research communications
Crystal structures of trans-acetyldicarbonyl(η5-cyclopentadienyl)(1,3,5-triaza-7-phosphaadamantane)molybdenum(II) and trans-acetyldicarbonyl(η5-cyclopentadienyl)(3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane)molybdenum(II)
aDepartment of Chemistry, Davidson College, 405 N Main St, Davidson, North Carolina 28035, USA, and bDepartment of Chemistry, Carleton College, 1 N College St, Northfield, MN 55057, USA
*Correspondence e-mail: mwhited@carleton.edu
The title compounds, [Mo(C5H5)(COCH3)(C6H12N3P)(CO)2], (1), and [Mo(C5H5)(COCH3)(C9H16N3O2P)(C6H5)2))(CO)2], (2), have been prepared by phosphine-induced migratory insertion from [Mo(C5H5)(CO)3(CH3)]. The molecular structures of these complexes are quite similar, exhibiting a four-legged piano-stool geometry with trans-disposed carbonyl ligands. The extended structures of complexes (1) and (2) differ substantially. For complex (1), the molybdenum acetyl unit plays a dominant role in the organization of the extended structure, joining the molecules into centrosymmetrical dimers through C—H⋯O interactions with a cyclopentadienyl ligand of a neighboring molecule, and these dimers are linked into layers parallel to (100) by C—H⋯O interactions between the molybdenum acetyl and the cyclopentadienyl ligand of another neighbor. The extended structure of (2) is dominated by C—H⋯O interactions involving the carbonyl groups of the acetamide groups of the DAPTA ligand, which join the molecules into centrosymmetrical dimers and link them into chains along [010]. Additional C—H⋯O interactions between the molybdenum acetyl oxygen atom and an acetamide methyl group join the chains into layers parallel to (101).
Keywords: crystal structure; phosphine; acetyl; piano-stool complex.
1. Chemical context
Cyclopentadienylmolybdenum polycarbonyl complexes [Mo(C5H5)(CO)n] exhibiting `four-legged piano-stool' geometries have been studied extensively for their electronic structure and organometallic reactivity (Kubacek et al., 1982). Specifically, alkyl complexes of the form Mo(C5H5)(CO)3(R) have been shown to undergo carbonyl migratory insertion, affording acyl complexes upon exposure to L-type ligands, especially (Barnett & Treichel, 1967; Butler et al., 1967). The steric bulk of the phosphine ligand strongly influences the stability of the resulting complexes, with bulkier groups exhibiting enhanced deinsertion rates (Barnett, 1969; Barnett & Pollmann, 1974).
We have previously described the solid-state structures of a number of four-legged piano-stool molybdenum acetyl complexes of the type Mo(PR3)(C5H5)(CO)2(COCH3) derived from reaction of the molybdenum methyl precursor with various (Whited & Hofmeister, 2014). We have shown that the steric bulk of the phosphine substituents impacts the molecular structure of the insertion product in predictable ways, primarily evidenced through the Mo—P bond lengths and P—Mo—C bond angles (Whited et al., 2012, 2014), consistent with earlier findings on reactivity. We have also shown that the use of tri(2-furyl)phosphine, which features heteroatoms as potential hydrogen-bond acceptors, leads to an unusual structure where the acetyl is oriented away from the Cp ring rather than toward it as in other cases (Whited et al., 2013).
Here we report the structures of piano-stool molybdenum acetyl complexes with 1,3,5-triaza-7-phosphaadamantane (PTA) and 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane (DAPTA) ligands featuring potential hydrogen-bond-accepting
and carbonyl groups. The diacetylated ligand (DAPTA) shows little difference from PTA in local structure, but the introduction of acetamide groups dramatically impacts the supramolecular organization.2. Structural commentary
The molecular structures of (1) and (2) are illustrated in Figs. 1 and 2. Both (1) and (2) exhibit a trans disposition of the carbonyl ligands, as seen for other compounds of this type. It was envisioned that incorporation of hydrogen-bond acceptors (amines and amides) might allow access to an alternate orientation of the acetyl group, as observed for a related structure featuring a tri(2-furyl)phosphine ligand, but instead the oxygen of the acetyl group points toward the Cp ring, consistent with other structures of related complexes.
Selected geometric parameters for (1) and (2) are presented in Tables 1 and 2. The Mo1—P1 bond lengths for PTA derivative (1) [2.4321 (5) Å] and DAPTA derivative (2) [2.4258 (6) Å] are similar to one another and slightly shorter than for the related complexes we have reported. This finding is consistent with the lower steric profile of the polycyclic PTA and DAPTA ligands relative to, for example, PPh3, PMePh2, and PMe2Ph. The most significant molecular difference between (1) and (2) is seen in the C3—Mo1—P1 bond angle, which is larger for (1) [136.77 (4)°] than for (2) [133.99 (6)°].
|
|
3. Supramolecular features
Although the molecular structures of (1) and (2) are quite similar, the diacetylation of the phosphine ligand (transforming PTA to DAPTA) leads to significant differences in the extended structure. As was the case for several previously reported complexes of this sort with different phosphine ligands, the extended structure of (1) is dominated by interactions of atom O3 from the molybdenum acetyl. Short, non-classical C—H⋯O interactions between O3 and H8 of a cyclopentadienyl (Cp) ring (2.49 Å) link (1) into centrosymmetrical dimers (Fig. 3). These dimers are further connected into layers parallel to (100) by non-classical C—H⋯O hydrogen bonds between O3 and H9 (2.37 Å) (Table 3, Fig. 4). Although the PTA ligand features three nitrogen atoms as potential hydrogen-bond acceptors, these are not observed to play an important organizing structural role.
|
The acetamide groups of DAPTA, which are not present in PTA, play an important role in the extended structure of (2). Short, non-classical C—H⋯O interactions between O4 of an acetamide and H7 of a Cp ring (2.45 Å) link (2) into centrosymmetrical dimers (Table 4, Fig. 5). A combination of non-classical hydrogen bonds involving acetamide groups link (2) in chains along [010]: O5⋯H11A (2.41 Å) and O4⋯H12B (2.60 Å) (Fig. 6). These chains are further joined into layers parallel to (101) through the molybdenum acetyl group via a non-classical C—H⋯O interaction between O3 and H13B (2.46 Å) (Fig. 7). The extensive network of interactions involving all three acetyl groups likely contribute to the low solubility of (2) in most organic solvents.
4. Database survey
The current version of the Cambridge Structural Database (Version 5.40, updated August 2019; Groom et al., 2016) has thirteen entries corresponding to molybdenum acyl complexes of the general form Mo(C5H5)(CO)2(PR3)(COR). The trans-dicarbonyl structure, as observed for (1) and (2), is preferred except in cases where the phosphine and acyl ligands are covalently linked, forcing them to be cis (Adams et al., 1991; Mercier et al., 1993; Yan et al., 2009).
The PTA and DAPTA ligands have not been extensively utilized on molybdenum. There are eight instances of the PTA ligand bonded to molybdenum or tungsten, five of which involve coordination of one or more of the ligand to an M(CO)n center to afford an octahedral product. Most relevant to this study is the tungsten complex W(C5H5)(CO)2(PTA)(H), which is analogous to (1) and (2) but features a hydride rather than an acyl ligand (Sears et al., 2015).
5. Synthesis and crystallization
CpMo(CO)3(CH3). This compound was prepared by a modification of the method used by Gladysz et al. (1979), as previously reported by Whited & Hofmeister (2014), with the modification that sodium triethylborohydride (1.0 M in toluene) was used as a reductant instead of lithium triethylborohydride to facilitate isolation of the product.
CpMo(CO)2(PTA)(COCH3) (1). In an inert-atmosphere CpMo(CO)3(CH3) (325 mg, 1.25 mmol, 1.18 equivalents) was dissolved in acetonitrile (10 ml). In a separate vial, 1,3,5-triaza-7-phosphaadamantane (PTA, 167 mg, 1.06 mmol, 1 equivalent) was massed. The homogeneous solution of the molybdenum complex was transferred to the vial containing PTA and the mixture was stirred at room temperature. After three days, the solution had generated a red solid that clung to the walls of the scintillation vial while the solution itself retained a red–orange color. Solvent was removed in vacuo, leaving a red–orange solid that was washed with hexanes (10 ml) and diethyl ether (10 ml) before a final extraction using tetrahydrofuran (THF, 10 ml). The solid obtained from the THF fraction was the pale-yellow pure form of the final product (350 mg, 79%). Crystalline material was obtained as yellow–orange blocks by a THF/toluene vapor cross diffusion, which was used to concentrate the solution in a controlled manner without exposure to the glove-box atmosphere. The procedure is as follows: 50 mg of the product were dissolved in 1 ml of THF to form a concentrated solution. This solution was transferred into a small cylindrical 5 ml vial that was placed into a 20 ml vial. The remaining volume inside the 20 ml vial was filled with 10 ml of toluene. The vial was capped and left for two days before crystals were observed and harvested. 1H NMR (400 MHz, CDCl3): δ 5.16 (d, J = 1.2 Hz, 5H, C5H5), 4.55 (m, 6H, P–CH2–N), 4.07 (s, 6H, N–CH2–N), 2.52 [s, 3H, C(O)CH3]. 31P{1H} NMR (162 MHz, CDCl3):δ −21.7 (s).
CpMo(CO)2(DAPTA)(COCH3) (2). In an inert-atmosphere CpMo(CO)3(CH3) (310 mg, 1.19 mmol, 1.05 equivalents) was dissolved in N,N-dimethylformamide (10 ml). In a separate vial, 3,7-diacetyl-1,3,5-triaza-5-phosphabicyclo[3.3.1]nonane (DAPTA, 260 mg, 1.13 mmol, 1 equivalent) was massed. The homogeneous solution of the molybdenum complex was transferred to the vial containing DAPTA. The solution was not fully homogeneous, so vigorous stirring was employed. The solution had generated a pale-yellow solid after the first day while the supernatant solution was a red–orange color. The reaction mixture was filtered to obtain the pale-yellow solid, which was washed with two 2 ml portions of fresh N,N-dimethylformamide. The solid was dried in vacuo and recrystallized from a vapor diffusion of diethyl ether into a concentrated solution of the product in N,N-dimethylformamide, affording (2) as a pale-yellow crystalline material (80 mg, 15%). 1H NMR (400 MHz, DMSO-d6): δ 5.57 (d, J = 14 Hz, 1H), 5.36 (s, 5H, C5H5), 5.27 (dd, JPH = 6.8 Hz, JHH = 15.2 Hz, 1H), 4.98 (d, JHH = 14.0 Hz, 1H), 4.72 (d, JHH = 14.0 Hz, 1H), 4.40 (dd, JPH = 7.6 Hz, JHH = 15.6 Hz, 1H), 4.20 (d, JHH = 14 Hz, 1H), 4.05–3.98 (m, 1H), 3.75 (s, 2H), 3.46–3.39 (m, 1H), 2.42 (s, 3H, MoC(O)CH3), 1.98 (s, 3H, NC(O)CH3), 1.97 [s, 3H, NC(O)CH3]. 31P{1H} NMR (162 MHz, DMSO-d6):δ 8.06 (s).
6. Refinement
Crystal data, data collection and structure . H atoms were placed in calculated positions and refined in the riding-model approximation with distances of C—H = 0.93, 0.96, and 0.97 Å for the cyclopentadienyl, methyl, and methylene groups, respectively, and with Uiso(H) = k×Ueq(C), k = 1.2 for cyclopentadienyl and methylene groups and 1.5 for methyl groups. Methyl group H atoms were allowed to rotate in order to find the best rotameric conformation.
details are summarized in Table 5A small number of intense low-angle reflections [one for (1); five for (2)] are missing from these high-quality data sets due to the arrangement of the instrument with a conservatively sized beam stop. The large number of reflections in the data sets (and the Fourier-transform relationship of intensities to atoms) ensures that no particular bias has been introduced.
Supporting information
https://doi.org/10.1107/S2056989020003679/zl2775sup1.cif
contains datablocks 1, 2, general. DOI:Structure factors: contains datablock 1. DOI: https://doi.org/10.1107/S2056989020003679/zl27751sup2.hkl
Structure factors: contains datablock 2. DOI: https://doi.org/10.1107/S2056989020003679/zl27752sup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989020003679/zl27752sup4.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2056989020003679/zl27751sup5.cdx
Data collection: SAINT (Bruker, 2018) for (1); CrysAlis PRO (Rigaku, 2019) for (2). Cell
SAINT (Bruker, 2018) for (1); CrysAlis PRO (Rigaku, 2019) for (2). Data reduction: SAINT (Bruker, 2018) for (1); CrysAlis PRO (Rigaku, 2019) for (2). For both structures, program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).[Mo(C5H5)(C2H2O)(C6H12N3P)(CO)2] | F(000) = 848 |
Mr = 417.25 | Dx = 1.683 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 9.7919 (14) Å | Cell parameters from 9370 reflections |
b = 14.5757 (13) Å | θ = 3.3–27.5° |
c = 12.1140 (12) Å | µ = 0.91 mm−1 |
β = 107.694 (6)° | T = 100 K |
V = 1647.2 (3) Å3 | Block, orange |
Z = 4 | 0.2 × 0.19 × 0.15 mm |
Bruker D8QUEST diffractometer | 3379 reflections with I > 2σ(I) |
ω and φ scans | Rint = 0.040 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | θmax = 27.6°, θmin = 3.3° |
Tmin = 0.709, Tmax = 0.746 | h = −12→12 |
32227 measured reflections | k = −18→18 |
3785 independent reflections | l = −15→15 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.020 | w = 1/[σ2(Fo2) + (0.0124P)2 + 1.3596P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.043 | (Δ/σ)max = 0.001 |
S = 1.07 | Δρmax = 0.45 e Å−3 |
3785 reflections | Δρmin = −0.35 e Å−3 |
210 parameters | Extinction correction: SHELXL2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0040 (2) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Mo1 | 0.59777 (2) | 0.49328 (2) | 0.28768 (2) | 0.00886 (5) | |
P1 | 0.76523 (4) | 0.41400 (3) | 0.20808 (4) | 0.01095 (9) | |
O1 | 0.65998 (14) | 0.65083 (9) | 0.13519 (11) | 0.0225 (3) | |
O2 | 0.85977 (13) | 0.47150 (9) | 0.51067 (11) | 0.0203 (3) | |
O3 | 0.47562 (13) | 0.66109 (8) | 0.37491 (10) | 0.0174 (3) | |
N1 | 0.81148 (15) | 0.31674 (11) | 0.02647 (13) | 0.0187 (3) | |
N2 | 0.95915 (17) | 0.27288 (11) | 0.22389 (14) | 0.0216 (3) | |
N3 | 1.00813 (15) | 0.41777 (10) | 0.13718 (13) | 0.0172 (3) | |
C1 | 0.64170 (17) | 0.59232 (12) | 0.19293 (14) | 0.0145 (3) | |
C2 | 0.76722 (17) | 0.48263 (11) | 0.42615 (14) | 0.0131 (3) | |
C3 | 0.59049 (18) | 0.62704 (11) | 0.37674 (13) | 0.0126 (3) | |
C4 | 0.72533 (19) | 0.67895 (11) | 0.44048 (15) | 0.0172 (3) | |
H4A | 0.768353 | 0.651212 | 0.516872 | 0.026* | |
H4B | 0.701269 | 0.743146 | 0.449920 | 0.026* | |
H4C | 0.793647 | 0.676106 | 0.395903 | 0.026* | |
C5 | 0.39034 (18) | 0.42909 (12) | 0.16033 (15) | 0.0165 (3) | |
H5 | 0.372255 | 0.432040 | 0.078793 | 0.020* | |
C6 | 0.35024 (17) | 0.49564 (12) | 0.22997 (14) | 0.0155 (3) | |
H6 | 0.300765 | 0.551374 | 0.203612 | 0.019* | |
C7 | 0.39757 (17) | 0.46382 (12) | 0.34674 (15) | 0.0155 (3) | |
H7 | 0.385727 | 0.495068 | 0.412043 | 0.019* | |
C8 | 0.46496 (18) | 0.37807 (12) | 0.34879 (15) | 0.0164 (3) | |
H8 | 0.504922 | 0.340967 | 0.415265 | 0.020* | |
C9 | 0.46240 (18) | 0.35724 (11) | 0.23437 (15) | 0.0164 (3) | |
H9 | 0.502247 | 0.304029 | 0.210865 | 0.020* | |
C10 | 0.69704 (17) | 0.36231 (12) | 0.06169 (14) | 0.0155 (3) | |
H10A | 0.621580 | 0.316952 | 0.061143 | 0.019* | |
H10B | 0.653123 | 0.410872 | 0.004845 | 0.019* | |
C11 | 0.86374 (19) | 0.31312 (12) | 0.28477 (16) | 0.0196 (4) | |
H11A | 0.921558 | 0.331544 | 0.363817 | 0.023* | |
H11B | 0.794116 | 0.266087 | 0.292213 | 0.023* | |
C12 | 0.91942 (17) | 0.47689 (12) | 0.18647 (15) | 0.0163 (3) | |
H12A | 0.883561 | 0.529431 | 0.133844 | 0.020* | |
H12B | 0.979281 | 0.501540 | 0.261788 | 0.020* | |
C13 | 0.8764 (2) | 0.24240 (13) | 0.10693 (17) | 0.0232 (4) | |
H13A | 0.940468 | 0.206656 | 0.073719 | 0.028* | |
H13B | 0.799353 | 0.200736 | 0.113403 | 0.028* | |
C14 | 1.06640 (18) | 0.34022 (13) | 0.21383 (16) | 0.0220 (4) | |
H14A | 1.116912 | 0.364261 | 0.292037 | 0.026* | |
H14B | 1.138175 | 0.308452 | 0.184965 | 0.026* | |
C15 | 0.92521 (19) | 0.38166 (13) | 0.02367 (15) | 0.0202 (4) | |
H15A | 0.991757 | 0.350678 | −0.011587 | 0.024* | |
H15B | 0.881223 | 0.433817 | −0.027049 | 0.024* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mo1 | 0.00893 (7) | 0.00963 (7) | 0.00871 (7) | −0.00047 (5) | 0.00374 (5) | 0.00005 (5) |
P1 | 0.01048 (19) | 0.0127 (2) | 0.01055 (19) | 0.00010 (15) | 0.00453 (15) | −0.00002 (15) |
O1 | 0.0294 (7) | 0.0204 (7) | 0.0202 (7) | −0.0010 (5) | 0.0112 (6) | 0.0064 (5) |
O2 | 0.0154 (6) | 0.0258 (7) | 0.0171 (6) | 0.0012 (5) | 0.0009 (5) | 0.0017 (5) |
O3 | 0.0188 (6) | 0.0139 (6) | 0.0211 (6) | 0.0019 (5) | 0.0087 (5) | −0.0011 (5) |
N1 | 0.0138 (7) | 0.0263 (8) | 0.0182 (7) | −0.0026 (6) | 0.0081 (6) | −0.0083 (6) |
N2 | 0.0202 (7) | 0.0230 (8) | 0.0251 (8) | 0.0084 (6) | 0.0119 (7) | 0.0022 (6) |
N3 | 0.0120 (7) | 0.0238 (8) | 0.0176 (7) | −0.0007 (6) | 0.0069 (6) | −0.0027 (6) |
C1 | 0.0131 (8) | 0.0179 (8) | 0.0128 (8) | 0.0013 (6) | 0.0044 (6) | −0.0018 (6) |
C2 | 0.0141 (8) | 0.0124 (8) | 0.0153 (8) | −0.0004 (6) | 0.0082 (7) | −0.0005 (6) |
C3 | 0.0193 (8) | 0.0100 (7) | 0.0094 (7) | 0.0006 (6) | 0.0057 (6) | 0.0025 (6) |
C4 | 0.0207 (9) | 0.0139 (8) | 0.0161 (8) | −0.0017 (7) | 0.0042 (7) | 0.0000 (6) |
C5 | 0.0139 (8) | 0.0212 (9) | 0.0136 (8) | −0.0057 (7) | 0.0027 (7) | −0.0039 (7) |
C6 | 0.0083 (7) | 0.0182 (8) | 0.0188 (8) | −0.0017 (6) | 0.0023 (6) | −0.0021 (7) |
C7 | 0.0124 (8) | 0.0205 (8) | 0.0169 (8) | −0.0058 (6) | 0.0094 (7) | −0.0049 (7) |
C8 | 0.0164 (8) | 0.0168 (8) | 0.0170 (8) | −0.0062 (6) | 0.0066 (7) | 0.0021 (6) |
C9 | 0.0167 (8) | 0.0128 (8) | 0.0226 (9) | −0.0057 (6) | 0.0101 (7) | −0.0042 (7) |
C10 | 0.0105 (7) | 0.0222 (9) | 0.0146 (8) | −0.0018 (6) | 0.0051 (6) | −0.0047 (7) |
C11 | 0.0217 (9) | 0.0209 (9) | 0.0190 (9) | 0.0089 (7) | 0.0105 (7) | 0.0058 (7) |
C12 | 0.0127 (8) | 0.0181 (8) | 0.0197 (8) | −0.0029 (6) | 0.0071 (7) | −0.0043 (6) |
C13 | 0.0218 (9) | 0.0191 (9) | 0.0328 (10) | 0.0005 (7) | 0.0143 (8) | −0.0081 (8) |
C14 | 0.0126 (8) | 0.0319 (10) | 0.0212 (9) | 0.0048 (7) | 0.0047 (7) | −0.0025 (8) |
C15 | 0.0154 (8) | 0.0306 (10) | 0.0173 (9) | −0.0029 (7) | 0.0090 (7) | −0.0036 (7) |
Mo1—P1 | 2.4321 (5) | C4—H4A | 0.9800 |
Mo1—C1 | 1.9714 (17) | C4—H4B | 0.9800 |
Mo1—C2 | 1.9746 (17) | C4—H4C | 0.9800 |
Mo1—C3 | 2.2398 (16) | C5—H5 | 0.9500 |
Mo1—C5 | 2.3401 (16) | C5—C6 | 1.417 (2) |
Mo1—C6 | 2.3097 (16) | C5—C9 | 1.419 (2) |
Mo1—C7 | 2.3221 (16) | C6—H6 | 0.9500 |
Mo1—C8 | 2.3759 (16) | C6—C7 | 1.426 (2) |
Mo1—C9 | 2.3634 (16) | C7—H7 | 0.9500 |
P1—C10 | 1.8543 (17) | C7—C8 | 1.410 (2) |
P1—C11 | 1.8468 (17) | C8—H8 | 0.9500 |
P1—C12 | 1.8517 (17) | C8—C9 | 1.412 (2) |
O1—C1 | 1.151 (2) | C9—H9 | 0.9500 |
O2—C2 | 1.154 (2) | C10—H10A | 0.9900 |
O3—C3 | 1.223 (2) | C10—H10B | 0.9900 |
N1—C10 | 1.473 (2) | C11—H11A | 0.9900 |
N1—C13 | 1.467 (2) | C11—H11B | 0.9900 |
N1—C15 | 1.470 (2) | C12—H12A | 0.9900 |
N2—C11 | 1.476 (2) | C12—H12B | 0.9900 |
N2—C13 | 1.471 (2) | C13—H13A | 0.9900 |
N2—C14 | 1.469 (2) | C13—H13B | 0.9900 |
N3—C12 | 1.473 (2) | C14—H14A | 0.9900 |
N3—C14 | 1.464 (2) | C14—H14B | 0.9900 |
N3—C15 | 1.466 (2) | C15—H15A | 0.9900 |
C3—C4 | 1.514 (2) | C15—H15B | 0.9900 |
C1—Mo1—P1 | 79.89 (5) | C6—C5—H5 | 126.2 |
C1—Mo1—C2 | 106.05 (7) | C6—C5—C9 | 107.66 (15) |
C1—Mo1—C3 | 71.80 (6) | C9—C5—Mo1 | 73.34 (9) |
C1—Mo1—C5 | 102.02 (6) | C9—C5—H5 | 126.2 |
C1—Mo1—C6 | 101.98 (6) | Mo1—C6—H6 | 119.7 |
C1—Mo1—C7 | 131.98 (6) | C5—C6—Mo1 | 73.43 (9) |
C1—Mo1—C8 | 159.38 (6) | C5—C6—H6 | 126.2 |
C1—Mo1—C9 | 131.21 (6) | C5—C6—C7 | 107.62 (15) |
C2—Mo1—P1 | 78.80 (5) | C7—C6—Mo1 | 72.55 (9) |
C2—Mo1—C3 | 78.51 (6) | C7—C6—H6 | 126.2 |
C2—Mo1—C5 | 149.93 (6) | Mo1—C7—H7 | 119.7 |
C2—Mo1—C6 | 142.35 (6) | C6—C7—Mo1 | 71.60 (9) |
C2—Mo1—C7 | 107.08 (6) | C6—C7—H7 | 125.8 |
C2—Mo1—C8 | 94.47 (6) | C8—C7—Mo1 | 74.63 (9) |
C2—Mo1—C9 | 115.01 (6) | C8—C7—C6 | 108.37 (15) |
C3—Mo1—P1 | 136.77 (4) | C8—C7—H7 | 125.8 |
C3—Mo1—C5 | 121.15 (6) | Mo1—C8—H8 | 122.9 |
C3—Mo1—C6 | 87.06 (6) | C7—C8—Mo1 | 70.46 (9) |
C3—Mo1—C7 | 81.90 (6) | C7—C8—H8 | 126.1 |
C3—Mo1—C8 | 111.38 (6) | C7—C8—C9 | 107.74 (15) |
C3—Mo1—C9 | 139.87 (6) | C9—C8—Mo1 | 72.19 (9) |
C5—Mo1—P1 | 95.93 (4) | C9—C8—H8 | 126.1 |
C5—Mo1—C8 | 58.34 (6) | Mo1—C9—H9 | 121.3 |
C5—Mo1—C9 | 35.12 (6) | C5—C9—Mo1 | 71.54 (9) |
C6—Mo1—P1 | 131.22 (4) | C5—C9—H9 | 125.7 |
C6—Mo1—C5 | 35.48 (6) | C8—C9—Mo1 | 73.15 (9) |
C6—Mo1—C7 | 35.85 (6) | C8—C9—C5 | 108.60 (15) |
C6—Mo1—C8 | 58.76 (6) | C8—C9—H9 | 125.7 |
C6—Mo1—C9 | 58.66 (6) | P1—C10—H10A | 109.2 |
C7—Mo1—P1 | 140.20 (4) | P1—C10—H10B | 109.2 |
C7—Mo1—C5 | 58.95 (6) | N1—C10—P1 | 112.07 (11) |
C7—Mo1—C8 | 34.91 (6) | N1—C10—H10A | 109.2 |
C7—Mo1—C9 | 58.20 (6) | N1—C10—H10B | 109.2 |
C8—Mo1—P1 | 106.65 (4) | H10A—C10—H10B | 107.9 |
C9—Mo1—P1 | 83.27 (4) | P1—C11—H11A | 109.2 |
C9—Mo1—C8 | 34.66 (6) | P1—C11—H11B | 109.2 |
C10—P1—Mo1 | 118.82 (5) | N2—C11—P1 | 112.21 (12) |
C11—P1—Mo1 | 119.40 (6) | N2—C11—H11A | 109.2 |
C11—P1—C10 | 97.98 (8) | N2—C11—H11B | 109.2 |
C11—P1—C12 | 98.14 (8) | H11A—C11—H11B | 107.9 |
C12—P1—Mo1 | 119.85 (6) | P1—C12—H12A | 109.2 |
C12—P1—C10 | 97.93 (8) | P1—C12—H12B | 109.2 |
C13—N1—C10 | 110.79 (14) | N3—C12—P1 | 111.98 (11) |
C13—N1—C15 | 108.21 (14) | N3—C12—H12A | 109.2 |
C15—N1—C10 | 111.40 (14) | N3—C12—H12B | 109.2 |
C13—N2—C11 | 110.75 (14) | H12A—C12—H12B | 107.9 |
C14—N2—C11 | 110.66 (14) | N1—C13—N2 | 114.68 (15) |
C14—N2—C13 | 108.68 (14) | N1—C13—H13A | 108.6 |
C14—N3—C12 | 111.03 (14) | N1—C13—H13B | 108.6 |
C14—N3—C15 | 108.41 (14) | N2—C13—H13A | 108.6 |
C15—N3—C12 | 111.33 (13) | N2—C13—H13B | 108.6 |
O1—C1—Mo1 | 176.52 (15) | H13A—C13—H13B | 107.6 |
O2—C2—Mo1 | 174.40 (14) | N2—C14—H14A | 108.6 |
O3—C3—Mo1 | 120.54 (12) | N2—C14—H14B | 108.6 |
O3—C3—C4 | 117.45 (15) | N3—C14—N2 | 114.69 (14) |
C4—C3—Mo1 | 122.01 (11) | N3—C14—H14A | 108.6 |
C3—C4—H4A | 109.5 | N3—C14—H14B | 108.6 |
C3—C4—H4B | 109.5 | H14A—C14—H14B | 107.6 |
C3—C4—H4C | 109.5 | N1—C15—H15A | 108.6 |
H4A—C4—H4B | 109.5 | N1—C15—H15B | 108.6 |
H4A—C4—H4C | 109.5 | N3—C15—N1 | 114.65 (14) |
H4B—C4—H4C | 109.5 | N3—C15—H15A | 108.6 |
Mo1—C5—H5 | 121.2 | N3—C15—H15B | 108.6 |
C6—C5—Mo1 | 71.09 (9) | H15A—C15—H15B | 107.6 |
Mo1—P1—C10—N1 | −179.79 (10) | C10—N1—C15—N3 | 66.86 (19) |
Mo1—P1—C11—N2 | 179.31 (10) | C11—P1—C10—N1 | −49.79 (14) |
Mo1—P1—C12—N3 | −179.75 (9) | C11—P1—C12—N3 | 49.41 (13) |
Mo1—C5—C6—C7 | −64.99 (11) | C11—N2—C13—N1 | 67.75 (19) |
Mo1—C5—C9—C8 | 64.24 (12) | C11—N2—C14—N3 | −67.81 (19) |
Mo1—C6—C7—C8 | −66.13 (11) | C12—P1—C10—N1 | 49.65 (14) |
Mo1—C7—C8—C9 | −62.98 (11) | C12—P1—C11—N2 | −49.56 (14) |
Mo1—C8—C9—C5 | −63.20 (11) | C12—N3—C14—N2 | 68.04 (18) |
C5—C6—C7—Mo1 | 65.58 (11) | C12—N3—C15—N1 | −67.16 (19) |
C5—C6—C7—C8 | −0.55 (18) | C13—N1—C10—P1 | 60.54 (16) |
C6—C5—C9—Mo1 | −63.24 (11) | C13—N1—C15—N3 | −55.17 (19) |
C6—C5—C9—C8 | 1.00 (18) | C13—N2—C11—P1 | −60.33 (18) |
C6—C7—C8—Mo1 | 64.14 (11) | C13—N2—C14—N3 | 54.00 (19) |
C6—C7—C8—C9 | 1.17 (18) | C14—N2—C11—P1 | 60.25 (17) |
C7—C8—C9—Mo1 | 61.86 (11) | C14—N2—C13—N1 | −54.01 (19) |
C7—C8—C9—C5 | −1.34 (18) | C14—N3—C12—P1 | −60.30 (16) |
C9—C5—C6—Mo1 | 64.71 (11) | C14—N3—C15—N1 | 55.25 (19) |
C9—C5—C6—C7 | −0.28 (18) | C15—N1—C10—P1 | −59.98 (17) |
C10—P1—C11—N2 | 49.70 (14) | C15—N1—C13—N2 | 54.43 (19) |
C10—P1—C12—N3 | −49.88 (13) | C15—N3—C12—P1 | 60.59 (17) |
C10—N1—C13—N2 | −67.97 (19) | C15—N3—C14—N2 | −54.55 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···O3i | 0.95 | 2.49 | 3.269 (2) | 139 |
C9—H9···O3ii | 0.95 | 2.37 | 3.284 (2) | 162 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, y−1/2, −z+1/2. |
[Mo(C5H5)(C2H3O)(C9H16N3O2P)(CO)2] | F(000) = 1000 |
Mr = 489.31 | Dx = 1.633 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 12.8674 (4) Å | Cell parameters from 13952 reflections |
b = 11.6366 (3) Å | θ = 2.5–31.0° |
c = 14.4655 (5) Å | µ = 0.77 mm−1 |
β = 113.224 (4)° | T = 100 K |
V = 1990.45 (12) Å3 | Plate, clear colorless |
Z = 4 | 0.17 × 0.1 × 0.02 mm |
Rigaku XtaLAB Synergy, Single source at offset/far, Pilatus 200K diffractometer | 4726 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source | 4075 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.044 |
Detector resolution: 5.8140 pixels mm-1 | θmax = 27.9°, θmin = 2.3° |
ω scans | h = −16→16 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku, 2019) | k = −15→15 |
Tmin = 0.868, Tmax = 1.000 | l = −19→19 |
38060 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.028 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.061 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0017P)2 + 3.9699P] where P = (Fo2 + 2Fc2)/3 |
4726 reflections | (Δ/σ)max = 0.002 |
256 parameters | Δρmax = 0.57 e Å−3 |
0 restraints | Δρmin = −0.37 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Mo1 | 0.63575 (2) | 0.25030 (2) | 0.30169 (2) | 0.01028 (5) | |
P1 | 0.47121 (4) | 0.22642 (5) | 0.34228 (4) | 0.01101 (11) | |
O1 | 0.52463 (17) | 0.49328 (16) | 0.25544 (15) | 0.0312 (4) | |
O2 | 0.50920 (15) | 0.07353 (16) | 0.13206 (13) | 0.0270 (4) | |
O3 | 0.75732 (14) | 0.33298 (15) | 0.17091 (12) | 0.0209 (4) | |
O4 | 0.30320 (15) | 0.49974 (15) | 0.41980 (13) | 0.0242 (4) | |
O5 | 0.14095 (13) | 0.34628 (14) | 0.16401 (12) | 0.0195 (3) | |
N1 | 0.36745 (16) | 0.31852 (17) | 0.46343 (14) | 0.0165 (4) | |
N2 | 0.35305 (15) | 0.11049 (16) | 0.43014 (13) | 0.0135 (4) | |
N3 | 0.23918 (15) | 0.20618 (16) | 0.27035 (14) | 0.0147 (4) | |
C1 | 0.5628 (2) | 0.4017 (2) | 0.26999 (18) | 0.0185 (5) | |
C2 | 0.55033 (19) | 0.1431 (2) | 0.19267 (17) | 0.0173 (5) | |
C3 | 0.66223 (19) | 0.3187 (2) | 0.16760 (16) | 0.0163 (4) | |
C4 | 0.5638 (2) | 0.3496 (2) | 0.06996 (18) | 0.0239 (5) | |
H4A | 0.519961 | 0.281951 | 0.041945 | 0.036* | |
H4B | 0.592380 | 0.380455 | 0.023061 | 0.036* | |
H4C | 0.516914 | 0.405872 | 0.083315 | 0.036* | |
C5 | 0.76382 (19) | 0.1081 (2) | 0.39905 (17) | 0.0197 (5) | |
H5 | 0.748692 | 0.030017 | 0.387962 | 0.024* | |
C6 | 0.73813 (19) | 0.1777 (2) | 0.46709 (16) | 0.0179 (5) | |
H6 | 0.702176 | 0.153239 | 0.508153 | 0.022* | |
C7 | 0.77602 (19) | 0.2908 (2) | 0.46259 (17) | 0.0184 (5) | |
H7 | 0.770231 | 0.353153 | 0.500496 | 0.022* | |
C8 | 0.82445 (18) | 0.2920 (2) | 0.38987 (17) | 0.0188 (5) | |
H8 | 0.855613 | 0.355473 | 0.371134 | 0.023* | |
C9 | 0.81675 (19) | 0.1787 (2) | 0.35077 (17) | 0.0192 (5) | |
H9 | 0.842145 | 0.155039 | 0.301873 | 0.023* | |
C10 | 0.4569 (2) | 0.3377 (2) | 0.42664 (18) | 0.0184 (5) | |
H10A | 0.528327 | 0.344180 | 0.484207 | 0.022* | |
H10B | 0.442864 | 0.410721 | 0.391445 | 0.022* | |
C11 | 0.45578 (18) | 0.09925 (19) | 0.41018 (16) | 0.0135 (4) | |
H11A | 0.450942 | 0.030898 | 0.370298 | 0.016* | |
H11B | 0.521186 | 0.091764 | 0.473140 | 0.016* | |
C12 | 0.33213 (18) | 0.2198 (2) | 0.23700 (17) | 0.0168 (5) | |
H12A | 0.320423 | 0.289683 | 0.197633 | 0.020* | |
H12B | 0.331263 | 0.155760 | 0.193769 | 0.020* | |
C13 | 0.3622 (2) | 0.2021 (2) | 0.50113 (17) | 0.0170 (5) | |
H13A | 0.429693 | 0.189409 | 0.561541 | 0.020* | |
H13B | 0.297707 | 0.197899 | 0.519767 | 0.020* | |
C14 | 0.25059 (18) | 0.10856 (19) | 0.33896 (17) | 0.0151 (4) | |
H14A | 0.185886 | 0.108202 | 0.357482 | 0.018* | |
H14B | 0.248845 | 0.037642 | 0.303134 | 0.018* | |
C15 | 0.29827 (19) | 0.4079 (2) | 0.46058 (17) | 0.0176 (5) | |
C16 | 0.2176 (2) | 0.3947 (2) | 0.5127 (2) | 0.0250 (5) | |
H16A | 0.259315 | 0.397149 | 0.584258 | 0.037* | |
H16B | 0.178938 | 0.322462 | 0.494274 | 0.037* | |
H16C | 0.163490 | 0.456177 | 0.492731 | 0.037* | |
C17 | 0.14790 (18) | 0.27602 (19) | 0.22978 (16) | 0.0152 (4) | |
C18 | 0.05350 (19) | 0.2655 (2) | 0.26638 (18) | 0.0216 (5) | |
H18A | 0.010423 | 0.335387 | 0.252252 | 0.032* | |
H18B | 0.084905 | 0.251691 | 0.337578 | 0.032* | |
H18C | 0.005112 | 0.202610 | 0.232574 | 0.032* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mo1 | 0.00936 (8) | 0.01073 (9) | 0.01029 (8) | 0.00077 (7) | 0.00339 (6) | 0.00039 (7) |
P1 | 0.0108 (2) | 0.0103 (3) | 0.0115 (2) | 0.00093 (19) | 0.0039 (2) | 0.00144 (19) |
O1 | 0.0374 (11) | 0.0174 (9) | 0.0469 (12) | 0.0094 (8) | 0.0253 (10) | 0.0102 (8) |
O2 | 0.0255 (9) | 0.0273 (10) | 0.0249 (9) | −0.0042 (8) | 0.0063 (8) | −0.0112 (8) |
O3 | 0.0181 (8) | 0.0268 (9) | 0.0193 (8) | −0.0005 (7) | 0.0088 (7) | 0.0017 (7) |
O4 | 0.0283 (9) | 0.0172 (9) | 0.0308 (10) | 0.0027 (7) | 0.0158 (8) | 0.0035 (7) |
O5 | 0.0175 (8) | 0.0192 (9) | 0.0203 (8) | 0.0031 (7) | 0.0059 (7) | 0.0087 (7) |
N1 | 0.0185 (9) | 0.0144 (10) | 0.0204 (10) | −0.0016 (7) | 0.0117 (8) | −0.0020 (7) |
N2 | 0.0118 (9) | 0.0135 (9) | 0.0143 (9) | 0.0015 (7) | 0.0042 (7) | 0.0042 (7) |
N3 | 0.0113 (8) | 0.0164 (9) | 0.0155 (9) | 0.0001 (7) | 0.0041 (7) | 0.0037 (7) |
C1 | 0.0183 (11) | 0.0194 (12) | 0.0197 (11) | −0.0009 (9) | 0.0096 (9) | 0.0032 (9) |
C2 | 0.0144 (10) | 0.0199 (12) | 0.0179 (11) | 0.0017 (9) | 0.0066 (9) | 0.0013 (9) |
C3 | 0.0192 (11) | 0.0156 (11) | 0.0136 (10) | −0.0007 (9) | 0.0060 (9) | −0.0003 (8) |
C4 | 0.0195 (12) | 0.0338 (14) | 0.0164 (11) | −0.0006 (10) | 0.0048 (10) | 0.0068 (10) |
C5 | 0.0172 (11) | 0.0161 (12) | 0.0193 (11) | 0.0047 (9) | 0.0002 (9) | 0.0023 (9) |
C6 | 0.0122 (10) | 0.0251 (12) | 0.0126 (10) | 0.0029 (9) | 0.0008 (8) | 0.0057 (9) |
C7 | 0.0170 (11) | 0.0209 (12) | 0.0132 (10) | 0.0007 (9) | 0.0016 (9) | −0.0031 (9) |
C8 | 0.0101 (10) | 0.0258 (12) | 0.0164 (11) | −0.0005 (9) | 0.0008 (9) | 0.0027 (9) |
C9 | 0.0120 (10) | 0.0280 (13) | 0.0154 (11) | 0.0058 (9) | 0.0031 (9) | −0.0007 (9) |
C10 | 0.0219 (12) | 0.0134 (11) | 0.0248 (12) | −0.0041 (9) | 0.0144 (10) | −0.0041 (9) |
C11 | 0.0122 (10) | 0.0121 (10) | 0.0146 (10) | 0.0015 (8) | 0.0037 (8) | 0.0032 (8) |
C12 | 0.0127 (10) | 0.0217 (12) | 0.0152 (10) | 0.0020 (8) | 0.0048 (8) | 0.0041 (8) |
C13 | 0.0183 (11) | 0.0187 (11) | 0.0154 (11) | 0.0013 (9) | 0.0081 (9) | 0.0032 (9) |
C14 | 0.0120 (10) | 0.0131 (11) | 0.0179 (11) | −0.0006 (8) | 0.0034 (9) | 0.0038 (8) |
C15 | 0.0177 (11) | 0.0194 (12) | 0.0147 (10) | −0.0006 (9) | 0.0054 (9) | −0.0025 (9) |
C16 | 0.0245 (13) | 0.0229 (13) | 0.0336 (14) | 0.0066 (10) | 0.0180 (11) | 0.0043 (10) |
C17 | 0.0122 (10) | 0.0151 (11) | 0.0150 (10) | 0.0003 (8) | 0.0019 (8) | −0.0007 (8) |
C18 | 0.0156 (10) | 0.0251 (13) | 0.0252 (12) | 0.0051 (10) | 0.0091 (9) | 0.0079 (10) |
Mo1—P1 | 2.4258 (6) | C4—H4C | 0.9600 |
Mo1—C1 | 1.964 (2) | C5—H5 | 0.9300 |
Mo1—C2 | 1.971 (2) | C5—C6 | 1.411 (3) |
Mo1—C3 | 2.243 (2) | C5—C9 | 1.415 (3) |
Mo1—C5 | 2.368 (2) | C6—H6 | 0.9300 |
Mo1—C6 | 2.385 (2) | C6—C7 | 1.413 (3) |
Mo1—C7 | 2.363 (2) | C7—H7 | 0.9300 |
Mo1—C8 | 2.306 (2) | C7—C8 | 1.419 (3) |
Mo1—C9 | 2.306 (2) | C8—H8 | 0.9300 |
P1—C10 | 1.838 (2) | C8—C9 | 1.423 (3) |
P1—C11 | 1.830 (2) | C9—H9 | 0.9300 |
P1—C12 | 1.838 (2) | C10—H10A | 0.9700 |
O1—C1 | 1.157 (3) | C10—H10B | 0.9700 |
O2—C2 | 1.157 (3) | C11—H11A | 0.9700 |
O3—C3 | 1.217 (3) | C11—H11B | 0.9700 |
O4—C15 | 1.234 (3) | C12—H12A | 0.9700 |
O5—C17 | 1.231 (3) | C12—H12B | 0.9700 |
N1—C10 | 1.463 (3) | C13—H13A | 0.9700 |
N1—C13 | 1.471 (3) | C13—H13B | 0.9700 |
N1—C15 | 1.359 (3) | C14—H14A | 0.9700 |
N2—C11 | 1.466 (3) | C14—H14B | 0.9700 |
N2—C13 | 1.453 (3) | C15—C16 | 1.512 (3) |
N2—C14 | 1.451 (3) | C16—H16A | 0.9600 |
N3—C12 | 1.464 (3) | C16—H16B | 0.9600 |
N3—C14 | 1.477 (3) | C16—H16C | 0.9600 |
N3—C17 | 1.357 (3) | C17—C18 | 1.509 (3) |
C3—C4 | 1.522 (3) | C18—H18A | 0.9600 |
C4—H4A | 0.9600 | C18—H18B | 0.9600 |
C4—H4B | 0.9600 | C18—H18C | 0.9600 |
C1—Mo1—P1 | 77.10 (7) | C5—C6—H6 | 125.6 |
C1—Mo1—C2 | 108.47 (10) | C5—C6—C7 | 108.8 (2) |
C1—Mo1—C3 | 72.63 (9) | C7—C6—Mo1 | 71.84 (13) |
C1—Mo1—C5 | 157.27 (9) | C7—C6—H6 | 125.6 |
C1—Mo1—C6 | 125.17 (9) | Mo1—C7—H7 | 121.9 |
C1—Mo1—C7 | 99.22 (9) | C6—C7—Mo1 | 73.52 (13) |
C1—Mo1—C8 | 104.03 (9) | C6—C7—H7 | 126.2 |
C1—Mo1—C9 | 136.72 (9) | C6—C7—C8 | 107.7 (2) |
C2—Mo1—P1 | 81.75 (7) | C8—C7—Mo1 | 70.12 (12) |
C2—Mo1—C3 | 76.10 (9) | C8—C7—H7 | 126.2 |
C2—Mo1—C5 | 94.08 (9) | Mo1—C8—H8 | 119.1 |
C2—Mo1—C6 | 119.45 (9) | C7—C8—Mo1 | 74.54 (13) |
C2—Mo1—C7 | 151.96 (9) | C7—C8—H8 | 126.2 |
C2—Mo1—C8 | 135.18 (9) | C7—C8—C9 | 107.6 (2) |
C2—Mo1—C9 | 101.20 (9) | C9—C8—Mo1 | 72.05 (13) |
C3—Mo1—P1 | 133.99 (6) | C9—C8—H8 | 126.2 |
C3—Mo1—C5 | 117.05 (8) | Mo1—C9—H9 | 119.2 |
C3—Mo1—C6 | 141.34 (8) | C5—C9—Mo1 | 74.77 (13) |
C3—Mo1—C7 | 117.61 (8) | C5—C9—C8 | 108.3 (2) |
C3—Mo1—C8 | 85.28 (8) | C5—C9—H9 | 125.9 |
C3—Mo1—C9 | 85.13 (8) | C8—C9—Mo1 | 72.00 (13) |
C5—Mo1—P1 | 104.19 (6) | C8—C9—H9 | 125.9 |
C5—Mo1—C6 | 34.54 (8) | P1—C10—H10A | 108.4 |
C6—Mo1—P1 | 84.62 (6) | P1—C10—H10B | 108.4 |
C7—Mo1—P1 | 100.66 (6) | N1—C10—P1 | 115.67 (16) |
C7—Mo1—C5 | 58.09 (8) | N1—C10—H10A | 108.4 |
C7—Mo1—C6 | 34.64 (8) | N1—C10—H10B | 108.4 |
C8—Mo1—P1 | 136.01 (6) | H10A—C10—H10B | 107.4 |
C8—Mo1—C5 | 58.94 (9) | P1—C11—H11A | 109.8 |
C8—Mo1—C6 | 58.33 (8) | P1—C11—H11B | 109.8 |
C8—Mo1—C7 | 35.35 (8) | N2—C11—P1 | 109.32 (14) |
C8—Mo1—C9 | 35.95 (9) | N2—C11—H11A | 109.8 |
C9—Mo1—P1 | 139.10 (6) | N2—C11—H11B | 109.8 |
C9—Mo1—C5 | 35.20 (9) | H11A—C11—H11B | 108.3 |
C9—Mo1—C6 | 58.12 (8) | P1—C12—H12A | 109.0 |
C9—Mo1—C7 | 58.84 (8) | P1—C12—H12B | 109.0 |
C10—P1—Mo1 | 113.94 (8) | N3—C12—P1 | 112.74 (15) |
C11—P1—Mo1 | 120.83 (7) | N3—C12—H12A | 109.0 |
C11—P1—C10 | 98.79 (11) | N3—C12—H12B | 109.0 |
C11—P1—C12 | 97.73 (10) | H12A—C12—H12B | 107.8 |
C12—P1—Mo1 | 117.51 (7) | N1—C13—H13A | 108.6 |
C12—P1—C10 | 105.05 (11) | N1—C13—H13B | 108.6 |
C10—N1—C13 | 115.65 (18) | N2—C13—N1 | 114.62 (18) |
C15—N1—C10 | 118.14 (19) | N2—C13—H13A | 108.6 |
C15—N1—C13 | 126.21 (19) | N2—C13—H13B | 108.6 |
C13—N2—C11 | 112.11 (17) | H13A—C13—H13B | 107.6 |
C14—N2—C11 | 112.71 (17) | N2—C14—N3 | 114.37 (18) |
C14—N2—C13 | 116.44 (18) | N2—C14—H14A | 108.7 |
C12—N3—C14 | 115.27 (17) | N2—C14—H14B | 108.7 |
C17—N3—C12 | 118.24 (18) | N3—C14—H14A | 108.7 |
C17—N3—C14 | 126.23 (19) | N3—C14—H14B | 108.7 |
O1—C1—Mo1 | 176.4 (2) | H14A—C14—H14B | 107.6 |
O2—C2—Mo1 | 173.5 (2) | O4—C15—N1 | 121.4 (2) |
O3—C3—Mo1 | 120.51 (16) | O4—C15—C16 | 120.1 (2) |
O3—C3—C4 | 117.4 (2) | N1—C15—C16 | 118.5 (2) |
C4—C3—Mo1 | 122.10 (16) | C15—C16—H16A | 109.5 |
C3—C4—H4A | 109.5 | C15—C16—H16B | 109.5 |
C3—C4—H4B | 109.5 | C15—C16—H16C | 109.5 |
C3—C4—H4C | 109.5 | H16A—C16—H16B | 109.5 |
H4A—C4—H4B | 109.5 | H16A—C16—H16C | 109.5 |
H4A—C4—H4C | 109.5 | H16B—C16—H16C | 109.5 |
H4B—C4—H4C | 109.5 | O5—C17—N3 | 121.3 (2) |
Mo1—C5—H5 | 122.1 | O5—C17—C18 | 120.1 (2) |
C6—C5—Mo1 | 73.39 (13) | N3—C17—C18 | 118.6 (2) |
C6—C5—H5 | 126.2 | C17—C18—H18A | 109.5 |
C6—C5—C9 | 107.6 (2) | C17—C18—H18B | 109.5 |
C9—C5—Mo1 | 70.03 (13) | C17—C18—H18C | 109.5 |
C9—C5—H5 | 126.2 | H18A—C18—H18B | 109.5 |
Mo1—C6—H6 | 122.2 | H18A—C18—H18C | 109.5 |
C5—C6—Mo1 | 72.07 (13) | H18B—C18—H18C | 109.5 |
Mo1—P1—C10—N1 | −172.38 (14) | C11—P1—C10—N1 | −42.89 (19) |
Mo1—P1—C11—N2 | 176.42 (11) | C11—P1—C12—N3 | 49.62 (18) |
Mo1—P1—C12—N3 | −179.56 (13) | C11—N2—C13—N1 | 67.4 (2) |
Mo1—C5—C6—C7 | −62.85 (16) | C11—N2—C14—N3 | −64.3 (2) |
Mo1—C5—C9—C8 | 64.72 (15) | C12—P1—C10—N1 | 57.6 (2) |
Mo1—C6—C7—C8 | −62.18 (15) | C12—P1—C11—N2 | −54.99 (16) |
Mo1—C7—C8—C9 | −64.94 (15) | C12—N3—C14—N2 | 57.2 (3) |
Mo1—C8—C9—C5 | −66.55 (15) | C12—N3—C17—O5 | 2.6 (3) |
C5—C6—C7—Mo1 | 63.00 (15) | C12—N3—C17—C18 | −177.9 (2) |
C5—C6—C7—C8 | 0.8 (2) | C13—N1—C10—P1 | 46.5 (2) |
C6—C5—C9—Mo1 | −64.27 (15) | C13—N1—C15—O4 | −173.8 (2) |
C6—C5—C9—C8 | 0.5 (2) | C13—N1—C15—C16 | 8.8 (3) |
C6—C7—C8—Mo1 | 64.41 (15) | C13—N2—C11—P1 | −67.49 (19) |
C6—C7—C8—C9 | −0.5 (2) | C13—N2—C14—N3 | 67.3 (2) |
C7—C8—C9—Mo1 | 66.60 (15) | C14—N2—C11—P1 | 66.2 (2) |
C7—C8—C9—C5 | 0.0 (2) | C14—N2—C13—N1 | −64.5 (2) |
C9—C5—C6—Mo1 | 62.07 (15) | C14—N3—C12—P1 | −53.5 (2) |
C9—C5—C6—C7 | −0.8 (2) | C14—N3—C17—O5 | −171.1 (2) |
C10—P1—C11—N2 | 51.64 (16) | C14—N3—C17—C18 | 8.4 (3) |
C10—P1—C12—N3 | −51.70 (19) | C15—N1—C10—P1 | −133.89 (18) |
C10—N1—C13—N2 | −55.1 (3) | C15—N1—C13—N2 | 125.4 (2) |
C10—N1—C15—O4 | 6.6 (3) | C17—N3—C12—P1 | 132.06 (18) |
C10—N1—C15—C16 | −170.7 (2) | C17—N3—C14—N2 | −128.9 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···O4i | 0.93 | 2.45 | 3.353 (3) | 163 |
C11—H11A···O5ii | 0.97 | 2.41 | 3.211 (3) | 140 |
C12—H12B···O4ii | 0.97 | 2.60 | 3.409 (3) | 141 |
C13—H13A···O5iii | 0.97 | 2.57 | 3.474 (3) | 156 |
C13—H13B···O3iv | 0.97 | 2.46 | 3.261 (3) | 139 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1/2, y−1/2, −z+1/2; (iii) x+1/2, −y+1/2, z+1/2; (iv) x−1/2, −y+1/2, z+1/2. |
Funding information
Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (award No. CHE-1552591 to MTW); Davidson College Research Initiative (DRI).
References
Adams, H., Bailey, N. A., Day, A. N., Morris, M. J. & Harrison, M. M. (1991). J. Organomet. Chem. 407, 247–258. CSD CrossRef CAS Web of Science Google Scholar
Barnett, K. W. (1969). Inorg. Chem. 8, 2009–2011. CrossRef CAS Web of Science Google Scholar
Barnett, K. W. & Pollmann, T. G. (1974). J. Organomet. Chem. 69, 413–421. CrossRef CAS Web of Science Google Scholar
Barnett, K. W. & Treichel, P. M. (1967). Inorg. Chem. 6, 294–299. CrossRef CAS Web of Science Google Scholar
Bruker (2016). SADABS. Bruker Nano, Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2018). SAINT. Bruker Nano, Inc., Madison, Wisconsin, USA. Google Scholar
Butler, I. S., Basolo, F. & Pearson, R. G. (1967). Inorg. Chem. 6, 2074–2079. CrossRef CAS Web of Science Google Scholar
Gladysz, J. A., Williams, G. M., Tam, W., Johnson, D. L., Parker, D. W. & Selover, J. C. (1979). Inorg. Chem. 18, 553–558. CrossRef CAS Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Kubacek, P., Hoffmann, R. & Havlas, Z. (1982). Organometallics, 1, 180–188. CrossRef CAS Web of Science Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mercier, F., Ricard, L. & Mathey, F. (1993). Organometallics, 12, 98–103. CSD CrossRef CAS Web of Science Google Scholar
Rigaku (2019). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sears, J. M., Lee, W.-C. & Frost, B. J. (2015). Inorg. Chim. Acta, 431, 248–257. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Whited, M. T., Bakker-Arkema, J. G., Greenwald, J. E., Morrill, L. A. & Janzen, D. E. (2013). Acta Cryst. E69, m475–m476. CSD CrossRef CAS IUCr Journals Google Scholar
Whited, M. T., Boerma, J. W., McClellan, M. J., Padilla, C. E. & Janzen, D. E. (2012). Acta Cryst. E68, m1158–m1159. CSD CrossRef CAS IUCr Journals Google Scholar
Whited, M. T. & Hofmeister, G. E. (2014). J. Chem. Educ. 91, 1050–1053. Web of Science CrossRef CAS Google Scholar
Whited, M. T., Hofmeister, G. E., Hodges, C. J., Jensen, L. T., Keyes, S. H., Ngamnithiporn, A. & Janzen, D. E. (2014). Acta Cryst. E70, 216–220. CSD CrossRef IUCr Journals Google Scholar
Yan, X., Yu, B., Wang, L., Tang, N. & Xi, C. (2009). Organometallics, 28, 6827–6830. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.