8.28 (7)°. The configuration around the azomethine N1—C6 bond is trans with respect to C2 and N1, as would be expected for the structure. The conformation around the N2—C7 bond, with respect to the N1 and C8 atoms, is cis, however. Such a syn-periplanar conformation is unusual for aromatic hydrazide-hydrazones and indicates the presence of additional intra­molecular inter­actions that could stabilize the energetically unfavorable arrangement around the amide bond. Specifically, the inter­atomic S1⋯N1 distance is 2.7971 (11) Å, which is shorter than the sum of the van der Waals radii by 0.55 Å (Table 1[link]), thus indicating the presence of a chalcogen bond (Scilabra et al., 2019[Scilabra, P., Terraneo, G. & Resnati, G. (2019). Acc. Chem. Res. 52, 1313-1324.]). In addition, other geometric features of the mol­ecule are in concord with the definition (Aakeroy et al., 2019[Aakeroy, C. B., Bryce, D. L., Desiraju, G. R., Frontera, A., Legon, A. C., Nicotra, F., Rissanen, K., Scheiner, S., Terraneo, G., Metrangolo, P. & Resnati, G. (2019). Pure Appl. Chem. 91, 1889-1892.]) of the bond. The angle between the S1—C11 σ covalent bond and the S1⋯N1 suspect is 164.17 (5)°, which makes the latter an extension of the former. The S1⋯N1—C6 angle is 148.48 (8)°, the S1 donor is in the mol­ecular plane and approaches the N1 acceptor roughly along the axis of the lone pair. In addition, a comparison of the bond lengths in (I) and its structural analogues, 2-thio­phene carb­oxy­lic acid (Tiekink, 1989[Tiekink, E. R. T. (1989). Z. Kristallogr. 188, 307-310.]), 2-thio­phene carboxamide (Low et al., 2009[Low, J. N., Quesada, A., Santos, L. M. N. B. F., Schröder, B. & Gomes, L. R. (2009). J. Chem. Crystallogr. 39, 747-752.]), or 4-hy­droxy­benzaldehyde 2-thienylhydrazone (Li et al., 2010[Li, Y.-F., Jiang, J.-H. & Jian, F.-F. (2010). Acta Cryst. E66, o1719.]), which lack attractive non-covalent inter­actions at the sulfur atom, revealed that the S1—C11 bond in (I) is longer than similar bonds in the reference mol­ecules, by 0.01–0.02 Å. The chalcogen bond is believed to originate from attractive electrostatic inter­actions between regions of positive ESP of a donor, such as the S1 atom, and a lone pair (or a π region) of the acceptor, such as the N1 atom in (I). In thio­phene, two p-electrons of the sulfur atom participate in aromatic π-bonding, while another lone pair of p-electrons occupies the sp2 orbital, with the maximum of the electron density localized in the thio­phene ring plane. Nevertheless, there are regions of positive electrostatic potential, conventionally named σ-holes (Scilabra et al., 2019[Scilabra, P., Terraneo, G. & Resnati, G. (2019). Acc. Chem. Res. 52, 1313-1324.]), which are located opposite to the S—C covalent bonds. For illustrative purposes, we have calculated a distribution of the electrostatic potential over the promolecule isosurface of (I), which is shown in Fig. 2[link] and which exhibits one of the two σ-holes mapped to the surface.

Table 1
Non-covalent heteroatom inter­actions geometry (Å, °)

Hydrogen bonding        
D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.902 (18) 1.942 (18) 2.8376 (14) 171.8 (18)
C11—H11⋯N3ii 0.936 (19) 2.501 (18) 3.3664 (18) 153.9 (14)
Chalcogen bonding        
RChA     ChA RChA
C11—S1⋯N1     2.7971 (11) 164.17 (5)
Symmetry codes: (i) 1 − x, −y, −z; (ii) 2 − x, 2 − y, −z.
[Figure 1]
Figure 1
Atomic numbering and displacement ellipsoids at the 50% probability level for (I). The intra­molecular chalcogen bond is shown as a dotted line.
[Figure 2]
Figure 2
Electrostatic potential mapped on the promolecule 0.002 a.u. isosurface of (I), in the range −0.0750 to +0.0806 a.u., red indicates regions of negative ESP and blue indicates regions of positive ESP. The red arrow points at the region of negative ESP that is consistent with topography of aromatic p-electrons originating from the S1 atom and directed away from the mol­ecular plane. The blue arrow points at the region of positive ESP associated with electronegative S1 (σ-hole) and located within the mol­ecular plane. Calculations were done using a 6–311 G(d,p) basis set at the B3LYP level of theory.

3. Supra­molecular features

The title compound crystallizes in the monoclinic P21/n space group, with four equivalent mol­ecules per unit cell. The mol­ecules are organized pairwise as flat dimers (Fig. 3[link]), with two hydrogen bonds of the same N2—H2⋯O1 type (Table 1[link]), which are responsible for `holding' the dimers together. This hydrogen-bonding arrangement can be described in terms of the graph-set descriptor R22(8). An additional pair of the short C11—H11⋯N3 contacts links the dimers into mol­ecular sheets propagating in the [110] and [[\overline{1}][\overline{1}]0] directions. The inter­molecular contacts also include the ππ stacking between the pyridine aromatic ring and the azomethine double bond.

[Figure 3]
Figure 3
Hydrogen-bonded dimerization of (I).

To evaluate the contributions of these and other inter­molecular contacts to the energetics of the crystal lattice in (I), we calculated pairwise inter­action energies for all unique contacts found in the crystal structure. The results are shown in Fig. 4[link]. It follows from these data that electrostatic inter­actions within the dimers are the major contributors to the packing forces in the crystal of (I). The Crystal Explorer software (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]) provides a tool to illustrate the magnitude and directionality of the major inter­actions within a crystal structure, the energy frameworks builder (Turner et al., 2015[Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735-3738.]). Using the pairwise inter­action energies calculated for (I), we obtained energy framework diagrams for the contributions of electrostatic and dispersion forces, as well as for the total energy. The diagrams and crystal packing are shown in Fig. 5[link]. According to the diagrams, the main crystal packing forces are those that form sheets of the dimers, as well as stacks of the sheets. These stacks are organized in layers that are about 10 Å thick and run in parallel to (001). Inter­molecular contacts between mol­ecules located in neighboring layers are weak.

[Figure 4]
Figure 4
Inter­action energies in crystal structure of (I). (a), (b) Views of inter­actions between a central mol­ecule, shown as its Hirshfeld surface, and 14 mol­ecules that share the inter­action surfaces with the central mol­ecule. (c) Calculated energies (electrostatic, polarization, dispersion, repulsion, and total) of pairwise inter­actions between the central mol­ecule and those indicated by respective colors.
[Figure 5]
Figure 5
Energy frameworks for separate (a) electrostatic and (b) dispersion contributions to the (c) total pairwise inter­action energies. The cylinders link mol­ecular centroids, and the cylinder thickness is proportional to the magnitude of the energies (see Fig. 4[link]). For clarity, the cylinders corresponding to energies <5 kJ mol−1 are not shown. The directionality of the crystallographic axes is the same for all three diagrams.

4. Database survey

The crystal structures of three metal complexes, containing 4-pyridine­carboxaldehyde 2-thienylhydrazone coordinated to copper(I) tri­phenyl­phosphinate, have been published [CSD (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) refcodes CCDC 1401340, 1433202, 1433203; Gholivand et al., 2016[Gholivand, K., Farshadfer, K., Roe, S. M., Gholami, A. & Esrafili, M. D. (2016). CrystEngComm, 18, 2873-2884.]], but the crystal structure of the title compound as a single mol­ecule has not been reported previously. In the same paper, the copper complexes of 2-pyridine­carboxaldehyde 2-thienylhydrazone (CCDC 1433200) and 3-pyridine­carboxaldehyde 2-thienylhydrazone (CCDC 1433201) were also reported. In four complexes, mol­ecules of 3- or 4-pyridine­carboxaldehyde 2-thienylhydrazone act as monodentate ligands bound to the copper ion through the pyridine nitro­gens, are not ionized and do assume conformations close to that of free (I), thus suggesting that the intra­molecular chalcogen bonding is retained if coordination to the metal occurs via a remote part of the mol­ecule. In contrast, 2-pyridine­carboxaldehyde 2-thienylhydrazone was found to chelate Cu+ through the pyridine and the imine nitro­gen atoms, so that the chalcogen bonding between the thio­phene sulfur and the imine nitro­gen atoms was disabled. The dimer-forming hydrogen bonding did survive in the CCDC 1433201, 1433202 and 1433203 structures as well. Not only a coordinated metal ion, such as the aforementioned copper in CCDC 1433200, but also an opportunistic hydrogen bonding can disable the chalcogen bonding in 2-thio­phene­carb­oxy­lic acid-derived hydrazide-hydrazones. For instance, crystalline Schiff bases of 2-thio­phene­carb­oxy­lic acid hydrazide and 4-meth­oxy­benzaldehyde (Li & Jian, 2010[Li, Y.-F. & Jian, F.-F. (2010). Acta Cryst. E66, o1400.]), or 2-acetyl­pyridine (Christidis et al., 1995[Christidis, P. C., Tossidis, I. A. & Hondroudis, C. A. (1995). Z. Kristallogr. 210, 373.]) adopt conformations similar to (I), thus suggesting a general trend of 1,5-S⋯N chalcogen-bond formation in structures analogous to (I). In contrast, in hydrazones formed by condensation of 2-thio­phene­carb­oxy­lic acid hydrazide and 4-hy­droxy­benzaldehyde (Li et al., 2010[Li, Y.-F., Jiang, J.-H. & Jian, F.-F. (2010). Acta Cryst. E66, o1719.]) or 2-hy­droxy­aceto­phenone (Jiang, 2011[Jiang, J.-H. (2011). Acta Cryst. E67, o32.]; Singh et al., 2013[Singh, P., Singh, A. K. & Singh, V. P. (2013). Polyhedron, 65, 73-81.]), which have an additional hydrogen-bonding inter­action between the aromatic hydroxyl groups and the imine nitro­gen, the intra­molecular chalcogen bonding is switched to a weaker 1,4-S⋯Ocarbon­yl contact.

5. Synthesis and crystallization

To a suspension of 2-thio­phene­carb­oxy­lic acid hydrazide (711 mg, 5 mmol) in 15 mL of 70% aqueous EtOH were added 0.536 mg (471 µL, 5 mmol) of 4-pyridine­carboxaldehyde, and the reaction mixture was stirred for 2 h at 343 K. The resulting clear solution was brought to 277 K and left for two days to crystallize as colorless needles. Suitable crystals were then selected for subsequent diffraction studies.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H-atom coordinates were refined freely.

Table 2
Experimental details

Crystal data
Chemical formula C11H9N3OS
Mr 231.27
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 12.0600 (8), 4.4531 (3), 19.9528 (13)
β (°) 102.228 (2)
V3) 1047.24 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.29
Crystal size (mm) 0.49 × 0.04 × 0.01
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (AXScale; Bruker, 2016[Bruker (2016). APEX3, SAINT and AXScale. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.694, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 25531, 3767, 2821
Rint 0.059
(sin θ/λ)max−1) 0.754
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.101, 1.03
No. of reflections 3767
No. of parameters 172
H-atom treatment Only H-atom coordinates refined
Δρmax, Δρmin (e Å−3) 0.44, −0.29
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and AXScale. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2(Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: SAINT (Bruker, 2016); cell refinement: APEX3 (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2(Dolomanov et al., 2009), Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

(E)-N'-(Pyridin-4-ylmethylidene)thiophene-2-carbohydrazide top
Crystal data top
C11H9N3OSF(000) = 480
Mr = 231.27Dx = 1.467 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.0600 (8) ÅCell parameters from 8101 reflections
b = 4.4531 (3) Åθ = 2.2–32.3°
c = 19.9528 (13) ŵ = 0.29 mm1
β = 102.228 (2)°T = 100 K
V = 1047.24 (12) Å3Needle, clear colourless
Z = 40.49 × 0.04 × 0.01 mm
Data collection top
Bruker APEXII CCD
diffractometer
3767 independent reflections
Radiation source: Sealed Source Mo with TRIUMPH optics2821 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
ω and phi scansθmax = 32.4°, θmin = 2.2°
Absorption correction: multi-scan
(AXScale; Bruker, 2016)
h = 1818
Tmin = 0.694, Tmax = 0.746k = 66
25531 measured reflectionsl = 3030
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Only H-atom coordinates refined
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.4155P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3767 reflectionsΔρmax = 0.44 e Å3
172 parametersΔρmin = 0.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.86385 (3)0.41227 (8)0.09663 (2)0.01759 (9)
O10.57985 (7)0.0566 (2)0.08737 (5)0.01585 (19)
N10.67837 (8)0.4814 (2)0.01319 (5)0.0121 (2)
C30.86828 (11)1.1139 (3)0.10148 (7)0.0177 (3)
C60.63662 (10)0.6002 (3)0.07173 (6)0.0123 (2)
N20.61184 (9)0.2710 (2)0.00868 (5)0.0125 (2)
C80.75495 (10)0.1986 (3)0.11541 (6)0.0128 (2)
C70.64471 (10)0.1304 (3)0.06997 (6)0.0119 (2)
N30.82339 (9)1.2476 (3)0.16131 (6)0.0170 (2)
C10.70133 (10)0.8252 (3)0.10079 (6)0.0117 (2)
C100.89639 (12)0.1627 (4)0.21440 (7)0.0214 (3)
C20.81256 (10)0.9054 (3)0.06925 (7)0.0158 (2)
C90.78539 (11)0.0796 (3)0.18034 (7)0.0191 (3)
C50.65308 (11)0.9644 (3)0.16254 (6)0.0146 (2)
C40.71673 (11)1.1716 (3)0.19047 (7)0.0162 (2)
C110.94837 (11)0.3405 (3)0.17495 (7)0.0190 (3)
H20.5467 (15)0.214 (4)0.0197 (9)0.023*
H60.5592 (15)0.543 (4)0.0981 (9)0.023*
H50.5756 (15)0.918 (4)0.1848 (9)0.023*
H2A0.8487 (14)0.813 (4)0.0278 (9)0.023*
H40.6850 (14)1.273 (4)0.2329 (9)0.023*
H90.7381 (14)0.038 (4)0.1991 (9)0.023*
H30.9464 (15)1.168 (4)0.0810 (9)0.023*
H111.0212 (15)0.424 (4)0.1851 (9)0.023*
H100.9262 (15)0.103 (4)0.2563 (9)0.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01205 (14)0.02312 (18)0.01612 (15)0.00603 (12)0.00037 (11)0.00258 (13)
O10.0135 (4)0.0181 (5)0.0154 (4)0.0049 (3)0.0018 (3)0.0027 (4)
N10.0121 (4)0.0104 (5)0.0142 (5)0.0024 (4)0.0038 (4)0.0003 (4)
C30.0130 (5)0.0181 (6)0.0217 (6)0.0037 (5)0.0030 (5)0.0006 (5)
C60.0109 (5)0.0115 (5)0.0141 (5)0.0010 (4)0.0022 (4)0.0012 (5)
N20.0106 (4)0.0129 (5)0.0131 (5)0.0036 (4)0.0008 (4)0.0012 (4)
C80.0108 (5)0.0133 (5)0.0140 (5)0.0018 (4)0.0021 (4)0.0006 (5)
C70.0112 (5)0.0114 (6)0.0130 (5)0.0001 (4)0.0025 (4)0.0007 (4)
N30.0178 (5)0.0156 (5)0.0189 (5)0.0027 (4)0.0069 (4)0.0006 (4)
C10.0131 (5)0.0100 (5)0.0127 (5)0.0002 (4)0.0040 (4)0.0014 (4)
C100.0176 (6)0.0279 (7)0.0158 (6)0.0019 (5)0.0034 (5)0.0021 (5)
C20.0136 (5)0.0160 (6)0.0170 (6)0.0008 (5)0.0011 (4)0.0019 (5)
C90.0162 (6)0.0244 (7)0.0156 (6)0.0033 (5)0.0010 (5)0.0023 (5)
C50.0150 (5)0.0146 (6)0.0139 (5)0.0018 (4)0.0022 (4)0.0013 (5)
C40.0205 (6)0.0152 (6)0.0134 (5)0.0017 (5)0.0043 (5)0.0005 (5)
C110.0118 (5)0.0246 (7)0.0183 (6)0.0021 (5)0.0018 (5)0.0017 (5)
Geometric parameters (Å, º) top
S1—C111.7055 (14)C8—C71.4736 (16)
S1—C81.7259 (12)N3—C41.3381 (17)
O1—C71.2410 (15)C1—C51.3918 (17)
N1—C61.2839 (16)C1—C21.4019 (17)
N1—N21.3643 (14)C10—C111.360 (2)
C3—N31.3413 (18)C10—C91.4161 (19)
C3—C21.3821 (18)C10—H100.879 (17)
C3—H30.974 (17)C2—H2A0.944 (17)
C6—C11.4631 (17)C9—H90.912 (18)
C6—H61.002 (17)C5—C41.3900 (18)
N2—C71.3561 (15)C5—H50.968 (17)
N2—H20.901 (18)C4—H40.963 (17)
C8—C91.3756 (18)C11—H110.936 (18)
C11—S1—C891.85 (6)C2—C1—C6122.44 (11)
C6—N1—N2115.48 (10)C11—C10—C9112.28 (12)
N3—C3—C2124.61 (12)C11—C10—H10125.6 (12)
N3—C3—H3115.8 (10)C9—C10—H10122.2 (12)
C2—C3—H3119.5 (10)C3—C2—C1118.39 (12)
N1—C6—C1120.21 (11)C3—C2—H2A121.5 (10)
N1—C6—H6121.1 (10)C1—C2—H2A120.1 (10)
C1—C6—H6118.7 (10)C8—C9—C10112.84 (12)
C7—N2—N1121.75 (10)C8—C9—H9122.8 (11)
C7—N2—H2119.0 (11)C10—C9—H9124.3 (11)
N1—N2—H2119.0 (11)C4—C5—C1119.19 (12)
C9—C8—C7121.75 (11)C4—C5—H5121.3 (10)
C9—C8—S1110.68 (9)C1—C5—H5119.5 (10)
C7—C8—S1127.51 (9)N3—C4—C5123.72 (12)
O1—C7—N2118.73 (11)N3—C4—H4115.5 (10)
O1—C7—C8120.41 (11)C5—C4—H4120.8 (10)
N2—C7—C8120.86 (11)C10—C11—S1112.35 (10)
C4—N3—C3116.38 (11)C10—C11—H11129.3 (11)
C5—C1—C2117.70 (11)S1—C11—H11118.3 (11)
C5—C1—C6119.85 (11)
Non-covalent heteroatom interactions geometry (Å, °) top
Hydrogen bonding
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.902 (18)1.942 (18)2.8376 (14)171.8 (18)
C11—H11···N3ii0.936 (19)2.501 (18)3.3664 (18)153.9 (14)
Chalcogen bonding
RCh···ACh···ARCh···A
C11—S1···N12.7971 (11)164.17 (5)
Symmetry codes: (i) 1 - x, -y, -z; (ii) 2 - x, 2 - y, -z.
Hydrogen-bond geometry (Å, °) top
D-H···AD-HH···AD···AD-H···A
N2-H2···O1i0.902 (18)1.942 (18)2.8376 (14)171.8 (18)
C11-H11···N3ii0.936 (19)2.501 (18)3.3664 (18)153.9 (14)
Symmetry codes: (i) 1-x,-y,-z; (ii) 2-x,2-y,-z

Funding information

Funding for this research was provided by: University of Missouri Agriculture Experiment Station Chemical Laboratories; National Institute of Food and Agriculture (grant No. MO-HABC0002).

References

First citationAakeroy, C. B., Bryce, D. L., Desiraju, G. R., Frontera, A., Legon, A. C., Nicotra, F., Rissanen, K., Scheiner, S., Terraneo, G., Metrangolo, P. & Resnati, G. (2019). Pure Appl. Chem. 91, 1889–1892.  Web of Science CrossRef CAS Google Scholar
First citationBarluenga, J. & Valdés, C. (2011). Angew. Chem. Int. Ed. 50, 7486–7500.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2016). APEX3, SAINT and AXScale. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChristidis, P. C., Tossidis, I. A. & Hondroudis, C. A. (1995). Z. Kristallogr. 210, 373.  CrossRef Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGholivand, K., Farshadfer, K., Roe, S. M., Gholami, A. & Esrafili, M. D. (2016). CrystEngComm, 18, 2873–2884.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJansová, H. & Šimůnek, T. (2019). Curr. Med. Chem. 26, 288–301.  Web of Science PubMed Google Scholar
First citationJiang, J.-H. (2011). Acta Cryst. E67, o32.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, Y.-F. & Jian, F.-F. (2010). Acta Cryst. E66, o1400.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, Y.-F., Jiang, J.-H. & Jian, F.-F. (2010). Acta Cryst. E66, o1719.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLovejoy, D. B. & Richardson, D. R. (2003). Curr. Med. Chem. 10, 1035–1049.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLow, J. N., Quesada, A., Santos, L. M. N. B. F., Schröder, B. & Gomes, L. R. (2009). J. Chem. Crystallogr. 39, 747–752.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMossine, V. V., Chance, D. L., Waters, J. K. & Mawhinney, T. P. (2018). Antimicrob. Agents Chemother. 62, e02349.  CrossRef PubMed Google Scholar
First citationMossine, V. V., Waters, J. K., Chance, D. L. & Mawhinney, T. P. (2016). Toxicol. Sci. 154, 403–415.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNarang, R., Narasimhan, B. & Sharma, S. (2012). Curr. Med. Chem. 19, 569–612.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRichardson, D. R. (2004). Ann. N. Y. Acad. Sci. 1012, 326–341.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRzhepishevska, O., Hakobyan, S., Ekstrand-Hammarström, B., Nygren, Y., Karlsson, T., Bucht, A., Elofsson, M., Boily, J.-F. & Ramstedt, M. (2014). J. Inorg. Biochem. 138, 1–8.  Web of Science CrossRef CAS PubMed Google Scholar
First citationScilabra, P., Terraneo, G. & Resnati, G. (2019). Acc. Chem. Res. 52, 1313–1324.  Web of Science CAS PubMed Google Scholar
First citationSerbutoviez, C., Bosshard, C., Knoepfle, G., Wyss, P., Pretre, P., Guenter, P., Schenk, K., Solari, E. & Chapuis, G. (1995). Chem. Mater. 7, 1198–1206.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, P., Singh, A. K. & Singh, V. P. (2013). Polyhedron, 65, 73–81.  Web of Science CSD CrossRef CAS Google Scholar
First citationSingh, R. B., Jain, P. & Singh, R. P. (1982). Talanta, 29, 77–84.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationTiekink, E. R. T. (1989). Z. Kristallogr. 188, 307–310.  CrossRef CAS Web of Science Google Scholar
First citationTurner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds