research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1,4,8,11-tetra­methyl-1,4,8,11-tetra­azonia­cyclo­tetra­decane bis­­[chlorido­chromate(VI)] dichloride from synchrotron X-ray data

aBeamline Department, Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea, and bDepartment of Chemistry, Andong National University, Andong 36729, Republic of Korea
*Correspondence e-mail: jhchoi@anu.ac.kr

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 27 February 2020; accepted 4 March 2020; online 10 March 2020)

The crystal structure of title compound, (C14H36N4)[CrO3Cl]2Cl2, has been determined by synchrotron radiation X-ray crystallography at 220 K. The macrocyclic cation lies across a crystallographic inversion center and hence the asymmetric unit contains one half of the organic cation, one chloro­chromate anion and one chloride anion. Both the Cl anion and chloro­chromate Cl atom are involved in hydrogen bonding. In the crystal, hydrogen bonds involving the 1,4,8,11-tetra­methyl-1,4,8,11-tetra­azonia­cyclo­tetra­decane (TMC) N—H groups and C—H groups as donor groups and three O atoms of the chloro­chromate and the chloride anion as acceptor groups link the components, giving rise to a three-dimensional network.

1. Chemical context

Chromium(VI) compounds have a toxic and genotoxic character to humans and wildlife (Yusof & Malek, 2009[Yusof, A. M. & Malek, N. A. N. N. (2009). J. Hazard. Mater. 162, 1019-1024.]), but they are very important in industrial processes (Goyal et al., 2003[Goyal, N., Jain, S. C. & Banerjee, U. C. (2003). Adv. Environ. Res. 7, 311-319.]). 1,4,8,11-Tetra­aza­cyclo­tetra­decane and its substituted derivatives are involved in diverse application fields such as catalysis, enzyme mimics, chemical sensors, selective metal-ion recovery, pharmacology and therapy (Meyer et al., 1998[Meyer, M., Dahaoui-Gindrey, V., Lecomte, C. & Guilard, R. (1998). Coord. Chem. Rev. 178-180, 1313-1405.]). Tetra-N-methyl­ated 1,4,8,11-tetra­methyl-1,4,8,11-tetra­aza­cyclo­tetra­decane (TMC, C14H36N4) is basic and readily captures protons to form a dication, C14H34N42+, or tetra­cation, C14H36N44+, in which the N—H bonds are generally active in hydrogen-bond formation. These organic cations may be suitable for use in the removal of toxic metal ions.

Previously, the crystal structures of [H4TMC](ClO4)2Cl2 (Moon & Choi, 2020[Moon, D. & Choi, J.-H. (2020). Acta Cryst. E76, 324-327.]), [H2TMC][As4O2Cl10], [H2TMC][Sb2OCl6] (Willey et al., 1993[Willey, G. R., Asab, A., Lakin, M. T. & Alcock, N. W. (1993). J. Chem. Soc. Dalton Trans. pp. 365-370.]), [H4TMC]2[Sb4F15][HF2]F4 (Becker & Mattes, 1996[Becker, I. K. & Mattes, R. (1996). Z. Anorg. Allg. Chem. 622, 105-111.]), [H4TMC][H2TMC][W(CN)8]2·4H2O (Nowicka et al., 2012[Nowicka, B., Reczyński, M., Nitek, W. & Sieklucka, B. (2012). Polyhedron, 47, 73-78.]) and [Al(CH3)]4[TMC] (Robinson et al., 1987[Robinson, G. H., Zhang, H. & Atwood, J. L. (1987). J. Organomet. Chem. 331, 153-160.]) were determined, but there is no report of a compound with any combination of the 1,4,8,11-tetra­methyl-1,4,8,11-tetra­azonia­cyclo­tetra­decane cation and CrO3Cl anion. In this communication, we report on the preparation of a new organic chloro­chromate [H4TMC][CrO3Cl]2Cl2, (I)[link], and its structural characterization by synchrotron single-crystal X-ray diffraction.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of (I)[link] is shown in Fig. 1[link] along with the atom-numbering scheme. The organic cation lies across a crystallographic inversion center and hence the asymmetric unit contains one half of the organic cation, one chloro­chromate(VI) anion and one chloride anion. The conformation of the tetra­cation in (I)[link] (blue) is similar to that observed in [H4TMC](ClO4)2Cl2 (red) (Fig. 2[link]; r.m.s. deviation overlay = 0.5878 Å), but it is different from the trans-I and trans-III conformations of the dications in [H2TMC][As4O2Cl10] and [H2TMC][Sb2OCl6], respectively (Willey et al., 1993[Willey, G. R., Asab, A., Lakin, M. T. & Alcock, N. W. (1993). J. Chem. Soc. Dalton Trans. pp. 365-370.]). Within the centrosymmetric cation unit C14H36N44+, the C—C and N—C bond lengths vary from 1.520 (2) to 1.524 (2) Å and from 1.501 (2) to 1.513 (2) Å, respectively. The ranges of the N—C—C and C—N—C angles are 111.86 (15) to 116.39 (14)° and 108.81 (14) to 112.58 (14)°, respectively. The four nitro­gen atoms of the macrocyclic cation are coplanar with the four nitro­gens occupying the four corners of it with distances between each two N atoms of 3.2242 (13) Å (N1—N2), 5.414 (2) Å (N1—N1′) and 5.5907 (17) Å (N2—N2′), where the primed atoms are related by the symmetry operation (−x + 1, −y + 1, −z). The bond lengths and angles within the tetra­ammonium organic cation are comparable to the corresponding values determined for the H2TMC or H4TMC moiety in [H2TMC][As4O2Cl10], [H2TMC][Sb2OCl6] (Willey et al., 1993[Willey, G. R., Asab, A., Lakin, M. T. & Alcock, N. W. (1993). J. Chem. Soc. Dalton Trans. pp. 365-370.]), [H4TMC](ClO4)2Cl2 (Moon & Choi, 2020[Moon, D. & Choi, J.-H. (2020). Acta Cryst. E76, 324-327.]), [H4TMC][H2TMC][W(CN)8]2·4H2O (Nowicka et al., 2012[Nowicka, B., Reczyński, M., Nitek, W. & Sieklucka, B. (2012). Polyhedron, 47, 73-78.]) and [H4TMC]2[Sb4F15][HF2]F4 (Becker & Mattes, 1996[Becker, I. K. & Mattes, R. (1996). Z. Anorg. Allg. Chem. 622, 105-111.]). The CrO3Cl anion exhibits a more or less distorted tetra­hedral geometry (Lorenzo Luis et al., 1996[Lorenzo Luis, P. A., Martin-Zarza, P., Gili, P., Ruiz-Pérez, C., Hernández-Molina, M. & Solans, X. (1996). Acta Cryst. C52, 1441-1448.]). The O—Cr—O angles range from 110.49 (14) to 111.22 (13)° and the O—Cr—Cl angles from 108.34 (8) to 109.69 (10)°. The Cr—O bond distances range from 1.588 (2) to 1.602 (2) Å and Cr—Cl bond length is 2.200 (1) Å, in good agreement with the values (2.197 and 2.194 Å) reported for Cs[CrO3Cl] and Rb[CrO3Cl] (Foster & Sterns, 1974[Foster, J. J. & Sterns, M. (1974). J. Cryst. Mol. Struct. 4, 149-164.]).

[Figure 1]
Figure 1
The structure of (I)[link], drawn with displacement ellipsoids at the 50% probability level. Dashed lines represent hydrogen bonding inter­actions and primed atoms are related by the symmetry operation (−x + 1, −y + 1, −z).
[Figure 2]
Figure 2
Overlay of the two macrocyclic cations in (I)[link] (blue) and in [H4TMC](ClO4)2Cl2 (red).

3. Supra­molecular features

Extensive C—H⋯O, C—H⋯Cl and N—H⋯Cl hydrogen-bonding inter­actions occur in the crystal structure (Table 1[link]). The organic C14H36N44+ cation is linked to two Cl anions and one CrO3Cl anion via N1—H1⋯Cl2, N2—H2⋯Cl2 and C4—H4C⋯O3 hydrogen bonds, respectively. In addition, three neighbouring organic cations are inter­connected to the CrO3Cl anion via several C—H⋯O hydrogen bonds (Fig. 3[link]). The extensive array of these contacts generates a three-dimensional network and help to consolidate the crystal structure. The crystal packing diagram of (I)[link] viewed perpendicular to the bc plane is shown in Fig. 4[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl2 0.99 2.16 3.120 (2) 163
N2—H2⋯Cl2 0.99 2.08 3.0553 (17) 170
C2—H2A⋯Cl2 0.98 2.85 3.642 (2) 139
C4—H4C⋯O3 0.97 2.58 3.299 (4) 131
C5—H5AB⋯Cl1 0.98 2.86 3.804 (2) 161
C3—H3A⋯Cl2i 0.98 2.72 3.541 (2) 142
C1—H1A⋯Cl2ii 0.98 2.74 3.511 (2) 136
C1—H1AB⋯O1iii 0.98 2.59 3.230 (3) 123
C2—H2AB⋯O1iii 0.98 2.54 3.047 (3) 112
C3—H3AB⋯O1iii 0.98 2.53 3.193 (3) 125
C4—H4A⋯O3iv 0.97 2.34 3.168 (3) 143
C5—H5A⋯O3iv 0.98 2.40 3.218 (3) 141
C7—H7B⋯O3iv 0.97 2.38 3.343 (3) 173
C4—H4B⋯Cl1v 0.97 2.88 3.773 (3) 154
C6—H6AB⋯O2vi 0.98 2.54 3.260 (3) 130
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+2, -y+1, -z; (iii) -x+1, -y, -z+1; (iv) -x+1, -y+1, -z+1; (v) x+1, y, z; (vi) -x, -y+1, -z+1.
[Figure 3]
Figure 3
The C—H⋯O hydrogen-bonding inter­actions between neighbouring organic cations and the CrO3Cl anion (see Table 1[link] for details).
[Figure 4]
Figure 4
The crystal packing of (I)[link], viewed perpendicular to the bc plane. Dashed lines represent N—H⋯Cl (green), C—H⋯O (pink) and C—H⋯Cl (blue) hydrogen-bonding inter­actions (see Table 1[link] for details).

4. Database survey

A search of the Cambridge Structural Database (Version 5.41, November 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) indicated only seven hits for organic compounds containing C14H32N4, C14H34N42+ or C14H36N44+ macrocycles: C14H32N4 (refcode LEPXOT; Willey et al., 1994[Willey, G. R., Lakin, M. T., Alcock, N. W. & Samuel, C. J. (1994). J. Incl Phenom. Macrocycl Chem. 15, 293-304.]), [Ga2(C3H7)4(OH)2](C14H32N4) (XEGGUL; Boag et al., 2000[Boag, N. M., Coward, K. M., Jones, A. C., Pemble, M. E. & Thompson, J. R. (2000). Acta Cryst. C56, 1438-1439.]), Mg3Al13P16O64·1.5(C14H32N4)·2.5H2O (DAWQUN; Patinec et al., 1999[Patinec, V., Wright, P. A., Lightfoot, P., Aitken, R. A. & Cox, P. A. (1999). J. Chem. Soc. Dalton Trans. pp. 3909-3911.]), [C14H36N4]2[Sb4F15][HF2]F4 (ZITQUO; Becker et al., 1996[Becker, I. K. & Mattes, R. (1996). Z. Anorg. Allg. Chem. 622, 105-111.]), [C14H34N4][As4O2Cl10] (YALNII; Willey et al., 1993[Willey, G. R., Asab, A., Lakin, M. T. & Alcock, N. W. (1993). J. Chem. Soc. Dalton Trans. pp. 365-370.]), [C14H34N4][Sb2OCl6] (YALNEE; Willey et al., 1993[Willey, G. R., Asab, A., Lakin, M. T. & Alcock, N. W. (1993). J. Chem. Soc. Dalton Trans. pp. 365-370.]) and [C14H36N4][C14H34N4][W(CN)8]2·4H2O (ACIKUU; Nowicka et al., 2012[Nowicka, B., Reczyński, M., Nitek, W. & Sieklucka, B. (2012). Polyhedron, 47, 73-78.]). The conformation of the organic C14H36N44+ cation in (I)[link] is comparable to the trans-IV, trans-I and trans-III conformations of the macrocyclic cations in [C14H36N4](ClO4)2Cl2 (GUCVAE; Moon & Choi, 2020[Moon, D. & Choi, J.-H. (2020). Acta Cryst. E76, 324-327.]), [C14H34N4][As4O2Cl10] (YALNII), and [C14H34N4][Sb2OCl6] (YALNEE), respectively. The trans-III and trans-IV conformations observed in the two crystallographically independent mol­ecules of C14H32N4 were also comparable (Willey et al., 1994[Willey, G. R., Lakin, M. T., Alcock, N. W. & Samuel, C. J. (1994). J. Incl Phenom. Macrocycl Chem. 15, 293-304.]). However, the compound and structure of any double salt of C14H36N44+ with an additional CrClO3 anion is not yet known.

5. Synthesis and crystallization

The free macrocycle TMC (98%) and chromium(VI) trioxide (99%) were purchased from Sigma–Aldrich and used without further purification. All other chemicals were reagent-grade materials and used as received. To a solution of TMC (0.128 g, 0.5 mmol) in 6 M HCl (15 mL) was added a solution of chromium(VI) trioxide (0.1 g, 1 mmol) in 6 M HCl (5 mL) at 298 K. The resulting solution was stirred for 2 h and left to stand for slow evaporation at room temperature. Block-like red single crystals of (I)[link] suitable for X-ray analysis were obtained by filtration.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.97–0.98 Å and N—H = 0.99 Å, respectively, and with Uiso(H) values of 1.5 and 1.2Ueq of the parent atoms.

Table 2
Experimental details

Crystal data
Chemical formula (C14H36N4)[CrO3Cl]2Cl2
Mr 602.27
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 220
a, b, c (Å) 7.0610 (14), 8.6740 (17), 10.775 (2)
α, β, γ (°) 77.61 (3), 88.20 (3), 79.39 (3)
V3) 633.5 (2)
Z 1
Radiation type Synchrotron, λ = 0.610 Å
μ (mm−1) 0.85
Crystal size (mm) 0.21 × 0.15 × 0.11
 
Data collection
Diffractometer Rayonix MX225HS CCD area detector
Absorption correction Empirical (using intensity measurements) (HKL3000sm SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])
Tmin, Tmax 0.552, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 6933, 3503, 3357
Rint 0.022
(sin θ/λ)max−1) 0.693
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.150, 1.08
No. of reflections 3503
No. of parameters 138
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.81, −1.09
Computer programs: PAL BL2D-SMDC (Shin et al., 2016[Shin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369-373.]), HKL3000sm (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND4 (Putz & Brandenburg, 2014[Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: PAL BL2D-SMDC (Shin et al., 2016); cell refinement: HKL3000sm (Otwinowski & Minor, 1997); data reduction: HKL3000sm (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND4 (Putz & Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).

1,4,8,11-Tetramethyl-1,4,8,11-tetraazoniacyclotetradecane bis[chloridochromate(VI)] dichloride top
Crystal data top
(C14H36N4)[CrO3Cl]2Cl2Z = 1
Mr = 602.27F(000) = 312
Triclinic, P1Dx = 1.579 Mg m3
a = 7.0610 (14) ÅSynchrotron radiation, λ = 0.610 Å
b = 8.6740 (17) ÅCell parameters from 41622 reflections
c = 10.775 (2) Åθ = 0.4–33.7°
α = 77.61 (3)°µ = 0.85 mm1
β = 88.20 (3)°T = 220 K
γ = 79.39 (3)°Block, red
V = 633.5 (2) Å30.21 × 0.15 × 0.11 mm
Data collection top
Rayonix MX225HS CCD area detector
diffractometer
3357 reflections with I > 2σ(I)
Radiation source: PLSII 2D bending magnetRint = 0.022
ω scanθmax = 25.0°, θmin = 1.7°
Absorption correction: empirical (using intensity measurements)
(HKL3000sm Scalepack; Otwinowski & Minor, 1997)
h = 99
Tmin = 0.552, Tmax = 1.000k = 1212
6933 measured reflectionsl = 1414
3503 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.150 w = 1/[σ2(Fo2) + (0.1021P)2 + 0.4428P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3503 reflectionsΔρmax = 0.81 e Å3
138 parametersΔρmin = 1.08 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.5951 (2)0.43908 (19)0.24944 (14)0.0197 (3)
H10.6559240.5287590.2033980.024*
N20.3111 (2)0.75634 (17)0.10259 (15)0.0178 (3)
H20.4481970.7367100.0778220.021*
C10.8079 (3)0.1708 (2)0.01696 (18)0.0203 (3)
H1A0.9422230.1409000.0077670.024*
H1AB0.7639150.0716710.0584880.024*
C20.8030 (2)0.2755 (2)0.11389 (17)0.0202 (3)
H2A0.8508380.3735450.0744040.024*
H2AB0.8893950.2179670.1849180.024*
C30.6013 (3)0.3211 (2)0.16488 (18)0.0216 (3)
H3A0.5117050.3680640.0934150.026*
H3AB0.5590120.2241250.2129110.026*
C40.7083 (4)0.3635 (3)0.3696 (2)0.0350 (5)
H4A0.7102460.4437380.4196280.052*
H4B0.8391270.3202570.3486380.052*
H4C0.6485610.2775820.4180980.052*
C50.3917 (3)0.5084 (2)0.28166 (17)0.0214 (3)
H5A0.3983830.5817720.3384170.026*
H5AB0.3316180.4205590.3290150.026*
C60.2612 (2)0.5985 (2)0.16973 (17)0.0191 (3)
H6A0.2656420.5296200.1081000.023*
H6AB0.1285160.6177920.2001710.023*
C70.2870 (3)0.8760 (2)0.1871 (2)0.0287 (4)
H7A0.3092960.9787490.1382990.043*
H7B0.3789110.8382650.2568430.043*
H7C0.1571430.8881000.2204670.043*
Cr10.20005 (5)0.19152 (4)0.58525 (3)0.02581 (14)
Cl10.21038 (11)0.11680 (9)0.40216 (7)0.04726 (19)
O10.2178 (4)0.0382 (3)0.6983 (2)0.0578 (6)
O20.0005 (3)0.3102 (3)0.59266 (19)0.0461 (5)
O30.3790 (3)0.2812 (3)0.5855 (2)0.0459 (5)
Cl20.74460 (6)0.71108 (6)0.05475 (5)0.02599 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0203 (7)0.0201 (7)0.0179 (6)0.0016 (5)0.0003 (5)0.0042 (5)
N20.0161 (6)0.0139 (6)0.0231 (7)0.0019 (5)0.0036 (5)0.0049 (5)
C10.0175 (7)0.0155 (7)0.0252 (8)0.0018 (6)0.0016 (6)0.0024 (6)
C20.0168 (7)0.0194 (8)0.0226 (8)0.0002 (6)0.0009 (6)0.0030 (6)
C30.0189 (8)0.0223 (8)0.0244 (8)0.0023 (6)0.0029 (6)0.0085 (6)
C40.0384 (12)0.0407 (12)0.0216 (9)0.0067 (9)0.0102 (8)0.0078 (8)
C50.0220 (8)0.0216 (8)0.0192 (7)0.0018 (6)0.0050 (6)0.0038 (6)
C60.0174 (7)0.0155 (7)0.0239 (8)0.0034 (5)0.0041 (6)0.0030 (6)
C70.0381 (11)0.0196 (8)0.0312 (9)0.0048 (7)0.0047 (8)0.0124 (7)
Cr10.0292 (2)0.0227 (2)0.0242 (2)0.00618 (13)0.00070 (13)0.00076 (13)
Cl10.0520 (4)0.0530 (4)0.0450 (4)0.0119 (3)0.0076 (3)0.0274 (3)
O10.0855 (18)0.0349 (10)0.0450 (11)0.0130 (10)0.0045 (11)0.0111 (8)
O20.0433 (10)0.0534 (11)0.0367 (9)0.0066 (9)0.0027 (7)0.0126 (8)
O30.0468 (11)0.0535 (12)0.0454 (10)0.0246 (9)0.0010 (8)0.0141 (9)
Cl20.0172 (2)0.0255 (2)0.0356 (3)0.00824 (16)0.00510 (17)0.00431 (19)
Geometric parameters (Å, º) top
N1—C41.501 (2)C4—H4A0.9700
N1—C31.503 (2)C4—H4B0.9700
N1—C51.511 (2)C4—H4C0.9700
N1—H10.9900C5—C61.521 (3)
N2—C61.503 (2)C5—H5A0.9800
N2—C71.505 (2)C5—H5AB0.9800
N2—C1i1.513 (2)C6—H6A0.9800
N2—H20.9900C6—H6AB0.9800
C1—C21.520 (3)C7—H7A0.9700
C1—H1A0.9800C7—H7B0.9700
C1—H1AB0.9800C7—H7C0.9700
C2—C31.524 (2)Cr1—O11.588 (2)
C2—H2A0.9800Cr1—O21.596 (2)
C2—H2AB0.9800Cr1—O31.602 (2)
C3—H3A0.9800Cr1—Cl12.2000 (9)
C3—H3AB0.9800
C4—N1—C3110.93 (15)N1—C4—H4A109.5
C4—N1—C5109.63 (15)N1—C4—H4B109.5
C3—N1—C5112.58 (14)H4A—C4—H4B109.5
C4—N1—H1107.8N1—C4—H4C109.5
C3—N1—H1107.8H4A—C4—H4C109.5
C5—N1—H1107.8H4B—C4—H4C109.5
C6—N2—C7112.00 (15)N1—C5—C6116.12 (14)
C6—N2—C1i112.21 (14)N1—C5—H5A108.3
C7—N2—C1i108.81 (14)C6—C5—H5A108.3
C6—N2—H2107.9N1—C5—H5AB108.3
C7—N2—H2107.9C6—C5—H5AB108.3
C1i—N2—H2107.9H5A—C5—H5AB107.4
N2i—C1—C2116.39 (14)N2—C6—C5115.04 (15)
N2i—C1—H1A108.2N2—C6—H6A108.5
C2—C1—H1A108.2C5—C6—H6A108.5
N2i—C1—H1AB108.2N2—C6—H6AB108.5
C2—C1—H1AB108.2C5—C6—H6AB108.5
H1A—C1—H1AB107.3H6A—C6—H6AB107.5
C1—C2—C3112.61 (15)N2—C7—H7A109.5
C1—C2—H2A109.1N2—C7—H7B109.5
C3—C2—H2A109.1H7A—C7—H7B109.5
C1—C2—H2AB109.1N2—C7—H7C109.5
C3—C2—H2AB109.1H7A—C7—H7C109.5
H2A—C2—H2AB107.8H7B—C7—H7C109.5
N1—C3—C2111.86 (15)O1—Cr1—O2110.49 (14)
N1—C3—H3A109.2O1—Cr1—O3111.05 (14)
C2—C3—H3A109.2O2—Cr1—O3111.22 (13)
N1—C3—H3AB109.2O1—Cr1—Cl1109.69 (10)
C2—C3—H3AB109.2O2—Cr1—Cl1108.34 (8)
H3A—C3—H3AB107.9O3—Cr1—Cl1105.90 (9)
N2i—C1—C2—C361.3 (2)C3—N1—C5—C659.5 (2)
C4—N1—C3—C267.1 (2)C7—N2—C6—C564.42 (19)
C5—N1—C3—C2169.64 (15)C1i—N2—C6—C5172.85 (14)
C1—C2—C3—N1173.71 (14)N1—C5—C6—N269.9 (2)
C4—N1—C5—C6176.52 (17)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl20.992.163.120 (2)163
N2—H2···Cl20.992.083.0553 (17)170
C2—H2A···Cl20.982.853.642 (2)139
C4—H4C···O30.972.583.299 (4)131
C5—H5AB···Cl10.982.863.804 (2)161
C3—H3A···Cl2i0.982.723.541 (2)142
C1—H1A···Cl2ii0.982.743.511 (2)136
C1—H1AB···O1iii0.982.593.230 (3)123
C2—H2AB···O1iii0.982.543.047 (3)112
C3—H3AB···O1iii0.982.533.193 (3)125
C4—H4A···O3iv0.972.343.168 (3)143
C5—H5A···O3iv0.982.403.218 (3)141
C7—H7B···O3iv0.972.383.343 (3)173
C4—H4B···Cl1v0.972.883.773 (3)154
C6—H6AB···O2vi0.982.543.260 (3)130
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z; (iii) x+1, y, z+1; (iv) x+1, y+1, z+1; (v) x+1, y, z; (vi) x, y+1, z+1.
 

Funding information

This work was supported by a Research Grant from Andong National University. The X-ray crystallography experiment at PLS-II BL2D-SMC beamline was supported in part by MSIT and POSTECH.

References

First citationBecker, I. K. & Mattes, R. (1996). Z. Anorg. Allg. Chem. 622, 105–111.  CSD CrossRef CAS Web of Science Google Scholar
First citationBoag, N. M., Coward, K. M., Jones, A. C., Pemble, M. E. & Thompson, J. R. (2000). Acta Cryst. C56, 1438–1439.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFoster, J. J. & Sterns, M. (1974). J. Cryst. Mol. Struct. 4, 149–164.  CrossRef ICSD CAS Google Scholar
First citationGoyal, N., Jain, S. C. & Banerjee, U. C. (2003). Adv. Environ. Res. 7, 311–319.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLorenzo Luis, P. A., Martin-Zarza, P., Gili, P., Ruiz-Pérez, C., Hernández-Molina, M. & Solans, X. (1996). Acta Cryst. C52, 1441–1448.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationMeyer, M., Dahaoui-Gindrey, V., Lecomte, C. & Guilard, R. (1998). Coord. Chem. Rev. 178–180, 1313–1405.  Web of Science CrossRef CAS Google Scholar
First citationMoon, D. & Choi, J.-H. (2020). Acta Cryst. E76, 324–327.  CSD CrossRef IUCr Journals Google Scholar
First citationNowicka, B., Reczyński, M., Nitek, W. & Sieklucka, B. (2012). Polyhedron, 47, 73–78.  Web of Science CSD CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPatinec, V., Wright, P. A., Lightfoot, P., Aitken, R. A. & Cox, P. A. (1999). J. Chem. Soc. Dalton Trans. pp. 3909–3911.  Web of Science CSD CrossRef Google Scholar
First citationPutz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationRobinson, G. H., Zhang, H. & Atwood, J. L. (1987). J. Organomet. Chem. 331, 153–160.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369–373.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilley, G. R., Asab, A., Lakin, M. T. & Alcock, N. W. (1993). J. Chem. Soc. Dalton Trans. pp. 365–370.  CSD CrossRef Web of Science Google Scholar
First citationWilley, G. R., Lakin, M. T., Alcock, N. W. & Samuel, C. J. (1994). J. Incl Phenom. Macrocycl Chem. 15, 293–304.  CrossRef Google Scholar
First citationYusof, A. M. & Malek, N. A. N. N. (2009). J. Hazard. Mater. 162, 1019–1024.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds