research communications
of 2-[bis(benzylsulfanyl)methyl]-6-methoxyphenol
aInstitut UTINAM UMR 6213 CNRS, Université Bourgogne Franche-Comté, 16, Route de Gray, 25030 Besançon Cedex, France, and bAnorganische Chemie, TU Dortmund University, Otto-Hahn-Str. 6/6a, D-44227 Dortmund, Germany
*Correspondence e-mail: lydie.viau@univ-fcomte.fr, carsten.strohmann@tu-dortmund.de
The title compound, C22H22O2S2, 1, represents an example of an ortho-vanillin-based functionalized dithioether, which could be useful as a potential chelating ligand or bridging ligand for coordination chemistry. This dithioacetal 1 crystallizes in the orthorhombic Pbca. The phenyl rings of the benzyl groups and that of the vanillin unit form dihedral angles of 35.38 (6) and 79.77 (6)°, respectively. The recorded at 100 K, displays both weak intramolecular O—H⋯O and intermolecular O—H⋯S hydrogen bonding.
CCDC reference: 1983985
1. Chemical context
Acyclic and cyclic dithioether compounds containing the –S–C(R)(H)–S– (R = H, alkyl, aryl) motif are synthesized by nucleophilic substitution of geminal dihalides X–C(R)(H)–X in the presence of thiolate RS− (Murray et al., 1981). Alternatively, they are readily accessible by treatment of and with RSH and dithiols HS(CH2)nSH (n = 2, 3), yielding geminal dithio also called acyclic and cyclic thioacetals (1,3-dithiolanes, 1,3-dithianes) (Shaterian et al., 2011). This type of organosulfur compound is commonly used for Corey–Seebach umpolung reactions and the Mozingo reduction of dithioketals to hydrocarbons (Seebach & Corey, 1975; Zhao et al., 2017), but there are also numerous other transformations in organic chemistry such as their oxidation to and (Gasparrini et al., 1984). They have also been used in the past as monodentate, chelating or bridging ligands to construct both simple mono- and dinuclear coordination compounds or to assemble coordination networks of varying dimensionality ranging from 1D to 3D. Selected examples are [(C5H5)Fe(CO)2(κ1-BzSCH2SBz)]+, the 1:1 adduct [Hg2(NO3)2·BzSCH2SBz)], the dinuclear PdI complex [ClPd(μ2-BzSCH2SBz)2PdCl], and the monodimensional coordination polymer [Ag2(BzSCH2SBz)2](ClO4)2 built upon dinuclear [Ag(μ2-BzSCH2SBz)2Ag]2+ units (Brodersen & Rölz, 1977; Fuchita et al., 1991; Kuhn & Schumann, 1986; Li et al., 2005).
In the context of our research interest in the assembly of molecular cluster compounds and coordination polymers by complexation of ArSCH2SAr or dithiolane- and dithiane-based thiaheterocycles (Chaabéne et al., 2016; Knauer et al., 2020; Knorr et al., 2014; Raghuvanshi et al., 2017, 2019; Schlachter et al., 2018) , we have developed novel functionalized dithio ether compounds such as ferrocenyl thioethers bearing a substituent at the α-carbon atom linking the two –SR groups. With the idea of designing a functionalized thioacetal ligand bearing additional harder O-donor sites along with the two soft S-donor sites, we chose 2-hydroxy-3-methoxybenzaldehyde (ortho-vanillin) as the starting material. This hydroxylated aldehyde is present in the extracts and essential oils of many plants. Several papers describe also its use (in its deprotonated vanillinato form or as a Schiff base-derived ligand) in coordination chemistry (Andruh, 2015; Kırpık et al., 2019; Yu et al., 2011). Its reaction with 2 equivalents of benzyl mercaptan affords the targeted dithioacetal 2-hydroxy-3-methoxyphenyl[bis(benzylthio)]methane, 1, which was isolated in high yield as a crystalline solid.
This acyclic thioacetal contains, in addition to the benzylic thio ether groups and the methoxy group prone to ligate metal centres, a phenolic hydroxyl group, which may allow additional interactions through hydrogen bonding.
2. Structural commentary
Compound 1 crystallizes from CH2Cl2/hexane in the orthorhombic Pbca. The C1—S1 and C1—S2 bond lengths of 1.8132 (12) and 1.8189 (12) Å are comparable with those of [BzSC(H)(C6H4NO2-p)SBz] [1.823 (3) and 1.8262 (19) Å], but are elongated compared with those of bis(benzylsulfanyl)methane (CSD TUQPAX) [1.7988 (13) and 1.8013 (13) Å; Yang et al., 2010). The angle S1—C1—S2 is almost identical with that of 4-nitrophenyl-bis(benzylsulfanyl)methane [107.26 (6) versus 107.76°], but considerably more acute than in [BzSCH2SBz] [117.33 (7)°]. There is a weak intramolecular O1⋯H2 contact of 2.17 (2) Å between the H atom of the phenolic hydroxyl group and the O-atom of the methoxy group (Table 1). For the starting material, 2-hydroxy-3-methoxybenzaldehyde, a similar intramolecular hydrogen bond seems to be absent; instead, a rather strong intramolecular hydrogen bond between the O—H group and the carbonyl oxygen was found (Iwasaki et al., 1976). The phenyl rings of the benzyl groups (C10–C15) and (C17–C22) and the phenyl ring of the vanillin unit (C2–C7) form dihedral angles of 35.38 (6) and 79.77 (6)°, respectively. Compared to the structurally very closely related compound 4-nitrophenyl-bis(benzylsulfanyl)methane [BzSC(H)(C6H4NO2-p)SBz] (SUNMAQ; Binkowska et al., 2009), the coplanar and perpendicular arrangement of the phenyl rings is thus lost in 1 (Figs. 1 and 2).
3. Supramolecular features
In the crystal, there is an O—H⋯S hydrogen bond between the H2 atom of the phenolic hydroxyl group and the S1 atom of a neighbouring molecule with distances [H2⋯S1 = 2.44 (2), O2⋯S1 = 3.1315 (13) Å] similar to those reported for 4-(1,3-dithian-2-yl)-1,2-benzenediol [H⋯S = 2.44, O⋯S = 3.2417 (13) Å], while the O—H⋯S angle is more acute [139.0 (17) versus 159.2°] (Fig. 3 and Table 1). This O2—H2⋯S1 interaction results in the formation of chains running along the b-axis direction.
The benzylic methylene group on sulfur atom S2 interacts with the π-cloud of the phenyl part of the vanillin unit through a C—H⋯π interaction (Table 1). The second phenyl ring of the dithiane unit also exhibits a C—H⋯π interaction: the second methylene group on sulfur atom S1 interacts with a phenyl carbon. The third C—H⋯π contact is between adjacent vanillin units.
4. Database survey
There are several other examples of structurally characterized related dithioethers bearing hydroxy substituents that give rise to the formation of supramolecular networks. Selected examples found in the Cambridge Structural Database (CSD, version 5.40, update August 2019; Groom et al., 2016) include 2-(2-hydroxyphenyl)-1,3-dithiane (WADROJ; Usman et al., 2003), 2-(3-hydroxyphenyl)-1,3-dithiane (KALJUD; Ganguly et al., 2005), 4,6-bis(1,3-dithian-2-yl)benzene-1,3-diol (DITFIX; Datta et al., 2013), 4-(1,3-dithian-2-yl)benzene-1,3-diol (DITFOD; Datta et al., 2013), 2-phenyl-1,3-dithiepane-5,6-diol (FIBTOC; Liu et al., 2018) and 2,2′-{[(4-methoxyphenyl)methylene]disulfanediyl}diethanol (YISVUT; Laskar et al., 2013). It is noteable that in most of these examples, the intermolecular contacts are noticeably stronger than those of 1.
Note that in dithioether compounds with phenolic 1, the relative position of the phenolic OH substituent seems to play a crucial role, whether the intermolecular contacts are dominated by O—H⋯H or O—H⋯S hydrogen bonds. This is nicely illustrated by the series of three isomeric hydroxyphenyl-1,3-dithianes, ortho-, meta- and para-HO–C6H4–C4H7S2. Whereas 2-(2-hydroxyphenyl)-1,3-dithiane (WADROY) and 2-(3-hydroxyphenyl)-1,3-dithiane (KALJUD) exhibit, like 1, only intermolecular O—H⋯S hydrogen bonding, the para-derivative 2-(4-hydroxyphenyl)-1,3-dithiane (KALKAK) features solely intermolecular phenolic O—H⋯H bonding (Ganguly et al., 2005).
as encountered in5. Synthesis and crystallization
The reaction scheme for the synthesis of the title compound is illustrated in Fig. 4.
3-Methoxysalicylaldehyde (1 mmol, 152 mg), benzyl mercaptan (2.5 mmol, 310 mg), and conc. HCl (2 mL) were added to a flask at 273 K. The mixture was stirred for 60 min at room temperature. After the reaction was complete, the resulting mixture was neutralized with 10% aq NaHCO3 (10 mL) and extracted with dichloromethane (3 × 10 mL). The combined extracts were washed with H2O (3 × 20 mL) and dried over Na2SO4. Evaporation of the solvent in vacuo gave a solid product, which was further purified by The product was obtained as a white solid, Yield: 83% (430 mg). X-ray quality crystals were obtained by keeping a dichloromethane:hexane (1:1) mixture of 1 at 278 K for 3–4 d. 1H NMR (400 MHz, CDCl3) δ 7.26–7.19 (m, 11H, Ph), 6.86 (t, J = 7.8 Hz, 1H, CH), 6.78 (d, J = 7.8 Hz, 1H, CH), 5.83 (s, 1H, OH), 5.13 (s, 1H CHS2), 3.88 (s, 3H, OCH3), 3.79 (d, J = 13.1 Hz, 2H, CH2), 3.64 (d, J = 13.1 Hz, 2H, CH2).13C{1H} NMR (101 MHz, CDCl3) δ 146.5 (CqOH), 142.8 (CqOCH3), 137.8 (SCH2Cq), 129.1 (SCH2CCH), 128.4 (SCH2CCHCH), 126.9 (SCH2CCHCHCH), 125.3 (S2CHCq), 120.9 (S2CHCqCH), 119.9 (S2CHCqCHCH), 110.0 (CHCqOCH3), 56.1 (OCH3), 44.8 (S2CH), 36.7 (S2CH2). IR (ATR) cm−1: 3419 (O—H), 1430-1612 (C=C). 1054 and 1264 (C—O), 766 (C—S). HRMS: (ESI) m/z calculated for C22H22O2S2Na [M + Na]+ 405.0953, found 405.0965.
6. Refinement
Crystal data, data collection and structure . H atoms were positioned geometrically (C—H = 0.95–1.00 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C) for CH2 and CH hydrogen atoms and Uiso(H) = 1.5Ueq(C-methyl). The phenolic proton H2 was refined independently.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1983985
https://doi.org/10.1107/S2056989020002091/vm2228sup1.cif
contains datablock I. DOI:Supporting information file. DOI: https://doi.org/10.1107/S2056989020002091/vm2228Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2056989020002091/vm2228Isup3.cml
Data collection: APEX2 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C22H22O2S2 | Dx = 1.309 Mg m−3 |
Mr = 382.51 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 9791 reflections |
a = 7.7418 (8) Å | θ = 2.3–28.2° |
b = 13.856 (3) Å | µ = 0.29 mm−1 |
c = 36.197 (5) Å | T = 100 K |
V = 3882.9 (10) Å3 | Block, colourless |
Z = 8 | 0.49 × 0.42 × 0.25 mm |
F(000) = 1616 |
Bruker D8 VENTURE area detector diffractometer | 5005 independent reflections |
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs | 4510 reflections with I > 2σ(I) |
HELIOS mirror optics monochromator | Rint = 0.033 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 29.1°, θmin = 2.3° |
ω and φ scans | h = −9→10 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | k = −18→18 |
Tmin = 0.713, Tmax = 0.746 | l = −49→45 |
107706 measured reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.034 | w = 1/[σ2(Fo2) + (0.0287P)2 + 2.6399P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.079 | (Δ/σ)max = 0.003 |
S = 1.09 | Δρmax = 0.34 e Å−3 |
5005 reflections | Δρmin = −0.23 e Å−3 |
241 parameters | Extinction correction: SHELXL-2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0017 (2) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.61115 (4) | 0.82824 (2) | 0.63211 (2) | 0.01667 (8) | |
S2 | 0.42202 (4) | 0.68918 (2) | 0.67748 (2) | 0.01772 (8) | |
O1 | 1.02466 (13) | 0.48649 (7) | 0.70693 (3) | 0.0234 (2) | |
O2 | 0.76523 (13) | 0.52864 (7) | 0.66212 (3) | 0.0228 (2) | |
H2 | 0.826 (3) | 0.4778 (15) | 0.6649 (5) | 0.043 (5)* | |
C1 | 0.62315 (15) | 0.70907 (8) | 0.65265 (3) | 0.0146 (2) | |
H1 | 0.631957 | 0.660278 | 0.632378 | 0.017* | |
C2 | 0.77100 (15) | 0.69329 (8) | 0.67929 (3) | 0.0147 (2) | |
C3 | 0.84314 (17) | 0.76632 (9) | 0.70092 (3) | 0.0179 (2) | |
H3 | 0.799141 | 0.830165 | 0.699171 | 0.022* | |
C4 | 0.97814 (17) | 0.74678 (10) | 0.72490 (3) | 0.0202 (3) | |
H4 | 1.025853 | 0.797416 | 0.739354 | 0.024* | |
C5 | 1.04472 (16) | 0.65382 (9) | 0.72807 (3) | 0.0185 (2) | |
H5 | 1.137719 | 0.640764 | 0.744446 | 0.022* | |
C6 | 0.97346 (16) | 0.58102 (9) | 0.70704 (3) | 0.0172 (2) | |
C7 | 0.83624 (16) | 0.60032 (9) | 0.68273 (3) | 0.0157 (2) | |
C8 | 1.17946 (19) | 0.46331 (11) | 0.72664 (5) | 0.0311 (3) | |
H8A | 1.274327 | 0.503799 | 0.717632 | 0.047* | |
H8B | 1.208119 | 0.395191 | 0.722705 | 0.047* | |
H8C | 1.161929 | 0.475073 | 0.753070 | 0.047* | |
C9 | 0.81405 (17) | 0.83571 (10) | 0.60670 (4) | 0.0222 (3) | |
H9A | 0.828248 | 0.902523 | 0.597491 | 0.027* | |
H9B | 0.910248 | 0.822557 | 0.623999 | 0.027* | |
C10 | 0.82841 (17) | 0.76755 (10) | 0.57454 (4) | 0.0216 (3) | |
C11 | 0.7673 (2) | 0.79298 (12) | 0.53965 (4) | 0.0294 (3) | |
H11 | 0.712651 | 0.853694 | 0.536144 | 0.035* | |
C12 | 0.7855 (2) | 0.73040 (14) | 0.51001 (4) | 0.0354 (4) | |
H12 | 0.742688 | 0.748223 | 0.486385 | 0.043* | |
C13 | 0.8656 (2) | 0.64242 (14) | 0.51472 (4) | 0.0367 (4) | |
H13 | 0.880248 | 0.600256 | 0.494264 | 0.044* | |
C14 | 0.9247 (2) | 0.61563 (13) | 0.54931 (5) | 0.0360 (4) | |
H14 | 0.978548 | 0.554677 | 0.552712 | 0.043* | |
C15 | 0.90510 (18) | 0.67790 (11) | 0.57899 (4) | 0.0275 (3) | |
H15 | 0.944821 | 0.658858 | 0.602728 | 0.033* | |
C16 | 0.26715 (16) | 0.68531 (9) | 0.63950 (3) | 0.0188 (2) | |
H16A | 0.150774 | 0.672722 | 0.649760 | 0.023* | |
H16B | 0.264227 | 0.749436 | 0.627453 | 0.023* | |
C17 | 0.30595 (16) | 0.61034 (9) | 0.61075 (3) | 0.0176 (2) | |
C18 | 0.25087 (18) | 0.51529 (10) | 0.61502 (4) | 0.0231 (3) | |
H18 | 0.188646 | 0.497061 | 0.636537 | 0.028* | |
C19 | 0.2863 (2) | 0.44732 (10) | 0.58807 (4) | 0.0274 (3) | |
H19 | 0.246189 | 0.382978 | 0.590983 | 0.033* | |
C20 | 0.37995 (19) | 0.47228 (11) | 0.55688 (4) | 0.0264 (3) | |
H20 | 0.406356 | 0.424957 | 0.538749 | 0.032* | |
C21 | 0.43459 (18) | 0.56639 (12) | 0.55233 (4) | 0.0269 (3) | |
H21 | 0.498143 | 0.584070 | 0.530921 | 0.032* | |
C22 | 0.39681 (17) | 0.63509 (10) | 0.57896 (4) | 0.0223 (3) | |
H22 | 0.433413 | 0.699893 | 0.575465 | 0.027* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.01657 (15) | 0.01393 (14) | 0.01952 (15) | −0.00028 (11) | −0.00002 (11) | 0.00077 (10) |
S2 | 0.01469 (15) | 0.02377 (16) | 0.01471 (14) | −0.00302 (11) | −0.00020 (11) | 0.00089 (11) |
O1 | 0.0226 (5) | 0.0196 (4) | 0.0279 (5) | 0.0043 (4) | −0.0075 (4) | 0.0010 (4) |
O2 | 0.0254 (5) | 0.0145 (4) | 0.0285 (5) | 0.0022 (4) | −0.0092 (4) | −0.0048 (4) |
C1 | 0.0133 (5) | 0.0145 (5) | 0.0159 (5) | −0.0009 (4) | −0.0003 (4) | 0.0000 (4) |
C2 | 0.0129 (5) | 0.0164 (5) | 0.0147 (5) | −0.0011 (4) | 0.0002 (4) | −0.0002 (4) |
C3 | 0.0184 (6) | 0.0174 (6) | 0.0180 (6) | −0.0009 (5) | −0.0005 (5) | −0.0022 (4) |
C4 | 0.0207 (6) | 0.0231 (6) | 0.0169 (6) | −0.0049 (5) | −0.0014 (5) | −0.0035 (5) |
C5 | 0.0147 (6) | 0.0266 (6) | 0.0141 (5) | −0.0014 (5) | −0.0013 (4) | 0.0017 (5) |
C6 | 0.0166 (6) | 0.0193 (6) | 0.0158 (5) | 0.0013 (5) | 0.0007 (4) | 0.0022 (4) |
C7 | 0.0146 (6) | 0.0172 (5) | 0.0154 (5) | −0.0018 (4) | 0.0003 (4) | −0.0012 (4) |
C8 | 0.0235 (7) | 0.0270 (7) | 0.0428 (9) | 0.0027 (6) | −0.0105 (6) | 0.0110 (6) |
C9 | 0.0189 (6) | 0.0261 (6) | 0.0217 (6) | −0.0069 (5) | 0.0026 (5) | 0.0003 (5) |
C10 | 0.0148 (6) | 0.0315 (7) | 0.0186 (6) | −0.0065 (5) | 0.0025 (5) | −0.0010 (5) |
C11 | 0.0307 (8) | 0.0356 (8) | 0.0221 (6) | −0.0084 (6) | −0.0008 (6) | 0.0060 (6) |
C12 | 0.0323 (8) | 0.0572 (10) | 0.0168 (6) | −0.0122 (8) | −0.0003 (6) | 0.0013 (6) |
C13 | 0.0223 (7) | 0.0615 (11) | 0.0264 (7) | −0.0047 (7) | 0.0033 (6) | −0.0175 (7) |
C14 | 0.0210 (7) | 0.0494 (10) | 0.0376 (8) | 0.0090 (7) | −0.0038 (6) | −0.0153 (7) |
C15 | 0.0167 (6) | 0.0423 (8) | 0.0236 (7) | 0.0046 (6) | −0.0036 (5) | −0.0051 (6) |
C16 | 0.0131 (6) | 0.0258 (6) | 0.0175 (6) | −0.0020 (5) | −0.0024 (5) | 0.0022 (5) |
C17 | 0.0121 (5) | 0.0250 (6) | 0.0157 (5) | −0.0019 (5) | −0.0037 (4) | 0.0027 (5) |
C18 | 0.0216 (6) | 0.0254 (6) | 0.0222 (6) | −0.0030 (5) | −0.0006 (5) | 0.0061 (5) |
C19 | 0.0304 (8) | 0.0213 (6) | 0.0306 (7) | −0.0009 (6) | −0.0054 (6) | 0.0034 (5) |
C20 | 0.0227 (7) | 0.0319 (7) | 0.0247 (7) | 0.0049 (6) | −0.0067 (5) | −0.0060 (6) |
C21 | 0.0219 (7) | 0.0411 (8) | 0.0177 (6) | −0.0061 (6) | 0.0007 (5) | −0.0017 (6) |
C22 | 0.0205 (6) | 0.0282 (7) | 0.0182 (6) | −0.0083 (5) | −0.0017 (5) | 0.0022 (5) |
S1—C1 | 1.8132 (12) | C10—C11 | 1.3940 (19) |
S1—C9 | 1.8232 (14) | C10—C15 | 1.386 (2) |
S2—C1 | 1.8189 (12) | C11—H11 | 0.9500 |
S2—C16 | 1.8250 (13) | C11—C12 | 1.387 (2) |
O1—C6 | 1.3685 (15) | C12—H12 | 0.9500 |
O1—C8 | 1.4312 (17) | C12—C13 | 1.378 (3) |
O2—H2 | 0.85 (2) | C13—H13 | 0.9500 |
O2—C7 | 1.3584 (15) | C13—C14 | 1.383 (2) |
C1—H1 | 1.0000 | C14—H14 | 0.9500 |
C1—C2 | 1.5126 (16) | C14—C15 | 1.386 (2) |
C2—C3 | 1.3960 (17) | C15—H15 | 0.9500 |
C2—C7 | 1.3893 (17) | C16—H16A | 0.9900 |
C3—H3 | 0.9500 | C16—H16B | 0.9900 |
C3—C4 | 1.3854 (18) | C16—C17 | 1.5007 (18) |
C4—H4 | 0.9500 | C17—C18 | 1.3929 (18) |
C4—C5 | 1.3920 (19) | C17—C22 | 1.3917 (17) |
C5—H5 | 0.9500 | C18—H18 | 0.9500 |
C5—C6 | 1.3789 (18) | C18—C19 | 1.383 (2) |
C6—C7 | 1.4051 (17) | C19—H19 | 0.9500 |
C8—H8A | 0.9800 | C19—C20 | 1.385 (2) |
C8—H8B | 0.9800 | C20—H20 | 0.9500 |
C8—H8C | 0.9800 | C20—C21 | 1.381 (2) |
C9—H9A | 0.9900 | C21—H21 | 0.9500 |
C9—H9B | 0.9900 | C21—C22 | 1.386 (2) |
C9—C10 | 1.5031 (19) | C22—H22 | 0.9500 |
C1—S1—C9 | 102.38 (6) | C15—C10—C9 | 120.31 (12) |
C1—S2—C16 | 101.22 (6) | C15—C10—C11 | 118.51 (13) |
C6—O1—C8 | 117.12 (11) | C10—C11—H11 | 119.7 |
C7—O2—H2 | 108.5 (14) | C12—C11—C10 | 120.54 (15) |
S1—C1—S2 | 107.26 (6) | C12—C11—H11 | 119.7 |
S1—C1—H1 | 108.6 | C11—C12—H12 | 119.9 |
S2—C1—H1 | 108.6 | C13—C12—C11 | 120.22 (14) |
C2—C1—S1 | 115.59 (8) | C13—C12—H12 | 119.9 |
C2—C1—S2 | 108.11 (8) | C12—C13—H13 | 120.1 |
C2—C1—H1 | 108.6 | C12—C13—C14 | 119.86 (15) |
C3—C2—C1 | 123.74 (11) | C14—C13—H13 | 120.1 |
C7—C2—C1 | 117.80 (10) | C13—C14—H14 | 120.1 |
C7—C2—C3 | 118.45 (11) | C13—C14—C15 | 119.88 (16) |
C2—C3—H3 | 119.6 | C15—C14—H14 | 120.1 |
C4—C3—C2 | 120.77 (12) | C10—C15—H15 | 119.5 |
C4—C3—H3 | 119.6 | C14—C15—C10 | 120.96 (14) |
C3—C4—H4 | 119.6 | C14—C15—H15 | 119.5 |
C3—C4—C5 | 120.79 (12) | S2—C16—H16A | 108.7 |
C5—C4—H4 | 119.6 | S2—C16—H16B | 108.7 |
C4—C5—H5 | 120.6 | H16A—C16—H16B | 107.6 |
C6—C5—C4 | 118.90 (12) | C17—C16—S2 | 114.28 (9) |
C6—C5—H5 | 120.6 | C17—C16—H16A | 108.7 |
O1—C6—C5 | 125.87 (12) | C17—C16—H16B | 108.7 |
O1—C6—C7 | 113.53 (11) | C18—C17—C16 | 121.08 (11) |
C5—C6—C7 | 120.59 (12) | C22—C17—C16 | 120.27 (12) |
O2—C7—C2 | 118.79 (11) | C22—C17—C18 | 118.65 (12) |
O2—C7—C6 | 120.71 (11) | C17—C18—H18 | 119.8 |
C2—C7—C6 | 120.50 (11) | C19—C18—C17 | 120.31 (13) |
O1—C8—H8A | 109.5 | C19—C18—H18 | 119.8 |
O1—C8—H8B | 109.5 | C18—C19—H19 | 119.7 |
O1—C8—H8C | 109.5 | C18—C19—C20 | 120.56 (13) |
H8A—C8—H8B | 109.5 | C20—C19—H19 | 119.7 |
H8A—C8—H8C | 109.5 | C19—C20—H20 | 120.2 |
H8B—C8—H8C | 109.5 | C21—C20—C19 | 119.55 (13) |
S1—C9—H9A | 108.6 | C21—C20—H20 | 120.2 |
S1—C9—H9B | 108.6 | C20—C21—H21 | 120.0 |
H9A—C9—H9B | 107.6 | C20—C21—C22 | 120.06 (13) |
C10—C9—S1 | 114.75 (9) | C22—C21—H21 | 120.0 |
C10—C9—H9A | 108.6 | C17—C22—H22 | 119.6 |
C10—C9—H9B | 108.6 | C21—C22—C17 | 120.83 (13) |
C11—C10—C9 | 121.18 (13) | C21—C22—H22 | 119.6 |
S1—C1—C2—C3 | 30.00 (15) | C7—C2—C3—C4 | 0.84 (18) |
S1—C1—C2—C7 | −151.09 (9) | C8—O1—C6—C5 | −8.60 (19) |
S1—C9—C10—C11 | 87.20 (15) | C8—O1—C6—C7 | 170.97 (12) |
S1—C9—C10—C15 | −93.52 (14) | C9—S1—C1—S2 | −177.44 (6) |
S2—C1—C2—C3 | −90.18 (13) | C9—S1—C1—C2 | 61.92 (10) |
S2—C1—C2—C7 | 88.73 (12) | C9—C10—C11—C12 | 178.27 (13) |
S2—C16—C17—C18 | 85.08 (14) | C9—C10—C15—C14 | −177.74 (14) |
S2—C16—C17—C22 | −95.56 (13) | C10—C11—C12—C13 | −0.4 (2) |
O1—C6—C7—O2 | 0.73 (17) | C11—C10—C15—C14 | 1.6 (2) |
O1—C6—C7—C2 | −179.12 (11) | C11—C12—C13—C14 | 1.4 (2) |
C1—S1—C9—C10 | 66.89 (11) | C12—C13—C14—C15 | −0.8 (2) |
C1—S2—C16—C17 | 56.83 (10) | C13—C14—C15—C10 | −0.6 (2) |
C1—C2—C3—C4 | 179.74 (11) | C15—C10—C11—C12 | −1.0 (2) |
C1—C2—C7—O2 | 0.19 (17) | C16—S2—C1—S1 | 66.50 (7) |
C1—C2—C7—C6 | −179.95 (11) | C16—S2—C1—C2 | −168.23 (8) |
C2—C3—C4—C5 | −0.18 (19) | C16—C17—C18—C19 | 179.38 (12) |
C3—C2—C7—O2 | 179.17 (11) | C16—C17—C22—C21 | 179.52 (12) |
C3—C2—C7—C6 | −0.98 (18) | C17—C18—C19—C20 | 1.3 (2) |
C3—C4—C5—C6 | −0.34 (19) | C18—C17—C22—C21 | −1.1 (2) |
C4—C5—C6—O1 | 179.74 (12) | C18—C19—C20—C21 | −1.5 (2) |
C4—C5—C6—C7 | 0.19 (19) | C19—C20—C21—C22 | 0.4 (2) |
C5—C6—C7—O2 | −179.67 (11) | C20—C21—C22—C17 | 0.9 (2) |
C5—C6—C7—C2 | 0.48 (19) | C22—C17—C18—C19 | 0.0 (2) |
Cg1 is the centroid of the C2–C7 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···S1i | 0.85 (2) | 2.44 (2) | 3.1315 (13) | 139.0 (17) |
O2—H2···O1 | 0.85 (2) | 2.17 (2) | 2.6469 (16) | 115.4 (16) |
C9—H9A···C20ii | 0.99 | 2.86 | 3.528 (2) | 125 |
C5—H5···Cg1iii | 0.95 | 2.84 | 3.7487 (15) | 160 |
C16—H16A···Cg1iv | 0.99 | 2.71 | 3.6316 (15) | 154 |
Symmetry codes: (i) −x+3/2, y−1/2, z; (ii) −x+3/2, y+1/2, z; (iii) x+1/2, y, −z+3/2; (iv) x−1, y, z. |
Footnotes
‡Current address: Discipline of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Simrol Indore 453552, MP, India.
Funding information
LK thanks the Fonds der Chemischen Industrie for a doctoral fellowship. We are grateful to the region of Franche-Comté for funding a postdoctoral fellowship for A. Raghuvanshi (grant No. RECH-MOB15–000017).
References
Andruh, M. (2015). Dalton Trans. 44, 16633–16653. Web of Science CrossRef CAS PubMed Google Scholar
Binkowska, I., Ratajczak–Sitarz, M., Katrusiak, A. & Jarczewski, A. (2009). J. Mol. Struct. 928, 54–58. Web of Science CSD CrossRef CAS Google Scholar
Brodersen, K. & Rölz, W. (1977). Chem. Ber. 110, 1042–1046. CrossRef CAS Web of Science Google Scholar
Bruker (2016). SAINT, APEX2 and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chaabéne, M., Khatyr, A., Knorr, M., Askri, M., Rousselin, Y. & Kubicki, M. M. (2016). Inorg. Chim. Acta, 451, 177–186. Google Scholar
Datta, M., Hunter, A. D. & Zeller, M. (2013). J. Sulfur Chem. 34, 502–511. Web of Science CSD CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fuchita, Y., Maruyama, H., Kawatani, M. & Hiraki, K. (1991). Polyhedron, 10, 561–566. CrossRef CAS Web of Science Google Scholar
Ganguly, N. C., Datta, M., Ghosh, K. & Bond, A. D. (2005). CrystEngComm, 7, 210–215. Web of Science CSD CrossRef CAS Google Scholar
Gasparrini, F., Giovannoli, M., Misiti, D., Natile, G. & Palmieri, G. (1984). Tetrahedron, 40, 165–170. CrossRef CAS Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Iwasaki, F., Tanaka, I. & Aihara, A. (1976). Acta Cryst. B32, 1264–1266. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Kırpık, H., Kose, M., Elsegood, M. R. J. & Carpenter-Warren, C. L. (2019). J. Mol. Struct. 1175, 882–888. Google Scholar
Knauer, L., Knorr, M., Viau, L. & Strohmann, C. (2020). Acta Cryst. E76, 38–41. Web of Science CSD CrossRef IUCr Journals Google Scholar
Knorr, M., Khatyr, A., Dini Aleo, A., El Yaagoubi, A., Strohmann, C., Kubicki, M. M., Rousselin, Y., Aly, S. M., Fortin, D., Lapprand, A. & Harvey, P. D. (2014). Cryst. Growth Des. 14, 5373–5387. Web of Science CSD CrossRef CAS Google Scholar
Kuhn, N. & Schumann, H. (1986). J. Organomet. Chem. 315, 93–103. CrossRef CAS Web of Science Google Scholar
Laskar, R. A., Begum, N. A., Mir, M. H., Rohman, M. R. & Khan, A. T. (2013). Tetrahedron Lett. 54, 5839–5844. Web of Science CSD CrossRef CAS Google Scholar
Li, J.-R., Bu, X.-H., Jiao, J., Du, W.-P., Xu, X.-H. & Zhang, R.-H. (2005). Dalton Trans. pp. 464–474. Web of Science CSD CrossRef Google Scholar
Liu, Y., Zeng, J., Sun, J., Cai, L., Zhao, Y., Fang, J., Hu, B., Shu, P., Meng, L. & Wan, Q. (2018). Org. Chem. Front. 5, 2427–2431. Web of Science CSD CrossRef CAS Google Scholar
Murray, S. G., Levason, W. & Tuttlebee, H. E. (1981). Inorg. Chim. Acta, 51, 185–189. CrossRef CAS Web of Science Google Scholar
Raghuvanshi, A., Dargallay, N. J., Knorr, M., Viau, L., Knauer, L. & Strohmann, C. (2017). J. Inorg. Organomet. Polym. 27, 1501–1513. Web of Science CSD CrossRef CAS Google Scholar
Raghuvanshi, A., Knorr, M., Knauer, L., Strohmann, C., Boullanger, S., Moutarlier, V. & Viau, L. (2019). Inorg. Chem. 58, 5753–5775. Web of Science CSD CrossRef CAS PubMed Google Scholar
Schlachter, A., Viau, L., Fortin, D., Knauer, L., Strohmann, C., Knorr, M. & Harvey, P. D. (2018). Inorg. Chem. 57, 13564–13576. Web of Science CSD CrossRef CAS PubMed Google Scholar
Seebach, D. & Corey, E. J. (1975). J. Org. Chem. 40, 231–237. CrossRef CAS Web of Science Google Scholar
Shaterian, H. R., Azizi, K. & Fahimi, N. (2011). J. Sulfur Chem. 32, 85–91. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Usman, A., Fun, H.-K., Ganguly, N. C., Datta, M. & Ghosh, K. (2003). Acta Cryst. E59, o773–o775. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yang, H., Kim, T. H., Moon, S.-H. & Kim, J. (2010). Acta Cryst. E66, o1519. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yu, G.-M., Zhao, L., Zou, L.-F., Guo, Y.-N., Xu, G.-F., Li, Y.-H. & Tang, J. (2011). J. Chem. Crystallogr. 41, 606–609. Web of Science CSD CrossRef CAS Google Scholar
Zhao, G., Yuan, L.-Z., i Alami, M. & Provot, O. (2017). ChemistrySelect 2, 10951–10959. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.