research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-[bis­(benzylsulfanyl)methyl]-6-methoxyphenol

CROSSMARK_Color_square_no_text.svg

aInstitut UTINAM UMR 6213 CNRS, Université Bourgogne Franche-Comté, 16, Route de Gray, 25030 Besançon Cedex, France, and bAnorganische Chemie, TU Dortmund University, Otto-Hahn-Str. 6/6a, D-44227 Dortmund, Germany
*Correspondence e-mail: lydie.viau@univ-fcomte.fr, carsten.strohmann@tu-dortmund.de

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 7 February 2020; accepted 14 February 2020; online 3 March 2020)

The title compound, C22H22O2S2, 1, represents an example of an ortho-vanillin-based functionalized di­thio­ether, which could be useful as a potential chelating ligand or bridging ligand for coordination chemistry. This di­thio­acetal 1 crystallizes in the ortho­rhom­bic space group Pbca. The phenyl rings of the benzyl groups and that of the vanillin unit form dihedral angles of 35.38 (6) and 79.77 (6)°, respectively. The crystal structure, recorded at 100 K, displays both weak intra­molecular O—H⋯O and inter­molecular O—H⋯S hydrogen bonding.

1. Chemical context

Acyclic and cyclic di­thio­ether compounds containing the –S–C(R)(H)–S– (R = H, alkyl, ar­yl) motif are synthesized by nucleophilic substitution of geminal dihalides X–C(R)(H)–X in the presence of thiol­ate RS (Murray et al., 1981[Murray, S. G., Levason, W. & Tuttlebee, H. E. (1981). Inorg. Chim. Acta, 51, 185-189.]). Alternatively, they are readily accessible by treatment of aldehydes and ketones with thiols RSH and di­thiols HS(CH2)nSH (n = 2, 3), yielding geminal di­thio ethers, also called acyclic and cyclic thio­acetals (1,3-di­thiol­anes, 1,3-di­thia­nes) (Shaterian et al., 2011[Shaterian, H. R., Azizi, K. & Fahimi, N. (2011). J. Sulfur Chem. 32, 85-91.]). This type of organosulfur compound is commonly used for Corey–Seebach umpolung reactions and the Mozingo reduction of di­thio­ketals to hydro­carbons (Seebach & Corey, 1975[Seebach, D. & Corey, E. J. (1975). J. Org. Chem. 40, 231-237.]; Zhao et al., 2017[Zhao, G., Yuan, L.-Z., i Alami, M. & Provot, O. (2017). ChemistrySelect 2, 10951-10959.]), but there are also numerous other transformations in organic chemistry such as their oxidation to sulfoxides and sulfones (Gasparrini et al., 1984[Gasparrini, F., Giovannoli, M., Misiti, D., Natile, G. & Palmieri, G. (1984). Tetrahedron, 40, 165-170.]). They have also been used in the past as monodentate, chelating or bridging ligands to construct both simple mono- and dinuclear coordination compounds or to assemble coordination networks of varying dimensionality ranging from 1D to 3D. Selected examples are [(C5H5)Fe(CO)2(κ1-BzSCH2SBz)]+, the 1:1 adduct [Hg2(NO3)2·BzSCH2SBz)], the dinuclear PdI complex [ClPd(μ2-BzSCH2SBz)2PdCl], and the monodimensional coordination polymer [Ag2(BzSCH2SBz)2](ClO4)2 built upon dinuclear [Ag(μ2-BzSCH2SBz)2Ag]2+ units (Brodersen & Rölz, 1977[Brodersen, K. & Rölz, W. (1977). Chem. Ber. 110, 1042-1046.]; Fuchita et al., 1991[Fuchita, Y., Maruyama, H., Kawatani, M. & Hiraki, K. (1991). Polyhedron, 10, 561-566.]; Kuhn & Schumann, 1986[Kuhn, N. & Schumann, H. (1986). J. Organomet. Chem. 315, 93-103.]; Li et al., 2005[Li, J.-R., Bu, X.-H., Jiao, J., Du, W.-P., Xu, X.-H. & Zhang, R.-H. (2005). Dalton Trans. pp. 464-474.]).

In the context of our research inter­est in the assembly of mol­ecular cluster compounds and coordination polymers by complexation of ArSCH2SAr or di­thiol­ane- and di­thiane-based thia­heterocycles (Chaabéne et al., 2016[Chaabéne, M., Khatyr, A., Knorr, M., Askri, M., Rousselin, Y. & Kubicki, M. M. (2016). Inorg. Chim. Acta, 451, 177-186.]; Knauer et al., 2020[Knauer, L., Knorr, M., Viau, L. & Strohmann, C. (2020). Acta Cryst. E76, 38-41.]; Knorr et al., 2014[Knorr, M., Khatyr, A., Dini Aleo, A., El Yaagoubi, A., Strohmann, C., Kubicki, M. M., Rousselin, Y., Aly, S. M., Fortin, D., Lapprand, A. & Harvey, P. D. (2014). Cryst. Growth Des. 14, 5373-5387.]; Raghuvanshi et al., 2017[Raghuvanshi, A., Dargallay, N. J., Knorr, M., Viau, L., Knauer, L. & Strohmann, C. (2017). J. Inorg. Organomet. Polym. 27, 1501-1513.], 2019[Raghuvanshi, A., Knorr, M., Knauer, L., Strohmann, C., Boullanger, S., Moutarlier, V. & Viau, L. (2019). Inorg. Chem. 58, 5753-5775.]; Schlachter et al., 2018[Schlachter, A., Viau, L., Fortin, D., Knauer, L., Strohmann, C., Knorr, M. & Harvey, P. D. (2018). Inorg. Chem. 57, 13564-13576.]) , we have developed novel functionalized di­thio ether compounds such as ferrocenyl thio­ethers bearing a substituent at the α-carbon atom linking the two –SR groups. With the idea of designing a functionalized thio­acetal ligand bearing additional harder O-donor sites along with the two soft S-donor sites, we chose 2-hy­droxy-3-meth­oxy­benzaldehyde (ortho-vanillin) as the starting material. This hy­droxy­lated aldehyde is present in the extracts and essential oils of many plants. Several papers describe also its use (in its deprotonated vanillinato form or as a Schiff base-derived ligand) in coordination chemistry (Andruh, 2015[Andruh, M. (2015). Dalton Trans. 44, 16633-16653.]; Kırpık et al., 2019[Kırpık, H., Kose, M., Elsegood, M. R. J. & Carpenter-Warren, C. L. (2019). J. Mol. Struct. 1175, 882-888.]; Yu et al., 2011[Yu, G.-M., Zhao, L., Zou, L.-F., Guo, Y.-N., Xu, G.-F., Li, Y.-H. & Tang, J. (2011). J. Chem. Crystallogr. 41, 606-609.]). Its reaction with 2 equivalents of benzyl mercaptan affords the targeted di­thio­acetal 2-hy­droxy-3-meth­oxy­phen­yl[bis­(benzyl­thio)]methane, 1, which was isolated in high yield as a crystalline solid.

This acyclic thio­acetal contains, in addition to the benzylic thio ether groups and the meth­oxy group prone to ligate metal centres, a phenolic hydroxyl group, which may allow additional inter­actions through hydrogen bonding.

[Scheme 1]

2. Structural commentary

Compound 1 crystallizes from CH2Cl2/hexane in the ortho­rhom­bic crystal system, space group Pbca. The C1—S1 and C1—S2 bond lengths of 1.8132 (12) and 1.8189 (12) Å are comparable with those of [BzSC(H)(C6H4NO2-p)SBz] [1.823 (3) and 1.8262 (19) Å], but are elongated compared with those of bis­(benzyl­sulfan­yl)methane (CSD TUQPAX) [1.7988 (13) and 1.8013 (13) Å; Yang et al., 2010[Yang, H., Kim, T. H., Moon, S.-H. & Kim, J. (2010). Acta Cryst. E66, o1519.]). The angle S1—C1—S2 is almost identical with that of 4-nitro­phenyl-bis­(benzyl­sulfan­yl)methane [107.26 (6) versus 107.76°], but considerably more acute than in [BzSCH2SBz] [117.33 (7)°]. There is a weak intra­molecular O1⋯H2 contact of 2.17 (2) Å between the H atom of the phenolic hydroxyl group and the O-atom of the meth­oxy group (Table 1[link]). For the starting material, 2-hy­droxy-3-meth­oxy­benzaldehyde, a similar intra­molecular hydrogen bond seems to be absent; instead, a rather strong intra­molecular hydrogen bond between the O—H group and the carbonyl oxygen was found (Iwasaki et al., 1976[Iwasaki, F., Tanaka, I. & Aihara, A. (1976). Acta Cryst. B32, 1264-1266.]). The phenyl rings of the benzyl groups (C10–C15) and (C17–C22) and the phenyl ring of the vanillin unit (C2–C7) form dihedral angles of 35.38 (6) and 79.77 (6)°, respectively. Compared to the structurally very closely related compound 4-nitro­phenyl-bis­(benzyl­sulfan­yl)methane [BzSC(H)(C6H4NO2-p)SBz] (SUNMAQ; Binkowska et al., 2009[Binkowska, I., Ratajczak-Sitarz, M., Katrusiak, A. & Jarczewski, A. (2009). J. Mol. Struct. 928, 54-58.]), the coplanar and perpendicular arrangement of the phenyl rings is thus lost in 1 (Figs. 1[link] and 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯S1i 0.85 (2) 2.44 (2) 3.1315 (13) 139.0 (17)
O2—H2⋯O1 0.85 (2) 2.17 (2) 2.6469 (16) 115.4 (16)
C9—H9A⋯C20ii 0.99 2.86 3.528 (2) 125
C5—H5⋯Cg1iii 0.95 2.84 3.7487 (15) 160
C16—H16ACg1iv 0.99 2.71 3.6316 (15) 154
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z]; (iii) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (iv) x-1, y, z.
[Figure 1]
Figure 1
The mol­ecular structure of 1 with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
A view of the crystal packing of the title compound. For clarity, H atoms have been omitted. The intramolecular O1⋯H2 contacts are shown as dashed lines. For clarity, only H atoms involved in these interactions are presented. The intermolecular contacts are shown in Fig. 3[link].

3. Supra­molecular features

In the crystal, there is an O—H⋯S hydrogen bond between the H2 atom of the phenolic hydroxyl group and the S1 atom of a neighbouring mol­ecule with distances [H2⋯S1 = 2.44 (2), O2⋯S1 = 3.1315 (13) Å] similar to those reported for 4-(1,3-di­thian-2-yl)-1,2-benzene­diol [H⋯S = 2.44, O⋯S = 3.2417 (13) Å], while the O—H⋯S angle is more acute [139.0 (17) versus 159.2°] (Fig. 3[link] and Table 1[link]). This O2—H2⋯S1 inter­action results in the formation of chains running along the b-axis direction.

[Figure 3]
Figure 3
Inter­molecular contacts for compound 1. Symmetry codes as in Table 1[link].

The benzylic methyl­ene group on sulfur atom S2 inter­acts with the π-cloud of the phenyl part of the vanillin unit through a C—H⋯π inter­action (Table 1[link]). The second phenyl ring of the di­thiane unit also exhibits a C—H⋯π inter­action: the second methyl­ene group on sulfur atom S1 inter­acts with a phenyl carbon. The third C—H⋯π contact is between adjacent vanillin units.

4. Database survey

There are several other examples of structurally characterized related di­thioethers bearing hy­droxy substituents that give rise to the formation of supra­molecular networks. Selected examples found in the Cambridge Structural Database (CSD, version 5.40, update August 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) include 2-(2-hy­droxy­phen­yl)-1,3-di­thiane (WADROJ; Usman et al., 2003[Usman, A., Fun, H.-K., Ganguly, N. C., Datta, M. & Ghosh, K. (2003). Acta Cryst. E59, o773-o775.]), 2-(3-hy­droxy­phen­yl)-1,3-di­thiane (KALJUD; Ganguly et al., 2005[Ganguly, N. C., Datta, M., Ghosh, K. & Bond, A. D. (2005). CrystEngComm, 7, 210-215.]), 4,6-bis­(1,3-di­thian-2-yl)benzene-1,3-diol (DITFIX; Datta et al., 2013[Datta, M., Hunter, A. D. & Zeller, M. (2013). J. Sulfur Chem. 34, 502-511.]), 4-(1,3-di­thian-2-yl)benzene-1,3-diol (DITFOD; Datta et al., 2013[Datta, M., Hunter, A. D. & Zeller, M. (2013). J. Sulfur Chem. 34, 502-511.]), 2-phenyl-1,3-dithiepane-5,6-diol (FIBTOC; Liu et al., 2018[Liu, Y., Zeng, J., Sun, J., Cai, L., Zhao, Y., Fang, J., Hu, B., Shu, P., Meng, L. & Wan, Q. (2018). Org. Chem. Front. 5, 2427-2431.]) and 2,2′-{[(4-meth­oxy­phen­yl)methyl­ene]disulfanedi­yl}di­ethanol (YISVUT; Laskar et al., 2013[Laskar, R. A., Begum, N. A., Mir, M. H., Rohman, M. R. & Khan, A. T. (2013). Tetrahedron Lett. 54, 5839-5844.]). It is noteable that in most of these examples, the inter­molecular contacts are noticeably stronger than those of 1.

Note that in di­thio­ether compounds with phenolic aryl groups as encountered in 1, the relative position of the phenolic OH substituent seems to play a crucial role, whether the inter­molecular contacts are dominated by O—H⋯H or O—H⋯S hydrogen bonds. This is nicely illustrated by the series of three isomeric hy­droxy­phenyl-1,3-di­thia­nes, ortho-, meta- and para-HO–C6H4–C4H7S2. Whereas 2-(2-hy­droxy­phen­yl)-1,3-di­thiane (WADROY) and 2-(3-hy­droxy­phen­yl)-1,3-di­thiane (KALJUD) exhibit, like 1, only inter­molecular O—H⋯S hydrogen bonding, the para-derivative 2-(4-hy­droxy­phen­yl)-1,3-di­thiane (KALKAK) features solely inter­molecular phenolic O—H⋯H bonding (Ganguly et al., 2005).

5. Synthesis and crystallization

The reaction scheme for the synthesis of the title compound is illustrated in Fig. 4[link].

[Figure 4]
Figure 4
Synthesis of 1.

3-Meth­oxy­salicyl­aldehyde (1 mmol, 152 mg), benzyl mercaptan (2.5 mmol, 310 mg), and conc. HCl (2 mL) were added to a flask at 273 K. The mixture was stirred for 60 min at room temperature. After the reaction was complete, the resulting mixture was neutralized with 10% aq NaHCO3 (10 mL) and extracted with di­chloro­methane (3 × 10 mL). The combined extracts were washed with H2O (3 × 20 mL) and dried over Na2SO4. Evaporation of the solvent in vacuo gave a solid product, which was further purified by column chromatography. The product was obtained as a white solid, Yield: 83% (430 mg). X-ray quality crystals were obtained by keeping a di­chloro­methane:hexane (1:1) mixture of 1 at 278 K for 3–4 d. 1H NMR (400 MHz, CDCl3) δ 7.26–7.19 (m, 11H, Ph), 6.86 (t, J = 7.8 Hz, 1H, CH), 6.78 (d, J = 7.8 Hz, 1H, CH), 5.83 (s, 1H, OH), 5.13 (s, 1H CHS2), 3.88 (s, 3H, OCH3), 3.79 (d, J = 13.1 Hz, 2H, CH2), 3.64 (d, J = 13.1 Hz, 2H, CH2).13C{1H} NMR (101 MHz, CDCl3) δ 146.5 (CqOH), 142.8 (CqOCH3), 137.8 (SCH2Cq), 129.1 (SCH2CCH), 128.4 (SCH2CCHCH), 126.9 (SCH2CCHCHCH), 125.3 (S2CHCq), 120.9 (S2CHCqCH), 119.9 (S2CHCqCHCH), 110.0 (CHCqOCH3), 56.1 (OCH3), 44.8 (S2CH), 36.7 (S2CH2). IR (ATR) cm−1: 3419 (O—H), 1430-1612 (C=C). 1054 and 1264 (C—O), 766 (C—S). HRMS: (ESI) m/z calculated for C22H22O2S2Na [M + Na]+ 405.0953, found 405.0965.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were positioned geometrically (C—H = 0.95–1.00 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C) for CH2 and CH hydrogen atoms and Uiso(H) = 1.5Ueq(C-meth­yl). The phenolic proton H2 was refined independently.

Table 2
Experimental details

Crystal data
Chemical formula C22H22O2S2
Mr 382.51
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 100
a, b, c (Å) 7.7418 (8), 13.856 (3), 36.197 (5)
V3) 3882.9 (10)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.29
Crystal size (mm) 0.49 × 0.42 × 0.25
 
Data collection
Diffractometer Bruker D8 VENTURE area detector
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). SAINT, APEX2 and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.713, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 107706, 5005, 4510
Rint 0.033
(sin θ/λ)max−1) 0.684
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.079, 1.09
No. of reflections 5005
No. of parameters 241
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.34, −0.23
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). SAINT, APEX2 and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

2-[Bis(benzylsulfanyl)methyl]-6-methoxyphenol top
Crystal data top
C22H22O2S2Dx = 1.309 Mg m3
Mr = 382.51Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 9791 reflections
a = 7.7418 (8) Åθ = 2.3–28.2°
b = 13.856 (3) ŵ = 0.29 mm1
c = 36.197 (5) ÅT = 100 K
V = 3882.9 (10) Å3Block, colourless
Z = 80.49 × 0.42 × 0.25 mm
F(000) = 1616
Data collection top
Bruker D8 VENTURE area detector
diffractometer
5005 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs4510 reflections with I > 2σ(I)
HELIOS mirror optics monochromatorRint = 0.033
Detector resolution: 10.4167 pixels mm-1θmax = 29.1°, θmin = 2.3°
ω and φ scansh = 910
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1818
Tmin = 0.713, Tmax = 0.746l = 4945
107706 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0287P)2 + 2.6399P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.079(Δ/σ)max = 0.003
S = 1.09Δρmax = 0.34 e Å3
5005 reflectionsΔρmin = 0.23 e Å3
241 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0017 (2)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.61115 (4)0.82824 (2)0.63211 (2)0.01667 (8)
S20.42202 (4)0.68918 (2)0.67748 (2)0.01772 (8)
O11.02466 (13)0.48649 (7)0.70693 (3)0.0234 (2)
O20.76523 (13)0.52864 (7)0.66212 (3)0.0228 (2)
H20.826 (3)0.4778 (15)0.6649 (5)0.043 (5)*
C10.62315 (15)0.70907 (8)0.65265 (3)0.0146 (2)
H10.6319570.6602780.6323780.017*
C20.77100 (15)0.69329 (8)0.67929 (3)0.0147 (2)
C30.84314 (17)0.76632 (9)0.70092 (3)0.0179 (2)
H30.7991410.8301650.6991710.022*
C40.97814 (17)0.74678 (10)0.72490 (3)0.0202 (3)
H41.0258530.7974160.7393540.024*
C51.04472 (16)0.65382 (9)0.72807 (3)0.0185 (2)
H51.1377190.6407640.7444460.022*
C60.97346 (16)0.58102 (9)0.70704 (3)0.0172 (2)
C70.83624 (16)0.60032 (9)0.68273 (3)0.0157 (2)
C81.17946 (19)0.46331 (11)0.72664 (5)0.0311 (3)
H8A1.2743270.5037990.7176320.047*
H8B1.2081190.3951910.7227050.047*
H8C1.1619290.4750730.7530700.047*
C90.81405 (17)0.83571 (10)0.60670 (4)0.0222 (3)
H9A0.8282480.9025230.5974910.027*
H9B0.9102480.8225570.6239990.027*
C100.82841 (17)0.76755 (10)0.57454 (4)0.0216 (3)
C110.7673 (2)0.79298 (12)0.53965 (4)0.0294 (3)
H110.7126510.8536940.5361440.035*
C120.7855 (2)0.73040 (14)0.51001 (4)0.0354 (4)
H120.7426880.7482230.4863850.043*
C130.8656 (2)0.64242 (14)0.51472 (4)0.0367 (4)
H130.8802480.6002560.4942640.044*
C140.9247 (2)0.61563 (13)0.54931 (5)0.0360 (4)
H140.9785480.5546770.5527120.043*
C150.90510 (18)0.67790 (11)0.57899 (4)0.0275 (3)
H150.9448210.6588580.6027280.033*
C160.26715 (16)0.68531 (9)0.63950 (3)0.0188 (2)
H16A0.1507740.6727220.6497600.023*
H16B0.2642270.7494360.6274530.023*
C170.30595 (16)0.61034 (9)0.61075 (3)0.0176 (2)
C180.25087 (18)0.51529 (10)0.61502 (4)0.0231 (3)
H180.1886460.4970610.6365370.028*
C190.2863 (2)0.44732 (10)0.58807 (4)0.0274 (3)
H190.2461890.3829780.5909830.033*
C200.37995 (19)0.47228 (11)0.55688 (4)0.0264 (3)
H200.4063560.4249570.5387490.032*
C210.43459 (18)0.56639 (12)0.55233 (4)0.0269 (3)
H210.4981430.5840700.5309210.032*
C220.39681 (17)0.63509 (10)0.57896 (4)0.0223 (3)
H220.4334130.6998930.5754650.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01657 (15)0.01393 (14)0.01952 (15)0.00028 (11)0.00002 (11)0.00077 (10)
S20.01469 (15)0.02377 (16)0.01471 (14)0.00302 (11)0.00020 (11)0.00089 (11)
O10.0226 (5)0.0196 (4)0.0279 (5)0.0043 (4)0.0075 (4)0.0010 (4)
O20.0254 (5)0.0145 (4)0.0285 (5)0.0022 (4)0.0092 (4)0.0048 (4)
C10.0133 (5)0.0145 (5)0.0159 (5)0.0009 (4)0.0003 (4)0.0000 (4)
C20.0129 (5)0.0164 (5)0.0147 (5)0.0011 (4)0.0002 (4)0.0002 (4)
C30.0184 (6)0.0174 (6)0.0180 (6)0.0009 (5)0.0005 (5)0.0022 (4)
C40.0207 (6)0.0231 (6)0.0169 (6)0.0049 (5)0.0014 (5)0.0035 (5)
C50.0147 (6)0.0266 (6)0.0141 (5)0.0014 (5)0.0013 (4)0.0017 (5)
C60.0166 (6)0.0193 (6)0.0158 (5)0.0013 (5)0.0007 (4)0.0022 (4)
C70.0146 (6)0.0172 (5)0.0154 (5)0.0018 (4)0.0003 (4)0.0012 (4)
C80.0235 (7)0.0270 (7)0.0428 (9)0.0027 (6)0.0105 (6)0.0110 (6)
C90.0189 (6)0.0261 (6)0.0217 (6)0.0069 (5)0.0026 (5)0.0003 (5)
C100.0148 (6)0.0315 (7)0.0186 (6)0.0065 (5)0.0025 (5)0.0010 (5)
C110.0307 (8)0.0356 (8)0.0221 (6)0.0084 (6)0.0008 (6)0.0060 (6)
C120.0323 (8)0.0572 (10)0.0168 (6)0.0122 (8)0.0003 (6)0.0013 (6)
C130.0223 (7)0.0615 (11)0.0264 (7)0.0047 (7)0.0033 (6)0.0175 (7)
C140.0210 (7)0.0494 (10)0.0376 (8)0.0090 (7)0.0038 (6)0.0153 (7)
C150.0167 (6)0.0423 (8)0.0236 (7)0.0046 (6)0.0036 (5)0.0051 (6)
C160.0131 (6)0.0258 (6)0.0175 (6)0.0020 (5)0.0024 (5)0.0022 (5)
C170.0121 (5)0.0250 (6)0.0157 (5)0.0019 (5)0.0037 (4)0.0027 (5)
C180.0216 (6)0.0254 (6)0.0222 (6)0.0030 (5)0.0006 (5)0.0061 (5)
C190.0304 (8)0.0213 (6)0.0306 (7)0.0009 (6)0.0054 (6)0.0034 (5)
C200.0227 (7)0.0319 (7)0.0247 (7)0.0049 (6)0.0067 (5)0.0060 (6)
C210.0219 (7)0.0411 (8)0.0177 (6)0.0061 (6)0.0007 (5)0.0017 (6)
C220.0205 (6)0.0282 (7)0.0182 (6)0.0083 (5)0.0017 (5)0.0022 (5)
Geometric parameters (Å, º) top
S1—C11.8132 (12)C10—C111.3940 (19)
S1—C91.8232 (14)C10—C151.386 (2)
S2—C11.8189 (12)C11—H110.9500
S2—C161.8250 (13)C11—C121.387 (2)
O1—C61.3685 (15)C12—H120.9500
O1—C81.4312 (17)C12—C131.378 (3)
O2—H20.85 (2)C13—H130.9500
O2—C71.3584 (15)C13—C141.383 (2)
C1—H11.0000C14—H140.9500
C1—C21.5126 (16)C14—C151.386 (2)
C2—C31.3960 (17)C15—H150.9500
C2—C71.3893 (17)C16—H16A0.9900
C3—H30.9500C16—H16B0.9900
C3—C41.3854 (18)C16—C171.5007 (18)
C4—H40.9500C17—C181.3929 (18)
C4—C51.3920 (19)C17—C221.3917 (17)
C5—H50.9500C18—H180.9500
C5—C61.3789 (18)C18—C191.383 (2)
C6—C71.4051 (17)C19—H190.9500
C8—H8A0.9800C19—C201.385 (2)
C8—H8B0.9800C20—H200.9500
C8—H8C0.9800C20—C211.381 (2)
C9—H9A0.9900C21—H210.9500
C9—H9B0.9900C21—C221.386 (2)
C9—C101.5031 (19)C22—H220.9500
C1—S1—C9102.38 (6)C15—C10—C9120.31 (12)
C1—S2—C16101.22 (6)C15—C10—C11118.51 (13)
C6—O1—C8117.12 (11)C10—C11—H11119.7
C7—O2—H2108.5 (14)C12—C11—C10120.54 (15)
S1—C1—S2107.26 (6)C12—C11—H11119.7
S1—C1—H1108.6C11—C12—H12119.9
S2—C1—H1108.6C13—C12—C11120.22 (14)
C2—C1—S1115.59 (8)C13—C12—H12119.9
C2—C1—S2108.11 (8)C12—C13—H13120.1
C2—C1—H1108.6C12—C13—C14119.86 (15)
C3—C2—C1123.74 (11)C14—C13—H13120.1
C7—C2—C1117.80 (10)C13—C14—H14120.1
C7—C2—C3118.45 (11)C13—C14—C15119.88 (16)
C2—C3—H3119.6C15—C14—H14120.1
C4—C3—C2120.77 (12)C10—C15—H15119.5
C4—C3—H3119.6C14—C15—C10120.96 (14)
C3—C4—H4119.6C14—C15—H15119.5
C3—C4—C5120.79 (12)S2—C16—H16A108.7
C5—C4—H4119.6S2—C16—H16B108.7
C4—C5—H5120.6H16A—C16—H16B107.6
C6—C5—C4118.90 (12)C17—C16—S2114.28 (9)
C6—C5—H5120.6C17—C16—H16A108.7
O1—C6—C5125.87 (12)C17—C16—H16B108.7
O1—C6—C7113.53 (11)C18—C17—C16121.08 (11)
C5—C6—C7120.59 (12)C22—C17—C16120.27 (12)
O2—C7—C2118.79 (11)C22—C17—C18118.65 (12)
O2—C7—C6120.71 (11)C17—C18—H18119.8
C2—C7—C6120.50 (11)C19—C18—C17120.31 (13)
O1—C8—H8A109.5C19—C18—H18119.8
O1—C8—H8B109.5C18—C19—H19119.7
O1—C8—H8C109.5C18—C19—C20120.56 (13)
H8A—C8—H8B109.5C20—C19—H19119.7
H8A—C8—H8C109.5C19—C20—H20120.2
H8B—C8—H8C109.5C21—C20—C19119.55 (13)
S1—C9—H9A108.6C21—C20—H20120.2
S1—C9—H9B108.6C20—C21—H21120.0
H9A—C9—H9B107.6C20—C21—C22120.06 (13)
C10—C9—S1114.75 (9)C22—C21—H21120.0
C10—C9—H9A108.6C17—C22—H22119.6
C10—C9—H9B108.6C21—C22—C17120.83 (13)
C11—C10—C9121.18 (13)C21—C22—H22119.6
S1—C1—C2—C330.00 (15)C7—C2—C3—C40.84 (18)
S1—C1—C2—C7151.09 (9)C8—O1—C6—C58.60 (19)
S1—C9—C10—C1187.20 (15)C8—O1—C6—C7170.97 (12)
S1—C9—C10—C1593.52 (14)C9—S1—C1—S2177.44 (6)
S2—C1—C2—C390.18 (13)C9—S1—C1—C261.92 (10)
S2—C1—C2—C788.73 (12)C9—C10—C11—C12178.27 (13)
S2—C16—C17—C1885.08 (14)C9—C10—C15—C14177.74 (14)
S2—C16—C17—C2295.56 (13)C10—C11—C12—C130.4 (2)
O1—C6—C7—O20.73 (17)C11—C10—C15—C141.6 (2)
O1—C6—C7—C2179.12 (11)C11—C12—C13—C141.4 (2)
C1—S1—C9—C1066.89 (11)C12—C13—C14—C150.8 (2)
C1—S2—C16—C1756.83 (10)C13—C14—C15—C100.6 (2)
C1—C2—C3—C4179.74 (11)C15—C10—C11—C121.0 (2)
C1—C2—C7—O20.19 (17)C16—S2—C1—S166.50 (7)
C1—C2—C7—C6179.95 (11)C16—S2—C1—C2168.23 (8)
C2—C3—C4—C50.18 (19)C16—C17—C18—C19179.38 (12)
C3—C2—C7—O2179.17 (11)C16—C17—C22—C21179.52 (12)
C3—C2—C7—C60.98 (18)C17—C18—C19—C201.3 (2)
C3—C4—C5—C60.34 (19)C18—C17—C22—C211.1 (2)
C4—C5—C6—O1179.74 (12)C18—C19—C20—C211.5 (2)
C4—C5—C6—C70.19 (19)C19—C20—C21—C220.4 (2)
C5—C6—C7—O2179.67 (11)C20—C21—C22—C170.9 (2)
C5—C6—C7—C20.48 (19)C22—C17—C18—C190.0 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
O2—H2···S1i0.85 (2)2.44 (2)3.1315 (13)139.0 (17)
O2—H2···O10.85 (2)2.17 (2)2.6469 (16)115.4 (16)
C9—H9A···C20ii0.992.863.528 (2)125
C5—H5···Cg1iii0.952.843.7487 (15)160
C16—H16A···Cg1iv0.992.713.6316 (15)154
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x+3/2, y+1/2, z; (iii) x+1/2, y, z+3/2; (iv) x1, y, z.
 

Footnotes

Current address: Discipline of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Simrol Indore 453552, MP, India.

Funding information

LK thanks the Fonds der Chemischen Industrie for a doctoral fellowship. We are grateful to the region of Franche-Comté for funding a postdoctoral fellowship for A. Raghuvanshi (grant No. RECH-MOB15–000017).

References

First citationAndruh, M. (2015). Dalton Trans. 44, 16633–16653.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBinkowska, I., Ratajczak–Sitarz, M., Katrusiak, A. & Jarczewski, A. (2009). J. Mol. Struct. 928, 54–58.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrodersen, K. & Rölz, W. (1977). Chem. Ber. 110, 1042–1046.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2016). SAINT, APEX2 and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChaabéne, M., Khatyr, A., Knorr, M., Askri, M., Rousselin, Y. & Kubicki, M. M. (2016). Inorg. Chim. Acta, 451, 177–186.  Google Scholar
First citationDatta, M., Hunter, A. D. & Zeller, M. (2013). J. Sulfur Chem. 34, 502–511.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFuchita, Y., Maruyama, H., Kawatani, M. & Hiraki, K. (1991). Polyhedron, 10, 561–566.  CrossRef CAS Web of Science Google Scholar
First citationGanguly, N. C., Datta, M., Ghosh, K. & Bond, A. D. (2005). CrystEngComm, 7, 210–215.  Web of Science CSD CrossRef CAS Google Scholar
First citationGasparrini, F., Giovannoli, M., Misiti, D., Natile, G. & Palmieri, G. (1984). Tetrahedron, 40, 165–170.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIwasaki, F., Tanaka, I. & Aihara, A. (1976). Acta Cryst. B32, 1264–1266.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationKırpık, H., Kose, M., Elsegood, M. R. J. & Carpenter-Warren, C. L. (2019). J. Mol. Struct. 1175, 882–888.  Google Scholar
First citationKnauer, L., Knorr, M., Viau, L. & Strohmann, C. (2020). Acta Cryst. E76, 38–41.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKnorr, M., Khatyr, A., Dini Aleo, A., El Yaagoubi, A., Strohmann, C., Kubicki, M. M., Rousselin, Y., Aly, S. M., Fortin, D., Lapprand, A. & Harvey, P. D. (2014). Cryst. Growth Des. 14, 5373–5387.  Web of Science CSD CrossRef CAS Google Scholar
First citationKuhn, N. & Schumann, H. (1986). J. Organomet. Chem. 315, 93–103.  CrossRef CAS Web of Science Google Scholar
First citationLaskar, R. A., Begum, N. A., Mir, M. H., Rohman, M. R. & Khan, A. T. (2013). Tetrahedron Lett. 54, 5839–5844.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, J.-R., Bu, X.-H., Jiao, J., Du, W.-P., Xu, X.-H. & Zhang, R.-H. (2005). Dalton Trans. pp. 464–474.  Web of Science CSD CrossRef Google Scholar
First citationLiu, Y., Zeng, J., Sun, J., Cai, L., Zhao, Y., Fang, J., Hu, B., Shu, P., Meng, L. & Wan, Q. (2018). Org. Chem. Front. 5, 2427–2431.  Web of Science CSD CrossRef CAS Google Scholar
First citationMurray, S. G., Levason, W. & Tuttlebee, H. E. (1981). Inorg. Chim. Acta, 51, 185–189.  CrossRef CAS Web of Science Google Scholar
First citationRaghuvanshi, A., Dargallay, N. J., Knorr, M., Viau, L., Knauer, L. & Strohmann, C. (2017). J. Inorg. Organomet. Polym. 27, 1501–1513.  Web of Science CSD CrossRef CAS Google Scholar
First citationRaghuvanshi, A., Knorr, M., Knauer, L., Strohmann, C., Boullanger, S., Moutarlier, V. & Viau, L. (2019). Inorg. Chem. 58, 5753–5775.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSchlachter, A., Viau, L., Fortin, D., Knauer, L., Strohmann, C., Knorr, M. & Harvey, P. D. (2018). Inorg. Chem. 57, 13564–13576.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSeebach, D. & Corey, E. J. (1975). J. Org. Chem. 40, 231–237.  CrossRef CAS Web of Science Google Scholar
First citationShaterian, H. R., Azizi, K. & Fahimi, N. (2011). J. Sulfur Chem. 32, 85–91.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationUsman, A., Fun, H.-K., Ganguly, N. C., Datta, M. & Ghosh, K. (2003). Acta Cryst. E59, o773–o775.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, H., Kim, T. H., Moon, S.-H. & Kim, J. (2010). Acta Cryst. E66, o1519.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYu, G.-M., Zhao, L., Zou, L.-F., Guo, Y.-N., Xu, G.-F., Li, Y.-H. & Tang, J. (2011). J. Chem. Crystallogr. 41, 606–609.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhao, G., Yuan, L.-Z., i Alami, M. & Provot, O. (2017). ChemistrySelect 2, 10951–10959.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds