research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

fac-Tri­aqua­(1,10-phenanthroline-κ2N,N′)(sulfato-κO)cobalt(II): crystal structure, Hirshfeld surface analysis and computational study

CROSSMARK_Color_square_no_text.svg

aDépartement de Technologie, Faculté de Technologie, Université 20 Août 1955-Skikda, BP 26, Route d'El-Hadaiek, Skikda 21000, Algeria, bLaboratoire de Chimie, Ingénierie Moléculaire et Nanostructures (LCIMN), Université Ferhat Abbas Sétif 1, Sétif 19000, Algeria, cResearch Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia, and dDepartment of Chemistry, Université de Montréal, 2900 Edouard-Montpetit Blvd, Montreal, Quebec, H3T1J4, Canada
*Correspondence e-mail: edwardt@sunway.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 6 May 2020; accepted 8 May 2020; online 15 May 2020)

The CoII atom in the title complex, [Co(SO4)(C12H8N2)(H2O)3] (or C12H14CoN2O7S), is octa­hedrally coordinated within a cis-N2O4 donor set defined by the chelating N-donors of the 1,10-phenanthroline ligand, sulfate-O and three aqua-O atoms, the latter occupying an octa­hedral face. In the crystal, supra­molecular layers lying parallel to (110) are sustained by aqua-O—H⋯O(sulfate) hydrogen bonding. The layers stack along the c-axis direction with the closest directional inter­action between them being a weak phenanthroline-C—H⋯O(sulfate) contact. There are four significant types of contact contributing to the calculated Hirshfeld surface: at 44.5%, the major contribution comes from O—H⋯O contacts followed by H⋯H (28.6%), H⋯C/C⋯H (19.5%) and C⋯C (5.7%) contacts. The dominance of the electrostatic potential force in the mol­ecular packing is also evident in the calculated energy frameworks. The title complex is isostructural with its manganese, zinc and cadmium containing analogues and isomeric with its mer-tri­aqua analogue.

1. Chemical context

As a consequence of their ability to link metal ions in a variety of different ways, polynitrile anions, either functioning alone or in combination with neutral co-ligands, provide opportunities for the generation of mol­ecular architectures with varying dimensions and topologies (Benmansour et al., 2012[Benmansour, S., Setifi, F., Triki, S. & Gómez-García, C. J. (2012). Inorg. Chem. 51, 2359-2365.]). The presence of other potential donor groups such as those derived from –OH, –SH or –NH2, together with their rigidity and electronic delocalization, mean that polynitrile anions can also lead to new magnetic and luminescent coordination polymers based on transition-metal ions (Benmansour et al., 2010[Benmansour, S., Atmani, C., Setifi, F., Triki, S., Marchivie, M. & Gómez-García, C. J. (2010). Coord. Chem. Rev. 254, 1468-1478.]; Kayukov et al., 2017[Kayukov, Y. S., Karpov, S. V., Grigor'ev, A. A., Nasakin, O. E., Tafeenko, V. A., Lyssenko, K. A., Shapovalov, A. V. & Varaksina, E. A. (2017). Dalton Trans. 46, 16925-16938.]; Lehchili et al., 2017[Lehchili, F., Setifi, F., Liu, X., Saneei, A., Kučeráková, M., Setifi, Z., Dušek, M., Poupon, M., Pourayoubi, M. & Reedijk, J. (2017). Polyhedron, 131, 27-33.]; Setifi et al., 2017[Setifi, F., Konieczny, P., Glidewell, C., Arefian, M., Pelka, R., Setifi, Z. & Mirzaei, M. (2017). J. Mol. Struct. 1149, 149-154.]). Furthermore, the use of polynitrile anions for the synthesis of inter­esting discrete and polymeric bis­table materials has been described (Setifi et al., 2014[Setifi, F., Milin, E., Charles, C., Thétiot, F., Triki, S. & Gómez-García, C. J. (2014). Inorg. Chem. 53, 97-104.]; Milin et al., 2016[Milin, E., Belaïd, S., Patinec, V., Triki, S., Chastanet, G. & Marchivie, M. (2016). Inorg. Chem. 55, 9038-9046.]; Pittala et al., 2017[Pittala, N., Thétiot, F., Charles, C., Triki, S., Boukheddaden, K., Chastanet, G. & Marchivie, M. (2017). Chem. Commun. 53, 8356-8359.]). In view of this coordinating ability, these ligands have also been explored for their utility in developing materials capable of magnetic exchange coupling (Addala et al., 2015[Addala, A., Setifi, F., Kottrup, K. G., Glidewell, C., Setifi, Z., Smith, G. & Reedijk, J. (2015). Polyhedron, 87, 307-310.]; Déniel et al., 2017[Déniel, K., Cosquer, N., Conan, F., Triki, S. & Gómez-García, C. J. (2017). Polyhedron, 125, 50-56.]). It was during the course of attempts to prepare such complexes with 1,10-phenanthroline as a co-ligand that the title complex, (I)[link], was unexpectedly obtained. Herein, the crystal and mol­ecular structures of (I)[link] are described, a study complemented by an analysis of the mol­ecular packing by calculating the Hirshfeld surfaces as well as a computational chemistry study.

[Scheme 1]

2. Structural commentary

The mol­ecule of (I)[link] is shown in Fig. 1[link] and selected geometric parameters are collated in Table 1[link]. The CoII complex features a chelating 1,10-phenanthroline ligand, a monodentate sulfate di-anion and three coordinated water mol­ecules. The resulting N2O4 donor set defines a distorted octa­hedral coordination geometry for the CoII atom, with the water mol­ecules occupying one octa­hedral face. The greatest deviations from a regular geometry is seen in the restricted bite angle subtended by the 1,10-phenanthroline ligand, i.e. N1—Co1—N2 = 78.21 (6)°, and in the trans O2W—Co—N2 angle of 166.55 (6)°. The Co—N bond lengths are equal within experimental error but the Co—O(aqua) bonds span an experimentally distinct range, Table 1[link]. The observation that the shortest and longest Co—O(aqua) bonds have each aqua-O atom trans to a nitro­gen atom suggests the differences in bond lengths are due to the considerable hydrogen bonding operating in the crystal. Indeed, there is an intra­molecular aqua-O1W—H⋯O3(sulfate) hydrogen bond, Table 2[link]. The coordinated sulfate-O1 atom forms the longer of the four sulfate-S—O bonds, Table 1[link]. The S—O bond lengths formed by the non-coordinating sulfate-oxygen atoms spans an experimentally distinct range of 1.4616 (14) Å for S1—O2, to 1.4813 (14) Å for S1—O3. As discussed below, the sulfate-O1–O4 oxygen atoms form, respectively, one, one, two and two hydrogen bonds with the water mol­ecules, which is consistent with the S1—O2 bond length being the shortest of the four bonds. The above notwithstanding, it is likely that the formal negative charge on the SO3 residue is delocalized over the three non-coordinating S—O bonds.

Table 1
Selected bond lengths (Å)

Co—O1 2.1386 (13) Co—N2 2.1453 (16)
Co—O1W 2.1110 (14) S1—O1 1.4997 (13)
Co—O2W 2.0782 (15) S1—O2 1.4616 (14)
Co—O3W 2.1024 (14) S1—O3 1.4813 (14)
Co—N1 2.1356 (15) S1—O4 1.4784 (14)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O3 0.84 (2) 1.89 (2) 2.680 (2) 158 (2)
O1W—H2W⋯O1i 0.83 (1) 1.95 (1) 2.7818 (19) 172 (2)
O2W—H3W⋯O3ii 0.84 (2) 1.91 (2) 2.744 (2) 175 (3)
O2W—H4W⋯O4iii 0.85 (1) 1.93 (1) 2.770 (2) 167 (3)
O3W—H5W⋯O4i 0.82 (2) 1.95 (2) 2.7548 (19) 168 (3)
O3W—H6W⋯O2iii 0.82 (2) 1.84 (2) 2.6560 (19) 178 (3)
C3—H3⋯O2iv 0.95 2.45 3.252 (3) 142
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x+1, y, z; (iv) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link] showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

3. Supra­molecular features

Each of the aqua ligands donates two hydrogen bonds to different sulfate-O atoms, one of these hydrogen bonds is intra­molecular while the remaining are inter­molecular, Table 2[link]. The result of the hydrogen bonding is the formation of a supra­molecular layer lying parallel to (110). A simplified view of the hydrogen bonding scheme is shown in Fig. 2[link](a). The aqua mol­ecule forming the intra­molecular O1W—H⋯O3 hydrogen bond forms a second hydrogen bond to the coordinated O1 atom of a symmetry-related mol­ecule, and the O2W aqua ligand of this mol­ecule connects to the O3 atom of the original mol­ecule, leading to the formation of a non-symmetric eight-membered {⋯HOH⋯O⋯HOCoO} synthon. The second hydrogen atom of the O2W ligand forms a connection to a sulfate-O4 atom, which is also hydrogen bonded to an O3W mol­ecule, which forms an additional link to a symmetry related sulfate-O2 atom with the result a {⋯HOH⋯OSO⋯HOH⋯O} non-symmetric ten-membered synthon is formed. Two additional eight-membered synthons, {HOCoOH⋯OSO}, are formed as a result of the hydrogen-bonding scheme as adjacent pairs of aqua mol­ecules effectively bridge two sulfoxide residues. As seen from Fig. 2[link](b), the 1,10-phenanthroline mol­ecules project to either side of the supra­molecular layer. The layers inter-digitate along [001], Fig. 2[link](c), with the closest connections between layers being phenanthroline-C—H⋯O2(sulfate) inter­actions, Table 2[link]. A deeper analysis of the mol­ecular packing is found in the next two sections of this paper.

[Figure 2]
Figure 2
Mol­ecular packing in the crystal of (I)[link]: (a) supra­molecular layer sustained by aqua-O—H⋯O(sulfate) hydrogen bonding shown as orange dashed lines, only the five-membered chelate rings are shown for reasons of clarity, (b) a side-on view of the layer shown in (a) and (c) a view of the unit-cell contents down the b axis showing the stacking of layers along the c-axis direction, with the phenanthroline-C—H⋯O(sulfate) inter­actions between layers shown as blue dashed lines.

4. Hirshfeld surface analysis

In order to understand further the inter­actions operating in the crystal of (I)[link], the Hirshfeld surfaces and two-dimensional fingerprint plots were calculated employing the program Crystal Explorer 17 (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.]) and literature procedures (Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]). The inter­molecular O—H⋯O hydrogen bonds in (I)[link], Table 2[link], are characterized as pairs of bright-red spots near the aqua-O and sulfate-O atoms on the Hirshfeld surface mapped over dnorm shown in Fig. 3[link]. The faint-red spots near the phenanthroline-C—H (H1, H3 H6 and H10) atoms on the dnorm-mapped Hirshfeld surface in the two views of Fig. 4[link] represent the influence of the weak C3—H3⋯O2 and C10—H10⋯O1 inter­actions as well as H1⋯O3, H6⋯O3W short contacts, Table 3[link]. The donors and acceptors of the weak C—H⋯O inter­action are viewed as blue and red regions on the Hirshfeld surface mapped over the calculated electrostatic potential in Fig. 5[link], and which correspond to positive and negative electrostatic potentials.

Table 3
A summary of short inter­atomic contacts (Å) in (I)a

Contact Distance Symmetry operation
H2W⋯O1b 1.81 x + 1, y − [{1\over 2}], −z + [{1\over 2}]
H3W⋯O3b 1.76 x + 1, y + [{1\over 2}], −z + [{1\over 2}]
H4W⋯O4b 1.81 x + 1, y, z
H5W⋯O4b 1.79 x + 1, y − [{1\over 2}], −z + [{1\over 2}]
H6W⋯O2b 1.67 x + 1, y, z
H1⋯O3 2.33 x + 1, y + [{1\over 2}], −z + [{1\over 2}]
H3⋯O2 2.35 x + [{1\over 2}], −y + [{3\over 2}], − z + 1
H6⋯O3W 2.51 x − [{1\over 2}], −y + [{1\over 2}], − z + 1
H10⋯O1 2.40 x + 1, y − [{1\over 2}], − z + [{1\over 2}]
Notes: (a) The inter­atomic distances are calculated in Crystal Explorer 17 (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.]) whereby the X—H bond lengths are adjusted to their neutron values; (b) these inter­actions correspond to conventional hydrogen bonds.
[Figure 3]
Figure 3
A view of the Hirshfeld surface mapped over dnorm for (I)[link] in the range of −0.729 to +1.105 arbitrary units, highlighting O—H⋯O inter­actions.
[Figure 4]
Figure 4
Two views of the Hirshfeld surface mapped over dnorm for (I)[link] in the range of −0.729 to +1.105 arbitrary units, highlighting weak C—H⋯O inter­actions and short contacts.
[Figure 5]
Figure 5
A view of the Hirshfeld surface mapped over the calculated electrostatic potential for (I)[link]. The potentials were calculated using the STO-3G basis set at Hartree–Fock level of theory over a range of −4.381 to 4.109 atomic units. The red and blue regions represent negative and positive electrostatic potentials, respectively.

The overall two-dimensional fingerprint plot of (I)[link] is shown in Fig. 6[link](a). The overall contacts are also delineated into H⋯H, H⋯O/O⋯H, H⋯C/C⋯H and C⋯C contacts, as displayed in Fig. 6[link](b)–(e), respectively. The short inter­atomic H⋯H contacts are characterized as the pair of beak-shaped tips at de + di ∼2.3 Å, Fig. 6[link](b), and contribute 28.6% to the overall surface contacts. The significant O—H⋯O contacts between the aqua- and sulfate-O atoms make the major contribution to the overall contacts (44.5%), and these are represented as pairs of well-defined spikes at de + di ∼1.7 Å in Fig. 6[link](c). The short inter­atomic H⋯C/C⋯H (19.5%) and C⋯C (5.7%) contacts are, respectively, characterized as pairs of broad symmetrical wings at de + di ∼2.9 Å in Fig. 6[link](d), and the vase-shaped distribution of points at de + di ∼3.5 Å in Fig. 6[link](e). The accumulated contribution of the remaining inter­atomic contacts is less than 2% and has a negligible effect on the packing.

[Figure 6]
Figure 6
(a) The overall two-dimensional fingerprint plots for (I)[link], and those delineated into (b) H⋯H, (c) O⋯H/H⋯O, (d) C⋯H/H⋯C and (e) C⋯C contacts.

5. Computational chemistry

In the present analysis, the pairwise inter­action energies between the mol­ecules in the crystal were calculated by summing up four different energy components, i.e. the electrostatic (Eele), polarization (Epol), dispersion (Edis) and exchange-repulsion (Erep) energy terms, after Turner et al. (2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.]). These energies were obtained by applying the wave functions calculated at the B3LYP/6-31G(d,p) level of theory. The benchmarked energies were scaled according to Mackenzie et al. (2017[Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575-587.]) while Eele, Epol, Edis and Erep were scaled as 1.057, 0.740, 0.871 and 0.618, respectively (Edwards et al., 2017[Edwards, A. J., Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Faraday Discuss. 203, 93-112.]). The inter­molecular inter­action energies are collated in Table 4[link]. Consistent with the presence of strong O—H⋯O hydrogen-bonding inter­actions in the crystal, the electrostatic energy component has a major influence in the formation of supra­molecular architecture of (I)[link], Table 4[link]. The energy associated with the C—H⋯O inter­actions involving the sulfate-O atoms (−66.8 and −55.7 kJ mol−1) are greater than for the C—H⋯O inter­action involving the aqua-O atoms (−30.6 kJ mol−1). The energy frameworks were also computed and illustrate the above conclusions, Fig. 7[link]. These clearly demonstrate the dominance of the electrostatic potential energy in the mol­ecular packing.

Table 4
A summary of inter­action energies (kJ mol−1) calculated for (I)

Contact R (Å) Eele Epol Edis Erep Etot
O1W—H2W⋯O1i + 6.78 −330.8 −116.8 −49.6 180.1 −368.1
O3W—H5W⋯O4i +            
O2W—H3W⋯O3ii +            
C10—H10⋯O1i            
O3W—H6W⋯O2iii + 7.97 −198.3 −63.8 −16.4 121.0 −196.4
O2W—H4W⋯O4iii            
C5—H5⋯O3v + 10.47 −46.2 −19.3 −9.8 7.8 −66.8
C6—H6⋯O4v            
C3—H3⋯O2iv 7.64 −17.3 −30.2 −42.3 35.3 −55.7
C6—H6⋯O3Wvi 8.03 −2.3 −13.7 −37.7 24.0 −30.6
Symmetry operations: (i) −x + 1, y − [{1\over 2}], −z + [{1\over 2}]; (ii) − x + 1, y + [{1\over 2}], − z + [{1\over 2}]; (iii) x + 1, y, z; (iv) x + [{1\over 2}], −y + [{3\over 2}], −z + 1; (v) −x + [{1\over 2}], − y + 1, z + [{1\over 2}]; (vi) x – 1/2, −y + [{1\over 2}], −z + 1.
[Figure 7]
Figure 7
Perspective views of the energy frameworks calculated for (I)[link], showing the (a) electrostatic potential force, (b) dispersion force and (c) total energy, each plotted down the b axis. The radii of the cylinders are proportional to the relative magnitudes of the corresponding energies and were adjusted to the same scale factor of 20 with a cut-off value of 5 kJ mol−1 within 2 × 2 × 2 unit cells.

6. Database survey

There are several literature analogues of (I)[link], i.e. mol­ecules conforming to the general formula fac-M(1,10-phenanthroline)(OH2)3OSO3. These include M = Mn (XATNAH; Zheng et al., 2000[Zheng, Y.-Q., Lin, J.-L. & Kong, Z.-P. (2000). Z. Kristallogr. New Cryst. Struct. 215, 531-532.]), M = Zn (IJOQAA; Liu et al., 2011[Liu, H., Qin, H., Zhang, Y.-J., Yang, H.-W. & Zhang, J. (2011). Acta Cryst. E67, m280-m281.]) and M = Cd (RACWUO; Li et al., 2003[Li, X., Cao, R., Bi, W., Sun, D. & Hong, M. (2003). Acta Cryst. E59, m230-m231.]). The three literature structures are isostructural with (I)[link]. Literature analogues are also available for the isomeric mer-M(1,10-phenanthroline)(OH2)3OSO3 species, i.e. M = Mn (UGOJUV; Zheng et al., 2002[Zheng, Y.-Q., Sun, J. & Lin, J.-L. (2002). Z. Kristallogr. New Cryst. Struct. 217, 189-191.]), M = Fe (MIKJAS; Li et al., 2007[Li, P.-Z., Lu, X.-M., Liu, B., Wang, S. & Wang, X.-J. (2007). Inorg. Chem. 46, 5823-5825.]), M = Co (FICNOU; Li & Zhou, 1987[Li, J. M. & Zhou, K. J. (1987). Chin. J. Struct. Chem. 6, 198-200.]) and M = Ni (ESUZOH; He et al., 2003[He, H.-Y., Zhou, Y.-L. & Zhu, L.-G. (2003). Z. Kristallogr. New Cryst. Struct. 218, 563-564.]). The four mer-isomers are also isostructural, crystallizing in the monoclinic space group P21/c. There are two pairs of structures (containing Mn and Co) crystallizing in both forms. For the Mn complexes, the authors reporting the structure of the mer-isomer indicated that both forms were formed concomitantly from the slow evaporation of a methanol solution of the complex (Zheng et al., 2002[Zheng, Y.-Q., Sun, J. & Lin, J.-L. (2002). Z. Kristallogr. New Cryst. Struct. 217, 189-191.]). To a first approximation, the mol­ecular packing in the mer form resembles that for the fac-isomer in that supra­molecular layers are formed by hydrogen bonding whereby each aqua ligand hydrogen bonds to two different sulfate-O atoms, i.e. as for (I)[link].

The key difference in the packing between the two isomers arises as one sulfate-O atom in the mer-isomer participates in three hydrogen bonds at the expense of the hydrogen bond involving the coordinated sulfate-O1 atom. The presence of inter-layer phenanthroline-C—H⋯O(sulfate) inter­actions persist as for the fac-isomer with the crucial difference that ππ stacking inter­actions are evident in the inter-layer region of the mer-form with the shortest separation being 3.76 Å.

The different packing arrangements result in different densities with that for (I)[link] of 1.776 g cm−3 being greater than 1.723 g cm−3 for the mer-isomer (FICNOU; Li & Zhou, 1987[Li, J. M. & Zhou, K. J. (1987). Chin. J. Struct. Chem. 6, 198-200.]). The calculated packing efficiencies follow this trend being 72.8 and 66.5%, respectively. Similar results are noted for the pair of Mn structures, i.e. 1.690 g cm−3 and 71.1% for the fac-isomer (Zheng et al., 2000[Zheng, Y.-Q., Lin, J.-L. & Kong, Z.-P. (2000). Z. Kristallogr. New Cryst. Struct. 215, 531-532.]) c.f. 1.643 g cm−3 and 68.7% for the mer-isomer (Zheng et al., 2000[Zheng, Y.-Q., Lin, J.-L. & Kong, Z.-P. (2000). Z. Kristallogr. New Cryst. Struct. 215, 531-532.]). The consistency of these parameters may suggest that the fac-isomer in these M(1,10-phenanthroline)(OH2)3OSO3 complexes is the thermodynamically more stable form.

Given the isostructural relationship in the series (I)[link], IJOQAA, RACWUO and XATNAH, it was thought of inter­est to compare the percentage contributions of the difference inter­molecular contacts to the calculated Hirshfeld surfaces. Thus, these were calculated for the three literature structures as were the overall and delineated two-dimensional fingerprint plots. Qualitatively, the fingerprint plots had the same general appearance in accord with expectation (Jotani et al., 2019[Jotani, M. M., Wardell, J. L. & Tiekink, E. R. T. (2019). Z. Kristallogr. Cryst. Mater. 234, 43-57.]). The calculated percentage contributions to the Hirshfeld surfaces for the four complexes are collated in Table 5[link]. Clearly and as would be expected, the data in Table 5[link] reveal a high degree of concordance in the percentage contributions to the Hirshfeld surfaces between the four isostructural complexes.

Table 5
Percentage contributions to inter­molecular contacts on the Hirshfeld surface calculated for (I)

Contact   Percentage contribution    
  (I), M = Co IJOQAA, M = Zn RACWUO, M = Cd XATNAH, M = Mn
H⋯H 28.6 30.1 27.6 27.2
H⋯O/O⋯H 44.5 43.3 45.8 45.9
H⋯C/C⋯H 19.5 19.1 19.2 19.1
C⋯C 5.7 5.7 5.2 5.6
Others 1.7 1.8 2.2 2.2

7. Synthesis and crystallization

The title compound was synthesized solvothermally under autogenous pressure from a mixture of CoSO4·7H2O (28 mg, 0.1 mmol), 1,10-phenanthroline (18 mg, 0.1 mmol) and K(tcnoet) (45 mg, 0.2 mmol) in water–methanol (4:1v/v, 25 ml); where tcnoet is 1,1,3,3-tetra­cyano-2-eth­oxy­propenide. The mixture was sealed in a Teflon-lined autoclave and held at 403 K for 2 days, and then cooled to room temperature at a rate of 10 K h−1; yield: 35%. Light-pink blocks of the title complex suitable for single-crystal X-ray diffraction were selected directly from the synthesized product.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 6[link]. The carbon-bound H atoms were placed in calculated positions (C—H = 0.95 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set to 1.2Ueq(C). The oxygen-bound H atoms were located from a difference-Fourier map and refined with O—H = 0.84±0.01 Å, and with Uiso(H) set to 1.5Ueq(O). Owing to poor agreement, four reflections, i.e. (0 1 4), (0 0 2), (0 1 2) and (0 0 4), were omitted from the final cycles of refinement. The absolute structure was determined based on differences in Friedel pairs included in the data set.

Table 6
Experimental details

Crystal data
Chemical formula [Co(SO4)(C12H8N2)(H2O)3]
Mr 389.24
Crystal system, space group Orthorhombic, P212121
Temperature (K) 150
a, b, c (Å) 7.9732 (4), 9.5589 (4), 19.0955 (9)
V3) 1455.36 (12)
Z 4
Radiation type Ga Kα, λ = 1.34139 Å
μ (mm−1) 7.61
Crystal size (mm) 0.08 × 0.08 × 0.05
 
Data collection
Diffractometer Bruker Venture Metaljet
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.064, 0.155
No. of measured, independent and observed [I > 2σ(I)] reflections 25223, 3202, 3126
Rint 0.033
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.046, 0.99
No. of reflections 3202
No. of parameters 227
No. of restraints 6
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.51, −0.58
Absolute structure Flack x determined using 1194 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]).
Absolute structure parameter 0.0101 (17)
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

fac-Triaqua(1,10-phenanthroline-κ2N,N')(sulfato-κO)cobalt(II) top
Crystal data top
[Co(SO4)(C12H8N2)(H2O)3]Dx = 1.776 Mg m3
Mr = 389.24Ga Kα radiation, λ = 1.34139 Å
Orthorhombic, P212121Cell parameters from 9840 reflections
a = 7.9732 (4) Åθ = 4.0–60.7°
b = 9.5589 (4) ŵ = 7.61 mm1
c = 19.0955 (9) ÅT = 150 K
V = 1455.36 (12) Å3Prism, light-pink
Z = 40.08 × 0.08 × 0.05 mm
F(000) = 796
Data collection top
Bruker Venture Metaljet
diffractometer
3202 independent reflections
Radiation source: Metal Jet, Gallium Liquid Metal Jet Source3126 reflections with I > 2σ(I)
Helios MX Mirror Optics monochromatorRint = 0.033
Detector resolution: 10.24 pixels mm-1θmax = 60.6°, θmin = 4.5°
ω and φ scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1212
Tmin = 0.064, Tmax = 0.155l = 2424
25223 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.017 w = 1/[σ2(Fo2) + (0.0202P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.046(Δ/σ)max = 0.001
S = 0.99Δρmax = 0.51 e Å3
3202 reflectionsΔρmin = 0.58 e Å3
227 parametersExtinction correction: SHELXL-2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
6 restraintsExtinction coefficient: 0.0057 (5)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack x determined using 1194 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.0101 (17)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co0.63811 (3)0.53373 (3)0.31720 (2)0.02111 (9)
S10.24258 (5)0.56910 (4)0.27630 (2)0.02212 (11)
O10.40704 (16)0.63702 (14)0.29351 (7)0.0239 (3)
O20.17822 (17)0.49545 (15)0.33775 (7)0.0291 (3)
O30.26932 (17)0.46986 (15)0.21777 (7)0.0289 (3)
O40.12543 (18)0.68089 (14)0.25463 (7)0.0290 (3)
O1W0.60122 (18)0.42633 (14)0.22184 (7)0.0267 (3)
H1W0.5005 (18)0.431 (3)0.2097 (13)0.040*
H2W0.607 (3)0.3405 (14)0.2144 (14)0.040*
O2W0.77952 (18)0.68717 (15)0.26762 (8)0.0296 (3)
H3W0.768 (4)0.7735 (15)0.2743 (14)0.044*
H4W0.8839 (17)0.673 (3)0.2607 (15)0.044*
O3W0.85965 (17)0.41650 (15)0.32821 (7)0.0281 (3)
H5W0.874 (4)0.353 (2)0.2999 (12)0.042*
H6W0.9583 (19)0.440 (3)0.3324 (14)0.042*
N10.6414 (2)0.64091 (16)0.41532 (8)0.0252 (3)
N20.5377 (2)0.37822 (16)0.38651 (8)0.0240 (3)
C10.6826 (3)0.7733 (2)0.42840 (11)0.0307 (4)
H10.7161620.8310050.3903910.037*
C20.6788 (3)0.8312 (2)0.49569 (12)0.0349 (5)
H20.7063100.9268980.5026380.042*
C30.6351 (3)0.7487 (2)0.55149 (12)0.0357 (5)
H30.6347740.7860010.5976090.043*
C40.5906 (3)0.6081 (2)0.53970 (11)0.0311 (4)
C50.5383 (3)0.5154 (3)0.59456 (11)0.0374 (5)
H50.5373350.5476830.6416150.045*
C60.4904 (3)0.3828 (3)0.58034 (11)0.0394 (5)
H60.4566580.3233260.6176130.047*
C70.4897 (3)0.3302 (2)0.50992 (11)0.0315 (4)
C80.4422 (3)0.1926 (2)0.49259 (12)0.0358 (5)
H80.4100120.1285090.5281780.043*
C90.4430 (3)0.1523 (2)0.42371 (12)0.0350 (5)
H90.4114640.0597750.4111210.042*
C100.4904 (3)0.2480 (2)0.37212 (11)0.0290 (4)
H100.4886880.2187950.3245800.035*
C110.5388 (2)0.4191 (2)0.45479 (10)0.0251 (4)
C120.5919 (2)0.5600 (2)0.46986 (10)0.0258 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co0.02084 (13)0.02088 (13)0.02160 (13)0.00016 (10)0.00033 (10)0.00127 (10)
S10.0203 (2)0.0203 (2)0.0258 (2)0.00016 (15)0.00058 (17)0.00105 (15)
O10.0203 (6)0.0225 (6)0.0291 (6)0.0006 (5)0.0005 (5)0.0017 (5)
O20.0262 (6)0.0301 (7)0.0311 (7)0.0029 (6)0.0008 (5)0.0037 (5)
O30.0282 (6)0.0279 (6)0.0306 (7)0.0006 (6)0.0015 (6)0.0074 (6)
O40.0235 (6)0.0256 (6)0.0378 (7)0.0016 (6)0.0023 (6)0.0027 (5)
O1W0.0273 (7)0.0240 (6)0.0287 (7)0.0042 (5)0.0013 (6)0.0016 (5)
O2W0.0244 (7)0.0244 (6)0.0399 (8)0.0008 (6)0.0046 (6)0.0047 (6)
O3W0.0221 (6)0.0250 (6)0.0371 (7)0.0012 (6)0.0018 (6)0.0011 (5)
N10.0242 (7)0.0253 (7)0.0259 (7)0.0006 (7)0.0010 (7)0.0000 (6)
N20.0225 (7)0.0251 (8)0.0242 (7)0.0003 (6)0.0009 (6)0.0010 (6)
C10.0318 (11)0.0275 (9)0.0329 (10)0.0025 (8)0.0020 (8)0.0001 (8)
C20.0354 (11)0.0292 (10)0.0402 (11)0.0022 (9)0.0043 (9)0.0074 (8)
C30.0365 (11)0.0404 (11)0.0302 (10)0.0001 (10)0.0014 (10)0.0109 (8)
C40.0296 (10)0.0363 (10)0.0273 (9)0.0006 (8)0.0011 (8)0.0032 (8)
C50.0423 (12)0.0468 (12)0.0231 (9)0.0016 (10)0.0031 (8)0.0016 (9)
C60.0461 (13)0.0474 (13)0.0247 (10)0.0035 (11)0.0058 (10)0.0064 (9)
C70.0314 (10)0.0347 (10)0.0286 (9)0.0023 (9)0.0038 (8)0.0045 (8)
C80.0386 (12)0.0341 (11)0.0348 (11)0.0053 (10)0.0064 (9)0.0084 (9)
C90.0381 (11)0.0270 (9)0.0400 (11)0.0056 (9)0.0029 (9)0.0024 (9)
C100.0289 (10)0.0288 (9)0.0293 (10)0.0023 (8)0.0015 (8)0.0021 (8)
C110.0234 (8)0.0277 (9)0.0244 (8)0.0003 (7)0.0011 (7)0.0008 (7)
C120.0236 (8)0.0285 (9)0.0253 (9)0.0011 (7)0.0005 (7)0.0006 (7)
Geometric parameters (Å, º) top
Co—O12.1386 (13)C1—C21.399 (3)
Co—O1W2.1110 (14)C1—H10.9500
Co—O2W2.0782 (15)C2—C31.371 (3)
Co—O3W2.1024 (14)C2—H20.9500
Co—N12.1356 (15)C3—C41.408 (3)
Co—N22.1453 (16)C3—H30.9500
S1—O11.4997 (13)C4—C121.411 (3)
S1—O21.4616 (14)C4—C51.434 (3)
S1—O31.4813 (14)C5—C61.351 (4)
S1—O41.4784 (14)C5—H50.9500
O1W—H1W0.837 (12)C6—C71.436 (3)
O1W—H2W0.834 (13)C6—H60.9500
O2W—H3W0.840 (13)C7—C111.409 (3)
O2W—H4W0.853 (12)C7—C81.408 (3)
O3W—H5W0.822 (12)C8—C91.371 (3)
O3W—H6W0.822 (13)C8—H80.9500
N1—C11.331 (3)C9—C101.397 (3)
N1—C121.356 (2)C9—H90.9500
N2—C101.329 (3)C10—H100.9500
N2—C111.361 (2)C11—C121.441 (3)
O2W—Co—O3W88.05 (6)N1—C1—C2122.9 (2)
O2W—Co—O1W91.48 (6)N1—C1—H1118.6
O3W—Co—O1W86.80 (6)C2—C1—H1118.6
O2W—Co—N193.13 (6)C3—C2—C1119.5 (2)
O3W—Co—N199.08 (6)C3—C2—H2120.3
O2W—Co—O192.59 (6)C1—C2—H2120.3
O1—Co—O3W172.31 (5)C2—C3—C4119.26 (19)
O1W—Co—O185.53 (5)C2—C3—H3120.4
N1—Co—O188.54 (6)C4—C3—H3120.4
O1W—Co—N1172.65 (6)C3—C4—C12117.42 (19)
O2W—Co—N2166.55 (6)C3—C4—C5123.1 (2)
O3W—Co—N283.25 (6)C12—C4—C5119.4 (2)
O1W—Co—N298.23 (6)C6—C5—C4121.0 (2)
N1—Co—N278.21 (6)C6—C5—H5119.5
O1—Co—N297.41 (6)C4—C5—H5119.5
O2—S1—O4110.56 (8)C5—C6—C7121.2 (2)
O2—S1—O3110.35 (8)C5—C6—H6119.4
O4—S1—O3110.04 (8)C7—C6—H6119.4
O2—S1—O1109.85 (8)C11—C7—C8117.58 (19)
O4—S1—O1107.51 (8)C11—C7—C6119.2 (2)
O3—S1—O1108.47 (8)C8—C7—C6123.3 (2)
S1—O1—Co126.85 (8)C9—C8—C7119.13 (19)
Co—O1W—H1W110.3 (18)C9—C8—H8120.4
Co—O1W—H2W128.2 (19)C7—C8—H8120.4
H1W—O1W—H2W93 (3)C8—C9—C10119.6 (2)
Co—O2W—H3W125 (2)C8—C9—H9120.2
Co—O2W—H4W119 (2)C10—C9—H9120.2
H3W—O2W—H4W106 (3)N2—C10—C9123.01 (19)
Co—O3W—H5W117 (2)N2—C10—H10118.5
Co—O3W—H6W132 (2)C9—C10—H10118.5
H5W—O3W—H6W97 (3)N2—C11—C7122.72 (18)
C1—N1—C12118.04 (17)N2—C11—C12117.50 (16)
C1—N1—Co128.58 (14)C7—C11—C12119.78 (18)
C12—N1—Co113.38 (12)N1—C12—C4122.85 (18)
C10—N2—C11117.96 (16)N1—C12—C11117.73 (16)
C10—N2—Co128.85 (14)C4—C12—C11119.43 (18)
C11—N2—Co112.92 (12)
O2—S1—O1—Co67.05 (11)C10—N2—C11—C71.0 (3)
O4—S1—O1—Co172.59 (9)Co—N2—C11—C7175.48 (16)
O3—S1—O1—Co53.64 (11)C10—N2—C11—C12179.40 (17)
C12—N1—C1—C20.7 (3)Co—N2—C11—C124.9 (2)
Co—N1—C1—C2179.75 (16)C8—C7—C11—N21.7 (3)
N1—C1—C2—C31.7 (3)C6—C7—C11—N2178.4 (2)
C1—C2—C3—C41.6 (3)C8—C7—C11—C12178.70 (19)
C2—C3—C4—C120.7 (3)C6—C7—C11—C121.2 (3)
C2—C3—C4—C5178.1 (2)C1—N1—C12—C43.3 (3)
C3—C4—C5—C6177.4 (2)Co—N1—C12—C4177.58 (15)
C12—C4—C5—C60.0 (4)C1—N1—C12—C11176.72 (17)
C4—C5—C6—C70.2 (4)Co—N1—C12—C112.4 (2)
C5—C6—C7—C110.4 (4)C3—C4—C12—N13.2 (3)
C5—C6—C7—C8179.5 (2)C5—C4—C12—N1179.3 (2)
C11—C7—C8—C91.1 (3)C3—C4—C12—C11176.74 (19)
C6—C7—C8—C9179.0 (2)C5—C4—C12—C110.8 (3)
C7—C8—C9—C100.1 (4)N2—C11—C12—N11.7 (3)
C11—N2—C10—C90.3 (3)C7—C11—C12—N1178.67 (18)
Co—N2—C10—C9173.15 (16)N2—C11—C12—C4178.26 (17)
C8—C9—C10—N20.9 (4)C7—C11—C12—C41.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O30.84 (2)1.89 (2)2.680 (2)158 (2)
O1W—H2W···O1i0.83 (1)1.95 (1)2.7818 (19)172 (2)
O2W—H3W···O3ii0.84 (2)1.91 (2)2.744 (2)175 (3)
O2W—H4W···O4iii0.85 (1)1.93 (1)2.770 (2)167 (3)
O3W—H5W···O4i0.82 (2)1.95 (2)2.7548 (19)168 (3)
O3W—H6W···O2iii0.82 (2)1.84 (2)2.6560 (19)178 (3)
C3—H3···O2iv0.952.453.252 (3)142
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y, z; (iv) x+1/2, y+3/2, z+1.
A summary of short interatomic contacts (Å) in (I)a top
ContactDistanceSymmetry operation
H2W···O1b1.81-x + 1, y - 1/2, -z + 1/2
H3W···O3b1.76-x + 1, y + 1/2, -z + 1/2
H4W···O4b1.81x + 1, y, z
H5W···O4b1.79-x + 1, y - 1/2, -z + 1/2
H6W···O2b1.67x + 1, y, z
H1···O32.33-x + 1, y + 1/2, -z + 1/2
H3···O22.35x + 1/2, -y + 3/2, - z + 1
H6···O3W2.51x - 1/2, -y + 1/2, - z + 1
H10···O12.40-x + 1, y - 1/2, - z + 1/2
Notes: (a) The interatomic distances are calculated in Crystal Explorer 17 (Turner et al., 2017) whereby the X—H bond lengths are adjusted to their neutron values; (b) these interactions correspond to conventional hydrogen bonds.
A summary of interaction energies (kJ mol-1) calculated for (I) top
ContactR (Å)EeleEpolEdisErepEtot
O1W—H2W···O1i +6.78-330.8-116.8-49.6180.1-368.1
O3W—H5W···O4i +
O2W—H3W···O3ii +
C10—H10···O1i
O3W—H6W···O2iii +7.97-198.3-63.8-16.4121.0-196.4
O2W—H4W···O4iii
C5—H5···O3v +10.47-46.2-19.3-9.87.8-66.8
C6—H6···O4v
C3—H3···O2iv7.64-17.3-30.2-42.335.3-55.7
C6—H6···O3Wvi8.03-2.3-13.7-37.724.0-30.6
Symmetry operations: (i) -x + 1, y - 1/2, -z + 1/2; (ii) - x + 1, y + 1/2, - z + 1/2; (iii) x + 1, y, z; (iv) x + 1/2, -y + 3/2, -z + 1; (v) -x + 1/2, - y + 1, z + 1/2; (vi) x – 1/2, -y + 1/2, -z + 1.
Percentage contributions to intermolecular contacts on the Hirshfeld surface calculated for (I) top
ContactPercentage contribution
(I), M = CoIJOQAA, M = ZnRACWUO, M = CdXATNAH, M = Mn
H···H28.630.127.627.2
H···O/O···H44.543.345.845.9
H···C/C···H19.519.119.219.1
C···C5.75.75.25.6
Others1.71.82.22.2
 

Footnotes

Additional correspondence author, e-mail: setifi_zouaoui@yahoo.fr.

Funding information

FS gratefully acknowledges the Algerian Ministère de l'Enseignement Supérieur et de la Recherche Scientifique (MESRS), the Direction Générale de la Recherche Scientifique et du Développement Technologique (DG–RSDT) as well as the Université Ferhat Abbas Sétif 1 for financial support. The Canadian Foundation for Innovation is thanked for the support of the Metaljet instrument. Crystallographic research at Sunway University is supported by Sunway University Sdn Bhd (Grant no. STR-RCTR-RCCM-001-2019).

References

First citationAddala, A., Setifi, F., Kottrup, K. G., Glidewell, C., Setifi, Z., Smith, G. & Reedijk, J. (2015). Polyhedron, 87, 307–310.  Web of Science CSD CrossRef CAS Google Scholar
First citationBenmansour, S., Atmani, C., Setifi, F., Triki, S., Marchivie, M. & Gómez-García, C. J. (2010). Coord. Chem. Rev. 254, 1468–1478.  Web of Science CrossRef CAS Google Scholar
First citationBenmansour, S., Setifi, F., Triki, S. & Gómez-García, C. J. (2012). Inorg. Chem. 51, 2359–2365.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDéniel, K., Cosquer, N., Conan, F., Triki, S. & Gómez-García, C. J. (2017). Polyhedron, 125, 50–56.  Google Scholar
First citationEdwards, A. J., Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Faraday Discuss. 203, 93–112.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHe, H.-Y., Zhou, Y.-L. & Zhu, L.-G. (2003). Z. Kristallogr. New Cryst. Struct. 218, 563–564.  CAS Google Scholar
First citationJotani, M. M., Wardell, J. L. & Tiekink, E. R. T. (2019). Z. Kristallogr. Cryst. Mater. 234, 43–57.  Web of Science CSD CrossRef CAS Google Scholar
First citationKayukov, Y. S., Karpov, S. V., Grigor'ev, A. A., Nasakin, O. E., Tafeenko, V. A., Lyssenko, K. A., Shapovalov, A. V. & Varaksina, E. A. (2017). Dalton Trans. 46, 16925–16938.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLehchili, F., Setifi, F., Liu, X., Saneei, A., Kučeráková, M., Setifi, Z., Dušek, M., Poupon, M., Pourayoubi, M. & Reedijk, J. (2017). Polyhedron, 131, 27–33.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, J. M. & Zhou, K. J. (1987). Chin. J. Struct. Chem. 6, 198–200.  CAS Google Scholar
First citationLi, P.-Z., Lu, X.-M., Liu, B., Wang, S. & Wang, X.-J. (2007). Inorg. Chem. 46, 5823–5825.  CSD CrossRef PubMed CAS Google Scholar
First citationLi, X., Cao, R., Bi, W., Sun, D. & Hong, M. (2003). Acta Cryst. E59, m230–m231.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, H., Qin, H., Zhang, Y.-J., Yang, H.-W. & Zhang, J. (2011). Acta Cryst. E67, m280–m281.  CSD CrossRef IUCr Journals Google Scholar
First citationMackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationMilin, E., Belaïd, S., Patinec, V., Triki, S., Chastanet, G. & Marchivie, M. (2016). Inorg. Chem. 55, 9038–9046.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPittala, N., Thétiot, F., Charles, C., Triki, S., Boukheddaden, K., Chastanet, G. & Marchivie, M. (2017). Chem. Commun. 53, 8356–8359.  Web of Science CSD CrossRef CAS Google Scholar
First citationSetifi, F., Konieczny, P., Glidewell, C., Arefian, M., Pelka, R., Setifi, Z. & Mirzaei, M. (2017). J. Mol. Struct. 1149, 149–154.  Web of Science CSD CrossRef CAS Google Scholar
First citationSetifi, F., Milin, E., Charles, C., Thétiot, F., Triki, S. & Gómez-García, C. J. (2014). Inorg. Chem. 53, 97–104.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZheng, Y.-Q., Lin, J.-L. & Kong, Z.-P. (2000). Z. Kristallogr. New Cryst. Struct. 215, 531–532.  CAS Google Scholar
First citationZheng, Y.-Q., Sun, J. & Lin, J.-L. (2002). Z. Kristallogr. New Cryst. Struct. 217, 189–191.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds