research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of trans-acetyl­dicarbon­yl(η5-cyclo­penta­dien­yl)(1,3,5-tri­aza-7-phosphaadamantane)molybdenum(II) and trans-acetyl­di­carbon­yl(η5-cyclo­penta­dien­yl)(3,7-di­acetyl-1,3,7-tri­aza-5-phosphabi­cyclo­[3.3.1]nona­ne)molyb­den­um(II)

aDepartment of Chemistry, Davidson College, 405 N Main St, Davidson, North Carolina 28035, USA, and bDepartment of Chemistry, Carleton College, 1 N College St, Northfield, MN 55057, USA
*Correspondence e-mail: mwhited@carleton.edu

Edited by M. Zeller, Purdue University, USA (Received 11 March 2020; accepted 11 March 2020; online 17 March 2020)

The title compounds, [Mo(C5H5)(COCH3)(C6H12N3P)(CO)2], (1), and [Mo(C5H5)(COCH3)(C9H16N3O2P)(C6H5)2))(CO)2], (2), have been prepared by phosphine-induced migratory insertion from [Mo(C5H5)(CO)3(CH3)]. The mol­ecular structures of these complexes are quite similar, exhibiting a four-legged piano-stool geometry with trans-disposed carbonyl ligands. The extended structures of complexes (1) and (2) differ substanti­ally. For complex (1), the molybdenum acetyl unit plays a dominant role in the organization of the extended structure, joining the mol­ecules into centrosymmetrical dimers through C—H⋯O inter­actions with a cyclo­penta­dienyl ligand of a neighboring mol­ecule, and these dimers are linked into layers parallel to (100) by C—H⋯O inter­actions between the molybdenum acetyl and the cyclo­penta­dienyl ligand of another neighbor. The extended structure of (2) is dominated by C—H⋯O inter­actions involving the carbonyl groups of the acetamide groups of the DAPTA ligand, which join the mol­ecules into centrosymmetrical dimers and link them into chains along [010]. Additional C—H⋯O inter­actions between the molybdenum acetyl oxygen atom and an acetamide methyl group join the chains into layers parallel to (101).

1. Chemical context

Cyclo­penta­dienylmolybdenum polycarbonyl complexes [Mo(C5H5)(CO)n] exhibiting `four-legged piano-stool' geom­etries have been studied extensively for their electronic structure and organometallic reactivity (Kubacek et al., 1982[Kubacek, P., Hoffmann, R. & Havlas, Z. (1982). Organometallics, 1, 180-188.]). Specifically, alkyl complexes of the form Mo(C5H5)(CO)3(R) have been shown to undergo carbonyl migratory insertion, affording acyl complexes upon exposure to L-type ligands, especially phosphines (Barnett & Treichel, 1967[Barnett, K. W. & Treichel, P. M. (1967). Inorg. Chem. 6, 294-299.]; Butler et al., 1967[Butler, I. S., Basolo, F. & Pearson, R. G. (1967). Inorg. Chem. 6, 2074-2079.]). The steric bulk of the phosphine ligand strongly influences the stability of the resulting complexes, with bulkier groups exhibiting enhanced deinsertion rates (Barnett, 1969[Barnett, K. W. (1969). Inorg. Chem. 8, 2009-2011.]; Barnett & Pollmann, 1974[Barnett, K. W. & Pollmann, T. G. (1974). J. Organomet. Chem. 69, 413-421.]).

We have previously described the solid-state structures of a number of four-legged piano-stool molybdenum acetyl complexes of the type Mo(PR3)(C5H5)(CO)2(COCH3) derived from reaction of the molybdenum methyl precursor with various phosphines (Whited & Hofmeister, 2014[Whited, M. T. & Hofmeister, G. E. (2014). J. Chem. Educ. 91, 1050-1053.]). We have shown that the steric bulk of the phosphine substituents impacts the mol­ecular structure of the insertion product in predictable ways, primarily evidenced through the Mo—P bond lengths and P—Mo—C bond angles (Whited et al., 2012[Whited, M. T., Boerma, J. W., McClellan, M. J., Padilla, C. E. & Janzen, D. E. (2012). Acta Cryst. E68, m1158-m1159.], 2014[Whited, M. T., Hofmeister, G. E., Hodges, C. J., Jensen, L. T., Keyes, S. H., Ngamnithiporn, A. & Janzen, D. E. (2014). Acta Cryst. E70, 216-220.]), consistent with earlier findings on reactivity. We have also shown that the use of tri(2-fur­yl)phosphine, which features heteroatoms as potential hydrogen-bond acceptors, leads to an unusual structure where the acetyl is oriented away from the Cp ring rather than toward it as in other cases (Whited et al., 2013[Whited, M. T., Bakker-Arkema, J. G., Greenwald, J. E., Morrill, L. A. & Janzen, D. E. (2013). Acta Cryst. E69, m475-m476.]).

[Scheme 1]

Here we report the structures of piano-stool molybdenum acetyl complexes with 1,3,5-tri­aza-7-phosphaadamantane (PTA) and 3,7-diacetyl-1,3,7-tri­aza-5-phosphabi­cyclo­[3.3.1]nonane (DAPTA) ligands featuring potential hydrogen-bond-accepting amines and carbonyl groups. The di­acetyl­ated ligand (DAPTA) shows little difference from PTA in local structure, but the introduction of acetamide groups dramatically impacts the supra­molecular organization.

2. Structural commentary

The mol­ecular structures of (1) and (2) are illustrated in Figs. 1[link] and 2[link]. Both (1) and (2) exhibit a trans disposition of the carbonyl ligands, as seen for other compounds of this type. It was envisioned that incorporation of hydrogen-bond acceptors (amines and amides) might allow access to an alternate orientation of the acetyl group, as observed for a related structure featuring a tri(2-fur­yl)phosphine ligand, but instead the oxygen of the acetyl group points toward the Cp ring, consistent with other structures of related complexes.

[Figure 1]
Figure 1
Mol­ecular structure of (1) with ellipsoids at 50% probability.
[Figure 2]
Figure 2
Mol­ecular structure of (2) with ellipsoids at 50% probability.

Selected geometric parameters for (1) and (2) are presented in Tables 1[link] and 2[link]. The Mo1—P1 bond lengths for PTA derivative (1) [2.4321 (5) Å] and DAPTA derivative (2) [2.4258 (6) Å] are similar to one another and slightly shorter than for the related complexes we have reported. This finding is consistent with the lower steric profile of the polycyclic PTA and DAPTA ligands relative to, for example, PPh3, PMePh2, and PMe2Ph. The most significant mol­ecular difference between (1) and (2) is seen in the C3—Mo1—P1 bond angle, which is larger for (1) [136.77 (4)°] than for (2) [133.99 (6)°].

Table 1
Selected geometric parameters (Å, °) for (1)[link]

Mo1—P1 2.4321 (5) Mo1—C2 1.9746 (17)
Mo1—C1 1.9714 (17) Mo1—C3 2.2398 (16)
       
C1—Mo1—P1 79.89 (5) C2—Mo1—P1 78.80 (5)
C1—Mo1—C2 106.05 (7) C2—Mo1—C3 78.51 (6)
C1—Mo1—C3 71.80 (6) C3—Mo1—P1 136.77 (4)

Table 2
Selected geometric parameters (Å, °) for (2)[link]

Mo1—P1 2.4258 (6) Mo1—C2 1.971 (2)
Mo1—C1 1.964 (2) Mo1—C3 2.243 (2)
       
C1—Mo1—P1 77.10 (7) C2—Mo1—P1 81.75 (7)
C1—Mo1—C2 108.47 (10) C2—Mo1—C3 76.10 (9)
C1—Mo1—C3 72.63 (9) C3—Mo1—P1 133.99 (6)

3. Supra­molecular features

Although the mol­ecular structures of (1) and (2) are quite similar, the di­acetyl­ation of the phosphine ligand (transforming PTA to DAPTA) leads to significant differences in the extended structure. As was the case for several previously reported complexes of this sort with different phosphine ligands, the extended structure of (1) is dominated by inter­actions of atom O3 from the molybdenum acetyl. Short, non-classical C—H⋯O inter­actions between O3 and H8 of a cyclo­penta­dienyl (Cp) ring (2.49 Å) link (1) into centrosymmetrical dimers (Fig. 3[link]). These dimers are further connected into layers parallel to (100) by non-classical C—H⋯O hydrogen bonds between O3 and H9 (2.37 Å) (Table 3[link], Fig. 4[link]). Although the PTA ligand features three nitro­gen atoms as potential hydrogen-bond acceptors, these are not observed to play an important organizing structural role.

Table 3
Hydrogen-bond geometry (Å, °) for (1)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O3i 0.95 2.49 3.269 (2) 139
C9—H9⋯O3ii 0.95 2.37 3.284 (2) 162
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 3]
Figure 3
Centrosymmetrical dimer of (1), viewed perpendicular to (101).
[Figure 4]
Figure 4
Layers of (1) formed by C—H⋯O inter­actions, viewed perpendicular to (100).

The acetamide groups of DAPTA, which are not present in PTA, play an important role in the extended structure of (2). Short, non-classical C—H⋯O inter­actions between O4 of an acetamide and H7 of a Cp ring (2.45 Å) link (2) into centrosymmetrical dimers (Table 4[link], Fig. 5[link]). A combination of non-classical hydrogen bonds involving acetamide groups link (2) in chains along [010]: O5⋯H11A (2.41 Å) and O4⋯H12B (2.60 Å) (Fig. 6[link]). These chains are further joined into layers parallel to (101) through the molybdenum acetyl group via a non-classical C—H⋯O inter­action between O3 and H13B (2.46 Å) (Fig. 7[link]). The extensive network of inter­actions involving all three acetyl groups likely contribute to the low solubility of (2) in most organic solvents.

Table 4
Hydrogen-bond geometry (Å, °) for (2)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O4i 0.93 2.45 3.353 (3) 163
C11—H11A⋯O5ii 0.97 2.41 3.211 (3) 140
C12—H12B⋯O4ii 0.97 2.60 3.409 (3) 141
C13—H13A⋯O5iii 0.97 2.57 3.474 (3) 156
C13—H13B⋯O3iv 0.97 2.46 3.261 (3) 139
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 5]
Figure 5
Centrosymmetrical dimer of (2), viewed along to [001].
[Figure 6]
Figure 6
Chains of (2) along [010], viewed perpendicular to (010).
[Figure 7]
Figure 7
Layers of (2) formed by C—H⋯O inter­actions, viewed perpendicular to (101)

4. Database survey

The current version of the Cambridge Structural Database (Version 5.40, updated August 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) has thirteen entries corresponding to molybdenum acyl complexes of the general form Mo(C5H5)(CO)2(PR3)(COR). The trans-dicarbonyl structure, as observed for (1) and (2), is preferred except in cases where the phosphine and acyl ligands are covalently linked, forcing them to be cis (Adams et al., 1991[Adams, H., Bailey, N. A., Day, A. N., Morris, M. J. & Harrison, M. M. (1991). J. Organomet. Chem. 407, 247-258.]; Mercier et al., 1993[Mercier, F., Ricard, L. & Mathey, F. (1993). Organometallics, 12, 98-103.]; Yan et al., 2009[Yan, X., Yu, B., Wang, L., Tang, N. & Xi, C. (2009). Organometallics, 28, 6827-6830.]).

The PTA and DAPTA ligands have not been extensively utilized on molybdenum. There are eight instances of the PTA ligand bonded to molybdenum or tungsten, five of which involve coordination of one or more of the ligand to an M(CO)n center to afford an octa­hedral product. Most relevant to this study is the tungsten complex W(C5H5)(CO)2(PTA)(H), which is analogous to (1) and (2) but features a hydride rather than an acyl ligand (Sears et al., 2015[Sears, J. M., Lee, W.-C. & Frost, B. J. (2015). Inorg. Chim. Acta, 431, 248-257.]).

5. Synthesis and crystallization

CpMo(CO)3(CH3). This compound was prepared by a modification of the method used by Gladysz et al. (1979[Gladysz, J. A., Williams, G. M., Tam, W., Johnson, D. L., Parker, D. W. & Selover, J. C. (1979). Inorg. Chem. 18, 553-558.]), as previously reported by Whited & Hofmeister (2014[Whited, M. T. & Hofmeister, G. E. (2014). J. Chem. Educ. 91, 1050-1053.]), with the modification that sodium tri­ethyl­borohydride (1.0 M in toluene) was used as a reductant instead of lithium tri­ethyl­borohydride to facilitate isolation of the product.

CpMo(CO)2(PTA)(COCH3) (1). In an inert-atmosphere glove box, CpMo(CO)3(CH3) (325 mg, 1.25 mmol, 1.18 equivalents) was dissolved in aceto­nitrile (10 ml). In a separ­ate vial, 1,3,5-tri­aza-7-phosphaadamantane (PTA, 167 mg, 1.06 mmol, 1 equivalent) was massed. The homogeneous solution of the molybdenum complex was transferred to the vial containing PTA and the mixture was stirred at room temperature. After three days, the solution had generated a red solid that clung to the walls of the scintillation vial while the solution itself retained a red–orange color. Solvent was removed in vacuo, leaving a red–orange solid that was washed with hexa­nes (10 ml) and diethyl ether (10 ml) before a final extraction using tetra­hydro­furan (THF, 10 ml). The solid obtained from the THF fraction was the pale-yellow pure form of the final product (350 mg, 79%). Crystalline material was obtained as yellow–orange blocks by a THF/toluene vapor cross diffusion, which was used to concentrate the solution in a controlled manner without exposure to the glove-box atmosphere. The procedure is as follows: 50 mg of the product were dissolved in 1 ml of THF to form a concentrated solution. This solution was transferred into a small cylindrical 5 ml vial that was placed into a 20 ml vial. The remaining volume inside the 20 ml vial was filled with 10 ml of toluene. The vial was capped and left for two days before crystals were observed and harvested. 1H NMR (400 MHz, CDCl3): δ 5.16 (d, J = 1.2 Hz, 5H, C5H5), 4.55 (m, 6H, P–CH2–N), 4.07 (s, 6H, N–CH2–N), 2.52 [s, 3H, C(O)CH3]. 31P{1H} NMR (162 MHz, CDCl3):δ −21.7 (s).

CpMo(CO)2(DAPTA)(COCH3) (2). In an inert-atmos­phere glove box, CpMo(CO)3(CH3) (310 mg, 1.19 mmol, 1.05 equivalents) was dissolved in N,N-di­methyl­formamide (10 ml). In a separate vial, 3,7-diacetyl-1,3,5-tri­aza-5-phosphabi­cyclo­[3.3.1]nonane (DAPTA, 260 mg, 1.13 mmol, 1 equivalent) was massed. The homogeneous solution of the molybdenum complex was transferred to the vial containing DAPTA. The solution was not fully homogeneous, so vigorous stirring was employed. The solution had generated a pale-yellow solid after the first day while the supernatant solution was a red–orange color. The reaction mixture was filtered to obtain the pale-yellow solid, which was washed with two 2 ml portions of fresh N,N-di­methyl­formamide. The solid was dried in vacuo and recrystallized from a vapor diffusion of diethyl ether into a concentrated solution of the product in N,N-di­methyl­formamide, affording (2) as a pale-yellow crystalline material (80 mg, 15%). 1H NMR (400 MHz, DMSO-d6): δ 5.57 (d, J = 14 Hz, 1H), 5.36 (s, 5H, C5H5), 5.27 (dd, JPH = 6.8 Hz, JHH = 15.2 Hz, 1H), 4.98 (d, JHH = 14.0 Hz, 1H), 4.72 (d, JHH = 14.0 Hz, 1H), 4.40 (dd, JPH = 7.6 Hz, JHH = 15.6 Hz, 1H), 4.20 (d, JHH = 14 Hz, 1H), 4.05–3.98 (m, 1H), 3.75 (s, 2H), 3.46–3.39 (m, 1H), 2.42 (s, 3H, MoC(O)CH3), 1.98 (s, 3H, NC(O)CH3), 1.97 [s, 3H, NC(O)CH3]. 31P{1H} NMR (162 MHz, DMSO-d6):δ 8.06 (s).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. H atoms were placed in calculated positions and refined in the riding-model approximation with distances of C—H = 0.93, 0.96, and 0.97 Å for the cyclo­penta­dienyl, methyl, and methyl­ene groups, respectively, and with Uiso(H) = k×Ueq(C), k = 1.2 for cyclo­penta­dienyl and methyl­ene groups and 1.5 for methyl groups. Methyl group H atoms were allowed to rotate in order to find the best rotameric conformation.

Table 5
Experimental details

  (1) (2)
Crystal data
Chemical formula [Mo(C5H5)(C2H2O)(C6H12N3P)(CO)2] [Mo(C5H5)(C2H3O)(C9H16N3O2P)(CO)2]
Mr 417.25 489.31
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/n
Temperature (K) 100 100
a, b, c (Å) 9.7919 (14), 14.5757 (13), 12.1140 (12) 12.8674 (4), 11.6366 (3), 14.4655 (5)
β (°) 107.694 (6) 113.224 (4)
V3) 1647.2 (3) 1990.45 (12)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.91 0.77
Crystal size (mm) 0.2 × 0.19 × 0.15 0.17 × 0.1 × 0.02
 
Data collection
Diffractometer Bruker D8QUEST Rigaku XtaLAB Synergy, Single source at offset/far, Pilatus 200K
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). SADABS. Bruker Nano, Inc., Madison, Wisconsin, USA.]) Multi-scan (CrysAlis PRO; Rigaku, 2019[Rigaku (2019). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.709, 0.746 0.868, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 32227, 3785, 3379 38060, 4726, 4075
Rint 0.040 0.044
(sin θ/λ)max−1) 0.651 0.658
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.043, 1.07 0.028, 0.061, 1.09
No. of reflections 3785 4726
No. of parameters 210 256
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.45, −0.35 0.57, −0.37
Computer programs: SAINT (Bruker, 2018[Bruker (2018). SAINT. Bruker Nano, Inc., Madison, Wisconsin, USA.]), CrysAlis PRO (Rigaku, 2019[Rigaku (2019). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

A small number of intense low-angle reflections [one for (1); five for (2)] are missing from these high-quality data sets due to the arrangement of the instrument with a conservatively sized beam stop. The large number of reflections in the data sets (and the Fourier-transform relationship of intensities to atoms) ensures that no particular bias has been introduced.

Supporting information


Computing details top

Data collection: SAINT (Bruker, 2018) for (1); CrysAlis PRO (Rigaku, 2019) for (2). Cell refinement: SAINT (Bruker, 2018) for (1); CrysAlis PRO (Rigaku, 2019) for (2). Data reduction: SAINT (Bruker, 2018) for (1); CrysAlis PRO (Rigaku, 2019) for (2). For both structures, program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

trans-Acetyldicarbonyl(η5-cyclopentadienyl)(1,3,5-triaza-7-phosphaadamantane)molybdenum(II) (1) top
Crystal data top
[Mo(C5H5)(C2H2O)(C6H12N3P)(CO)2]F(000) = 848
Mr = 417.25Dx = 1.683 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.7919 (14) ÅCell parameters from 9370 reflections
b = 14.5757 (13) Åθ = 3.3–27.5°
c = 12.1140 (12) ŵ = 0.91 mm1
β = 107.694 (6)°T = 100 K
V = 1647.2 (3) Å3Block, orange
Z = 40.2 × 0.19 × 0.15 mm
Data collection top
Bruker D8QUEST
diffractometer
3379 reflections with I > 2σ(I)
ω and φ scansRint = 0.040
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 27.6°, θmin = 3.3°
Tmin = 0.709, Tmax = 0.746h = 1212
32227 measured reflectionsk = 1818
3785 independent reflectionsl = 1515
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.020 w = 1/[σ2(Fo2) + (0.0124P)2 + 1.3596P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.043(Δ/σ)max = 0.001
S = 1.07Δρmax = 0.45 e Å3
3785 reflectionsΔρmin = 0.35 e Å3
210 parametersExtinction correction: SHELXL2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0040 (2)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.59777 (2)0.49328 (2)0.28768 (2)0.00886 (5)
P10.76523 (4)0.41400 (3)0.20808 (4)0.01095 (9)
O10.65998 (14)0.65083 (9)0.13519 (11)0.0225 (3)
O20.85977 (13)0.47150 (9)0.51067 (11)0.0203 (3)
O30.47562 (13)0.66109 (8)0.37491 (10)0.0174 (3)
N10.81148 (15)0.31674 (11)0.02647 (13)0.0187 (3)
N20.95915 (17)0.27288 (11)0.22389 (14)0.0216 (3)
N31.00813 (15)0.41777 (10)0.13718 (13)0.0172 (3)
C10.64170 (17)0.59232 (12)0.19293 (14)0.0145 (3)
C20.76722 (17)0.48263 (11)0.42615 (14)0.0131 (3)
C30.59049 (18)0.62704 (11)0.37674 (13)0.0126 (3)
C40.72533 (19)0.67895 (11)0.44048 (15)0.0172 (3)
H4A0.7683530.6512120.5168720.026*
H4B0.7012690.7431460.4499200.026*
H4C0.7936470.6761060.3959030.026*
C50.39034 (18)0.42909 (12)0.16033 (15)0.0165 (3)
H50.3722550.4320400.0787930.020*
C60.35024 (17)0.49564 (12)0.22997 (14)0.0155 (3)
H60.3007650.5513740.2036120.019*
C70.39757 (17)0.46382 (12)0.34674 (15)0.0155 (3)
H70.3857270.4950680.4120430.019*
C80.46496 (18)0.37807 (12)0.34879 (15)0.0164 (3)
H80.5049220.3409670.4152650.020*
C90.46240 (18)0.35724 (11)0.23437 (15)0.0164 (3)
H90.5022470.3040290.2108650.020*
C100.69704 (17)0.36231 (12)0.06169 (14)0.0155 (3)
H10A0.6215800.3169520.0611430.019*
H10B0.6531230.4108720.0048450.019*
C110.86374 (19)0.31312 (12)0.28477 (16)0.0196 (4)
H11A0.9215580.3315440.3638170.023*
H11B0.7941160.2660870.2922130.023*
C120.91942 (17)0.47689 (12)0.18647 (15)0.0163 (3)
H12A0.8835610.5294310.1338440.020*
H12B0.9792810.5015400.2617880.020*
C130.8764 (2)0.24240 (13)0.10693 (17)0.0232 (4)
H13A0.9404680.2066560.0737190.028*
H13B0.7993530.2007360.1134030.028*
C141.06640 (18)0.34022 (13)0.21383 (16)0.0220 (4)
H14A1.1169120.3642610.2920370.026*
H14B1.1381750.3084520.1849650.026*
C150.92521 (19)0.38166 (13)0.02367 (15)0.0202 (4)
H15A0.9917570.3506780.0115870.024*
H15B0.8812230.4338170.0270490.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.00893 (7)0.00963 (7)0.00871 (7)0.00047 (5)0.00374 (5)0.00005 (5)
P10.01048 (19)0.0127 (2)0.01055 (19)0.00010 (15)0.00453 (15)0.00002 (15)
O10.0294 (7)0.0204 (7)0.0202 (7)0.0010 (5)0.0112 (6)0.0064 (5)
O20.0154 (6)0.0258 (7)0.0171 (6)0.0012 (5)0.0009 (5)0.0017 (5)
O30.0188 (6)0.0139 (6)0.0211 (6)0.0019 (5)0.0087 (5)0.0011 (5)
N10.0138 (7)0.0263 (8)0.0182 (7)0.0026 (6)0.0081 (6)0.0083 (6)
N20.0202 (7)0.0230 (8)0.0251 (8)0.0084 (6)0.0119 (7)0.0022 (6)
N30.0120 (7)0.0238 (8)0.0176 (7)0.0007 (6)0.0069 (6)0.0027 (6)
C10.0131 (8)0.0179 (8)0.0128 (8)0.0013 (6)0.0044 (6)0.0018 (6)
C20.0141 (8)0.0124 (8)0.0153 (8)0.0004 (6)0.0082 (7)0.0005 (6)
C30.0193 (8)0.0100 (7)0.0094 (7)0.0006 (6)0.0057 (6)0.0025 (6)
C40.0207 (9)0.0139 (8)0.0161 (8)0.0017 (7)0.0042 (7)0.0000 (6)
C50.0139 (8)0.0212 (9)0.0136 (8)0.0057 (7)0.0027 (7)0.0039 (7)
C60.0083 (7)0.0182 (8)0.0188 (8)0.0017 (6)0.0023 (6)0.0021 (7)
C70.0124 (8)0.0205 (8)0.0169 (8)0.0058 (6)0.0094 (7)0.0049 (7)
C80.0164 (8)0.0168 (8)0.0170 (8)0.0062 (6)0.0066 (7)0.0021 (6)
C90.0167 (8)0.0128 (8)0.0226 (9)0.0057 (6)0.0101 (7)0.0042 (7)
C100.0105 (7)0.0222 (9)0.0146 (8)0.0018 (6)0.0051 (6)0.0047 (7)
C110.0217 (9)0.0209 (9)0.0190 (9)0.0089 (7)0.0105 (7)0.0058 (7)
C120.0127 (8)0.0181 (8)0.0197 (8)0.0029 (6)0.0071 (7)0.0043 (6)
C130.0218 (9)0.0191 (9)0.0328 (10)0.0005 (7)0.0143 (8)0.0081 (8)
C140.0126 (8)0.0319 (10)0.0212 (9)0.0048 (7)0.0047 (7)0.0025 (8)
C150.0154 (8)0.0306 (10)0.0173 (9)0.0029 (7)0.0090 (7)0.0036 (7)
Geometric parameters (Å, º) top
Mo1—P12.4321 (5)C4—H4A0.9800
Mo1—C11.9714 (17)C4—H4B0.9800
Mo1—C21.9746 (17)C4—H4C0.9800
Mo1—C32.2398 (16)C5—H50.9500
Mo1—C52.3401 (16)C5—C61.417 (2)
Mo1—C62.3097 (16)C5—C91.419 (2)
Mo1—C72.3221 (16)C6—H60.9500
Mo1—C82.3759 (16)C6—C71.426 (2)
Mo1—C92.3634 (16)C7—H70.9500
P1—C101.8543 (17)C7—C81.410 (2)
P1—C111.8468 (17)C8—H80.9500
P1—C121.8517 (17)C8—C91.412 (2)
O1—C11.151 (2)C9—H90.9500
O2—C21.154 (2)C10—H10A0.9900
O3—C31.223 (2)C10—H10B0.9900
N1—C101.473 (2)C11—H11A0.9900
N1—C131.467 (2)C11—H11B0.9900
N1—C151.470 (2)C12—H12A0.9900
N2—C111.476 (2)C12—H12B0.9900
N2—C131.471 (2)C13—H13A0.9900
N2—C141.469 (2)C13—H13B0.9900
N3—C121.473 (2)C14—H14A0.9900
N3—C141.464 (2)C14—H14B0.9900
N3—C151.466 (2)C15—H15A0.9900
C3—C41.514 (2)C15—H15B0.9900
C1—Mo1—P179.89 (5)C6—C5—H5126.2
C1—Mo1—C2106.05 (7)C6—C5—C9107.66 (15)
C1—Mo1—C371.80 (6)C9—C5—Mo173.34 (9)
C1—Mo1—C5102.02 (6)C9—C5—H5126.2
C1—Mo1—C6101.98 (6)Mo1—C6—H6119.7
C1—Mo1—C7131.98 (6)C5—C6—Mo173.43 (9)
C1—Mo1—C8159.38 (6)C5—C6—H6126.2
C1—Mo1—C9131.21 (6)C5—C6—C7107.62 (15)
C2—Mo1—P178.80 (5)C7—C6—Mo172.55 (9)
C2—Mo1—C378.51 (6)C7—C6—H6126.2
C2—Mo1—C5149.93 (6)Mo1—C7—H7119.7
C2—Mo1—C6142.35 (6)C6—C7—Mo171.60 (9)
C2—Mo1—C7107.08 (6)C6—C7—H7125.8
C2—Mo1—C894.47 (6)C8—C7—Mo174.63 (9)
C2—Mo1—C9115.01 (6)C8—C7—C6108.37 (15)
C3—Mo1—P1136.77 (4)C8—C7—H7125.8
C3—Mo1—C5121.15 (6)Mo1—C8—H8122.9
C3—Mo1—C687.06 (6)C7—C8—Mo170.46 (9)
C3—Mo1—C781.90 (6)C7—C8—H8126.1
C3—Mo1—C8111.38 (6)C7—C8—C9107.74 (15)
C3—Mo1—C9139.87 (6)C9—C8—Mo172.19 (9)
C5—Mo1—P195.93 (4)C9—C8—H8126.1
C5—Mo1—C858.34 (6)Mo1—C9—H9121.3
C5—Mo1—C935.12 (6)C5—C9—Mo171.54 (9)
C6—Mo1—P1131.22 (4)C5—C9—H9125.7
C6—Mo1—C535.48 (6)C8—C9—Mo173.15 (9)
C6—Mo1—C735.85 (6)C8—C9—C5108.60 (15)
C6—Mo1—C858.76 (6)C8—C9—H9125.7
C6—Mo1—C958.66 (6)P1—C10—H10A109.2
C7—Mo1—P1140.20 (4)P1—C10—H10B109.2
C7—Mo1—C558.95 (6)N1—C10—P1112.07 (11)
C7—Mo1—C834.91 (6)N1—C10—H10A109.2
C7—Mo1—C958.20 (6)N1—C10—H10B109.2
C8—Mo1—P1106.65 (4)H10A—C10—H10B107.9
C9—Mo1—P183.27 (4)P1—C11—H11A109.2
C9—Mo1—C834.66 (6)P1—C11—H11B109.2
C10—P1—Mo1118.82 (5)N2—C11—P1112.21 (12)
C11—P1—Mo1119.40 (6)N2—C11—H11A109.2
C11—P1—C1097.98 (8)N2—C11—H11B109.2
C11—P1—C1298.14 (8)H11A—C11—H11B107.9
C12—P1—Mo1119.85 (6)P1—C12—H12A109.2
C12—P1—C1097.93 (8)P1—C12—H12B109.2
C13—N1—C10110.79 (14)N3—C12—P1111.98 (11)
C13—N1—C15108.21 (14)N3—C12—H12A109.2
C15—N1—C10111.40 (14)N3—C12—H12B109.2
C13—N2—C11110.75 (14)H12A—C12—H12B107.9
C14—N2—C11110.66 (14)N1—C13—N2114.68 (15)
C14—N2—C13108.68 (14)N1—C13—H13A108.6
C14—N3—C12111.03 (14)N1—C13—H13B108.6
C14—N3—C15108.41 (14)N2—C13—H13A108.6
C15—N3—C12111.33 (13)N2—C13—H13B108.6
O1—C1—Mo1176.52 (15)H13A—C13—H13B107.6
O2—C2—Mo1174.40 (14)N2—C14—H14A108.6
O3—C3—Mo1120.54 (12)N2—C14—H14B108.6
O3—C3—C4117.45 (15)N3—C14—N2114.69 (14)
C4—C3—Mo1122.01 (11)N3—C14—H14A108.6
C3—C4—H4A109.5N3—C14—H14B108.6
C3—C4—H4B109.5H14A—C14—H14B107.6
C3—C4—H4C109.5N1—C15—H15A108.6
H4A—C4—H4B109.5N1—C15—H15B108.6
H4A—C4—H4C109.5N3—C15—N1114.65 (14)
H4B—C4—H4C109.5N3—C15—H15A108.6
Mo1—C5—H5121.2N3—C15—H15B108.6
C6—C5—Mo171.09 (9)H15A—C15—H15B107.6
Mo1—P1—C10—N1179.79 (10)C10—N1—C15—N366.86 (19)
Mo1—P1—C11—N2179.31 (10)C11—P1—C10—N149.79 (14)
Mo1—P1—C12—N3179.75 (9)C11—P1—C12—N349.41 (13)
Mo1—C5—C6—C764.99 (11)C11—N2—C13—N167.75 (19)
Mo1—C5—C9—C864.24 (12)C11—N2—C14—N367.81 (19)
Mo1—C6—C7—C866.13 (11)C12—P1—C10—N149.65 (14)
Mo1—C7—C8—C962.98 (11)C12—P1—C11—N249.56 (14)
Mo1—C8—C9—C563.20 (11)C12—N3—C14—N268.04 (18)
C5—C6—C7—Mo165.58 (11)C12—N3—C15—N167.16 (19)
C5—C6—C7—C80.55 (18)C13—N1—C10—P160.54 (16)
C6—C5—C9—Mo163.24 (11)C13—N1—C15—N355.17 (19)
C6—C5—C9—C81.00 (18)C13—N2—C11—P160.33 (18)
C6—C7—C8—Mo164.14 (11)C13—N2—C14—N354.00 (19)
C6—C7—C8—C91.17 (18)C14—N2—C11—P160.25 (17)
C7—C8—C9—Mo161.86 (11)C14—N2—C13—N154.01 (19)
C7—C8—C9—C51.34 (18)C14—N3—C12—P160.30 (16)
C9—C5—C6—Mo164.71 (11)C14—N3—C15—N155.25 (19)
C9—C5—C6—C70.28 (18)C15—N1—C10—P159.98 (17)
C10—P1—C11—N249.70 (14)C15—N1—C13—N254.43 (19)
C10—P1—C12—N349.88 (13)C15—N3—C12—P160.59 (17)
C10—N1—C13—N267.97 (19)C15—N3—C14—N254.55 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O3i0.952.493.269 (2)139
C9—H9···O3ii0.952.373.284 (2)162
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y1/2, z+1/2.
trans-Acetyldicarbonyl(η5-cyclopentadienyl)(3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane)molybdenum(II) (2) top
Crystal data top
[Mo(C5H5)(C2H3O)(C9H16N3O2P)(CO)2]F(000) = 1000
Mr = 489.31Dx = 1.633 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.8674 (4) ÅCell parameters from 13952 reflections
b = 11.6366 (3) Åθ = 2.5–31.0°
c = 14.4655 (5) ŵ = 0.77 mm1
β = 113.224 (4)°T = 100 K
V = 1990.45 (12) Å3Plate, clear colorless
Z = 40.17 × 0.1 × 0.02 mm
Data collection top
Rigaku XtaLAB Synergy, Single source at offset/far, Pilatus 200K
diffractometer
4726 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source4075 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.044
Detector resolution: 5.8140 pixels mm-1θmax = 27.9°, θmin = 2.3°
ω scansh = 1616
Absorption correction: multi-scan
(CrysAlisPro; Rigaku, 2019)
k = 1515
Tmin = 0.868, Tmax = 1.000l = 1919
38060 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0017P)2 + 3.9699P]
where P = (Fo2 + 2Fc2)/3
4726 reflections(Δ/σ)max = 0.002
256 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.37 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.63575 (2)0.25030 (2)0.30169 (2)0.01028 (5)
P10.47121 (4)0.22642 (5)0.34228 (4)0.01101 (11)
O10.52463 (17)0.49328 (16)0.25544 (15)0.0312 (4)
O20.50920 (15)0.07353 (16)0.13206 (13)0.0270 (4)
O30.75732 (14)0.33298 (15)0.17091 (12)0.0209 (4)
O40.30320 (15)0.49974 (15)0.41980 (13)0.0242 (4)
O50.14095 (13)0.34628 (14)0.16401 (12)0.0195 (3)
N10.36745 (16)0.31852 (17)0.46343 (14)0.0165 (4)
N20.35305 (15)0.11049 (16)0.43014 (13)0.0135 (4)
N30.23918 (15)0.20618 (16)0.27035 (14)0.0147 (4)
C10.5628 (2)0.4017 (2)0.26999 (18)0.0185 (5)
C20.55033 (19)0.1431 (2)0.19267 (17)0.0173 (5)
C30.66223 (19)0.3187 (2)0.16760 (16)0.0163 (4)
C40.5638 (2)0.3496 (2)0.06996 (18)0.0239 (5)
H4A0.5199610.2819510.0419450.036*
H4B0.5923800.3804550.0230610.036*
H4C0.5169140.4058720.0833150.036*
C50.76382 (19)0.1081 (2)0.39905 (17)0.0197 (5)
H50.7486920.0300170.3879620.024*
C60.73813 (19)0.1777 (2)0.46709 (16)0.0179 (5)
H60.7021760.1532390.5081530.022*
C70.77602 (19)0.2908 (2)0.46259 (17)0.0184 (5)
H70.7702310.3531530.5004960.022*
C80.82445 (18)0.2920 (2)0.38987 (17)0.0188 (5)
H80.8556130.3554730.3711340.023*
C90.81675 (19)0.1787 (2)0.35077 (17)0.0192 (5)
H90.8421450.1550390.3018730.023*
C100.4569 (2)0.3377 (2)0.42664 (18)0.0184 (5)
H10A0.5283270.3441800.4842070.022*
H10B0.4428640.4107210.3914450.022*
C110.45578 (18)0.09925 (19)0.41018 (16)0.0135 (4)
H11A0.4509420.0308980.3702980.016*
H11B0.5211860.0917640.4731400.016*
C120.33213 (18)0.2198 (2)0.23700 (17)0.0168 (5)
H12A0.3204230.2896830.1976330.020*
H12B0.3312630.1557600.1937690.020*
C130.3622 (2)0.2021 (2)0.50113 (17)0.0170 (5)
H13A0.4296930.1894090.5615410.020*
H13B0.2977070.1978990.5197670.020*
C140.25059 (18)0.10856 (19)0.33896 (17)0.0151 (4)
H14A0.1858860.1082020.3574820.018*
H14B0.2488450.0376420.3031340.018*
C150.29827 (19)0.4079 (2)0.46058 (17)0.0176 (5)
C160.2176 (2)0.3947 (2)0.5127 (2)0.0250 (5)
H16A0.2593150.3971490.5842580.037*
H16B0.1789380.3224620.4942740.037*
H16C0.1634900.4561770.4927310.037*
C170.14790 (18)0.27602 (19)0.22978 (16)0.0152 (4)
C180.05350 (19)0.2655 (2)0.26638 (18)0.0216 (5)
H18A0.0104230.3353870.2522520.032*
H18B0.0849050.2516910.3375780.032*
H18C0.0051120.2026100.2325740.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.00936 (8)0.01073 (9)0.01029 (8)0.00077 (7)0.00339 (6)0.00039 (7)
P10.0108 (2)0.0103 (3)0.0115 (2)0.00093 (19)0.0039 (2)0.00144 (19)
O10.0374 (11)0.0174 (9)0.0469 (12)0.0094 (8)0.0253 (10)0.0102 (8)
O20.0255 (9)0.0273 (10)0.0249 (9)0.0042 (8)0.0063 (8)0.0112 (8)
O30.0181 (8)0.0268 (9)0.0193 (8)0.0005 (7)0.0088 (7)0.0017 (7)
O40.0283 (9)0.0172 (9)0.0308 (10)0.0027 (7)0.0158 (8)0.0035 (7)
O50.0175 (8)0.0192 (9)0.0203 (8)0.0031 (7)0.0059 (7)0.0087 (7)
N10.0185 (9)0.0144 (10)0.0204 (10)0.0016 (7)0.0117 (8)0.0020 (7)
N20.0118 (9)0.0135 (9)0.0143 (9)0.0015 (7)0.0042 (7)0.0042 (7)
N30.0113 (8)0.0164 (9)0.0155 (9)0.0001 (7)0.0041 (7)0.0037 (7)
C10.0183 (11)0.0194 (12)0.0197 (11)0.0009 (9)0.0096 (9)0.0032 (9)
C20.0144 (10)0.0199 (12)0.0179 (11)0.0017 (9)0.0066 (9)0.0013 (9)
C30.0192 (11)0.0156 (11)0.0136 (10)0.0007 (9)0.0060 (9)0.0003 (8)
C40.0195 (12)0.0338 (14)0.0164 (11)0.0006 (10)0.0048 (10)0.0068 (10)
C50.0172 (11)0.0161 (12)0.0193 (11)0.0047 (9)0.0002 (9)0.0023 (9)
C60.0122 (10)0.0251 (12)0.0126 (10)0.0029 (9)0.0008 (8)0.0057 (9)
C70.0170 (11)0.0209 (12)0.0132 (10)0.0007 (9)0.0016 (9)0.0031 (9)
C80.0101 (10)0.0258 (12)0.0164 (11)0.0005 (9)0.0008 (9)0.0027 (9)
C90.0120 (10)0.0280 (13)0.0154 (11)0.0058 (9)0.0031 (9)0.0007 (9)
C100.0219 (12)0.0134 (11)0.0248 (12)0.0041 (9)0.0144 (10)0.0041 (9)
C110.0122 (10)0.0121 (10)0.0146 (10)0.0015 (8)0.0037 (8)0.0032 (8)
C120.0127 (10)0.0217 (12)0.0152 (10)0.0020 (8)0.0048 (8)0.0041 (8)
C130.0183 (11)0.0187 (11)0.0154 (11)0.0013 (9)0.0081 (9)0.0032 (9)
C140.0120 (10)0.0131 (11)0.0179 (11)0.0006 (8)0.0034 (9)0.0038 (8)
C150.0177 (11)0.0194 (12)0.0147 (10)0.0006 (9)0.0054 (9)0.0025 (9)
C160.0245 (13)0.0229 (13)0.0336 (14)0.0066 (10)0.0180 (11)0.0043 (10)
C170.0122 (10)0.0151 (11)0.0150 (10)0.0003 (8)0.0019 (8)0.0007 (8)
C180.0156 (10)0.0251 (13)0.0252 (12)0.0051 (10)0.0091 (9)0.0079 (10)
Geometric parameters (Å, º) top
Mo1—P12.4258 (6)C4—H4C0.9600
Mo1—C11.964 (2)C5—H50.9300
Mo1—C21.971 (2)C5—C61.411 (3)
Mo1—C32.243 (2)C5—C91.415 (3)
Mo1—C52.368 (2)C6—H60.9300
Mo1—C62.385 (2)C6—C71.413 (3)
Mo1—C72.363 (2)C7—H70.9300
Mo1—C82.306 (2)C7—C81.419 (3)
Mo1—C92.306 (2)C8—H80.9300
P1—C101.838 (2)C8—C91.423 (3)
P1—C111.830 (2)C9—H90.9300
P1—C121.838 (2)C10—H10A0.9700
O1—C11.157 (3)C10—H10B0.9700
O2—C21.157 (3)C11—H11A0.9700
O3—C31.217 (3)C11—H11B0.9700
O4—C151.234 (3)C12—H12A0.9700
O5—C171.231 (3)C12—H12B0.9700
N1—C101.463 (3)C13—H13A0.9700
N1—C131.471 (3)C13—H13B0.9700
N1—C151.359 (3)C14—H14A0.9700
N2—C111.466 (3)C14—H14B0.9700
N2—C131.453 (3)C15—C161.512 (3)
N2—C141.451 (3)C16—H16A0.9600
N3—C121.464 (3)C16—H16B0.9600
N3—C141.477 (3)C16—H16C0.9600
N3—C171.357 (3)C17—C181.509 (3)
C3—C41.522 (3)C18—H18A0.9600
C4—H4A0.9600C18—H18B0.9600
C4—H4B0.9600C18—H18C0.9600
C1—Mo1—P177.10 (7)C5—C6—H6125.6
C1—Mo1—C2108.47 (10)C5—C6—C7108.8 (2)
C1—Mo1—C372.63 (9)C7—C6—Mo171.84 (13)
C1—Mo1—C5157.27 (9)C7—C6—H6125.6
C1—Mo1—C6125.17 (9)Mo1—C7—H7121.9
C1—Mo1—C799.22 (9)C6—C7—Mo173.52 (13)
C1—Mo1—C8104.03 (9)C6—C7—H7126.2
C1—Mo1—C9136.72 (9)C6—C7—C8107.7 (2)
C2—Mo1—P181.75 (7)C8—C7—Mo170.12 (12)
C2—Mo1—C376.10 (9)C8—C7—H7126.2
C2—Mo1—C594.08 (9)Mo1—C8—H8119.1
C2—Mo1—C6119.45 (9)C7—C8—Mo174.54 (13)
C2—Mo1—C7151.96 (9)C7—C8—H8126.2
C2—Mo1—C8135.18 (9)C7—C8—C9107.6 (2)
C2—Mo1—C9101.20 (9)C9—C8—Mo172.05 (13)
C3—Mo1—P1133.99 (6)C9—C8—H8126.2
C3—Mo1—C5117.05 (8)Mo1—C9—H9119.2
C3—Mo1—C6141.34 (8)C5—C9—Mo174.77 (13)
C3—Mo1—C7117.61 (8)C5—C9—C8108.3 (2)
C3—Mo1—C885.28 (8)C5—C9—H9125.9
C3—Mo1—C985.13 (8)C8—C9—Mo172.00 (13)
C5—Mo1—P1104.19 (6)C8—C9—H9125.9
C5—Mo1—C634.54 (8)P1—C10—H10A108.4
C6—Mo1—P184.62 (6)P1—C10—H10B108.4
C7—Mo1—P1100.66 (6)N1—C10—P1115.67 (16)
C7—Mo1—C558.09 (8)N1—C10—H10A108.4
C7—Mo1—C634.64 (8)N1—C10—H10B108.4
C8—Mo1—P1136.01 (6)H10A—C10—H10B107.4
C8—Mo1—C558.94 (9)P1—C11—H11A109.8
C8—Mo1—C658.33 (8)P1—C11—H11B109.8
C8—Mo1—C735.35 (8)N2—C11—P1109.32 (14)
C8—Mo1—C935.95 (9)N2—C11—H11A109.8
C9—Mo1—P1139.10 (6)N2—C11—H11B109.8
C9—Mo1—C535.20 (9)H11A—C11—H11B108.3
C9—Mo1—C658.12 (8)P1—C12—H12A109.0
C9—Mo1—C758.84 (8)P1—C12—H12B109.0
C10—P1—Mo1113.94 (8)N3—C12—P1112.74 (15)
C11—P1—Mo1120.83 (7)N3—C12—H12A109.0
C11—P1—C1098.79 (11)N3—C12—H12B109.0
C11—P1—C1297.73 (10)H12A—C12—H12B107.8
C12—P1—Mo1117.51 (7)N1—C13—H13A108.6
C12—P1—C10105.05 (11)N1—C13—H13B108.6
C10—N1—C13115.65 (18)N2—C13—N1114.62 (18)
C15—N1—C10118.14 (19)N2—C13—H13A108.6
C15—N1—C13126.21 (19)N2—C13—H13B108.6
C13—N2—C11112.11 (17)H13A—C13—H13B107.6
C14—N2—C11112.71 (17)N2—C14—N3114.37 (18)
C14—N2—C13116.44 (18)N2—C14—H14A108.7
C12—N3—C14115.27 (17)N2—C14—H14B108.7
C17—N3—C12118.24 (18)N3—C14—H14A108.7
C17—N3—C14126.23 (19)N3—C14—H14B108.7
O1—C1—Mo1176.4 (2)H14A—C14—H14B107.6
O2—C2—Mo1173.5 (2)O4—C15—N1121.4 (2)
O3—C3—Mo1120.51 (16)O4—C15—C16120.1 (2)
O3—C3—C4117.4 (2)N1—C15—C16118.5 (2)
C4—C3—Mo1122.10 (16)C15—C16—H16A109.5
C3—C4—H4A109.5C15—C16—H16B109.5
C3—C4—H4B109.5C15—C16—H16C109.5
C3—C4—H4C109.5H16A—C16—H16B109.5
H4A—C4—H4B109.5H16A—C16—H16C109.5
H4A—C4—H4C109.5H16B—C16—H16C109.5
H4B—C4—H4C109.5O5—C17—N3121.3 (2)
Mo1—C5—H5122.1O5—C17—C18120.1 (2)
C6—C5—Mo173.39 (13)N3—C17—C18118.6 (2)
C6—C5—H5126.2C17—C18—H18A109.5
C6—C5—C9107.6 (2)C17—C18—H18B109.5
C9—C5—Mo170.03 (13)C17—C18—H18C109.5
C9—C5—H5126.2H18A—C18—H18B109.5
Mo1—C6—H6122.2H18A—C18—H18C109.5
C5—C6—Mo172.07 (13)H18B—C18—H18C109.5
Mo1—P1—C10—N1172.38 (14)C11—P1—C10—N142.89 (19)
Mo1—P1—C11—N2176.42 (11)C11—P1—C12—N349.62 (18)
Mo1—P1—C12—N3179.56 (13)C11—N2—C13—N167.4 (2)
Mo1—C5—C6—C762.85 (16)C11—N2—C14—N364.3 (2)
Mo1—C5—C9—C864.72 (15)C12—P1—C10—N157.6 (2)
Mo1—C6—C7—C862.18 (15)C12—P1—C11—N254.99 (16)
Mo1—C7—C8—C964.94 (15)C12—N3—C14—N257.2 (3)
Mo1—C8—C9—C566.55 (15)C12—N3—C17—O52.6 (3)
C5—C6—C7—Mo163.00 (15)C12—N3—C17—C18177.9 (2)
C5—C6—C7—C80.8 (2)C13—N1—C10—P146.5 (2)
C6—C5—C9—Mo164.27 (15)C13—N1—C15—O4173.8 (2)
C6—C5—C9—C80.5 (2)C13—N1—C15—C168.8 (3)
C6—C7—C8—Mo164.41 (15)C13—N2—C11—P167.49 (19)
C6—C7—C8—C90.5 (2)C13—N2—C14—N367.3 (2)
C7—C8—C9—Mo166.60 (15)C14—N2—C11—P166.2 (2)
C7—C8—C9—C50.0 (2)C14—N2—C13—N164.5 (2)
C9—C5—C6—Mo162.07 (15)C14—N3—C12—P153.5 (2)
C9—C5—C6—C70.8 (2)C14—N3—C17—O5171.1 (2)
C10—P1—C11—N251.64 (16)C14—N3—C17—C188.4 (3)
C10—P1—C12—N351.70 (19)C15—N1—C10—P1133.89 (18)
C10—N1—C13—N255.1 (3)C15—N1—C13—N2125.4 (2)
C10—N1—C15—O46.6 (3)C17—N3—C12—P1132.06 (18)
C10—N1—C15—C16170.7 (2)C17—N3—C14—N2128.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O4i0.932.453.353 (3)163
C11—H11A···O5ii0.972.413.211 (3)140
C12—H12B···O4ii0.972.603.409 (3)141
C13—H13A···O5iii0.972.573.474 (3)156
C13—H13B···O3iv0.972.463.261 (3)139
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x1/2, y+1/2, z+1/2.
 

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (award No. CHE-1552591 to MTW); Davidson College Research Initiative (DRI).

References

First citationAdams, H., Bailey, N. A., Day, A. N., Morris, M. J. & Harrison, M. M. (1991). J. Organomet. Chem. 407, 247–258.  CSD CrossRef CAS Web of Science Google Scholar
First citationBarnett, K. W. (1969). Inorg. Chem. 8, 2009–2011.  CrossRef CAS Web of Science Google Scholar
First citationBarnett, K. W. & Pollmann, T. G. (1974). J. Organomet. Chem. 69, 413–421.  CrossRef CAS Web of Science Google Scholar
First citationBarnett, K. W. & Treichel, P. M. (1967). Inorg. Chem. 6, 294–299.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2016). SADABS. Bruker Nano, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2018). SAINT. Bruker Nano, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationButler, I. S., Basolo, F. & Pearson, R. G. (1967). Inorg. Chem. 6, 2074–2079.  CrossRef CAS Web of Science Google Scholar
First citationGladysz, J. A., Williams, G. M., Tam, W., Johnson, D. L., Parker, D. W. & Selover, J. C. (1979). Inorg. Chem. 18, 553–558.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKubacek, P., Hoffmann, R. & Havlas, Z. (1982). Organometallics, 1, 180–188.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMercier, F., Ricard, L. & Mathey, F. (1993). Organometallics, 12, 98–103.  CSD CrossRef CAS Web of Science Google Scholar
First citationRigaku (2019). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSears, J. M., Lee, W.-C. & Frost, B. J. (2015). Inorg. Chim. Acta, 431, 248–257.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWhited, M. T., Bakker-Arkema, J. G., Greenwald, J. E., Morrill, L. A. & Janzen, D. E. (2013). Acta Cryst. E69, m475–m476.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationWhited, M. T., Boerma, J. W., McClellan, M. J., Padilla, C. E. & Janzen, D. E. (2012). Acta Cryst. E68, m1158–m1159.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationWhited, M. T. & Hofmeister, G. E. (2014). J. Chem. Educ. 91, 1050–1053.  Web of Science CrossRef CAS Google Scholar
First citationWhited, M. T., Hofmeister, G. E., Hodges, C. J., Jensen, L. T., Keyes, S. H., Ngamnithiporn, A. & Janzen, D. E. (2014). Acta Cryst. E70, 216–220.  CSD CrossRef IUCr Journals Google Scholar
First citationYan, X., Yu, B., Wang, L., Tang, N. & Xi, C. (2009). Organometallics, 28, 6827–6830.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds