research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis and computational study of 2-chloro-N-[4-(methyl­sulfan­yl)phen­yl]acetamide

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand, bMaterials and Textile Technology, Faculty of Science and Technology, Thammasat University, Pathum Thani, 12120, Thailand, cDepartment of Chemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand, and dDepartment of Materials Engineering, Faculty of Engineering, Kasetsart University Bangkok, 10900, Thailand
*Correspondence e-mail: fscibnw@ku.ac.th

Edited by O. Blacque, University of Zürich, Switzerland (Received 25 February 2020; accepted 3 March 2020; online 31 March 2020)

In the title compound, C9H10ClNOS, the amide functional group –C(=O)NH– adopts a trans conformation with the four atoms nearly coplanar. This conformation promotes the formation of a C(4) hydrogen-bonded chain propagating along the [010] direction. The central part of the mol­ecule, including the six-membered ring, the S and N atoms, is fairly planar (r.m.s. deviation of 0.014). The terminal methyl group and the C(=O)CH2 group are slightly deviating out-of-plane while the terminal Cl atom is almost in-plane. Hirshfeld surface analysis of the title compound suggests that the most significant contacts in the crystal are H⋯H, H⋯Cl/Cl⋯H, H⋯C/C⋯H, H⋯O/O⋯H and H⋯S/S⋯H. ππ inter­actions between inversion-related mol­ecules also contribute to the crystal packing. DFT calculations have been performed to optimize the structure of the title compound using the CAM-B3LYP functional and the 6–311 G(d,p) basis set. The theoretical absorption spectrum of the title compound was calculated using the TD–DFT method. The analysis of frontier orbitals revealed that the ππ* electronic transition was the major contributor to the absorption peak in the electronic spectrum.

1. Chemical context

Methyl­thio­anilines are a class of S- and N- heterocyclic compounds that are widely used in anti­microbial applications (Chatterjee et al., 2012[Chatterjee, S. K., Roy, S., Barman, S. K., Maji, R. C., Olmstead, M. M. & Patra, A. K. (2012). Inorg. Chem. 51, 7625-7635.]; Martin et al., 2016[Martin, D. J., McCarthy, B. D., Piro, N. A. & Dempsey, J. (2016). Polyhedron, 114, 200-204.]; Das et al., 2017[Das, U. K., Daifuku, S. L., Iannuzzi, T. E., Gorelsky, S. I., Korobkov, I., Gabidullin, B., Neidig, M. L. & Baker, R. T. (2017). Inorg. Chem. 56, 13766-13776.]; Cross et al., 2018[Cross, E. D., Ang, M. T. C., Richards, D. D., Clemens, A. D., Muthukumar, H., McDonald, R., Woodfolk, L., Ckless, K. & Bierenstiel, M. (2018). Inorg. Chim. Acta, 481, 69-78.]). Metal–methyl­thio­aniline complexes have also been utilized in many applications including as homogeneous catalysts, organic semiconductors, anti­bacterial and anti­fungal drugs (Chen et al., 2019[Chen, S.-Q., Jiao, J.-Y., Zhang, X.-H. & Zhang, X. (2019). Tetrahedron, 75, 246-252.]; Kumar et al., 2017[Kumar, S. B., Solanki, A. & Kundu, S. (2017). J. Mol. Struct. 1143, 163-167.]; Mandal et al., 2018[Mandal, S., Mondal, M., Biswas, J. K., Cordes, D. B., Slawin, A. M. Z., Butcher, R. J., Saha, M. & Chandra Saha, N. (2018). J. Mol. Struct. 1152, 189-198.]; Wang et al., 2009[Wang, Y., Tran, H. D. & Kaner, R. B. (2009). J. Phys. Chem. C, 113, 10346-10349.]). In this research, we report the synthesis and the solid state structure of 2-chloro-N-[4-(methyl­sulfan­yl)phen­yl]acetamide, a methyl­thio­aniline derivative. Hirshfeld surface analysis was used to investigate the inter­actions within the crystal structure and DFT calculations were performed to study the frontier mol­ecular orbitals of the title compound and also its electronic properties.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound contains one mol­ecule (Fig. 1[link]). The central part of the mol­ecule, including the six-membered ring, the S and N atoms, is fairly planar (r.m.s. deviation of 0.0142 for the eight fitted non-hydrogen atoms). The terminal methyl group deviates from this plane, atom C9 being displaced by −0.498 (4) Å to the mean plane. On the other side of the benzene ring, the C(=O)CH2 group also deviates slightly from the central plane in the opposite direction [deviations of 0.246 (3), 0.324 (3) and 0.489 (4) Å for atoms C2, O1 and C1, respectively] while the terminal Cl atom is almost in-plane [−0.007 (3) Å] as a result of the N1—C2—C1—Cl1 torsion angle of −150.97 (18)°. The amide functional group adopts a trans conformation with the four atoms nearly coplanar as shown by the O1—C2—N1—H1 torsion angle of −176.5 (19)°. An intra­molecular C—H⋯O contact is observed (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.82 (2) 2.06 (3) 2.875 (2) 174 (3)
C1—H1B⋯O1i 0.97 2.57 3.319 (3) 135
C4—H4⋯O1 0.93 2.32 2.903 (3) 121
Symmetry code: (i) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

3. Supra­molecular features

The main feature of the crystal packing is the presence of an N—H⋯O hydrogen-bonded chain along the a-axis direction (Table 1[link]) with graph set C(4). A view along the a axis showing the unit-cell packing is shown in Fig. 2[link]a while the hydrogen-bonded chain is illustrated in Fig. 2[link]b. Apart from the hydrogen-bonding inter­actions, π-π stacking is observed between inversion-related mol­ecules. The distance between the ring centroids is 3.8890 (14) Å while the distance between the mean planes is 3.3922 (10) Å (slippage 1.904 Å).

[Figure 2]
Figure 2
The mol­ecular packing in the title compound: (a) view of the unit-cell contents shown in projection down the a axis; (b) view of the supra­molecular chain perpendicular to the b axis originated by the N—H⋯O hydrogen bonding (shown as red dashed lines). Displacement ellipsoids are drawn at the 50% probability level.

4. Hirshfeld analysis

The inter­molecular inter­actions in the crystal of the title compound were investigated by performing a Hirshfeld surface (HS) analysis (Hirshfeld, 1977[Hirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) using Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.]). The HS is plotted over the dnorm range −0.5588 to 1.0138 a.u. (Fig. 3[link]). The faint red spots on the Hirshfeld surface near atoms O1 and H1 confirm the hydrogen bonding described above. The presence of adjacent orange and blue triangular regions in the shape-index HS (Fig. 4[link]) confirm that ππ inter­actions also occur in the crystal. Fig. 5[link] shows the full two-dimensional fingerprint plot (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814-3816.]) and those delineated into H⋯H (35.5%), H⋯Cl/Cl⋯H (19.2%), H⋯C/C⋯H (11.8%), H⋯O/O⋯H (11.6%) and H⋯S/S⋯H (9.7%) contacts. The H⋯H contacts are characterized by a single spike at de + di ≃ 2.2 Å, while the H⋯O/O⋯H contacts are viewed as a pair of spikes at de + di ≃ 1.8 Å. Two pairs of beak-shaped tips at de + di ≃ 2.8 and 3.1 Å represent H⋯Cl/Cl⋯H and H⋯S/S⋯H contacts, respectively. The H⋯C/C⋯H contacts are seen as forcep-like tips at de + di ≃ 2.7 Å. Other contacts with smaller contributions to the HS have a less significant effect on the crystal packing: C⋯Cl/Cl⋯C (2.9%), C⋯S/S⋯C (2.1%), H⋯N/N⋯H (2.1%) and C⋯C (2.8%).

[Figure 3]
Figure 3
View of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm in the range −0.5588 to 1.0138 a.u.
[Figure 4]
Figure 4
The shape-index Hirshfeld surface of the title compound plotted in the range from −1.0000 to 1.0000 a.u.
[Figure 5]
Figure 5
The full two-dimensional fingerprint plot for the title compound, showing (a) all inter­actions and those delineated into (b) H⋯H, (c) H⋯Cl/ Cl⋯H, (d) H⋯C/C⋯H, (e) H⋯O/O⋯H and (f) H⋯S/S⋯H inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

5. Computational Methods

DFT calculations were carried out to optimize the structure of the title compound using the CAM-B3LYP method and the 6-311G(d,p) basis set in an ethanol solvent within the Gaussian09 program package (Frisch et al., 2010[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2010). Gaussian 09, Revision B. 01. Gaussian Inc, Wallingford CT, USA.]). DFT was chosen because it is a good compromise between the computational time and the description of the electronic correlation and has been found to be the best method to obtain accuracy for mol­ecular geometry and electronic transition energies for organic mol­ecules (Perdew et al., 2005[Perdew, J. P., Ruzsinszky, A., Tao, J., Staroverov, V. N., Scuseria, G. E. & Csonka, G. I. (2005). J. Chem. Phys. 123, 1-9.]; Niskanen et al., 2014[Niskanen, M. & Hukka, T. I. (2014). Phys. Chem. Chem. Phys. 16, 13294-13305.]; Arı et al., 2017[Arı, H. & Büyükmumcu, Z. (2017). Comput. Mater. Sci. 138, 70-76.]; Miengmern et al., 2019[Miengmern, N., Koonwong, A., Sriyab, S., Suramitr, A., Poo-arporn, R. P., Hannongbua, S. & Suramitr, S. (2019). J. Lumin. 210, 493-500.]). Time-dependent density functional theory (TD–DFT) (Jacquemin et al., 2009[Jacquemin, D., Wathelet, V., Perpète, E. A. & Adamo, C. (2009). J. Chem. Theory Comput. 5, 2420-2435.]) was also used for the calculation of the electronic transitions of the title compound in conjunction with the polarized continuum model (PCM) for computation of the solvent effect (Scalmani et al., 2010[Scalmani, G. & Frisch, M. J. (2010). J. Chem. Phys. 132, 114110-114115.]). The theoretical absorption spectrum of the optimized structure of the titled compound in ethanol solvent was obtained using the TD–DFT method. The electronic properties such as EHOMO, ELUMO, and the energy gap between HOMO and LUMO of the optimized structure were also determined and the electronic structure of the title compound was visualized in order to understand the hyperconjugative inter­actions and charge delocalization.

6. Computational study

The DFT structure optimization of the compound was performed starting from the X-ray geometry at the CAM-B3LYP/6-311G(d,p) level of theory in an ethanol solvent. The experimental and calculated geometrical parameters such as bond lengths and angles show good agreement although most of the calculated bond lengths are slightly longer than X-ray values (about 0.01 Å) because experimental values are for inter­acting mol­ecules in the crystal lattice, whereas the computational method deals with an isolated mol­ecule in the solvent phase.

We used the TD-CAM-B3LYP/6-311G(d,p) method to predict the absorption spectrum of the title compound in ethanol, also considering the excited states in the calculation. The maximum absorption wavelength (λmax) of the title compound was obtained using this method. As seen in Table 2[link], the strong absorption at λmax = 250 nm and the oscillator strength f = 0.7144 are due to the S0S2 electronic transition with a wave function of two configurations [(HOMO→LUMO) and (HOMO→L+4)]. The transition from HOMO to LUMO is mainly responsible for the formation of the maximum wavelength at 250 nm (Table 3[link]). Fig. 6[link] shows the shape of mol­ecular orbitals participating in the absorption at λmax = 250 nm. The electron density of the HOMO is mainly focused on the –C=C– group in the phenyl ring, the sulfur atom, S–CH3, –NH=C and –C=O groups, whereas the LUMO is mainly focused on the =C—C= group in the phenyl ring. Therefore, the electronic transition from HOMO to LUMO mainly corresponds to the ππ* electron. The other excited states of the title compound have a very small intensity that is nearly forbidden by orbital symmetry considerations.

Table 2
The electronic absorption spectrum of the title compound calculated by the TD-CAM-B3LYP/6–311G(d,p) method

Excited states   Excitation energy   Configurations composition
  eV nm f  
S0S1 4.80 258 0.0354 HOMO→L+1 (84%)
S0S2 4.95 250 0.7144 HOMO→LUMO (91%)
S0S3 5.55 224 0.0000 HOMO→L+3 (81%)
S0S4 5.63 220 0.0005 H−3→LUMO (69%)
S0S5 6.35 195 0.1378 H−1→LUMO (59%)

Table 3
Experimental details

Crystal data
Chemical formula C9H10ClNOS
Mr 215.69
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 296
a, b, c (Å) 9.6659 (7), 14.0682 (11), 14.4869 (13)
V3) 1970.0 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.56
Crystal size (mm) 0.12 × 0.10 × 0.08
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2 , SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.686, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 21994, 2438, 1722
Rint 0.085
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.127, 1.02
No. of reflections 2438
No. of parameters 123
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.51, −0.41
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2 , SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).
[Figure 6]
Figure 6
The mol­ecular orbitals (MO) regarding information of the absorption spectrum of the title compound at the S0S1 and S0S2 states calculated by the CAM-B3LYP/6–311 G(d,p) method.

7. Database survey

A search of the Cambridge Structural Database (CSD version 5.41, November 2019 update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 2-chloro-N-phenyl­acetamide core shows that most of the structures were reported by Gowda and Co-workers, for example, the compound 2-chloro-N-phenyl­acetamide (I)[link] (RIYWIG; Gowda et al., 2008a[Gowda, B. T., Kožíšek, J., Tokarčík, M. & Fuess, H. (2008a). Acta Cryst. E64, o987.]) reported in the Cc space group. Other structures with substituent(s) on the benzene ring include 2-chloro-N-(2,3-di­chloro­phen­yl)acetamide (II) (GISWEL; Gowda et al., 2008b[Gowda, B. T., Foro, S. & Fuess, H. (2008b). Acta Cryst. E64, o419.]) in the P21/n space group, 2-chloro-N-(3,5-di­chloro­phen­yl)acetamide (III) (GISWIP; Gowda et al., 2008c[Gowda, B. T., Foro, S. & Fuess, H. (2008c). Acta Cryst. E64, o420.]) also in P21/n, and 2-chloro-N-(2,4-di­methyl­phen­yl)acetamide (IV) (YIRJAL; Gowda et al., 2008d[Gowda, B. T., Foro, S. & Fuess, H. (2008d). Acta Cryst. E64, o85.]) in P[\overline{1}]. The title compound and compounds (I)–(IV) crystallized in different space groups so it can be concluded that the substituent(s) play a vital role in the crystallization of 2-chloro-N-phenyl­acetamide derivatives. It is worth noting that the structures all of the above 2-chloro-N-phenyl­acetamide derivatives feature a C(4) hydrogen-bond chain involving the primary amide functional group. This feature was also observed in the crystal structures of 2,2-chloro-N-phenyl­acetamide derivatives, viz. 2,2-di­chloro-N-(2,3-di­methyl­phen­yl)acetamide (V) (space group C2/c; XISROH; Gowda et al., 2008e[Gowda, B. T., Svoboda, I., Foro, S., Paulus, H. & Fuess, H. (2008e). Acta Cryst. E64, o234.]) and 2,2-di­chloro-N-(3,5-di­methyl­phen­yl)acetamide (VI) (P21/n; GISGUL; Gowda et al., 2008f[Gowda, B. T., Svoboda, I., Foro, S., Paulus, H. & Fuess, H. (2008f). Acta Cryst. E64, o209.]) and the crystal structure of the derivative with no substituent on the 2nd position, [N-(3-chloro­phen­yl)acetamide] (VII) (P212121; GISPOO; Gowda et al., 2008g[Gowda, B. T., Foro, S. & Fuess, H. (2008g). Acta Cryst. E64, o381.]). This suggests that the substituents on both the benzene ring and at the 2-position did not affect the hydrogen-bonded framework in the N-phenyl­acetamide crystal structures. However, the derivatives with an N,N-disubstituted acetamide moiety cannot form hydrogen bonds in the same fashion as the N-monosubstituted acetamide derivatives because of the lack of a hydrogen-bond donor on the amide nitro­gen atom. The supra­molecular packing of N,N-disubstituted acetamide derivatives instead features weak inter­molecular C—H⋯O inter­actions (Zhi et al., 2011[Zhi, L.-H., Wu, W.-N., Li, X.-X., Li, Y.-W. & Wang, Y. (2011). Acta Cryst. E67, o68.]).

8. Synthesis and crystallization

The title compound was prepared by combining 4-(methyl­thio)­aniline (5.0 g), chloro­acetyl­chloride (4.30 mL) and tri­ethyl­amine (7.50 mL) in di­chloro­methane (10 mL) at a controlled temperature using an ice bath. After stirring under an N2 atmosphere for 24 h, the reaction mixture was poured into water and extracted with 30 mL CH2Cl2 (3 times). The organic layer was dried with anhydrous Na2SO4. The mixture product was purified by column chromatography using 9:1 CH2Cl2/EtOAc as an eluent, affording a light-brown solid, yield 42%. Light-brown crystals were grown by evaporating a solution of the title compound in a mixture of di­chloro­methane and hexane (1:1) at room temperature. 1H NMR (CHCl3-d; 400 MHz): δ 8.23 (1H, s, NH), 7.51 (2H, d, ArH), 7.29 (2H, d, ArH), 4.20 (2H, s, CH2), 2.50 (3H, s, SCH3). Analysis calculated: C9H10ClNOS: C, 50.11; H, 4.67; N, 6.49 Found: C, 50.44; H, 4.69; N, 6.50

9. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All C-bound H atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic and d(C—H) = 0.98 Å, Uiso(H) = 1.5Ueq(C) for methyl H atoms. The N-bound H atom (H1) was located in a difference-Fourier map and freely refined.

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Olex2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2020); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2020).

2-Chloro-N-[4-(methylsulfanyl)phenyl]acetamide top
Crystal data top
C9H10ClNOSDx = 1.454 Mg m3
Mr = 215.69Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 3435 reflections
a = 9.6659 (7) Åθ = 2.8–26.2°
b = 14.0682 (11) ŵ = 0.56 mm1
c = 14.4869 (13) ÅT = 296 K
V = 1970.0 (3) Å3Block, light brown
Z = 80.12 × 0.10 × 0.08 mm
F(000) = 896
Data collection top
Bruker APEXII CCD
diffractometer
1722 reflections with I > 2σ(I)
φ and ω scansRint = 0.085
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 28.3°, θmin = 2.8°
Tmin = 0.686, Tmax = 0.746h = 1212
21994 measured reflectionsk = 1817
2438 independent reflectionsl = 1917
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.051P)2 + 1.0616P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2438 reflectionsΔρmax = 0.51 e Å3
123 parametersΔρmin = 0.41 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.44778 (8)0.40070 (6)0.90711 (5)0.0685 (3)
S10.52668 (8)0.73979 (6)0.33195 (5)0.0612 (2)
O10.36226 (15)0.51663 (13)0.74128 (12)0.0498 (4)
N10.58369 (17)0.53698 (14)0.69210 (13)0.0364 (4)
H10.663 (3)0.5277 (17)0.7080 (18)0.044*
C30.56559 (19)0.58332 (15)0.60636 (15)0.0333 (4)
C70.6767 (2)0.66353 (17)0.47953 (16)0.0423 (5)
H70.7571860.6854060.4515330.051*
C20.4871 (2)0.51212 (16)0.75445 (16)0.0370 (5)
C80.6844 (2)0.61629 (17)0.56270 (16)0.0394 (5)
H80.7702240.6063130.5900120.047*
C60.5498 (2)0.67873 (16)0.43719 (16)0.0392 (5)
C40.4384 (2)0.59718 (17)0.56390 (17)0.0404 (5)
H40.3579220.5749080.5916320.048*
C50.4319 (2)0.64410 (18)0.48042 (17)0.0440 (5)
H50.3463350.6527790.4523460.053*
C10.5487 (2)0.4838 (2)0.84654 (17)0.0477 (6)
H1A0.5597530.5402110.8842790.057*
H1B0.6399510.4570300.8362280.057*
C90.6958 (3)0.7388 (2)0.28174 (19)0.0566 (7)
H9A0.6914020.7643600.2203550.085*
H9B0.7296780.6747280.2793610.085*
H9C0.7570470.7768780.3185580.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0643 (5)0.0892 (6)0.0520 (4)0.0232 (4)0.0053 (3)0.0168 (4)
S10.0566 (4)0.0723 (5)0.0548 (4)0.0139 (3)0.0006 (3)0.0206 (4)
O10.0241 (7)0.0781 (12)0.0471 (10)0.0002 (7)0.0034 (6)0.0045 (9)
N10.0227 (8)0.0513 (11)0.0353 (10)0.0003 (7)0.0005 (7)0.0016 (8)
C30.0295 (9)0.0378 (11)0.0327 (11)0.0009 (8)0.0001 (8)0.0055 (9)
C70.0332 (11)0.0514 (14)0.0423 (13)0.0058 (9)0.0034 (9)0.0001 (11)
C20.0279 (10)0.0441 (12)0.0389 (12)0.0001 (8)0.0028 (8)0.0050 (10)
C80.0274 (10)0.0517 (14)0.0391 (12)0.0021 (9)0.0020 (8)0.0020 (10)
C60.0400 (12)0.0391 (12)0.0385 (12)0.0028 (9)0.0003 (9)0.0021 (10)
C40.0266 (10)0.0506 (13)0.0440 (13)0.0006 (9)0.0008 (9)0.0011 (10)
C50.0299 (10)0.0548 (14)0.0475 (14)0.0058 (9)0.0057 (9)0.0015 (11)
C10.0348 (11)0.0638 (16)0.0444 (14)0.0040 (10)0.0040 (10)0.0069 (12)
C90.0628 (16)0.0592 (17)0.0478 (15)0.0048 (12)0.0032 (12)0.0110 (12)
Geometric parameters (Å, º) top
Cl1—C11.757 (2)C2—C11.515 (3)
S1—C61.764 (2)C8—H80.9300
S1—C91.789 (3)C6—C51.388 (3)
O1—C21.223 (2)C4—H40.9300
N1—H10.82 (2)C4—C51.379 (3)
N1—C31.414 (3)C5—H50.9300
N1—C21.345 (3)C1—H1A0.9700
C3—C81.390 (3)C1—H1B0.9700
C3—C41.388 (3)C9—H9A0.9600
C7—H70.9300C9—H9B0.9600
C7—C81.378 (3)C9—H9C0.9600
C7—C61.388 (3)
C6—S1—C9103.42 (12)C3—C4—H4120.1
C3—N1—H1116.1 (19)C5—C4—C3119.7 (2)
C2—N1—H1115.1 (18)C5—C4—H4120.1
C2—N1—C3128.60 (18)C6—C5—H5119.1
C8—C3—N1116.83 (18)C4—C5—C6121.8 (2)
C4—C3—N1124.31 (18)C4—C5—H5119.1
C4—C3—C8118.9 (2)Cl1—C1—H1A108.9
C8—C7—H7119.7Cl1—C1—H1B108.9
C8—C7—C6120.6 (2)C2—C1—Cl1113.36 (16)
C6—C7—H7119.7C2—C1—H1A108.9
O1—C2—N1124.5 (2)C2—C1—H1B108.9
O1—C2—C1122.62 (19)H1A—C1—H1B107.7
N1—C2—C1112.76 (18)S1—C9—H9A109.5
C3—C8—H8119.5S1—C9—H9B109.5
C7—C8—C3120.9 (2)S1—C9—H9C109.5
C7—C8—H8119.5H9A—C9—H9B109.5
C7—C6—S1124.67 (18)H9A—C9—H9C109.5
C7—C6—C5118.1 (2)H9B—C9—H9C109.5
C5—C6—S1117.19 (17)
S1—C6—C5—C4178.58 (19)C2—N1—C3—C8168.6 (2)
O1—C2—C1—Cl132.9 (3)C2—N1—C3—C411.7 (4)
N1—C3—C8—C7179.1 (2)C8—C3—C4—C50.8 (3)
N1—C3—C4—C5179.4 (2)C8—C7—C6—S1178.92 (18)
N1—C2—C1—Cl1150.97 (18)C8—C7—C6—C50.7 (4)
C3—N1—C2—O18.9 (4)C6—C7—C8—C30.4 (4)
C3—N1—C2—C1167.2 (2)C4—C3—C8—C71.2 (3)
C3—C4—C5—C60.3 (4)C9—S1—C6—C718.0 (2)
C7—C6—C5—C41.1 (4)C9—S1—C6—C5162.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.82 (2)2.06 (3)2.875 (2)174 (3)
C1—H1B···O1i0.972.573.319 (3)135
C4—H4···O10.932.322.903 (3)121
Symmetry code: (i) x+1/2, y, z+3/2.
The electronic absorption spectrum of the title compound calculated by the TD-CAM-B3LYP/6-311G(d,p) method top
Excited statesExcitation energyConfigurations composition
eVnmf
S0S14.802580.0354HOMOL+1 (84%)
S0S24.952500.7144HOMOLUMO (91%)
S0S35.552240.0000HOMOL+3 (81%)
S0S45.632200.0005H-3LUMO (69%)
S0S56.351950.1378H-1LUMO (59%)
 

Acknowledgements

The authors thank the Kasetsart University Research and Development Institute, the Center of Excellence for Innovation in Chemistry (PERCH–CIC), the Ministry of Higher Education, Science, Research and Innovation, and the Department of Chemistry, Kasetsart University for financial support.

References

First citationArı, H. & Büyükmumcu, Z. (2017). Comput. Mater. Sci. 138, 70–76.  Google Scholar
First citationBruker (2016). APEX2 , SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChatterjee, S. K., Roy, S., Barman, S. K., Maji, R. C., Olmstead, M. M. & Patra, A. K. (2012). Inorg. Chem. 51, 7625–7635.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationChen, S.-Q., Jiao, J.-Y., Zhang, X.-H. & Zhang, X. (2019). Tetrahedron, 75, 246–252.  CrossRef CAS Google Scholar
First citationCross, E. D., Ang, M. T. C., Richards, D. D., Clemens, A. D., Muthukumar, H., McDonald, R., Woodfolk, L., Ckless, K. & Bierenstiel, M. (2018). Inorg. Chim. Acta, 481, 69–78.  CrossRef CAS Google Scholar
First citationDas, U. K., Daifuku, S. L., Iannuzzi, T. E., Gorelsky, S. I., Korobkov, I., Gabidullin, B., Neidig, M. L. & Baker, R. T. (2017). Inorg. Chem. 56, 13766–13776.  CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2010). Gaussian 09, Revision B. 01. Gaussian Inc, Wallingford CT, USA.  Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2008b). Acta Cryst. E64, o419.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2008c). Acta Cryst. E64, o420.  CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2008d). Acta Cryst. E64, o85.  CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2008g). Acta Cryst. E64, o381.  CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Kožíšek, J., Tokarčík, M. & Fuess, H. (2008a). Acta Cryst. E64, o987.  CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Svoboda, I., Foro, S., Paulus, H. & Fuess, H. (2008e). Acta Cryst. E64, o234.  CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Svoboda, I., Foro, S., Paulus, H. & Fuess, H. (2008f). Acta Cryst. E64, o209.  CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationJacquemin, D., Wathelet, V., Perpète, E. A. & Adamo, C. (2009). J. Chem. Theory Comput. 5, 2420–2435.  CrossRef CAS PubMed Google Scholar
First citationKumar, S. B., Solanki, A. & Kundu, S. (2017). J. Mol. Struct. 1143, 163–167.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMandal, S., Mondal, M., Biswas, J. K., Cordes, D. B., Slawin, A. M. Z., Butcher, R. J., Saha, M. & Chandra Saha, N. (2018). J. Mol. Struct. 1152, 189–198.  CrossRef CAS Google Scholar
First citationMartin, D. J., McCarthy, B. D., Piro, N. A. & Dempsey, J. (2016). Polyhedron, 114, 200–204.  CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816.  Google Scholar
First citationMiengmern, N., Koonwong, A., Sriyab, S., Suramitr, A., Poo-arporn, R. P., Hannongbua, S. & Suramitr, S. (2019). J. Lumin. 210, 493–500.  CrossRef CAS Google Scholar
First citationNiskanen, M. & Hukka, T. I. (2014). Phys. Chem. Chem. Phys. 16, 13294–13305.  CrossRef CAS PubMed Google Scholar
First citationPerdew, J. P., Ruzsinszky, A., Tao, J., Staroverov, V. N., Scuseria, G. E. & Csonka, G. I. (2005). J. Chem. Phys. 123, 1–9.  CrossRef Google Scholar
First citationScalmani, G. & Frisch, M. J. (2010). J. Chem. Phys. 132, 114110–114115.  CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.  Google Scholar
First citationWang, Y., Tran, H. D. & Kaner, R. B. (2009). J. Phys. Chem. C, 113, 10346–10349.  CrossRef CAS Google Scholar
First citationZhi, L.-H., Wu, W.-N., Li, X.-X., Li, Y.-W. & Wang, Y. (2011). Acta Cryst. E67, o68.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds