research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The crystal structure of a new CdTe2O5 polymorph, isotypic with -CaTe2O5

CROSSMARK_Color_square_no_text.svg

aInstitute for Chemical Technologies and Analytics, Division of Structural Chemistry, TU Wien, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria
*Correspondence e-mail: felix.eder@tuwien.ac.at

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 7 May 2020; accepted 8 May 2020; online 15 May 2020)

Single crystals of cadmium penta­oxidoditellurate(IV), CdTe2O5, were obtained as by-products in a hydro­thermal reaction of Cd(NO3)2·4H2O, TeO2, H6TeO6 and NH3 (molar ratios 2:1:1:6) at 483 K for seven days. The crystals represent a different polymorph (henceforth referred to as the β-form) than the α-CdTe2O5 crystals grown from the melt, and are isotypic with hydro­thermally grown -CaTe2O5. The asymmetric unit of β-CdTe2O5 comprises one Cd, two Te and five O sites, all of which are located in general positions (Wyckoff position 4 e). The cadmium(II) atom is coordinated by seven oxygen atoms, forming 2[CdO6/2O1/1] (100) layers. Both tellurium sites are surrounded by four oxygen atoms with one of them being at a significantly longer distance than the other three. The resulting bis­phenoidal [TeO4] units also form layers propagating parallel to (100) by sharing edges with each other. The stereochemically active 5s2 lone pair of the TeIV atoms leads to the formation of large channels extending along [011] and smaller ones along [010]. A qu­anti­tative comparison between the crystal structures of β-CdTe2O5 and -CaTe2O5 is made.

1. Chemical context

Cadmium penta­oxidoditellurate(IV), better known under its common name cadmium ditellurite, CdTe2O5, has been the subject of numerous investigations during the past decades with different emphases. In this regard, the CdO–TeO2 phase diagram was elucidated by Robertson et al. (1978[Robertson, D. S., Shaw, N. & Young, I. M. (1978). J. Mater. Sci. 13, 1986-1990.]), or the formation of glasses in the Cd–Te–O system by Karaduman et al. (2012[Karaduman, G., Ersundu, A. E., Çelikbilek, M., Solak, N. & Aydin, S. (2012). J. Eur. Ceram. Soc. 32, 603-610.]). Other studies focused on electric and ferroelastic properties of CdTe2O5 (Redman et al., 1970[Redman, M. J., Chen, J. H., Binnie, W. P. & Mallo, W. J. (1970). J. Am. Chem. Soc. 53, 645-648.]), with its ferro­elasticity remaining up to the melting point (Sadovskaya et al., 1983[Sadovskaya, L. J., Dudnik, E. F., Scherbina, W. A. & Grzhegorzhevskii, O. A. (1983). Ferroelectrics, 48, 109-112.]; Gorbenko et al., 1990[Gorbenko, V. M., Kudzin, A. Y., Sadovskaja, L. J., Sokoljanskii, G. X. & Avramenko, V. P. (1990). Ferroelectrics, 110, 47-50.]). Single crystals of CdTe2O5 are usually grown from the melt utilizing the Czochralski or Bridgeman techniques as crystal growth methods (Nawash, 2015[Nawash, J. (2015). MRS Proceedings, 1799, 13-18.]). Even though single crystals of CdTe2O5 have been grown for decades this way, a satisfactory structure model for this phase had never been published so far, and only lattice parameters of a sub-cell were given (Redman et al., 1970[Redman, M. J., Chen, J. H., Binnie, W. P. & Mallo, W. J. (1970). J. Am. Chem. Soc. 53, 645-648.]). Other phases in the Cd–Te–O system that are compiled in the Inorganic Crystal Structure Database (ICSD; Zagorac et al., 2019[Zagorac, D., Müller, H., Ruehl, S., Zagorac, J. & Rehme, S. (2019). J. Appl. Cryst. 52, 918-925.]) include two polymorphs of CdTeIVO3 (Krämer & Brandt, 1985[Krämer, V. & Brandt, G. (1985). Acta Cryst. C41, 1152-1154.]; Poupon et al., 2017[Poupon, M., Barrier, N., Petit, S. & Boudin, S. (2017). Dalton Trans. 46, 1927-1935.]), two polymorphs of Cd3TeVIO6 (Burckhardt et al., 1982[Burckhardt, H.-G., Platte, C. & Trömel, M. (1982). Acta Cryst. B38, 2450-2452.]; Weil & Veyer, 2018[Weil, M. & Veyer, T. (2018). Acta Cryst. E74, 1561-1564.]) and the mixed TeIV/VI-compounds Cd2Te2O7 and Cd2Te3O9 (Weil, 2004[Weil, M. (2004). Solid State Sci. 6, 29-37.]).

The lack of a reasonable structure model for CdTe2O5 might be caused by the micaceous appearance of the grown crystals (Redman et al., 1970[Redman, M. J., Chen, J. H., Binnie, W. P. & Mallo, W. J. (1970). J. Am. Chem. Soc. 53, 645-648.]), as well as by its ferroelastic properties, which often are correlated with the formation of twins or multiple domains. The new CdTe2O5 phase discovered during the present study originally intended to synthesize new mixed-valent cadmium oxidotellurates(IV,VI), however, belongs to a different polymorph, hereafter referred to as the β-form of CdTe2O5.

In this communication we report on the synthesis and crystal structure analysis of β-CdTe2O5 and compare it quan­ti­tatively with the isotypic structure of -CaTe2O5 (Weil & Stöger, 2008[Weil, M. & Stöger, B. (2008). Acta Cryst. C64, i79-i81.]; Barrier et al., 2009[Barrier, N., Rueff, J. M., Lepetit, M. B., Contreras-Garcia, J., Malo, S. & Raveau, B. (2009). Solid State Sci. 11, 289-293.]).

2. Structural commentary

All atoms in the asymmetric unit, viz. one Cd site, two Te sites and five O sites, are located on general Wyckoff positions 4 e (site symmetry 1). The cadmium atom is coordinated by seven oxygen atoms with distances in a range of 2.235 (3)–2.688 (3) Å. The average Cd—O bond length is 2.389 Å, which is in accordance with the sum of ionic radii for CdII (CN 7; 1.17 Å) and O (CN 3; 1.22 Å) compiled by Shannon (1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]). The bond-valence sum (BVS; Brown, 2002[Brown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press.]) of Cd is 2.07 valence units (v.u.) using the values of Brese & O'Keeffe (1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]) for calculation. The [CdO7] polyhedron is best described as a distorted penta­gonal bipyramid (Fig. 1[link]). The [CdO7] polyhedra are connected to each other by sharing three edges with other [CdO7] units, thereby forming 2[CdO6/2O1/1] layers oriented parallel to (100) with the CdII atoms located at x ≃ 0;1.

[Figure 1]
Figure 1
The [CdO7] polyhedron in the crystal structure of β-CdTe2O5. Displacement ellipsoids are drawn at the 90% probability level. Symmetry codes refer to Table 1[link].

The two tellurium(IV) atoms are both coordinated by four oxygen atoms with three of them being closer than 2 Å (Table 1[link]) and the fourth one at a distance of 2.285 (3) Å (Te1) and 2.204 (3) Å (Te2), respectively. The oxygen atoms are located to one side of the TeIV atoms due to the large amount of space the 5s2 electron lone pair requires. The corresponding coordination polyhedra can be derived from a trigonal bipyramid, [ΨTeO4], with the lone pair occupying one of the equatorial positions in each case. The shapes of the polyhedra without the contribution of the lone pair correspond to [TeO4] bis­phenoids (Fig. 2[link]). The bond-valence sums for the tellurium(IV) atoms were calculated to be 4.15 and 4.10 v.u. for Te1 and Te2, respectively, using the values of Brese & O'Keeffe (1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]). When applying the revised parameters of Mills & Christy (2013[Mills, S. J. & Christy, A. G. (2013). Acta Cryst. B69, 145-149.]), BVS of 3.94 and 3.92 v.u. were obtained.

Table 1
Comparison of Te—O and M—O (M = Cd, Ca) bond lengths (Å) in the isotypic β-CdTe2O5 and -CaTe2O5 structures

  β-CdTe2O5 -CaTe2O5a
Te1—O2 1.843 (3) 1.832 (4)
Te1—O1 1.875 (3) 1.852 (4)
Te1—O3 1.991 (3) 1.980 (5)
Te1—O4 2.285 (3) 2.450 (5)
Te2—O4i 1.864 (3) 1.854 (4)
Te2—O5 1.897 (3) 1.898 (4)
Te2—O3 1.990 (3) 2.009 (5)
Te2—O5ii 2.204 (5) 2.178 (5)
M1—O1iii 2.235 (3) 2.305 (4)
M1—O2iv 2.238 (3) 2.326 (4)
M1—O1 2.256 (3) 2.360 (5)
M1—O2v 2.296 (3) 2.358 (5)
M1—O3 2.424 (3) 2.476 (5)
M1—O4v 2.589 (3) 2.554 (5)
M1—O4iii 2.688 (3) 2.682 (5)
(a) Lattice parameters: a = 9.382 (2), b = 5.7095 (14), c = 11.132 (3) Å, β = 115.109 (4)°, V = 539.95 Å3 (Weil & Stöger, 2008[Weil, M. & Stöger, B. (2008). Acta Cryst. C64, i79-i81.]). [Symmetry codes: (i) x, −y + [{1\over 2}], z − [{1\over 2}]; (ii) −x + 1, −y + 1, −z + 1; (iii) −x, y + [{1\over 2}], −z + 1; (iv) −x, −y + 1, −z + 1; (v) x, y + 1, z.]
[Figure 2]
Figure 2
The [TeO4] polyhedra in the crystal structure of β-CdTe2O5. Displacement ellipsoids are drawn at the 90% probability level. Symmetry codes refer to Table 1[link].

The [TeO4] polyhedra are connected to each other to form layers oriented parallel to (100). These layers have a distinct undulating shape (Fig. 3[link]) and are built up by chains of [Te1O4] and [Te2O4] units arranged alternately by sharing corners with two neighbours. These chains are cross-linked by two [Te2O4]-polyhedra by sharing an edge consisting of two O5 atoms. The [Te1O4] units are located very close to the Cd–O layer and share edges with three [CdO7] polyhedra and one corner with a fourth one. The [Te2O4] units are positioned in the centre of the layer and only share two corners with three [CdO7] polyhedra. The rather loose arrangement of [TeO4] units in the layer can be explained by the stereochemically active 5s2 electron lone pair situated at each of the two TeIV atoms. The space requirements of the non-bonding electron pairs lead to the undulating shape of the layer, which results in the presence of large channels in the structure, which are oriented parallel to [011] (Fig. 4[link]). Smaller channels are also realized and propagate parallel to [010] (Fig. 5[link]).

[Figure 3]
Figure 3
The crystal structure of β-CdTe2O5 in a projection along [001]. Displacement ellipsoids are drawn at the 90% probability level.
[Figure 4]
Figure 4
Large channels in the β-CdTe2O5 structure running parallel to [011]. Displacement ellipsoids are drawn at the 90% probability level.
[Figure 5]
Figure 5
Smaller channels in the β-CdTe2O5 structure running parallel to [010]. Displacement ellipsoids are drawn at the 90% probability level.

The arrangement of such an undulating 2[Te2O5]2– layer was reported for the first time for the -polymorph of CaTe2O5 (Weil & Stöger, 2008[Weil, M. & Stöger, B. (2008). Acta Cryst. C64, i79-i81.]), which is isotypic with β-CdTe2O5. CaTe2O5 is likewise reported to crystallize in a mica-like form from the melt (Redman et al., 1970[Redman, M. J., Chen, J. H., Binnie, W. P. & Mallo, W. J. (1970). J. Am. Chem. Soc. 53, 645-648.]). Although several high-temperature polymorphs have also been reported for this phase (Tripathi et al., 2001[Tripathi, S. N., Mishra, R., Mathews, M. D. & Namboodiri, P. N. (2001). Powder Diffr. 16, 205-211.]), -CaTe2O5 is the only polymorph for which a crystal-structure determination has been performed (Weil & Stöger, 2008[Weil, M. & Stöger, B. (2008). Acta Cryst. C64, i79-i81.]; Barrier et al., 2009[Barrier, N., Rueff, J. M., Lepetit, M. B., Contreras-Garcia, J., Malo, S. & Raveau, B. (2009). Solid State Sci. 11, 289-293.]). The close similarity between the two structures can be explained by the very similar ionic radii (Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]) of Ca (CN 7: 1.20 Å) and Cd (CN 7: 1.17 Å). The corresponding bond lengths in the isotypic structures (Table 1[link]) differ only slightly with one exception: the Te1—O4 bond, which is 0.165 Å longer in the Ca structure, shows by far the biggest difference. A qu­anti­tative comparison between β-CdTe2O5 and -CaTe2O5 was carried out using the compstru software (de la Flor et al., 2016[Flor, G. de la, Orobengoa, D., Tasci, E., Perez-Mato, J. M. & Aroyo, M. I. (2016). J. Appl. Cryst. 49, 653-664.]), available at the Bilbao Crystallographic Server (Aroyo et al., 2006[Aroyo, M. I., Perez-Mato, J. M., Capillas, C., Kroumova, E., Ivantchev, S., Madariaga, G., Kirov, A. & Wondratschek, H. (2006). Z. Kristallogr. 221, 15-27.]). The absolute distances between paired atoms are 0.0303 Å for Cd/Ca1, 0.0628 Å for Te1, 0.0178 Å for Te2, 0.1426 Å for O1, 0.0791 Å for O2, 0.0384 Å for O3, 0.0788 Å for O4 and 0.0635 Å for O5. The degree of lattice distortion is 0.0118, the arithmetic mean of the distance between paired atoms is 0.0642 Å, and the measure of similarity is 0.077.

3. Synthesis and crystallization

Crystals of CdTe2O5 were obtained under hydro­thermal conditions. The reactants, 0.1890 g (0.613 mmol) Cd(NO3)3·2H2O, 0.0484 g (0.303 mmol) TeO2, 0.0710 g (0.309 mmol) H6TeO6 and 0.12 g (1.8 mmol) 25%wt NH3(aq) were weighed into a small teflon vessel with a volume of ca 3 ml. Deionized water was added until the vessel was filled to about two thirds of its volume. Then the vessel was heated to 483 K in a steel autoclave for 7 d under autogenous pressure. Afterwards, the autoclave was cooled to room temperature within about 4 h. The reaction product was a light-yellow, almost white solid. In the X-ray powder pattern of the bulk, α-Cd3TeO6 (Burckhardt et al., 1982[Burckhardt, H.-G., Platte, C. & Trömel, M. (1982). Acta Cryst. B38, 2450-2452.]) and β-CdTe2O5 were found. Under a polarising microscope a few small shiny colourless blocks of β-CdTe2O5 were isolated for single-crystal measurements.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Atom labels and starting coord­inates for refinement were adopted from the isotypic -CaTe2O5 structure (Weil & Stöger, 2008[Weil, M. & Stöger, B. (2008). Acta Cryst. C64, i79-i81.]).

Table 2
Experimental details

Crystal data
Chemical formula CdTe2O5
Mr 447.60
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 9.4535 (5), 5.5806 (3), 10.8607 (5)
β (°) 114.430 (1)
V3) 521.67 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 15.08
Crystal size (mm) 0.10 × 0.06 × 0.05
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.600, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 9236, 1827, 1462
Rint 0.045
(sin θ/λ)max−1) 0.747
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.045, 1.00
No. of reflections 1827
No. of parameters 73
Δρmax, Δρmin (e Å−3) 1.20, −1.04
Computer programs: APEX3 (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ATOMS (Dowty, 2006[Dowty, E. (2006). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ATOMS (Dowty, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Cadmium pentaoxidoditellurate(IV) top
Crystal data top
CdTe2O5F(000) = 768
Mr = 447.60Dx = 5.699 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.4535 (5) ÅCell parameters from 2645 reflections
b = 5.5806 (3) Åθ = 2.4–32.1°
c = 10.8607 (5) ŵ = 15.08 mm1
β = 114.430 (1)°T = 100 K
V = 521.67 (5) Å3Block, colourless
Z = 40.10 × 0.06 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
1462 reflections with I > 2σ(I)
ω– and φ–scanRint = 0.045
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 32.1°, θmin = 3.8°
Tmin = 0.600, Tmax = 0.746h = 1414
9236 measured reflectionsk = 88
1827 independent reflectionsl = 1516
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: isomorphous structure methods
R[F2 > 2σ(F2)] = 0.024 w = 1/[σ2(Fo2) + (0.0171P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.045(Δ/σ)max = 0.001
S = 1.00Δρmax = 1.20 e Å3
1827 reflectionsΔρmin = 1.03 e Å3
73 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Te10.25911 (3)0.32034 (5)0.72297 (3)0.01195 (7)
Te20.34935 (3)0.64780 (5)0.49078 (3)0.01181 (7)
Cd10.01900 (4)0.79762 (6)0.63620 (3)0.01416 (8)
O10.1293 (4)0.4948 (5)0.7821 (3)0.0141 (6)
O20.1216 (4)0.1359 (5)0.5843 (3)0.0188 (7)
O30.2239 (4)0.5960 (5)0.5973 (3)0.0163 (7)
O40.2081 (4)0.0287 (6)0.8466 (3)0.0162 (7)
O50.4791 (4)0.3979 (6)0.5962 (3)0.0176 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Te10.00997 (13)0.01304 (14)0.01191 (13)0.00123 (10)0.00360 (10)0.00069 (10)
Te20.01214 (13)0.01187 (13)0.01070 (13)0.00178 (10)0.00399 (10)0.00077 (10)
Cd10.01824 (16)0.01311 (16)0.01254 (15)0.00370 (12)0.00778 (13)0.00255 (12)
O10.0171 (16)0.0124 (15)0.0175 (15)0.0035 (12)0.0116 (13)0.0054 (12)
O20.0256 (18)0.0146 (16)0.0109 (15)0.0055 (14)0.0023 (13)0.0008 (13)
O30.0199 (17)0.0142 (15)0.0209 (16)0.0035 (13)0.0144 (14)0.0032 (13)
O40.0162 (16)0.0142 (15)0.0159 (15)0.0016 (13)0.0044 (13)0.0068 (13)
O50.0162 (16)0.0198 (16)0.0188 (16)0.0060 (13)0.0094 (13)0.0072 (13)
Geometric parameters (Å, º) top
Te1—O21.843 (3)Te2—Te2ii3.2253 (6)
Te1—O11.875 (3)Cd1—O1iii2.235 (3)
Te1—O31.991 (3)Cd1—O2iv2.238 (3)
Te1—O42.285 (3)Cd1—O2v2.296 (3)
Te2—O4i1.864 (3)Cd1—O12.255 (3)
Te2—O51.897 (3)Cd1—O32.424 (3)
Te2—O31.990 (3)Cd1—O4v2.589 (3)
Te2—O5ii2.204 (3)Cd1—O4iii2.688 (3)
O2—Te1—O1103.25 (15)O1iii—Cd1—O3167.39 (11)
O2—Te1—O390.59 (13)O2iv—Cd1—O393.09 (12)
O1—Te1—O383.46 (12)O2v—Cd1—O383.66 (11)
O2—Te1—O480.40 (12)O1—Cd1—O366.67 (10)
O1—Te1—O480.89 (12)O1iii—Cd1—O4v73.85 (11)
O3—Te1—O4159.60 (12)O2iv—Cd1—O4v138.57 (10)
O4i—Te2—O5100.25 (14)O2v—Cd1—O4v66.40 (10)
O4i—Te2—O391.11 (13)O1—Cd1—O4v78.65 (10)
O5—Te2—O386.24 (13)O3—Cd1—O4v94.31 (10)
O4i—Te2—O5ii88.71 (13)Te1—O1—Cd1vi119.15 (14)
O5—Te2—O5ii76.52 (13)Te1—O1—Cd1109.06 (13)
O3—Te2—O5ii162.43 (12)Cd1vi—O1—Cd1117.64 (13)
O4i—Te2—Te2ii95.12 (10)Te1—O2—Cd1iv133.44 (16)
O5—Te2—Te2ii41.63 (9)Te1—O2—Cd1vii119.05 (14)
O3—Te2—Te2ii127.79 (9)Cd1iv—O2—Cd1vii105.95 (12)
O5ii—Te2—Te2ii34.89 (8)Te1—O3—Te2122.67 (15)
O1iii—Cd1—O2iv98.69 (12)Te1—O3—Cd199.09 (12)
O1iii—Cd1—O2v95.20 (12)Te2—O3—Cd1138.18 (14)
O2iv—Cd1—O2v74.05 (13)Te2viii—O4—Te1128.18 (16)
O1iii—Cd1—O1105.89 (7)Te2viii—O4—Cd1vii118.13 (14)
O2iv—Cd1—O1140.67 (11)Te1—O4—Cd1vii94.15 (10)
O2v—Cd1—O1131.97 (12)Te2—O5—Te2ii103.48 (13)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1, z+1; (iii) x, y+1/2, z+3/2; (iv) x, y+1, z+1; (v) x, y+1, z; (vi) x, y1/2, z+3/2; (vii) x, y1, z; (viii) x, y+1/2, z+1/2.
Comparison of Te—O and M—O (M = Cd, Ca) bond lengths (Å) in the isotypic β-CdTe2O5 and ε-CaTe2O5 structures top
β-CdTe2O5ε-CaTe2O5a
Te1—O21.843 (3)1.832 (4)
Te1—O11.875 (3)1.852 (4)
Te1—O31.991 (3)1.980 (5)
Te1—O42.285 (3)2.450 (5)
Te2—O4i1.864 (3)1.854 (4)
Te2—O51.897 (3)1.898 (4)
Te2—O31.990 (3)2.009 (5)
Te2—O5ii2.204 (5)2.178 (5)
M1—O1iii2.235 (3)2.305 (4)
M1—O2iv2.238 (3)2.326 (4)
M1—O12.256 (3)2.360 (5)
M1—O2v2.296 (3)2.358 (5)
M1—O32.424 (3)2.476 (5)
M1—O4v2.589 (3)2.554 (5)
M1—O4iii2.688 (3)2.682 (5)
(a) Lattice parameters: a = 9.382 (2), b = 5.7095 (14), c = 11.132 (3) Å, β = 115.109 (4)°, V = 539.95 Å3 (Weil & Stöger, 2008). [Symmetry codes: (i) x, -y + 1/2, z - 1/2; (ii) -x + 1, -y + 1, -z + 1; (iii) -x, y + 1/2, -z + 1; (iv) -x, -y + 1, -z + 1; (v) x, y + 1, z.]
 

Acknowledgements

The X-ray centre of the TU Wien is acknowledged for financial support and for providing access to the single-crystal and powder X-ray diffractometers.

References

First citationAroyo, M. I., Perez-Mato, J. M., Capillas, C., Kroumova, E., Ivantchev, S., Madariaga, G., Kirov, A. & Wondratschek, H. (2006). Z. Kristallogr. 221, 15–27.  Web of Science CrossRef CAS Google Scholar
First citationBarrier, N., Rueff, J. M., Lepetit, M. B., Contreras-Garcia, J., Malo, S. & Raveau, B. (2009). Solid State Sci. 11, 289–293.  Web of Science CrossRef ICSD CAS Google Scholar
First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press.  Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurckhardt, H.-G., Platte, C. & Trömel, M. (1982). Acta Cryst. B38, 2450–2452.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationDowty, E. (2006). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA.  Google Scholar
First citationFlor, G. de la, Orobengoa, D., Tasci, E., Perez-Mato, J. M. & Aroyo, M. I. (2016). J. Appl. Cryst. 49, 653–664.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGorbenko, V. M., Kudzin, A. Y., Sadovskaja, L. J., Sokoljanskii, G. X. & Avramenko, V. P. (1990). Ferroelectrics, 110, 47–50.  CrossRef CAS Google Scholar
First citationKaraduman, G., Ersundu, A. E., Çelikbilek, M., Solak, N. & Aydin, S. (2012). J. Eur. Ceram. Soc. 32, 603–610.  CrossRef CAS Google Scholar
First citationKrämer, V. & Brandt, G. (1985). Acta Cryst. C41, 1152–1154.  CrossRef ICSD Web of Science IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMills, S. J. & Christy, A. G. (2013). Acta Cryst. B69, 145–149.  CrossRef CAS IUCr Journals Google Scholar
First citationNawash, J. (2015). MRS Proceedings, 1799, 13–18.  CrossRef Google Scholar
First citationPoupon, M., Barrier, N., Petit, S. & Boudin, S. (2017). Dalton Trans. 46, 1927–1935.  CrossRef CAS PubMed Google Scholar
First citationRedman, M. J., Chen, J. H., Binnie, W. P. & Mallo, W. J. (1970). J. Am. Chem. Soc. 53, 645–648.  CAS Google Scholar
First citationRobertson, D. S., Shaw, N. & Young, I. M. (1978). J. Mater. Sci. 13, 1986–1990.  CrossRef CAS Google Scholar
First citationSadovskaya, L. J., Dudnik, E. F., Scherbina, W. A. & Grzhegorzhevskii, O. A. (1983). Ferroelectrics, 48, 109–112.  CrossRef CAS Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTripathi, S. N., Mishra, R., Mathews, M. D. & Namboodiri, P. N. (2001). Powder Diffr. 16, 205–211.  Web of Science CrossRef CAS Google Scholar
First citationWeil, M. (2004). Solid State Sci. 6, 29–37.  Web of Science CrossRef ICSD CAS Google Scholar
First citationWeil, M. & Stöger, B. (2008). Acta Cryst. C64, i79–i81.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWeil, M. & Veyer, T. (2018). Acta Cryst. E74, 1561–1564.  CrossRef ICSD IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZagorac, D., Müller, H., Ruehl, S., Zagorac, J. & Rehme, S. (2019). J. Appl. Cryst. 52, 918–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds