research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hydro­thermal synthesis and crystal structure of poly[bis­­(μ3-3,4-di­amino­benzoato)manganese], a layered coordination polymer

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Government College University, Faisalabad 38000, Pakistan, bDepartment of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, England, cDepartment of Chemistry and Biochemistry, The University of Texas at Austin, 1 University Station, Austin, Texas 78712, USA, and dDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk

Edited by H. Ishida, Okayama University, Japan (Received 15 May 2020; accepted 20 May 2020; online 22 May 2020)

The hydro­thermal synthesis and crystal structure of the title two-dimensional coordination polymer, poly[bis­(μ3-3,4-di­amino­benzoato-κ3N3,O,O′)manganese(II)], [Mn(C7H7N2O2)2]n, are described. The Mn2+ cation (site symmetry [\overline{1}]) adopts a tetra­gonally elongated trans-MnN2O4 octa­hedral coordination geometry and the μ3-N,O,O′ ligand (bonding from both carboxyl­ate O atoms and the meta-N atom) links the metal ions into infinite (10[\overline{1}]) layers. The packing is consolidated by intra-layer N—H⋯O and inter-layer N—H⋯N hydrogen bonds. The structure of the title compound is compared with other complexes containing the C7H7N2O2 anion and those of the related M(C8H8NO2)2 (M = Mn, Co, Ni, Zn) family, where C8H8NO2 is the 3-amino-4-methyl­benzoate anion.

1. Chemical context

The benzoate anion, C7H5O2, is a classic ligand in coordin­ation chemistry, with over 1500 crystal structures reported in the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for complexes of first-row transition metals, which include monodentate (κO), chelating (κ2O,O′) and bridging (μ2-O,O′) modes for the ligand [for ligand bonding-mode notation, see Janicki et al. (2017[Janicki, R., Mondry, A. & Starynowicz, P. (2017). Coord. Chem. Rev. 340, 98-133.])]. Functionalized benzoate derivatives add further structural variety: for example, –NH2 substituents at the ortho, meta and/or para positions of the benzene ring can form or accept hydrogen bonds with respect to nearby acceptor or donor groups and/or bond to another metal ion (i.e., as a possible μ2-N,O or μ3-N,O,O′ bridging ligand).

[Scheme 1]

As part of our ongoing studies in this area (Khosa et al., 2015[Khosa, M. K., Wood, P. T., Humphreys, S. M. & Harrison, W. T. A. (2015). J. Struct. Chem. 56, 1130-1135.]), we now describe the hydro­thermal synthesis and crystal structure of the title compound (I)[link], where C7H7N2O2 is the 3,4-di­amino­benzoate (dbz) anion.

2. Structural commentary

The title complex (I)[link] consists of an Mn2+ cation located on a crystallographic inversion centre and one deprotonated dbz ligand with its atoms lying on general positions (Fig. 1[link]), which of course generates the overall 1:2 metal to ligand ratio and ensures charge balance. The C7/O1/O2 carboxyl­ate group of the ligand is rotated from the plane of the C1–C6 aromatic ring by 13.5 (2)° and the C—O bonds [C7—O1 = 1.261 (3) Å and C7—O2 = 1.277 (3) Å] are of similar length, indicating substantial electronic delocalization. The C2—C3 and C5—C6 bonds (mean = 1.383 Å) are marginally shorter than the other bonds in the benzene ring (mean = 1.396 Å), which can be related to resonance of the para-N atom lone pair with the carboxyl­ate group (Mukombiwa & Harrison, 2020[Mukombiwa, E. T. & Harrison, W. T. A. (2020). Acta Cryst. E76, 527-533.]). This is also presumably reflected in the fact that the C4—N2 bond length [1.413 (3) Å] is slightly shorter than C3—N1 [1.432 (3) Å]. Even so, it is noteworthy that the bond-angle sums about atoms N1 and N2 of 329.8 and 335.8°, respectively, are indicative of a significant tendency towards sp3 hybridization of the N atoms, i.e., localization of the lone pairs. In terms of the non-hydrogen atoms attached to the benzene ring, N1 and N2 deviate slightly from the mean plane of the ring in opposite directions by −0.023 (3) and 0.024 (3) Å, respectively, whereas atom C7 shows a larger deviation of −0.077 (3) Å.

[Figure 1]
Figure 1
Fragment of the structure of (I)[link] showing 50% displacement ellipsoids emphasizing the μ3-N,O,O′ ligand bonding mode and displaying hydrogen bonds as double-dashed lines. [Symmetry codes as in Table 1[link]; additionally: (iv) −x + [{3\over 2}], y + [{1\over 2}], −z + [{1\over 2}].]

The dbz ligand bonds to three different metal ions from both of its carboxyl­ate O atoms and also from its meta-N atom (Fig. 1[link]), i.e., μ3-N,O,O′ mode. The preference for the meta-N atom to bond to the metal ion (rather than the para-N atom) can be related to the resonance effect noted in the previous paragraph. With respect to the carboxyl­ate group, the metal ion bonded to O1 is displaced in an `upwards' sense by 1.046 (7) Å and the other (bonded to O2) is displaced `downwards' by −1.651 (6) Å.

Crystal symmetry generates a centrosymmetric trans-MnN2O4 elongated octa­hedron for the metal ion, in which the Mn1—N1 bond length of 2.3065 (19) Å is distinctly longer than the Mn1—O1 [2.1591 (14) Å] and Mn1—O2 [2.2062 (15) Å] bonds. The manganese ion presumably has a high-spin 3d5 configuration, thus the distortion of the octa­hedron cannot be electronic in nature (i.e.: a Jahn–Teller effect) and might arise for steric reasons. The angular variance (Robinson et al., 1971[Robinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567-570.]) of the cis X—Mn—Y (X, Y = N, O) bond angles is (7.7°)2, indicating relatively little angular distortion from the ideal values of 90°; the minimum and maximum angles are 86.75 (6) and 93.25 (6)°, respectively. The trans bond angles are constrained by symmetry to be 180°. The bond-valence sum (in valence units) (Brown & Altermatt, 1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]) for the metal ion is 1.97, in very good agreement with the expected value of 2.00 for Mn2+.

In the extended structure of (I)[link], the μ3 bridging ligand links the metal ions into infinite (10[\overline{1}]) sheets (Fig. 2[link]). These sheets can be decomposed into [010] chains of octa­hedra linked by the bridging C7/O1/O2 carboxyl­ate groups [shortest Mn⋯Mn(x, y + 1, z) separation = 4.4212 (2) Å], with connectivity in the [101] direction achieved via the benzene ring of the ligands and their meta-N atoms [shortest Mn⋯Mn(−x + [{1\over 2}], y + [{1\over 2}], −z + [{1\over 2}]) = 8.1520 (4) Å].

[Figure 2]
Figure 2
Packing diagram for (I)[link] viewed down [010], showing the (10[\overline{1}]) layers (seen edge-on) with the MnN2O4 octa­hedra shown in polyhedral representation and intra­layer N—H⋯O and inter­layer N—H⋯N hydrogen bonds shown as yellow and green lines, respectively.

Hydrogen bonding helps to consolidate the structure of (I)[link]: the para –N2H2 group forms an intra-sheet N2—H4N⋯O2iii bond (Fig. 1[link] and Table 1[link], where symmetry codes are defined) but also participates in an inter-sheet N2—H3N⋯N2ii link, i.e., N2 `accepts its own hydrogen bond' from an adjacent symmetry related –N2H2 group and C(2) infinite chains propagating in the [010] direction arise in the crystal (Figs. 1[link] and 2[link]) with adjacent N atoms related by the 21 screw axis; it is notable that the –NH2 groups in adjacent layers are aligned opposite to each other to facilitate the formation of this inter-sheet hydrogen bond. As well as forming a coordinate bond to the metal ion from N1, the meta –N1H2 group forms an N1—H1N⋯O1i intra-sheet hydrogen bond while the N1—H2N group does not participate in a hydrogen bond, perhaps due to steric crowding. There are no significant aromatic ππ stacking inter­actions in the crystal of (I)[link], the shortest centroid–centroid separation between C1–C6 rings being 4.4211 (13) Å.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.88 (3) 2.19 (3) 3.022 (3) 156 (2)
N2—H3N⋯N2ii 0.85 (3) 2.26 (3) 3.106 (3) 178 (2)
N2—H4N⋯O2iii 0.88 (3) 2.15 (3) 3.008 (2) 167 (2)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, z+{\script{1\over 2}}].

3. Hirshfeld surface analysis

In order to gain further insight into non-covalent inter­actions in the crystal of (I)[link], the Hirshfeld surface and two-dimensional fingerprint plots were calculated using CrystalExplorer (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net]) following the approach recently described by Tan et al. (2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]). The Hirshfeld surface of the dbzanion in (I)[link] (see supporting information) largely shows the expected red spots of varying intensity corresponding to close contacts resulting from the O—Mn and N—Mn coordinate bonds and N—H⋯O and N—H⋯N hydrogen bonds described above. The Hirshfeld surface mapped onto dnorm for the manganese cation in (I)[link] (Fig. 3[link]) is a distinctive `dimpled cube', with the intense red spots (short inter­actions) corresponding to its coordinate bonds, which correlates nicely with its octa­hedral coordination geometry.

[Figure 3]
Figure 3
Hirshfeld surface mapped on dnorm for the Mn2+ cation in (I)[link].

The most important outward (i.e., non-reciprocal) percentage contributions of the different type of contacts for the anion and the cation are listed in Table 2[link]. It may be seen that H⋯H (van der Waals) contacts are by far the most significant contributor for the anion followed by C⋯H and H⋯C contacts (total contribution = 59.9%). The contacts associated with the hydrogen bonds, i.e., H⋯N (donor), H⋯O (donor), N⋯H (acceptor) and O⋯H (acceptor) collectively account for some 24.2% of the surface. Finally, the coordinate bonds to the metal ion (O—Mn and N—Mn), despite their presumed importance in establishing the crystal structure, account for a modest 7.2% of the anion's surface.

Table 2
Hirshfeld surface contact percentages for (I)

H⋯H 33.6
H⋯C 10.2
H⋯O 8.6
H⋯N 2.5
H⋯Mn 0.9
C⋯H 16.1
C⋯C 3.1
O⋯Mn 5.2
O⋯H 10.6
N⋯H 2.5
N⋯Mn 2.0
Mn⋯O 62.0
Mn⋯N 19.3
Mn⋯H 18.8
All contacts are `non-reciprocal' (i.e., outward facing).

As might be expected, the Mn—O contacts (62.0%) for the cation dominate its Hirshfeld surface, followed by Mn—N (19.3%), but the ratio of these (∼3.2:1) deviates significantly from the simple 2:1 ratio that would reflect the four Mn—O bonds and two Mn—N bonds. The high percentage of Mn⋯H contacts (18.8%) is notable: these occur at the corners of its cube-like Hirshfeld surface (Fig. 3[link]) and seem to arise from the proximity to the metal ion of the two H atoms attached to N1 [Mn1⋯H1N = 2.58 (3); Mn1⋯H2N = 2.68 (3) Å] and might be repulsive in nature. For further discussion of short metal⋯hydrogen contacts in coordination compounds and their Hirshfeld surfaces, see Pinto et al. (2019[Pinto, C. B., Dos Santos, L. H. R. & Rodrigues, B. L. (2019). Acta Cryst. C75, 707-716.]).

The wing-like two-dimensional fingerprint plot for the manganese cation in (I)[link] (Fig. 4[link]) shows two prominent features: the spike ending at (di, de) = (∼1.14, ∼1.06 Å) and extending backwards corresponds to the Mn—O coordinate bonds and the (1.18, 1.14 Å) feature just separated from it equates with the Mn—N bonds. The Mn⋯H contacts are overlapped with the Mn—O and Mn—N contacts in the main body of the `wing' with the shortest Mn⋯H contact at about (1.40, 1.25 Å), which correlates well with the short Mn⋯H contacts noted in the previous paragraph.

[Figure 4]
Figure 4
Two-dimensional Hirshfeld fingerprint plot for the Mn2+ cation in (I)[link].

4. Database survey

The structure of (I)[link] may firstly be compared with the isostructural M(C8H8NO2)2 family [M = Mn (CCDC refcode ULEZUI) (II), Co (ULIBAU), Ni (ULIBEY) and Zn (ULIBIC)], where C8H8NO2 is the 3-amino-4-methyl­benzoate anion (Khosa et al., 2015[Khosa, M. K., Wood, P. T., Humphreys, S. M. & Harrison, W. T. A. (2015). J. Struct. Chem. 56, 1130-1135.]). These phases contain μ3-N,O,O′ ligands and centrosymmetric MN2O4 octa­hedra, which generate very similar polymeric layers to those found in (I)[link]. In (II), the sheets propagate parallel to the (100) plane of the monoclinic cell due to a different choice of unit-cell setting (see Refinement section). The major difference arises with respect to the para-substituent: in (II) the methyl groups in adjacent (100) layers are laterally shifted with respect to each other (Fig. 5[link]) to avoid an unfavourable close steric contact and there are no directional inter-sheet inter­actions beyond normal van der Waals' contacts, which compares to the inter-layer N—H⋯N links already mentioned for (I)[link].

[Figure 5]
Figure 5
Packing diagram (redrawn from Khosa et al., 2015[Khosa, M. K., Wood, P. T., Humphreys, S. M. & Harrison, W. T. A. (2015). J. Struct. Chem. 56, 1130-1135.]) for (II) viewed down [010], with the MnN2O4 octa­hedra shown in polyhedral representation and N—H⋯X hydrogen bonds shown as yellow lines. Note how the layers, which propagate parallel to the (100) plane in this setting of the space group, are laterally shifted compared to those in Fig. 2[link]: the shortest inter-layer N⋯N separation in (I)[link] is 3.106 (3) Å (via the N1—H1N⋯N1 hydrogen bond) compared to the shortest inter-layer C⋯C separation of 3.948 (2) Å in (II).

Despite its potential as a polyfunctional bridging ligand, just five crystal structures of complexes of the 3,4-di­amino­benzoate anion are reported in the Cambridge Structural Database as of March 2020 with sodium (BEHJEE: Rzaczyńska et al., 2003[Rzaczyńska, Z., Bartyzel, A. & Głowiak, T. (2003). J. Coord. Chem. 56, 77-83.]), zinc (MIWSES; Fernández-Palacio et al., 2014[Fernández-Palacio, F., Restrepo, J., Gálvez, S., Gómez-Sal, P. & Mosquera, M. E. G. (2014). CrystEngComm, 16, 3376-3386.]), tin (XUPRUV and XUPSAC; Pruchnik et al., 2002[Pruchnik, F. P., Bańbuła, M., Ciunik, Z., Chojnacki, H., Latocha, M., Skop, B., Wilczok, T., Opolski, A., Wietrzyk, J. & Nasulewicz, A. (2002). Eur. J. Inorg. Chem. pp. 3214-3221.]) and neodymium (YENKOR; Rzaczyńska et al., 1994[Rzaczyńska, Z., Belskii, V. K. & Zavodnik, V. E. (1994). Pol. J. Chem. 68, 1639-1647.]). Key data for (I)[link] and these structures are summarized in Table 3[link], which indicates a wide variety of metal coordination polyhedra, ligand bonding modes and topologies. Unlike the isostructural manganese and zinc phases in the M(C8H8NO2)2 family, MIWSES features a water mol­ecule bonded to the trigonal–bipyramidally coordinated zinc ion and has a quite different overall structure to (I)[link]. It may finally be noted that (I)[link] represents the first reported example of a μ3-N,O,O′ bonding mode for the dbz anion.

Table 3
Structural features of complexes containing the C7H7N2O2 anion

Code/refcode Metal coordination polyhedron Ligand bonding mode Topology
(I) MnN2O6 octa­hedron μ3-N,O,O Layered
BEHJEE NaO6 octa­hedrona κO Chain
MIWSES ZnO3N2 trigonal bipyramida μ2-N,O Chain
XUPRUV SnC3O tetra­hedronb κO Mol­ecular
XUPSAC SnC3NO trigonal bipyramid μ2-N,O Chain
YENKOR NdO9 capped square anti­prisma κO and κ2O,O Mol­ecular
Notes: (a) Some of the ligands are water mol­ecules of crystallization; (b) a short `secondary' Sn⋯O contact (2.68 Å) is also present.

5. Synthesis and crystallization

A mixture of 99 mg (0.50 mmol) of MnCl2·4H2O and 152 mg (1.00 mmol) of 3,4-di­amino­benzoic acid were added to 1.0 ml of 1 M KOH under stirring. The resulting mixture was heated to 423 K in a 23 ml Teflon-lined autoclave for 10 h. The autoclave was then removed from the oven and cooled to room temperature over several hours and opened. Colourless plates of (I)[link] were recovered by vacuum filtration and rinsed with acetone and dried.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The N-bound H atoms were located in difference maps and their positions were freely refined. The C-bound H atoms were geometrically placed (C—H = 0.95 Å) and refined as riding atoms. The constraint Uiso(H) = 1.2Ueq(carrier) was applied in all cases. The standard setting of the unit cell for (I)[link] (i.e., space group P21/c) in which the polymeric layers would propagate in the (100) plane, as also found for compound (II), has a = 13.975, b = 4.421, c = 15.693 Å and β = 134.77°, but P21/n was chosen here to avoid refinement problems associated with the very obtuse β angle: compare Feast et al. (2009[Feast, G. C., Haestier, J., Page, L. W., Robertson, J., Thompson, A. L. & Watkin, D. J. (2009). Acta Cryst. C65, o635-o638.]).

Table 4
Experimental details

Crystal data
Chemical formula [Mn(C7H7N2O2)2]
Mr 357.23
Crystal system, space group Monoclinic, P21/n
Temperature (K) 180
a, b, c (Å) 11.5171 (5), 4.4212 (2), 13.9752 (7)
β (°) 104.698 (3)
V3) 688.32 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.99
Crystal size (mm) 0.23 × 0.10 × 0.05
 
Data collection
Diffractometer Nonius KappaCCD
Absorption correction Multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.])
Tmin, Tmax 0.869, 0.983
No. of measured, independent and observed [I > 2σ(I)] reflections 5289, 1345, 1105
Rint 0.042
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.074, 1.05
No. of reflections 1345
No. of parameters 119
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.27, −0.28
Computer programs: COLLECT (Nonius, 1998[Nonius (1998). COLLECT data collection software. Nonius BV, Delft, The Netherlands.]), HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SORTAV (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), ATOMS (Shape Software, 2007[Shape Software (2007). ATOMS. Shape Software, Kingsport, Tennessee, USA.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997), SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and ATOMS (Shape Software, 2007); software used to prepare material for publication: publCIF (Westrip, 2010).

Poly[bis(µ3-3,4-diaminobenzoato-κ3N3,O,O')manganese(II)] top
Crystal data top
[Mn(C7H7N2O2)2]F(000) = 366
Mr = 357.23Dx = 1.724 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.5171 (5) ÅCell parameters from 5315 reflections
b = 4.4212 (2) Åθ = 1.0–26.0°
c = 13.9752 (7) ŵ = 0.99 mm1
β = 104.698 (3)°T = 180 K
V = 688.32 (6) Å3Slab, colourless
Z = 20.23 × 0.10 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
1105 reflections with I > 2σ(I)
ω and φ scansRint = 0.042
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
θmax = 26.0°, θmin = 2.1°
Tmin = 0.869, Tmax = 0.983h = 1413
5289 measured reflectionsk = 55
1345 independent reflectionsl = 1717
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0282P)2 + 0.509P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.074(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.27 e Å3
1345 reflectionsΔρmin = 0.28 e Å3
119 parametersExtinction correction: SHELXL2018/3 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.012 (2)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.0000000.5000000.0000000.01883 (17)
C10.32186 (18)0.0488 (5)0.11717 (15)0.0195 (5)
C20.36414 (18)0.1055 (5)0.20598 (15)0.0198 (5)
H20.3124380.2411530.2280310.024*
C30.48037 (18)0.0642 (5)0.26264 (15)0.0192 (5)
C40.55799 (18)0.1335 (5)0.23063 (16)0.0204 (5)
C50.51634 (19)0.2802 (5)0.13985 (17)0.0254 (5)
H50.5689820.4077070.1157330.030*
C60.39925 (19)0.2419 (5)0.08470 (16)0.0242 (5)
H60.3714840.3482840.0241440.029*
C70.19402 (18)0.0122 (5)0.06079 (14)0.0181 (4)
N10.52161 (17)0.2169 (4)0.35541 (13)0.0205 (4)
H1N0.482 (2)0.387 (6)0.3585 (18)0.025*
H2N0.596 (2)0.262 (6)0.3646 (18)0.025*
N20.67763 (16)0.1663 (5)0.28747 (15)0.0229 (4)
H3N0.716 (2)0.306 (6)0.2669 (18)0.028*
H4N0.681 (2)0.190 (6)0.350 (2)0.028*
O10.13370 (12)0.1975 (3)0.08586 (11)0.0224 (4)
O20.15011 (13)0.1998 (3)0.00841 (11)0.0229 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0190 (3)0.0173 (3)0.0187 (3)0.00075 (19)0.00188 (18)0.00021 (19)
C10.0194 (10)0.0188 (12)0.0196 (10)0.0010 (8)0.0034 (9)0.0023 (8)
C20.0198 (10)0.0176 (11)0.0225 (11)0.0022 (8)0.0064 (9)0.0021 (9)
C30.0198 (10)0.0200 (12)0.0171 (10)0.0027 (8)0.0033 (8)0.0013 (8)
C40.0165 (10)0.0203 (11)0.0238 (11)0.0015 (9)0.0041 (9)0.0039 (9)
C50.0233 (11)0.0276 (13)0.0265 (12)0.0059 (10)0.0088 (9)0.0022 (10)
C60.0258 (11)0.0256 (12)0.0201 (11)0.0009 (10)0.0036 (9)0.0028 (9)
C70.0198 (10)0.0176 (10)0.0168 (10)0.0030 (9)0.0044 (8)0.0042 (9)
N10.0189 (9)0.0182 (10)0.0230 (9)0.0018 (8)0.0027 (8)0.0021 (8)
N20.0185 (9)0.0273 (11)0.0232 (10)0.0037 (8)0.0058 (8)0.0013 (9)
O10.0208 (8)0.0215 (8)0.0234 (8)0.0047 (6)0.0026 (6)0.0013 (6)
O20.0227 (8)0.0232 (8)0.0215 (8)0.0022 (6)0.0031 (6)0.0017 (7)
Geometric parameters (Å, º) top
Mn1—O12.1591 (14)C3—N11.432 (3)
Mn1—O1i2.1591 (14)C4—C51.397 (3)
Mn1—O2ii2.2062 (15)C4—N21.413 (3)
Mn1—O2iii2.2062 (15)C5—C61.383 (3)
Mn1—N1iv2.3065 (19)C5—H50.9500
Mn1—N1v2.3065 (19)C6—H60.9500
C1—C61.391 (3)C7—O11.261 (3)
C1—C21.392 (3)C7—O21.277 (3)
C1—C71.492 (3)N1—H1N0.88 (3)
C2—C31.384 (3)N1—H2N0.86 (3)
C2—H20.9500N2—H3N0.85 (3)
C3—C41.402 (3)N2—H4N0.88 (3)
O1—Mn1—O1i180.0C5—C4—C3118.65 (19)
O1—Mn1—O2ii93.20 (6)C5—C4—N2121.6 (2)
O1i—Mn1—O2ii86.80 (6)C3—C4—N2119.64 (19)
O1—Mn1—O2iii86.80 (6)C6—C5—C4120.7 (2)
O1i—Mn1—O2iii93.20 (6)C6—C5—H5119.7
O2ii—Mn1—O2iii180.0C4—C5—H5119.7
O1—Mn1—N1iv90.52 (6)C5—C6—C1120.6 (2)
O1i—Mn1—N1iv89.48 (6)C5—C6—H6119.7
O2ii—Mn1—N1iv93.25 (6)C1—C6—H6119.7
O2iii—Mn1—N1iv86.75 (6)O1—C7—O2123.23 (18)
O1—Mn1—N1v89.48 (6)O1—C7—C1118.20 (18)
O1i—Mn1—N1v90.52 (6)O2—C7—C1118.53 (19)
O2ii—Mn1—N1v86.75 (6)C3—N1—Mn1vi120.83 (14)
O2iii—Mn1—N1v93.25 (6)C3—N1—H1N112.9 (16)
N1iv—Mn1—N1v180.0Mn1vi—N1—H1N98.0 (16)
C6—C1—C2118.93 (19)C3—N1—H2N109.6 (17)
C6—C1—C7121.50 (18)Mn1vi—N1—H2N107.0 (17)
C2—C1—C7119.54 (19)H1N—N1—H2N107 (2)
C3—C2—C1121.0 (2)C4—N2—H3N113.5 (17)
C3—C2—H2119.5C4—N2—H4N111.1 (16)
C1—C2—H2119.5H3N—N2—H4N111 (2)
C2—C3—C4120.14 (19)C7—O1—Mn1131.83 (13)
C2—C3—N1120.44 (19)C7—O2—Mn1vii121.03 (13)
C4—C3—N1119.41 (18)
C6—C1—C2—C31.4 (3)C7—C1—C6—C5177.8 (2)
C7—C1—C2—C3176.57 (19)C6—C1—C7—O1169.7 (2)
C1—C2—C3—C40.5 (3)C2—C1—C7—O112.4 (3)
C1—C2—C3—N1178.0 (2)C6—C1—C7—O212.3 (3)
C2—C3—C4—C51.6 (3)C2—C1—C7—O2165.55 (19)
N1—C3—C4—C5179.9 (2)C2—C3—N1—Mn1vi89.4 (2)
C2—C3—C4—N2177.9 (2)C4—C3—N1—Mn1vi89.1 (2)
N1—C3—C4—N23.5 (3)O2—C7—O1—Mn140.5 (3)
C3—C4—C5—C62.9 (3)C1—C7—O1—Mn1141.59 (15)
N2—C4—C5—C6179.1 (2)O1—C7—O2—Mn1vii60.8 (2)
C4—C5—C6—C12.0 (3)C1—C7—O2—Mn1vii117.02 (17)
C2—C1—C6—C50.1 (3)
Symmetry codes: (i) x, y+1, z; (ii) x, y, z; (iii) x, y+1, z; (iv) x1/2, y+1/2, z1/2; (v) x+1/2, y+1/2, z+1/2; (vi) x+1/2, y1/2, z+1/2; (vii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1v0.88 (3)2.19 (3)3.022 (3)156 (2)
N2—H3N···N2viii0.85 (3)2.26 (3)3.106 (3)178 (2)
N2—H4N···O2ix0.88 (3)2.15 (3)3.008 (2)167 (2)
Symmetry codes: (v) x+1/2, y+1/2, z+1/2; (viii) x+3/2, y1/2, z+1/2; (ix) x+1/2, y1/2, z+1/2.
Hirshfeld surface contact percentages for (I) top
H···H33.6
H···C10.2
H···O8.6
H···N2.5
H···Mn0.9
C···H16.1
C···C3.1
O···Mn5.2
O···H10.6
N···H2.5
N···Mn2.0
Mn···O62.0
Mn···N19.3
Mn···H18.8
All contacts are `non-reciprocal' (i.e., outward facing).
Structural features of complexes containing the C7H7N2O2- anion top
Code/refcodeMetal coordination polyhedronLigand bonding modeTopology
(I)MnN2O6 octahedronµ3-N,O,OLayered
BEHJEENaO6 octahedronaκOChain
MIWSESZnO3N2 trigonal bipyramidaµ2-N,OChain
XUPRUVSnC3O tetrahedronbκOMolecular
XUPSACSnC3NO trigonal bipyramidµ2-N,OChain
YENKORNdO9 capped square antiprismaκO and κ2O,O'Molecular
Notes: (a) Some of the ligands are water molecules of crystallization; (b) a short `secondary' Sn···O contact (2.68 Å) is also present.
 

Acknowledgements

The EPSRC National Crystallography Service (University of Southampton) is thanked for the intensity data collection.

Funding information

We thank the Higher Education Commission of Pakistan (grant No. 1–3/PM-PDFP-II/2006/22) for financial support

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFeast, G. C., Haestier, J., Page, L. W., Robertson, J., Thompson, A. L. & Watkin, D. J. (2009). Acta Cryst. C65, o635–o638.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFernández-Palacio, F., Restrepo, J., Gálvez, S., Gómez-Sal, P. & Mosquera, M. E. G. (2014). CrystEngComm, 16, 3376–3386.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJanicki, R., Mondry, A. & Starynowicz, P. (2017). Coord. Chem. Rev. 340, 98–133.  CrossRef CAS Google Scholar
First citationKhosa, M. K., Wood, P. T., Humphreys, S. M. & Harrison, W. T. A. (2015). J. Struct. Chem. 56, 1130–1135.  Web of Science CSD CrossRef CAS Google Scholar
First citationMukombiwa, E. T. & Harrison, W. T. A. (2020). Acta Cryst. E76, 527–533.  CrossRef IUCr Journals Google Scholar
First citationNonius (1998). COLLECT data collection software. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPinto, C. B., Dos Santos, L. H. R. & Rodrigues, B. L. (2019). Acta Cryst. C75, 707–716.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPruchnik, F. P., Bańbuła, M., Ciunik, Z., Chojnacki, H., Latocha, M., Skop, B., Wilczok, T., Opolski, A., Wietrzyk, J. & Nasulewicz, A. (2002). Eur. J. Inorg. Chem. pp. 3214–3221.  CrossRef Google Scholar
First citationRobinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567–570.  CrossRef PubMed CAS Web of Science Google Scholar
First citationRzaczyńska, Z., Bartyzel, A. & Głowiak, T. (2003). J. Coord. Chem. 56, 77–83.  Google Scholar
First citationRzaczyńska, Z., Belskii, V. K. & Zavodnik, V. E. (1994). Pol. J. Chem. 68, 1639–1647.  Google Scholar
First citationShape Software (2007). ATOMS. Shape Software, Kingsport, Tennessee, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds