research communications
Synthesis and crystal structures of two 1,3-di(alkyloxy)-2-(methylsulfanyl)imidazolium tetrafluoridoborates
aUniversity of Innsbruck, Institute of Pharmacy, Innrain 52, 6020 Innsbruck, Austria, bUniversity of Innsbruck, Faculty of Chemistry and Pharmacy, Innrain 80-82, 6020 Innsbruck, Austria, and cUniversity of Innsbruck, Institute of Mineralogy and Petrography, Innrain 52, 6020 Innsbruck, Austria
*Correspondence e-mail: thomas.gelbrich@uibk.ac.at
Two salts were prepared by methylation of the respective imidazoline-2-thione at the sulfur atom, using Meerwein's salt (trimethyloxonium tetrafluoridoborate) in CH2Cl2. 1,3-Dimethoxy-2-(methylsulfanyl)imidazolium tetrafluoridoborate (1), C6H11N2O2S+·BF4−, displays a syn conformation of its two methoxy groups relative to each other whereas the two benzyloxy groups present in 1,3-dibenzyloxy-2-(methylsulfanyl)imidazolium tetrafluoridoborate (2), C18H19N2O2S+·BF4−, adopt an anti conformation. In the molecules of 1 and 2, the methylsulfanyl group is rotated out of the plane of the respective heterocyclic ring. In both crystal structures, intermolecular interactions are dominated by C—H⋯F—B contacts, leading to three-dimensional networks. The tetrafluoridoborate counter-ion of 2 is disordered over three orientations (occupancy ratio 0.42:0.34:0.24), which are related by rotation about one of the B—F bonds.
1. Chemical context
2-(Methylthio)imidazolium salts have attracted great interest because of their reactive properties. Compounds belonging to this class can be converted into important derivatives with useful biological activity, i.e. as anti-filarial agents (Link et al., 1990). Furthermore, they have been used as precursors for the synthesis of remote N-heterocyclic carbene complexes (rNHC) (Patel et al., 2018), as tunable alkylating reagents (Guterman et al., 2018) or as coupling reagents for the formation of bis(2-imidazolyl)methylium salts (Kuhn et al., 1993; Fürstner et al., 2008).
The S-methylation of thiones, typically with methyl iodide or Meerwein's salt (trimethyloxonium tetrafluoridoborate), is straightforward. The title compounds 1 and 2 were prepared by methylation of 1,3-dimethoxyimidazoline-2-thione (Laus et al., 2013) and 1,3-di(benzyloxy)imidazoline-2-thione (Laus et al., 2016), respectively, using Meerwein's salt in CH2Cl2. An analogous procedure was applied by Williams et al. (1994) for the synthesis of the classic 1,3-dimethyl-2-(methylsulfanyl)imidazolium iodide.
2. Structural commentary
In the organic cation of 1, the two methoxy groups adopt a syn conformation relative to each other, and the methylsulfanyl group is anti to each of the methoxy groups (Fig. 1). In contrast, the structurally related molecule of 1,3-dimethoxyimidazoline-2-thione displays an anti conformation of its methoxy groups (Laus et al., 2013). The two N—OMe fragments of 1 form dihedral angles with the mean plane of the imidazole ring of 82.3 (2)° (for the ring involving O1 and C4) and of 76.8 (1)° (for the ring involving O2 and C5). The methylsulfanyl group (S1–C6) is rotated out of the heterocyclic plane and forms a dihedral angle of 62.5 (1)° with the mean plane of the heterocycle defined by atoms N1, C1, N2, C2, and C3.
Similar to 1, the methylsulfanyl group (S1–C18) of 2 is rotated out of the plane of the heterocycle and forms a dihedral angle of 78.6 (1)° with the mean plane defined by the imidazole ring atoms (N1, C1, N2, C2, C3). The arrangement of the two benzyloxy moieties in the cation of 2 relative to each other is anti (Fig. 2). They adopt distinct conformations, which is illustrated by the different values of the torsion angles N1—O1—C4—C5 = −174.2 (2)° and N2—O2—C11—C12 = 95.5 (2)°. The two benzene ring planes are inclined by 17.34 (9)° for C5–C10 and by 30.6 (1)° for C12–C17 relative to the plane of the central heterocycle. The tetrafluoridoborate counter-ion of 2 is disordered over three orientations (occupancy ratio 0.42:0.34:0.24), which are related by a rotation about the B1—F1 bond (Fig. 3).
The heterocycleC—S bond lengths [1.722 (2) and 1.721 (3) Å for 1 and 2, respectively] determined in this study are in good agreement with the mean value (1.735 Å) calculated from 82 pertinent C—S distances compiled in the Cambridge Structural Database (selection criterion R1 < 0.10; Groom et al., 2016).
3. Supramolecular features
Both structures display multiple C—H⋯F—B contacts which cross-link the ion pairs and result in three-dimensional networks (Tables 1 and 2). In the of 1, the two most important of these interactions, C2—H2⋯F3(−x + , y − , −z + ) and C3—H3⋯F2(x + , −y + , z + ), involve the two imidazole CH groups and yield a with an R44(14) motif (Etter et al., 1990; Bernstein et al., 1995) (Fig. 4). Moreover, the two methoxy groups are involved in this type of hydrogen bonding, albeit with weaker strength as can be seen in the longer H⋯F contacts (Table 1). In the di(benzyloxy) salt 2, each of the three disorder components of the anion gives rise to a specific set of C—H⋯F—B contacts. Fig. 5 shows the most significant interactions for one of the BF4− components, which also involves one heterocyclic hydrogen (H2) as well as both methylene (H4A, H4B; H11A) and two aromatic hydrogen atoms (H8, H10) of the cation. In contrast to 1, the methylsulfanyl group (H18C) is also involved in hydrogen-bonding interactions.
|
4. Database survey
In addition to the classic 1,3-dimethylimidazolium-2-methylsulfanylimidazolium iodide (Williams et al., 1994), the Cambridge Structural Database (Version 5.41 November 2019; Groom et al., 2016) comprises a number of more unusual representatives such as very bulky 1,3-diaryl-2-phenylthioimidazolium (Inés et al., 2010) and 1,3-diaryl-2-methylsulfanylimidazolium salts (Liu et al., 2017). These compounds are suitable precursors for the generation of exotic N-heterocyclic carbene–chalcogen cations.
Noteworthy is also the structure of a stabilized imidazoline-2-thione methylide (Arduengo & Burgess, 1976). The attachment of a fluorine-containing group to a given molecule may enhance certain properties and therefore widen the range of potential applications. For example, salts bearing S—CF3 groups (Mizuta et al., 2016) have been found to be effective electrophilic phase-transfer catalysts. Additionally, the introduction of perfluoroalkylthio groups (Hummel et al., 2017) resulted in improved properties.
5. Synthesis and crystallization
1,3-Dimethoxy-2-methylsulfanylimidazolium tetrafluoridoborate (1): Trimethyloxonium tetrafluoridoborate (0.51 g, 3.44 mmol) was added to a solution of 1,3-dimethoxyimidazoline-2-thione (0.50 g, 3.12 mmol) in CH2Cl2 (20 ml). The mixture was stirred for 18 h at room temperature, then the solvent was evaporated. The residue was dissolved in EtOH (3 ml) and cooled at 277 K, forming colourless single crystals. The crystalline product was filtered, washed with Et2O (2 × 5 ml) and dried. Yield: 0.53 g, m.p. 363 K. 1H NMR (300 MHz, DMSO-d6): δ 2.72 (s, 3H), 4.25 (s, 6H), 8.43 (s, 2H) ppm 13C NMR (75 MHz, DMSO-d6): δ 16.3, 68.9 (2C), 118.0 (2C), 135.7 ppm IR (neat): ν 3153 (m), 3134 (m), 1552 (m), 1445 (m), 1287 (w), 1043 (vs), 1018 (vs), 937 (s), 754 (s), 734 (s), 689 (m), 672 (m), 619 (m), 520 (s) cm−1.
1,3-Di(benzyloxy)-2-methylsulfanylimidazolium tetrafluoridoborate (2): Trimethyloxonium tetrafluoridoborate (0.26 g, 1.7 mmol) was added to a solution of 1,3-di(benzyloxy)imidazoline-2-thione (0.51 g, 1.6 mmol) in CH2Cl2 (8 ml) in a Teflon test tube under argon. The mixture was stirred for 3 d at room temperature, then the solvent was evaporated. The residue was dissolved in MeOH (15 ml), precipitated with Et2O (15 ml), filtered, washed with Et2O and dried to yield a colourless powder. Single crystals were obtained by slow evaporation from an MeOH solution: Yield 0.42 g (62%), m.p. 407 K. 1H NMR (300 MHz, DMSO-d6): δ 2.54 (s, 3H), 5.45 (s, 4H), 7.49 (s, 10H), 8.36 (s, 2H) ppm 13C NMR (75 MHz, DMSO-d6): δ 16.4, 83.1 (2C), 118.9 (2C), 128.9 (4C), 130.2 (2C), 130.4 (4C), 131.8 (2C), 136.8 ppm IR (neat): ν 3167 (w), 3137 (w), 1550 (w), 1492 (w), 1457 (w), 1384 (w), 1354 (w), 1214 (w), 1057 (vs), 1039 (vs), 907 (m), 873 (m), 844 (m), 773 (s), 739 (s), 699 (s), 671 (s), 575 (m), 499 (m) cm−1.
6. Refinement
Crystal data, data collection and structure . All hydrogen atoms were identified in difference maps. Methyl H atoms were idealized and included as rigid groups allowed to rotate but not tip (C—H = 0.98 Å), and their Uiso parameters were set to 1.5 Ueq(C) of the parent carbon atom. H atoms bonded to secondary carbon atoms (C—H = 0.99 Å), and H atoms bonded to C atoms in aromatic rings (C—H = 0.95 Å) were positioned geometrically and refined with Uiso set to 1.2 Ueq(C) of the parent carbon atom.
details are summarized in Table 3
|
The structure of 2 displays disorder of the tetrafluoridoborate ion involving three distinct components. Therefore, distance restraints were applied for all chemically equivalent B—F and F⋯F distances and restraints on displacement parameters of the F atoms affected by disorder were applied.
Supporting information
https://doi.org/10.1107/S2056989020003643/wm5549sup1.cif
contains datablocks 1, 2, global. DOI:Structure factors: contains datablock 1. DOI: https://doi.org/10.1107/S2056989020003643/wm55491sup2.hkl
Structure factors: contains datablock 2. DOI: https://doi.org/10.1107/S2056989020003643/wm55492sup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989020003643/wm55491sup4.cml
For both structures, data collection: CrysAlis PRO (Rigaku OD, 2015); cell
CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL2014/6 (Sheldrick, 2015); molecular graphics: XP/SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).C6H11N2O2S+·BF4− | F(000) = 536 |
Mr = 262.04 | Dx = 1.520 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 8.1049 (7) Å | Cell parameters from 1882 reflections |
b = 11.6979 (10) Å | θ = 4.5–23.4° |
c = 12.0810 (12) Å | µ = 0.32 mm−1 |
β = 90.069 (9)° | T = 173 K |
V = 1145.40 (18) Å3 | Block, colourless |
Z = 4 | 0.20 × 0.14 × 0.12 mm |
Rigaku Oxford Diffraction Xcalibur, Ruby, Gemini ultra diffractometer | 2175 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 1640 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.041 |
Detector resolution: 10.3575 pixels mm-1 | θmax = 25.7°, θmin = 3.4° |
ω scans | h = −9→9 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2015) | k = −14→14 |
Tmin = 0.973, Tmax = 1 | l = −11→14 |
8186 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.088 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0305P)2 + 0.4296P] where P = (Fo2 + 2Fc2)/3 |
2175 reflections | (Δ/σ)max < 0.001 |
148 parameters | Δρmax = 0.25 e Å−3 |
0 restraints | Δρmin = −0.26 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.41330 (7) | 0.47008 (5) | 0.72979 (5) | 0.03744 (19) | |
F1 | 0.08382 (16) | 0.25059 (12) | 0.80034 (13) | 0.0477 (4) | |
F2 | −0.01740 (16) | 0.36253 (12) | 0.66193 (10) | 0.0439 (4) | |
F3 | −0.0285 (2) | 0.42160 (11) | 0.83926 (11) | 0.0516 (4) | |
F4 | −0.18980 (16) | 0.27590 (12) | 0.78296 (13) | 0.0514 (4) | |
O1 | 0.46146 (18) | 0.22793 (13) | 0.61505 (12) | 0.0344 (4) | |
O2 | 0.45275 (18) | 0.38275 (13) | 0.97279 (12) | 0.0340 (4) | |
N2 | 0.4484 (2) | 0.30437 (14) | 0.88842 (14) | 0.0255 (4) | |
N1 | 0.4543 (2) | 0.23500 (14) | 0.72783 (14) | 0.0251 (4) | |
C1 | 0.4420 (2) | 0.33444 (17) | 0.78163 (17) | 0.0246 (5) | |
C2 | 0.4692 (2) | 0.14498 (18) | 0.79882 (19) | 0.0304 (5) | |
H2 | 0.4810 | 0.0667 | 0.7796 | 0.036* | |
C3 | 0.4638 (2) | 0.18919 (18) | 0.90157 (19) | 0.0301 (5) | |
H3 | 0.4696 | 0.1484 | 0.9695 | 0.036* | |
C5 | 0.2956 (3) | 0.3860 (2) | 1.0302 (2) | 0.0389 (6) | |
H5A | 0.2067 | 0.3988 | 0.9766 | 0.058* | |
H5B | 0.2965 | 0.4482 | 1.0845 | 0.058* | |
H5C | 0.2775 | 0.3131 | 1.0683 | 0.058* | |
C6 | 0.6002 (3) | 0.4910 (2) | 0.6533 (2) | 0.0477 (7) | |
H6A | 0.6951 | 0.4823 | 0.7029 | 0.072* | |
H6B | 0.6007 | 0.5680 | 0.6213 | 0.072* | |
H6C | 0.6069 | 0.4343 | 0.5938 | 0.072* | |
B1 | −0.0377 (3) | 0.3266 (2) | 0.7711 (2) | 0.0276 (6) | |
C4 | 0.3017 (3) | 0.1968 (2) | 0.5703 (2) | 0.0471 (7) | |
H4A | 0.2681 | 0.1226 | 0.6004 | 0.071* | |
H4B | 0.3088 | 0.1917 | 0.4895 | 0.071* | |
H4C | 0.2203 | 0.2549 | 0.5908 | 0.071* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0346 (3) | 0.0294 (3) | 0.0484 (4) | 0.0073 (2) | 0.0086 (3) | 0.0077 (3) |
F1 | 0.0337 (8) | 0.0490 (9) | 0.0605 (10) | 0.0094 (6) | −0.0015 (7) | 0.0051 (7) |
F2 | 0.0500 (8) | 0.0562 (9) | 0.0254 (7) | 0.0007 (7) | 0.0062 (6) | 0.0000 (6) |
F3 | 0.0889 (12) | 0.0336 (8) | 0.0323 (8) | −0.0033 (7) | 0.0035 (7) | −0.0043 (6) |
F4 | 0.0278 (7) | 0.0643 (10) | 0.0621 (10) | −0.0099 (7) | −0.0001 (7) | 0.0120 (8) |
O1 | 0.0272 (8) | 0.0512 (10) | 0.0247 (9) | −0.0011 (7) | 0.0056 (6) | −0.0087 (7) |
O2 | 0.0307 (8) | 0.0409 (9) | 0.0305 (9) | −0.0101 (7) | 0.0022 (7) | −0.0140 (7) |
N2 | 0.0237 (9) | 0.0262 (9) | 0.0266 (10) | −0.0035 (7) | −0.0003 (7) | −0.0059 (8) |
N1 | 0.0219 (9) | 0.0292 (10) | 0.0242 (10) | −0.0009 (7) | 0.0008 (7) | −0.0048 (8) |
C1 | 0.0183 (10) | 0.0277 (11) | 0.0276 (12) | 0.0007 (9) | 0.0019 (9) | −0.0019 (10) |
C2 | 0.0243 (11) | 0.0254 (11) | 0.0415 (14) | −0.0001 (9) | −0.0022 (10) | 0.0010 (10) |
C3 | 0.0277 (11) | 0.0289 (12) | 0.0337 (14) | −0.0020 (9) | −0.0052 (10) | 0.0052 (10) |
C5 | 0.0343 (13) | 0.0493 (15) | 0.0331 (13) | 0.0004 (11) | 0.0069 (10) | −0.0069 (11) |
C6 | 0.0413 (15) | 0.0406 (14) | 0.0613 (18) | 0.0012 (12) | 0.0150 (13) | 0.0150 (13) |
B1 | 0.0253 (13) | 0.0294 (13) | 0.0282 (14) | −0.0015 (11) | 0.0014 (10) | −0.0017 (11) |
C4 | 0.0339 (13) | 0.0779 (19) | 0.0294 (14) | −0.0056 (13) | −0.0041 (11) | −0.0124 (13) |
S1—C1 | 1.722 (2) | N1—C2 | 1.363 (3) |
S1—C6 | 1.792 (2) | C2—C3 | 1.346 (3) |
F1—B1 | 1.373 (3) | C2—H2 | 0.9500 |
F2—B1 | 1.394 (3) | C3—H3 | 0.9500 |
F3—B1 | 1.385 (3) | C5—H5A | 0.9800 |
F4—B1 | 1.376 (3) | C5—H5B | 0.9800 |
O1—N1 | 1.366 (2) | C5—H5C | 0.9800 |
O1—C4 | 1.449 (3) | C6—H6A | 0.9800 |
O2—N2 | 1.372 (2) | C6—H6B | 0.9800 |
O2—C5 | 1.451 (3) | C6—H6C | 0.9800 |
N2—C1 | 1.338 (3) | C4—H4A | 0.9800 |
N2—C3 | 1.362 (3) | C4—H4B | 0.9800 |
N1—C1 | 1.336 (3) | C4—H4C | 0.9800 |
C1—S1—C6 | 101.52 (10) | O2—C5—H5C | 109.5 |
N1—O1—C4 | 110.37 (15) | H5A—C5—H5C | 109.5 |
N2—O2—C5 | 110.52 (15) | H5B—C5—H5C | 109.5 |
C1—N2—C3 | 112.08 (17) | S1—C6—H6A | 109.5 |
C1—N2—O2 | 122.80 (17) | S1—C6—H6B | 109.5 |
C3—N2—O2 | 124.90 (17) | H6A—C6—H6B | 109.5 |
C1—N1—C2 | 111.90 (18) | S1—C6—H6C | 109.5 |
C1—N1—O1 | 122.75 (17) | H6A—C6—H6C | 109.5 |
C2—N1—O1 | 125.22 (17) | H6B—C6—H6C | 109.5 |
N1—C1—N2 | 103.73 (17) | F1—B1—F4 | 109.66 (19) |
N1—C1—S1 | 129.46 (17) | F1—B1—F3 | 109.20 (19) |
N2—C1—S1 | 126.73 (16) | F4—B1—F3 | 109.36 (18) |
C3—C2—N1 | 106.29 (19) | F1—B1—F2 | 110.68 (18) |
C3—C2—H2 | 126.9 | F4—B1—F2 | 109.58 (19) |
N1—C2—H2 | 126.9 | F3—B1—F2 | 108.32 (18) |
C2—C3—N2 | 106.00 (19) | O1—C4—H4A | 109.5 |
C2—C3—H3 | 127.0 | O1—C4—H4B | 109.5 |
N2—C3—H3 | 127.0 | H4A—C4—H4B | 109.5 |
O2—C5—H5A | 109.5 | O1—C4—H4C | 109.5 |
O2—C5—H5B | 109.5 | H4A—C4—H4C | 109.5 |
H5A—C5—H5B | 109.5 | H4B—C4—H4C | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···F3i | 0.95 | 2.26 | 3.137 (3) | 154 |
C2—H2···F2i | 0.95 | 2.51 | 3.361 (3) | 150 |
C3—H3···F2ii | 0.95 | 2.33 | 3.207 (3) | 153 |
C4—H4B···F3iii | 0.98 | 2.61 | 3.408 (3) | 139 |
C4—H4B···F4iii | 0.98 | 2.52 | 3.487 (3) | 168 |
C4—H4C···F2 | 0.98 | 2.46 | 3.418 (3) | 167 |
C5—H5A···F3 | 0.98 | 2.54 | 3.519 (3) | 177 |
Symmetry codes: (i) −x+1/2, y−1/2, −z+3/2; (ii) x+1/2, −y+1/2, z+1/2; (iii) x+1/2, −y+1/2, z−1/2. |
C18H19N2O2S+·BF4− | F(000) = 856 |
Mr = 414.22 | Dx = 1.445 Mg m−3 |
Orthorhombic, Pc21b | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P -2bc -2c | Cell parameters from 6176 reflections |
a = 7.9117 (3) Å | θ = 3.1–28.6° |
b = 11.4760 (4) Å | µ = 0.22 mm−1 |
c = 20.9659 (7) Å | T = 173 K |
V = 1903.59 (12) Å3 | Plate, colourless |
Z = 4 | 0.44 × 0.36 × 0.12 mm |
Rigaku Oxford Diffraction Xcalibur, Ruby, Gemini ultra diffractometer | 3555 independent reflections |
Graphite monochromator | 3293 reflections with I > 2σ(I) |
Detector resolution: 10.3575 pixels mm-1 | Rint = 0.029 |
ω scans | θmax = 25.7°, θmin = 3.2° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2015) | h = −9→8 |
Tmin = 0.936, Tmax = 1 | k = −13→13 |
11654 measured reflections | l = −19→25 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.030 | H-atom parameters constrained |
wR(F2) = 0.067 | w = 1/[σ2(Fo2) + (0.031P)2 + 0.3041P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.007 |
3555 reflections | Δρmax = 0.18 e Å−3 |
311 parameters | Δρmin = −0.22 e Å−3 |
368 restraints | Absolute structure: Flack x determined using 1454 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013). |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.02 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
B1 | 0.7773 (4) | 0.7700 (3) | 0.47458 (15) | 0.0309 (7) | |
F1 | 0.6678 (2) | 0.84120 (18) | 0.44219 (10) | 0.0588 (6) | |
F2B | 0.719 (2) | 0.7454 (15) | 0.5332 (6) | 0.071 (6) | 0.341 (5) |
F3B | 0.781 (3) | 0.6596 (8) | 0.4439 (7) | 0.072 (5) | 0.341 (5) |
F4B | 0.9356 (13) | 0.8091 (14) | 0.4735 (12) | 0.083 (9) | 0.341 (5) |
F2C | 0.7136 (18) | 0.6688 (14) | 0.4845 (18) | 0.093 (7) | 0.238 (4) |
F3C | 0.9288 (16) | 0.7723 (19) | 0.4449 (8) | 0.060 (6) | 0.238 (4) |
F4C | 0.803 (3) | 0.834 (2) | 0.5316 (6) | 0.089 (6) | 0.238 (4) |
F2A | 0.6947 (13) | 0.7094 (11) | 0.5212 (5) | 0.044 (3) | 0.421 (4) |
F3A | 0.849 (2) | 0.6901 (17) | 0.4354 (6) | 0.126 (8) | 0.421 (4) |
F4A | 0.9031 (14) | 0.8315 (12) | 0.5042 (8) | 0.076 (5) | 0.421 (4) |
S1 | 0.33131 (8) | 0.61824 (6) | 0.53046 (3) | 0.02961 (17) | |
O2 | 0.3430 (2) | 0.66702 (16) | 0.38403 (8) | 0.0283 (4) | |
O1 | 0.2637 (2) | 0.87919 (17) | 0.57345 (8) | 0.0273 (4) | |
N1 | 0.2835 (2) | 0.85434 (19) | 0.50947 (9) | 0.0223 (5) | |
N2 | 0.3093 (2) | 0.75797 (18) | 0.42440 (10) | 0.0214 (5) | |
C1 | 0.3058 (3) | 0.7453 (2) | 0.48800 (12) | 0.0208 (5) | |
C3 | 0.2924 (3) | 0.8725 (2) | 0.40683 (12) | 0.0256 (6) | |
H3 | 0.2937 | 0.9028 | 0.3647 | 0.031* | |
C12 | 0.1490 (3) | 0.6677 (2) | 0.29313 (12) | 0.0261 (6) | |
C9 | 0.2992 (3) | 1.0534 (3) | 0.75895 (14) | 0.0350 (7) | |
H9 | 0.2491 | 1.1218 | 0.7762 | 0.042* | |
C10 | 0.3228 (3) | 1.0439 (3) | 0.69382 (13) | 0.0304 (6) | |
H10 | 0.2893 | 1.1057 | 0.6665 | 0.036* | |
C5 | 0.3952 (3) | 0.9444 (2) | 0.66841 (12) | 0.0280 (6) | |
C6 | 0.4421 (4) | 0.8550 (3) | 0.70894 (13) | 0.0342 (7) | |
H6 | 0.4907 | 0.7860 | 0.6919 | 0.041* | |
C11 | 0.1862 (3) | 0.6160 (3) | 0.35716 (12) | 0.0314 (6) | |
H11A | 0.0904 | 0.6312 | 0.3864 | 0.038* | |
H11B | 0.1995 | 0.5305 | 0.3530 | 0.038* | |
C15 | 0.0978 (4) | 0.7695 (3) | 0.17451 (14) | 0.0389 (7) | |
H15 | 0.0811 | 0.8047 | 0.1340 | 0.047* | |
C17 | 0.0445 (3) | 0.7640 (3) | 0.28694 (13) | 0.0331 (6) | |
H17 | −0.0103 | 0.7953 | 0.3234 | 0.040* | |
C2 | 0.2736 (3) | 0.9333 (2) | 0.46104 (12) | 0.0252 (6) | |
H2 | 0.2567 | 1.0150 | 0.4649 | 0.030* | |
C7 | 0.4189 (4) | 0.8652 (3) | 0.77389 (14) | 0.0392 (7) | |
H7 | 0.4521 | 0.8034 | 0.8013 | 0.047* | |
C8 | 0.3482 (4) | 0.9641 (3) | 0.79913 (14) | 0.0369 (7) | |
H8 | 0.3329 | 0.9712 | 0.8439 | 0.044* | |
C4 | 0.4199 (4) | 0.9319 (3) | 0.59824 (13) | 0.0405 (8) | |
H4A | 0.4396 | 1.0090 | 0.5783 | 0.049* | |
H4B | 0.5183 | 0.8812 | 0.5891 | 0.049* | |
C13 | 0.2265 (3) | 0.6217 (3) | 0.23927 (12) | 0.0318 (6) | |
H13 | 0.2976 | 0.5554 | 0.2429 | 0.038* | |
C18 | 0.1150 (4) | 0.5878 (3) | 0.55032 (17) | 0.0498 (9) | |
H18A | 0.0666 | 0.6545 | 0.5731 | 0.075* | |
H18B | 0.1098 | 0.5185 | 0.5775 | 0.075* | |
H18C | 0.0506 | 0.5738 | 0.5111 | 0.075* | |
C14 | 0.2001 (4) | 0.6726 (3) | 0.18030 (14) | 0.0396 (7) | |
H14 | 0.2527 | 0.6406 | 0.1435 | 0.047* | |
C16 | 0.0199 (4) | 0.8148 (3) | 0.22780 (14) | 0.0389 (7) | |
H16 | −0.0511 | 0.8812 | 0.2239 | 0.047* |
U11 | U22 | U33 | U12 | U13 | U23 | |
B1 | 0.0229 (16) | 0.040 (2) | 0.0298 (17) | 0.0004 (14) | −0.0001 (12) | 0.0065 (16) |
F1 | 0.0409 (11) | 0.0542 (13) | 0.0813 (14) | −0.0050 (9) | −0.0231 (9) | 0.0296 (11) |
F2B | 0.102 (13) | 0.081 (13) | 0.029 (4) | 0.002 (9) | 0.017 (5) | −0.004 (6) |
F3B | 0.136 (16) | 0.027 (4) | 0.052 (7) | −0.007 (7) | −0.004 (8) | −0.014 (4) |
F4B | 0.025 (4) | 0.051 (9) | 0.17 (3) | 0.002 (4) | 0.011 (10) | 0.043 (14) |
F2C | 0.066 (9) | 0.037 (10) | 0.17 (2) | −0.010 (7) | −0.002 (14) | 0.053 (14) |
F3C | 0.031 (7) | 0.087 (16) | 0.061 (8) | 0.015 (7) | 0.020 (5) | −0.001 (8) |
F4C | 0.092 (12) | 0.138 (17) | 0.037 (6) | 0.040 (11) | −0.013 (7) | −0.024 (8) |
F2A | 0.039 (3) | 0.038 (6) | 0.055 (7) | −0.012 (4) | 0.007 (4) | 0.014 (5) |
F3A | 0.101 (10) | 0.21 (2) | 0.071 (6) | 0.089 (12) | 0.018 (7) | −0.037 (11) |
F4A | 0.044 (7) | 0.073 (8) | 0.110 (11) | −0.038 (7) | −0.047 (7) | 0.047 (7) |
S1 | 0.0245 (3) | 0.0282 (3) | 0.0362 (4) | 0.0029 (3) | 0.0005 (2) | 0.0108 (3) |
O2 | 0.0270 (9) | 0.0310 (10) | 0.0269 (9) | 0.0062 (8) | −0.0021 (7) | −0.0098 (8) |
O1 | 0.0244 (9) | 0.0357 (11) | 0.0217 (9) | −0.0087 (8) | 0.0059 (6) | −0.0073 (8) |
N1 | 0.0218 (10) | 0.0238 (12) | 0.0211 (11) | −0.0014 (9) | 0.0033 (8) | −0.0032 (9) |
N2 | 0.0207 (10) | 0.0211 (12) | 0.0225 (11) | 0.0024 (9) | 0.0010 (8) | −0.0032 (9) |
C1 | 0.0180 (11) | 0.0229 (14) | 0.0214 (13) | −0.0012 (10) | 0.0001 (9) | 0.0016 (11) |
C3 | 0.0226 (12) | 0.0271 (14) | 0.0271 (13) | −0.0004 (11) | 0.0009 (9) | 0.0071 (13) |
C12 | 0.0228 (12) | 0.0268 (14) | 0.0285 (13) | −0.0044 (11) | −0.0056 (10) | −0.0050 (12) |
C9 | 0.0378 (15) | 0.0281 (16) | 0.0390 (16) | 0.0001 (12) | 0.0049 (12) | −0.0099 (14) |
C10 | 0.0317 (14) | 0.0248 (15) | 0.0345 (15) | −0.0033 (12) | −0.0019 (11) | 0.0027 (13) |
C5 | 0.0228 (13) | 0.0330 (15) | 0.0281 (14) | −0.0099 (11) | 0.0013 (10) | −0.0051 (12) |
C6 | 0.0286 (14) | 0.0287 (16) | 0.0454 (17) | 0.0007 (12) | −0.0035 (11) | −0.0099 (14) |
C11 | 0.0370 (14) | 0.0239 (13) | 0.0332 (14) | −0.0047 (13) | −0.0049 (10) | −0.0033 (15) |
C15 | 0.0431 (17) | 0.0391 (18) | 0.0345 (16) | −0.0097 (14) | −0.0149 (13) | 0.0054 (14) |
C17 | 0.0259 (13) | 0.0358 (17) | 0.0376 (16) | 0.0009 (12) | −0.0036 (11) | −0.0079 (14) |
C2 | 0.0213 (13) | 0.0197 (13) | 0.0346 (15) | −0.0018 (10) | 0.0032 (10) | 0.0007 (12) |
C7 | 0.0406 (17) | 0.0327 (17) | 0.0443 (17) | −0.0056 (13) | −0.0148 (12) | 0.0075 (16) |
C8 | 0.0434 (18) | 0.0428 (18) | 0.0244 (15) | −0.0114 (14) | −0.0016 (12) | −0.0032 (13) |
C4 | 0.0281 (14) | 0.061 (2) | 0.0327 (15) | −0.0200 (14) | 0.0055 (12) | −0.0142 (15) |
C13 | 0.0338 (14) | 0.0274 (14) | 0.0341 (15) | 0.0017 (13) | −0.0056 (10) | −0.0108 (15) |
C18 | 0.0327 (16) | 0.042 (2) | 0.074 (2) | 0.0042 (14) | 0.0209 (15) | 0.0267 (17) |
C14 | 0.0437 (17) | 0.0448 (18) | 0.0302 (15) | −0.0041 (15) | −0.0035 (13) | −0.0108 (14) |
C16 | 0.0351 (16) | 0.0323 (17) | 0.049 (2) | 0.0020 (13) | −0.0142 (13) | 0.0023 (14) |
B1—F2C | 1.283 (11) | C9—H9 | 0.9500 |
B1—F4B | 1.330 (10) | C10—C5 | 1.384 (4) |
B1—F2B | 1.342 (11) | C10—H10 | 0.9500 |
B1—F3C | 1.350 (11) | C5—C6 | 1.383 (4) |
B1—F3A | 1.355 (10) | C5—C4 | 1.491 (4) |
B1—F2A | 1.367 (8) | C6—C7 | 1.379 (4) |
B1—F4A | 1.369 (9) | C6—H6 | 0.9500 |
B1—F1 | 1.371 (4) | C11—H11A | 0.9900 |
B1—F4C | 1.414 (12) | C11—H11B | 0.9900 |
B1—F3B | 1.422 (9) | C15—C16 | 1.378 (4) |
S1—C1 | 1.721 (3) | C15—C14 | 1.381 (5) |
S1—C18 | 1.795 (3) | C15—H15 | 0.9500 |
O2—N2 | 1.370 (3) | C17—C16 | 1.384 (4) |
O2—C11 | 1.483 (3) | C17—H17 | 0.9500 |
O1—N1 | 1.380 (3) | C2—H2 | 0.9500 |
O1—C4 | 1.471 (3) | C7—C8 | 1.372 (5) |
N1—C1 | 1.341 (3) | C7—H7 | 0.9500 |
N1—C2 | 1.363 (3) | C8—H8 | 0.9500 |
N2—C1 | 1.342 (3) | C4—H4A | 0.9900 |
N2—C3 | 1.372 (3) | C4—H4B | 0.9900 |
C3—C2 | 1.342 (4) | C13—C14 | 1.383 (4) |
C3—H3 | 0.9500 | C13—H13 | 0.9500 |
C12—C17 | 1.386 (4) | C18—H18A | 0.9800 |
C12—C13 | 1.389 (4) | C18—H18B | 0.9800 |
C12—C11 | 1.497 (4) | C18—H18C | 0.9800 |
C9—C8 | 1.382 (4) | C14—H14 | 0.9500 |
C9—C10 | 1.383 (4) | C16—H16 | 0.9500 |
F4B—B1—F2B | 114.1 (10) | C7—C6—C5 | 120.6 (3) |
F2C—B1—F3C | 116.1 (11) | C7—C6—H6 | 119.7 |
F3A—B1—F2A | 106.7 (8) | C5—C6—H6 | 119.7 |
F3A—B1—F4A | 108.8 (8) | O2—C11—C12 | 110.4 (2) |
F2A—B1—F4A | 106.6 (7) | O2—C11—H11A | 109.6 |
F2C—B1—F1 | 111.8 (7) | C12—C11—H11A | 109.6 |
F4B—B1—F1 | 112.7 (7) | O2—C11—H11B | 109.6 |
F2B—B1—F1 | 111.3 (8) | C12—C11—H11B | 109.6 |
F3C—B1—F1 | 108.8 (8) | H11A—C11—H11B | 108.1 |
F3A—B1—F1 | 111.5 (6) | C16—C15—C14 | 119.7 (3) |
F2A—B1—F1 | 110.8 (5) | C16—C15—H15 | 120.2 |
F4A—B1—F1 | 112.2 (6) | C14—C15—H15 | 120.2 |
F2C—B1—F4C | 112.7 (11) | C16—C17—C12 | 120.3 (3) |
F3C—B1—F4C | 104.6 (10) | C16—C17—H17 | 119.9 |
F1—B1—F4C | 101.7 (6) | C12—C17—H17 | 119.9 |
F4B—B1—F3B | 105.9 (8) | C3—C2—N1 | 106.2 (2) |
F2B—B1—F3B | 103.5 (8) | C3—C2—H2 | 126.9 |
F1—B1—F3B | 108.6 (7) | N1—C2—H2 | 126.9 |
C1—S1—C18 | 99.97 (13) | C8—C7—C6 | 120.3 (3) |
N2—O2—C11 | 111.87 (18) | C8—C7—H7 | 119.8 |
N1—O1—C4 | 109.43 (17) | C6—C7—H7 | 119.8 |
C1—N1—C2 | 112.2 (2) | C7—C8—C9 | 119.5 (3) |
C1—N1—O1 | 122.3 (2) | C7—C8—H8 | 120.2 |
C2—N1—O1 | 125.5 (2) | C9—C8—H8 | 120.2 |
C1—N2—O2 | 122.4 (2) | O1—C4—C5 | 106.1 (2) |
C1—N2—C3 | 111.6 (2) | O1—C4—H4A | 110.5 |
O2—N2—C3 | 125.7 (2) | C5—C4—H4A | 110.5 |
N1—C1—N2 | 103.6 (2) | O1—C4—H4B | 110.5 |
N1—C1—S1 | 129.23 (19) | C5—C4—H4B | 110.5 |
N2—C1—S1 | 127.1 (2) | H4A—C4—H4B | 108.7 |
C2—C3—N2 | 106.4 (2) | C14—C13—C12 | 120.0 (3) |
C2—C3—H3 | 126.8 | C14—C13—H13 | 120.0 |
N2—C3—H3 | 126.8 | C12—C13—H13 | 120.0 |
C17—C12—C13 | 119.3 (3) | S1—C18—H18A | 109.5 |
C17—C12—C11 | 121.2 (2) | S1—C18—H18B | 109.5 |
C13—C12—C11 | 119.4 (2) | H18A—C18—H18B | 109.5 |
C8—C9—C10 | 120.4 (3) | S1—C18—H18C | 109.5 |
C8—C9—H9 | 119.8 | H18A—C18—H18C | 109.5 |
C10—C9—H9 | 119.8 | H18B—C18—H18C | 109.5 |
C9—C10—C5 | 120.1 (3) | C15—C14—C13 | 120.5 (3) |
C9—C10—H10 | 120.0 | C15—C14—H14 | 119.8 |
C5—C10—H10 | 120.0 | C13—C14—H14 | 119.8 |
C6—C5—C10 | 119.1 (2) | C15—C16—C17 | 120.3 (3) |
C6—C5—C4 | 120.0 (3) | C15—C16—H16 | 119.9 |
C10—C5—C4 | 120.9 (3) | C17—C16—H16 | 119.9 |
N1—O1—C4—C5 | −174.2 (2) | N2—O2—C11—C12 | 95.5 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···F2Ai | 0.95 | 2.28 | 3.200 (13) | 162 |
C2—H2···F3Bi | 0.95 | 2.55 | 3.302 (14) | 136 |
C2—H2···F2Ci | 0.95 | 2.07 | 2.936 (10) | 150 |
C4—H4B···F2B | 0.99 | 2.52 | 3.472 (17) | 162 |
C4—H4A···F3Bi | 0.99 | 2.50 | 3.183 (13) | 126 |
C4—H4A···F2Ci | 0.99 | 2.56 | 3.39 (3) | 141 |
C4—H4B···F4C | 0.99 | 2.61 | 3.522 (19) | 153 |
C8—H8···F1ii | 0.95 | 2.54 | 3.317 (4) | 139 |
C10—H10···F3Bi | 0.95 | 2.46 | 3.282 (12) | 145 |
C11—H11A···F3Aiii | 0.99 | 2.27 | 3.247 (13) | 167 |
C11—H11A···F3Ciii | 0.99 | 2.40 | 3.279 (15) | 148 |
C18—H18C···F3Aiii | 0.98 | 2.62 | 3.409 (14) | 138 |
Symmetry codes: (i) −x+1, y+1/2, −z+1; (ii) −x+1, y, z+1/2; (iii) x−1, y, z. |
Footnotes
‡Deceased.
References
Arduengo, A. J. & Burgess, E. M. (1976). J. Am. Chem. Soc. 98, 5021–5023. CSD CrossRef CAS Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103. CrossRef IUCr Journals Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Fürstner, A., Alcarazo, M., Goddard, R. & Lehmann, C. W. (2008). Angew. Chem. Int. Ed. 47, 3210–3214. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Guterman, R., Miao, H. & Antonietti, M. (2018). J. Org. Chem. 83, 684–689. Web of Science CrossRef CAS PubMed Google Scholar
Hummel, M., Markiewicz, M., Stolte, S., Noisternig, M. E., Braun, D., Gelbrich, T., Griesser, U. J., Partl, G., Naier, B., Wurst, K., Krüger, B., Kopacka, H., Laus, G., Huppertz, H. & Schottenberger, H. (2017). Green Chem. 19, 3225–3237. Web of Science CSD CrossRef CAS Google Scholar
Inés, B., Holle, S., Goddard, R. & Alcarazo, M. (2010). Angew. Chem. Int. Ed. 49, 8389–8391. Google Scholar
Kuhn, N., Bohnen, H., Kratz, T. & Henkel, G. (1993). Liebigs Ann. Chem. pp. 1149–1151. CSD CrossRef Google Scholar
Laus, G., Kahlenberg, V., Wurst, K., Müller, T., Kopacka, H. & Schottenberger, H. (2013). Z. Naturforsch. Teil B, 68, 1239–1252. Web of Science CSD CrossRef CAS Google Scholar
Laus, G., Kostner, M. E., Kahlenberg, V. & Schottenberger, H. (2016). Z. Naturforsch. Teil B, 71, 997–1003. Web of Science CSD CrossRef CAS Google Scholar
Link, H., Klötzer, W., Karpitschka, E. M., Montavon, M., Müssner, R. & Singewald, N. (1990). Angew. Chem. 102, 559–560. CrossRef CAS Google Scholar
Liu, L. L., Zhu, D., Cao, L. L. & Stephan, D. W. (2017). Dalton Trans. 46, 3095–3099. Web of Science CSD CrossRef CAS PubMed Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mizuta, S., Kitamura, K., Nishi, K., Hashimoto, R., Usui, T. & Chiba, K. (2016). RSC Adv. 6, 43159–43162. Web of Science CSD CrossRef CAS Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Patel, N., Arfeen, M., Sood, R., Khullar, S., Chakraborti, A. K., Mandal, S. K. & Bharatam, P. V. (2018). Chem. Eur. J. 24, 6418–6425. Web of Science CrossRef CAS PubMed Google Scholar
Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Williams, D. J., Ly, T. A., Mudge, J. W., VanDerveer, D. & Jones, R. L. (1994). Inorg. Chim. Acta, 218, 133–138. CSD CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.