research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 2-amino-3-hy­dr­oxy­pyridin-1-ium 6-methyl-2,2,4-trioxo-2H,4H-1,2,3-oxa­thia­zin-3-ide

aDepartment of Fundamental Sciences, Faculty of Engineering, Samsun University, Samsun, 55420, Turkey, bPG Department of Chemistry, Langat Singh College, B. R. A. Bihar University, Muzaffarpur, Bihar-842001, India, cDepartment of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs, University, Samsun, 55200, Turkey, dDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs, University, Samsun, 55200, Turkey, and eDepartment of Chemistry, Volodymyrska str., 64, National Taras Shevchenko University, 01601 Kyiv, Ukraine
*Correspondence e-mail: sevgi.kansiz85@gmail.com, igolenya@ua.fm

Edited by A. V. Yatsenko, Moscow State University, Russia (Received 17 February 2020; accepted 14 March 2020; online 27 March 2020)

The asymmetric unit of the title compound, C5H7N2O+·C4H4NO4S, contains one cation and one anion. The 6-methyl-2,2,4-trioxo-2H,4H-1,2,3-oxa­thia­zin-3-ide anion adopts an envelope conformation with the S atom as the flap. In the crystal, the anions and cations are held together by N—H⋯O, N—H⋯N, O—H⋯O and C—H⋯O hydrogen bonds, thus forming a three-dimensional structure. The Hirshfeld surface analysis and fingerprint plots reveal that the crystal packing is dominated by O⋯H/H⋯O (43.1%) and H⋯H (24.2%) contacts.

1. Chemical context

Food additives are substances added intentionally to foodstuffs to perform certain functions such as to impart colour, to sweeten or preserve. They play an essential role in the modern food industry, supporting quality and safety. In this context, artificial sweeteners are widely used in food, beverage, confectionery and pharmaceutical products throughout the world (Clauss & Jensen, 1973[Clauss, K. & Jensen, H. (1973). Angew. Chem. Int. Ed. Engl. 12, 869-876.]; Ni et al., 2009[Ni, Y., Xiao, W. & Kokot, S. (2009). Food Chem. 113, 1339-1345.]). Oxa­thia­zinone dioxide, systematic name 6-methyl-1,2,3-oxa­thia­zin- 4(3H)-one 2,2-dioxide and also known as 6-methyl-3,4-di­hydro-1,2,3- oxa­thia­zin-4-one 2,2-dioxide or acesulfame, has been widely used as a non-caloric artificial sweetener (Duffy & Anderson, 1998[Duffy, V. D. & Anderson, G. H. (1998). J. Am. Diet. Assoc. 98, 580-587.]) since 1988, after the FDA (US Food and Drug Administration) granted approval. Many countries have approved the use of acesulfame-K in soft drinks, toothpaste, candies, mouthwash, cosmetics and pharmacological preparations (Mukherjee & Chakrabarti, 1997[Mukherjee, A. & Chakrabarti, J. (1997). Food Chem. Toxicol. 35, 1177-1179.]). The chemistry of acesulfame is of inter­est not only because of its biological importance but also in relation to its coordination properties, since the acesulfame anion offers different donor atoms to metal ions, namely the imino nitro­gen, ring oxygen, one carbonyl and two sulfonyl oxygen atoms. To advance the knowledge of such compounds, we report the synthesis, single crystal structure determination and Hirshfeld surface analysis of the 2-amino-3-hy­droxy­pyridinium acesulfamate salt (I)[link].

2. Structural commentary

A view of the asymmetric unit of (I)[link] with the atom-numbering scheme is shown in Fig. 1[link]. In the acesulfamate anion, the bond dimensions correspond to the given structural formula with double bonds C1=O4 and C2=C3 and a single bond C1—C2 (Table 1[link]). A relatively short N1—C1 bond indicates strong π-conjugation in the N1—C1=O4 fragment. Overall, the bond lengths in this anion compare well with those observed in other acesulfamate salts known from the literature (Yıldırım et al., 2019[Yıldırım, T., Köse, D. A., Avcı, E., Özer, D. & Şahin, O. (2019). J. Mol. Struct. 1176, 576-582.]; Kansız et al., 2019[Kansız, S., Tolan, A., İçbudak, H. & Dege, N. (2019). J. Mol. Struct. 1190, 102-115.]). The six-membered acesulfamate ring adopts an envelope conformation with atom S1 as the flap; its deviation from the basal plane is 0.555 (1) Å. The basal plane of the envelope is slightly twisted, with an O1—C3—C1—N1 torsion angle of 2.2 (2)°. The cyclic bond lengths in the 2-amino-3-hy­droxy­pyridinium cation agree well with its aromatic nature. The short N3—C5 distance indicates strong conjugation of the amino N3 atom with the acceptor π-system of the pyridinium ring. The cation is almost planar, the largest deviation from the least-squares plane of 0.008 (2) Å is observed for atom C6. The least-squares planes through the cation and the basal atoms of anion form a dihedral angle of 6.47 (11)°.

[Scheme 1]

Table 1
Selected bond lengths (Å)

S1—O2 1.4149 (17) O5—C6 1.353 (3)
S1—O3 1.4235 (18) O4—C1 1.236 (3)
S1—N1 1.5605 (17) N2—C5 1.336 (3)
S1—O1 1.6204 (15) N3—C5 1.317 (3)
O1—C3 1.383 (2) N1—C1 1.359 (3)
[Figure 1]
Figure 1
A view of the asymmetric unit of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The N—H⋯O hydrogen bond is shown as a dashed line.

3. Supra­molecular features

The acesulfamate anions are linked to the 2-amino-3-hy­droxy­pyridinium cations by strong N—H⋯N and N—H⋯O hydrogen bonds, forming centrosymmetric aggregates each consisting of two cations and two anions (Table 2[link], Fig. 2[link]). These aggregates are linked into a three-dimensional structure by weak O—H⋯O hydrogen bonds involving the sulfonyl groups and by C—H⋯O contacts (Table 2[link], Fig. 3[link]). The shortest inter­centroid separation in (I)[link] is only 4.1798 (15) Å, and thus the π-stacking inter­actions in this structure are insignificant.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3B⋯O4 0.81 (3) 2.10 (3) 2.808 (3) 145 (2)
N3—H3A⋯O4i 0.85 (3) 2.00 (3) 2.846 (3) 175 (3)
N2—H2⋯N1i 0.90 (3) 1.99 (3) 2.871 (3) 168 (3)
O5—H5⋯O3ii 0.84 (4) 2.50 (4) 3.090 (2) 128 (3)
O5—H5⋯O3iii 0.84 (4) 2.25 (4) 2.995 (2) 147 (3)
C8—H8⋯O2iv 0.93 2.49 3.402 (3) 166
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) x-1, y, z; (iii) -x+1, -y+1, -z+1; (iv) x-2, y+1, z.
[Figure 2]
Figure 2
A view of the centrosymmetric aggregate formed by strong N—H⋯N and N—H⋯O hydrogen bonds (dashed lines). Displacement ellipsoids are drawn at the 50% probability level. Symmetry code: (i) 1 − x, 1 − y, 2 − z.
[Figure 3]
Figure 3
A view of the crystal packing of the title compound showing the three-dimensional system of hydrogen bonds. Methyl H atoms are omitted for clarity. Symmetry codes: (ii) x − 1, y, z; (iii) 1 − x, 1 − y, 1 − z; (iv) x − 2, y + 1, z.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.39; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave 54 hits for the oxa­thia­zin moiety. The compounds most closely related to (I)[link] are 3-carbamoylpyridin-1-ium 6-methyl-2,2,4-trioxo-2H,4H-1,2,3-oxa­thia­zin-3-ide hemihydrate (CIHDEF; Wang et al., 2018[Wang, C., Perumalla, S. R. & Sun, C. C. (2018). Cryst. Growth Des. 18, 4215-4219.]), 3-carb­oxy­pyridin-1-ium 6-methyl-2,2,4-trioxo-2H,4H-1,2,3-oxa­thia­zin-3-ide (CIHDIJ; Wang et al., 2018[Wang, C., Perumalla, S. R. & Sun, C. C. (2018). Cryst. Growth Des. 18, 4215-4219.]), 6-amino-2-oxo-2,3-di­hydro­pyrimidin-1-ium 6-methyl-2,2,4-trioxo-2H,4H-1,2,3-oxa­thia­zin-3-ide 4-amino­pyrimidin-2(1H)-one (CIHFEH; Wang et al., 2018[Wang, C., Perumalla, S. R. & Sun, C. C. (2018). Cryst. Growth Des. 18, 4215-4219.]), 5-fluoro-2-oxo-2,3-di­hydro­pyrimidin-4(1H)-iminium 6-methyl-4-oxo-4H-1,2,3-oxa­thia­zin-3-ide 2,2-dioxide hemihydrate (GONLIG; Wang et al., 2014[Wang, L., Wen, X., Li, P., Wang, J., Yang, P., Zhang, H. & Deng, Z. (2014). CrystEngComm, 16, 8537-8545.]), potassium 6-methyl-1,2,3-oxa­thia­zin-4-one-2,2-dioxide (KMOTZD; Paulus 1975[Paulus, E. F. (1975). Acta Cryst. B31, 1191-1193.]), thallium(I) 6-methyl-4-oxo-4H-1,2,3-oxa­thia­zin-3-ide 2,2-dioxide (OCAHUY; Baran et al., 2015[Baran, E. J., Parajón-Costa, B. S., Echeverría, G. A. & Piro, O. E. (2015). Maced. J. Chem. Chem. Eng. 34, 95-100.]), choline acesulfamate (ODIHOZ; Nockemann et al., 2007[Nockemann, P., Thijs, B., Driesen, K., Janssen, C. R., Van Hecke, K., Van Meervelt, L., Kossmann, S., Kirchner, B. & Binnemans, K. (2007). J. Phys. Chem. B, 111, 5254-5263.]) and rubid­ium 6-methyl-4-oxo-4H-1,2,3-oxa­thia­zin-3-ide 2,2-dioxide (SURCIT; Piro et al., 2015[Piro, O. E., Echeverría, G. A., Castellano, E. E., Parajón-Costa, B. S. & Baran, E. J. (2015). Z. Naturforsch. Teil B, 70, 491-496.]). In GONLIG, the molecules are linked by N—H⋯O hydrogen bonds, as in the title compound. In SURCIT, the carbonyl C=O bond distance is 1.231 (5) Å and the sulfoxide S=O bond lengthsare 1.415 (3) and 1.421 (3) Å, which are close toose in the title compound.

5. Hirshfeld surface analysis

In order to visualize the inter­molecular inter­actions in the crystal of (I)[link], Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out using CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17.5. University of Western Australia. http://hirshfeldsurface.net.]). Fig. 4[link] shows the Hirshfeld surface and the inter­molecular contacts of the title compound mapped over dnorm in the range −0.5966 to +1.0568 a.u. The red regions (distances shorter than the sum of the van der Waals radii) are apparent around the oxygen atom O4, which participates in the N—H⋯O contacts, and around the nitro­gen atom N1, which participates in the N—H⋯N contacts (Fig. 2[link], Table 2[link]). The fingerprint plots for (I)[link] are given in Fig. 5[link]. The largest contribution to the overall crystal packing is from O⋯H/H⋯O inter­actions (43.1%). H⋯H contacts provide another significant contribution to the Hirshfeld surface of 24.2%. The N⋯H/H⋯N contacts appear as a pair of characteristic tips in the fingerprint plots; they contribute 10% to the Hirshfeld surface (Table 2[link]).

[Figure 4]
Figure 4
A view of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm in the range −0.5966 to +1.0568 a.u.
[Figure 5]
Figure 5
The two-dimensional fingerprint plots for the title compound showing (a) all inter­actions, (b) O⋯H/H⋯O, (c) H⋯H, (d) C⋯H/H⋯C, (e) N⋯H/H⋯N and (f) C⋯O/O⋯C inter­actions.

6. Synthesis and crystallization

Potassium acesulfamate (1 mmol) was dissolved in 15 mL ethanol and heated to 348 K. To this solution 1 mmol of 2-amino-3-hy­droxy­pyridine in 15 mL of ethanol was added slowly under continuous stirring. After the addition, the solution was stirred for another 6 min at the same temperature. The compound thus formed was separated from the solution and then recrystallized from ethanol solution at room temperature. The red needle-shaped crystals obtained were filtered, washed with ethyl acetate and dried, yield 91%.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All C-bound hydrogen atoms were placed in idealized positions and refined isotropically using a riding model, with Uiso(H) = 1.5Ueq(C) for methyl and with Uiso(H) = 1.2Ueq(C) for other C atoms, C—H = 0.96 Å for methyl and 0.93 Å for sp2-hybridized C atoms. All other H atoms were located from the difference map and refined freely.

Table 3
Experimental details

Crystal data
Chemical formula C5H7N2O+·C4H4NO4S
Mr 273.27
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 7.1676 (5), 9.1175 (7), 10.1554 (8)
α, β, γ (°) 66.174 (6), 80.225 (6), 71.803 (6)
V3) 576.01 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.30
Crystal size (mm) 0.57 × 0.42 × 0.21
 
Data collection
Diffractometer STOE IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.855, 0.953
No. of measured, independent and observed [I > 2σ(I)] reflections 5116, 2263, 1951
Rint 0.031
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.114, 1.08
No. of reflections 2263
No. of parameters 179
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.34, −0.26
Computer programs: X-AREA and X-RED (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXT2017 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: STOE X-AREA (Stoe & Cie, 2002); cell refinement: STOE X-AREA (Stoe & Cie, 2002); data reduction: STOE X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2017 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: WinGX (Farrugia, 2012).

2-Amino-3-hydroxypyridin-1-ium 6-methyl-2,2,4-trioxo-2H,4H-1,2,3-oxathiazin-3-ide top
Crystal data top
C5H7N2O+·C4H4NO4SZ = 2
Mr = 273.27F(000) = 284
Triclinic, P1Dx = 1.576 Mg m3
a = 7.1676 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.1175 (7) ÅCell parameters from 10423 reflections
c = 10.1554 (8) Åθ = 3.0–31.5°
α = 66.174 (6)°µ = 0.30 mm1
β = 80.225 (6)°T = 296 K
γ = 71.803 (6)°Prism, red
V = 576.01 (8) Å30.57 × 0.42 × 0.21 mm
Data collection top
STOE IPDS 2
diffractometer
2263 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus1951 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.031
rotation method scansθmax = 26.0°, θmin = 3.0°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 88
Tmin = 0.855, Tmax = 0.953k = 1011
5116 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: mixed
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0615P)2 + 0.1608P]
where P = (Fo2 + 2Fc2)/3
2263 reflections(Δ/σ)max = 0.001
179 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.03944 (7)0.17969 (7)0.69020 (6)0.04075 (18)
O10.9160 (2)0.10735 (19)0.62259 (17)0.0478 (4)
O31.0909 (3)0.3136 (2)0.57109 (18)0.0601 (5)
O50.1101 (3)0.5582 (2)0.70493 (17)0.0553 (4)
O40.5989 (2)0.3846 (3)0.8548 (2)0.0666 (5)
N20.0570 (3)0.7569 (2)0.9560 (2)0.0438 (4)
O21.1970 (2)0.0414 (2)0.7566 (2)0.0659 (5)
N30.2510 (3)0.6079 (3)0.9066 (2)0.0455 (4)
N10.8981 (2)0.2371 (2)0.80563 (19)0.0451 (4)
C50.0626 (3)0.6702 (2)0.8807 (2)0.0371 (4)
C30.7205 (3)0.1932 (3)0.5985 (2)0.0407 (4)
C10.7049 (3)0.3113 (3)0.7784 (2)0.0441 (5)
C60.0206 (3)0.6490 (3)0.7748 (2)0.0435 (5)
C20.6223 (3)0.2932 (3)0.6663 (2)0.0461 (5)
H2A0.4943020.3549950.6412450.055*
C70.2159 (4)0.7151 (3)0.7551 (2)0.0565 (6)
H70.2718710.7001660.6868420.068*
C90.2527 (3)0.8245 (3)0.9352 (3)0.0564 (6)
H90.3300760.8841680.9901090.068*
C80.3342 (3)0.8056 (4)0.8363 (3)0.0636 (7)
H80.4679760.8520330.8215460.076*
C40.6425 (4)0.1525 (4)0.4958 (3)0.0565 (6)
H4A0.7456070.0766880.4626320.085*
H4B0.5379320.1015800.5428570.085*
H4C0.5932030.2525810.4151800.085*
H3A0.289 (4)0.614 (3)0.978 (3)0.054 (7)*
H3B0.320 (4)0.547 (3)0.867 (3)0.053 (7)*
H50.048 (6)0.554 (5)0.644 (4)0.105 (12)*
H20.014 (4)0.775 (4)1.024 (3)0.066 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0320 (3)0.0515 (3)0.0452 (3)0.0048 (2)0.00460 (19)0.0282 (2)
O10.0402 (8)0.0550 (9)0.0611 (9)0.0052 (7)0.0055 (7)0.0393 (8)
O30.0616 (10)0.0769 (12)0.0537 (9)0.0322 (9)0.0023 (8)0.0281 (9)
O50.0630 (10)0.0730 (11)0.0459 (9)0.0222 (9)0.0056 (8)0.0342 (8)
O40.0420 (8)0.1016 (14)0.0750 (11)0.0038 (9)0.0074 (8)0.0674 (11)
N20.0387 (9)0.0502 (10)0.0425 (9)0.0055 (8)0.0056 (7)0.0209 (8)
O20.0425 (9)0.0720 (12)0.0812 (12)0.0127 (8)0.0196 (8)0.0414 (10)
N30.0394 (9)0.0572 (11)0.0463 (10)0.0011 (8)0.0112 (8)0.0312 (9)
N10.0343 (8)0.0645 (11)0.0460 (9)0.0050 (8)0.0062 (7)0.0349 (9)
C50.0383 (10)0.0395 (10)0.0325 (9)0.0097 (8)0.0047 (7)0.0118 (8)
C30.0386 (10)0.0495 (11)0.0404 (10)0.0119 (9)0.0054 (8)0.0218 (9)
C10.0363 (10)0.0569 (12)0.0459 (11)0.0052 (9)0.0032 (8)0.0311 (10)
C60.0492 (11)0.0508 (12)0.0328 (9)0.0200 (9)0.0067 (8)0.0113 (9)
C20.0338 (10)0.0596 (13)0.0481 (11)0.0017 (9)0.0102 (9)0.0283 (10)
C70.0522 (13)0.0729 (16)0.0446 (12)0.0244 (12)0.0171 (10)0.0109 (12)
C90.0389 (11)0.0605 (14)0.0590 (14)0.0012 (10)0.0020 (10)0.0209 (12)
C80.0370 (12)0.0758 (17)0.0612 (15)0.0102 (11)0.0122 (11)0.0089 (13)
C40.0589 (14)0.0759 (16)0.0524 (13)0.0233 (12)0.0076 (11)0.0361 (12)
Geometric parameters (Å, º) top
S1—O21.4149 (17)C5—C61.417 (3)
S1—O31.4235 (18)C3—C21.320 (3)
S1—N11.5605 (17)C3—C41.476 (3)
S1—O11.6204 (15)C1—C21.454 (3)
O1—C31.383 (2)C6—C71.354 (3)
O5—C61.353 (3)C2—H2A0.9300
O5—H50.84 (4)C7—C81.398 (4)
O4—C11.236 (3)C7—H70.9300
N2—C51.336 (3)C9—C81.336 (4)
N2—C91.359 (3)C9—H90.9300
N2—H20.90 (3)C8—H80.9300
N3—C51.317 (3)C4—H4A0.9600
N3—H3A0.85 (3)C4—H4B0.9600
N3—H3B0.81 (3)C4—H4C0.9600
N1—C11.359 (3)
O2—S1—O3116.38 (12)N1—C1—C2119.43 (18)
O2—S1—N1110.55 (11)O5—C6—C7126.8 (2)
O3—S1—N1113.19 (11)O5—C6—C5113.93 (18)
O2—S1—O1104.59 (10)C7—C6—C5119.2 (2)
O3—S1—O1104.86 (9)C3—C2—C1123.12 (19)
N1—S1—O1106.18 (9)C3—C2—H2A118.4
C3—O1—S1116.85 (13)C1—C2—H2A118.4
C6—O5—H5107 (3)C6—C7—C8120.7 (2)
C5—N2—C9123.0 (2)C6—C7—H7119.7
C5—N2—H2122.3 (18)C8—C7—H7119.7
C9—N2—H2114.6 (18)C8—C9—N2120.2 (2)
C5—N3—H3A117.7 (18)C8—C9—H9119.9
C5—N3—H3B118.7 (19)N2—C9—H9119.9
H3A—N3—H3B122 (3)C9—C8—C7119.2 (2)
C1—N1—S1118.98 (14)C9—C8—H8120.4
N3—C5—N2119.84 (18)C7—C8—H8120.4
N3—C5—C6122.40 (19)C3—C4—H4A109.5
N2—C5—C6117.77 (18)C3—C4—H4B109.5
C2—C3—O1121.46 (18)H4A—C4—H4B109.5
C2—C3—C4126.9 (2)C3—C4—H4C109.5
O1—C3—C4111.62 (18)H4A—C4—H4C109.5
O4—C1—N1119.67 (18)H4B—C4—H4C109.5
O4—C1—C2120.74 (19)
O2—S1—O1—C3156.84 (16)N2—C5—C6—O5179.25 (18)
O3—S1—O1—C380.20 (17)N3—C5—C6—C7179.3 (2)
N1—S1—O1—C339.88 (17)N2—C5—C6—C70.6 (3)
O2—S1—N1—C1151.14 (19)O1—C3—C2—C14.9 (4)
O3—S1—N1—C176.3 (2)C4—C3—C2—C1172.6 (2)
O1—S1—N1—C138.2 (2)O4—C1—C2—C3168.2 (2)
C9—N2—C5—N3179.9 (2)N1—C1—C2—C37.4 (4)
C9—N2—C5—C60.0 (3)O5—C6—C7—C8179.5 (2)
S1—O1—C3—C220.9 (3)C5—C6—C7—C81.0 (4)
S1—O1—C3—C4161.22 (16)C5—N2—C9—C80.2 (4)
S1—N1—C1—O4166.63 (19)N2—C9—C8—C70.2 (4)
S1—N1—C1—C217.7 (3)C6—C7—C8—C90.8 (4)
N3—C5—C6—O50.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···O40.81 (3)2.10 (3)2.808 (3)145 (2)
N3—H3A···O4i0.85 (3)2.00 (3)2.846 (3)175 (3)
N2—H2···N1i0.90 (3)1.99 (3)2.871 (3)168 (3)
O5—H5···O3ii0.84 (4)2.50 (4)3.090 (2)128 (3)
O5—H5···O3iii0.84 (4)2.25 (4)2.995 (2)147 (3)
C8—H8···O2iv0.932.493.402 (3)166
Symmetry codes: (i) x+1, y+1, z+2; (ii) x1, y, z; (iii) x+1, y+1, z+1; (iv) x2, y+1, z.
 

Funding information

This study was supported by Ondokuz Mayıs University under project No. PYO·FEN.1906.19.001.

References

First citationBaran, E. J., Parajón-Costa, B. S., Echeverría, G. A. & Piro, O. E. (2015). Maced. J. Chem. Chem. Eng. 34, 95–100.  Web of Science CrossRef CAS Google Scholar
First citationClauss, K. & Jensen, H. (1973). Angew. Chem. Int. Ed. Engl. 12, 869–876.  CrossRef Web of Science Google Scholar
First citationDuffy, V. D. & Anderson, G. H. (1998). J. Am. Diet. Assoc. 98, 580–587.  CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKansız, S., Tolan, A., İçbudak, H. & Dege, N. (2019). J. Mol. Struct. 1190, 102–115.  Google Scholar
First citationMukherjee, A. & Chakrabarti, J. (1997). Food Chem. Toxicol. 35, 1177–1179.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNi, Y., Xiao, W. & Kokot, S. (2009). Food Chem. 113, 1339–1345.  CrossRef CAS Google Scholar
First citationNockemann, P., Thijs, B., Driesen, K., Janssen, C. R., Van Hecke, K., Van Meervelt, L., Kossmann, S., Kirchner, B. & Binnemans, K. (2007). J. Phys. Chem. B, 111, 5254–5263.  CSD CrossRef PubMed CAS Google Scholar
First citationPaulus, E. F. (1975). Acta Cryst. B31, 1191–1193.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationPiro, O. E., Echeverría, G. A., Castellano, E. E., Parajón-Costa, B. S. & Baran, E. J. (2015). Z. Naturforsch. Teil B, 70, 491–496.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTurner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17.5. University of Western Australia. http://hirshfeldsurface.net.  Google Scholar
First citationWang, C., Perumalla, S. R. & Sun, C. C. (2018). Cryst. Growth Des. 18, 4215–4219.  CSD CrossRef CAS Google Scholar
First citationWang, L., Wen, X., Li, P., Wang, J., Yang, P., Zhang, H. & Deng, Z. (2014). CrystEngComm, 16, 8537–8545.  CSD CrossRef CAS Google Scholar
First citationYıldırım, T., Köse, D. A., Avcı, E., Özer, D. & Şahin, O. (2019). J. Mol. Struct. 1176, 576–582.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds