research communications
Crystal structures and Hirshfeld surface analyses of 6,8-dimethoxy-3-methyl-1H-isochromen-1-one and 5-bromo-6,8-dimethoxy-3-methyl-1H-isochromen-1-one chloroform monosolvate
aInstitute of Chemistry, University of Neuchâtel, Av. de Bellevax 51, CH-2000 Neuchâtel, Switzerland, and bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: helen.stoeckli-evans@unine.ch
In the molecule of 6,8-dimethoxy-3-methyl-1H-isochromen-1-one, C12H12O4, (I), the two methoxy groups are directed anti with respect to each other. In the molecule of the brominated derivative, 5-bromo-6,8-dimethoxy-3-methyl-1H-isochromen-1-one, that crystallized as a chloroform monosolvate, C12H11BrO4·CHCl3, (II·CHCl3), the methoxy groups are directed syn to each other. In the crystal of I, molecules are linked by bifurcated C—H⋯O hydrogen bonds, forming chains along the c-axis direction. The chains are linked by C—H⋯π interactions, forming a supramolecular framework. In the crystal of II·CHCl3, molecules are linked by C—H⋯O hydrogen bonds forming 21 helices parallel to the b-axis direction. The chloroform solvate molecules are linked to the helices by C—H⋯O(carbonyl) hydrogen bonds. The helices stack up the c-axis direction and are linked by offset π–π interactions [intercentroid distance = 3.517 (3) Å], forming layers parallel to the (100) plane. Compound II·CHCl3 was refined as a two-component twin. Two chlorine atoms of the chloroform solvate are disordered over two positions and were refined with a fixed occupancy ratio of 0.5:0.5.
1. Chemical context
Compound I is the protected form of the isocoumarin 6,8-dihydroxy-3-methyl-1H-isochromen-1-one (L), which is a phytotoxin produced by the Ceratocystis fimbriata species coffea and platani (Gremaud & Tabacchi, 1994; Bürki et al., 2003). These fungi are pathogenic agents responsible for infections of coffee, plane and elm trees (Michel, 2001). Compound L has also been isolated from the organic extracts of the fungus Ceratocystis minor (Hemingway et al., 1977). The of L has been reported for a sample obtained from the fermented culture of the endophytic marine fungus Cephalosporium sp. (Shao et al., 2009). Herein, we report on the crystal structures and Hirshfeld surface analyses of the 6,8-dimethoxy derivative of L, viz. 6,8-dimethoxy-3-methyl-1H-isochromen-1-one (I) and compound II, 5-bromo-6,8-dimethoxy-3-methyl-1H-isochromen-1-one, the brominated derivative of I. The syntheses of compounds I and II were undertaken during the syntheses of derivatives of natural metabolites of the pathogenic fungus Ceratocystis fimbriata sp. (Tiouabi, 2005).
2. Structural commentary
The molecular structures of compounds I and II are illustrated in Figs. 1 and 2, respectively. Compound II crystallized as a chloroform monosolvate. Both isocoumarin molecules are essentially planar with an r.m.s. deviation of 0.02 Å for I and 0.016 Å for II (H atoms not included). The maximum deviation from their mean planes is 0.047 (1) Å for atom O2 in I, and 0.035 (8) Å for atom C10 in II. The two molecules differ essentially in the orientation of the methoxy group on atom C2. In I it is anti with respect to that on atom C4, while in II, owing to the of the Br atom, it has been rotated by 180° about the C2—O3 bond and is positioned syn with respect to the methoxy group on atom C4 (Fig. 3).
3. Supramolecular features
The crystal packing of compound I is illustrated in Fig. 4. Molecules are linked by bifurcated C—H⋯O hydrogen bonds, C1—H1⋯O1i and C7—H7⋯O1i, forming chains propagating along the c-axis direction (Table 1). The chains are linked by C—H⋯π interactions (C12—H12A⋯Cgii and C12—H12B⋯Cgiii, where Cg is the centroid of the C1–C4/C8/C9 benzene ring), forming a supramolecular framework (Table 1 and Fig. 4).
In the crystal of II·CHCl3, molecules are linked by C—H⋯O hydrogen bonds, C10—H10C⋯O1i, forming 21 helices lying parallel to the b-axis direction (Table 2 and Fig. 5). The chloroform solvate molecules are linked to the helices by C—H⋯Cl and C—H⋯O hydrogen bonds, C11—H11C⋯Cl3A and C20—H20⋯O1 (Table 2). The helices stack up the c-axis direction and are linked by offset π–π interactions: Cg⋯Cgii = 3.517 (3) Å, where Cg is the centroid of the C1–C4/C8/C9 benzene ring; α = 0.7 (3)°, β = 19.2°, γ = 19.8°, interplanar distances are 3.359 (2) and 3.373 (2) Å, offset = 1.173 Å, symmetry code: (ii) x, −y + , z − . These latter interactions result in the formation of layers lying parallel to the bc plane (Fig. 5). There are no inter-layer contacts present.
4. Hirshfeld surfaces and fingerprint plots for I and II·CHCl3
The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the calculation of the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were performed with CrystalExplorer17.5 (Turner et al., 2017), following the protocol of Tiekink and collaborators (Tan et al., 2019). The Hirshfeld surface is colour-mapped with the normalized contact distance, dnorm, from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii).
A summary of the short interatomic contacts in I and II·CHCl3 is given in Table 3. The Hirshfeld surfaces of I and II mapped over dnorm, are shown in Fig. 6a and b, respectively. The faint red spots indicate that short contacts are significant in the crystal packing of both compounds.
|
The full two-dimensional fingerprint plot for I and fingerprint plots delineated into H⋯H (40.3%), O⋯H/H⋯O (28.2%), C⋯H/H⋯C (24.6%), C⋯O (3.0%) and O⋯O (2.9%) contacts, are shown in Fig. 7. The C⋯C contacts contribute only 1.0%.
The full two-dimensional fingerprint plot for compound II·CHCl3, and fingerprint plots delineated into Cl⋯H/H⋯Cl (28.0%), H⋯H (18.3%), O⋯H/H⋯O (17.9%), C⋯C (9.6%), Br⋯H/H⋯Br (7.9%), Cl⋯Br (7.3%) and Cl⋯Cl (5.7%) contacts are shown in Fig. 8. The C⋯O contacts contribute 2.2% but the C⋯H/H⋯C contacts contribute only 1.2% compared to 24.6% in I.
The H⋯H contacts in II·CHCl3 (18.3%) are considerably reduced compared to those in I (H⋯H at 40.3%), while the Cl⋯H/H⋯Cl (28.0%) and O⋯H/H⋯O (17.9%) contacts dominate the interatomic contacts and combined are stronger that those in I (O⋯H/H⋯O at 28.2%).
5. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.41, last update March 2020; Groom et al., 2016) for the 1H-isochromen-1-one skeleton gave 217 hits. Only one compound contains 6,8-dimethoxy substituents, viz. 5,6,8-trimethoxy-3,4,7-trimethylisocoumarin (CSD refcode JICLOW; Botha et al., 1991). A search for the 3-methyl-1H-isochromen-1-one gave 16 hits. Apart from the structure of 3-methyl-1H-isochromen-1-one itself (GECYUK; Liu et al., 2012), the most important structure is that for 6,8-dihydroxy-3-methyl-1H-isochromen-1-one (MOSLOW; Shao et al., 2009), viz. compound L described above (see §1. Chemical context).
6. Synthesis and crystallization
The syntheses of compounds I and II are illustrated in Fig. 9, together with the atom labelling in relation to the NMR spectra. The syntheses of the keto-acid, 1,2,4-dimethoxy-6-(2-oxopropyl)benzoic acid (1), together with compounds I and II were undertaken during the syntheses of derivatives of natural metabolites of the pathogenic fungus Ceratocystis fimbriata sp. (Tiouabi, 2005).
Preparation of Reagent A (1 M Ac2O; 10−3 M HClO4), was carried out according to the protocol of Edwards & Rao (Edwards & Rao, 1966). 0.0501 ml of HClO4 at 70% (0.575 mmol) were dissolved in 50 ml of AcOEt. 30 ml of this solution were added to a solution of 14.4 ml of Ac2O (0.153 mol) in 105.6 ml of AcOEt to give 150 ml of Reagent A.
Synthesis of 6,8-dimethoxy-3-methyl-1H-isochromen-1-one (I): In a 250 ml flask equipped with a magnetic stirrer and under an atmosphere of argon, the keto-acid (1) was dissolved in 150 ml of Reagent A. The mixture was stirred vigorously for 10–15 min, then washed with an aqueous solution of saturated NaHCO3. The organic phase was dried over anhydrous Na2SO4, then filtered and the filtrate concentrated using rotary evaporation. The brown solid obtained was purified by on a silica column using as CH2Cl2/AcOEt (15/1, v/v). On evaporation of the 1.20 g of compound I (yield 95%) were obtained as colourless block-like crystals.
Analytical data for I: Rf (CH2Cl2/MeOH: 20/0.5; UV) 0.735. 1H NMR (400 MHz, CDCl3, 298 K): 2.16 [d, 4J(3a-4) = 1, 3H, CH3], 3.84 (s, 3H, OCH3), 3.90 (s, 3H, OCH3), 6.03 [q, 4J(4-3a) = 1.0, 1H, H-4], 6.24 (d, Jm = 2.3, 1H, ArH-5), 6.36 (d, Jm = 2.3, 1H, ArH-7). 13C NMR (100 Hz, CDCl3, 298 K, HETCOR–SR/LR): 19.82 C(3a), 55.97 C(OCH3, 56.59 C(OCH3), 98.46 C(7), 99.80 C(5), 103.04 C(9), 104.08 C(4), 142.80 C(10), 155.79 C(3), 159.97 C(1), 163.56 C(8), 165.75 C(6). MS [ESI(+)]: ms 243.1 [M + Na]+; ms 221.3 [M + H]+. HR–MS (ESI(+)): ms 243.06256 [M + Na]+. IR (KBr disk, cm−1): 1713 vs, 1667 m, 1599 vs, 1168 m, 969 m.
Synthesis of 5-bromo-6,8-dimethoxy-3-methyl-1H-isochromen-1-one (II): In a 25 ml flask equipped with a magnetic stirrer and under an atmosphere of argon, NBS (N-bromosuccinimide) (28 mg, 0.158 mmol) was added under stirring to a solution of compound I (0.136 mmol) dissolved in CH3CN (1.5 ml). The reaction mixture was stirred for 2 h at room temperature. On completion of the reaction, followed by using CH2Cl2/AcOEt (15/2, v/v) as NaBH4 (5.2 mg, 0.136 mmol) was added, resulting in the transformation of the yellow solution into a white suspension. After 1 h the reaction mixture was diluted using water and then extracted five times using AcOEt. The organic phases were combined, dried over anhydrous Na2SO4, then filtered and the filtrate concentrated using rotary evaporation. The white solid obtained was purified by on a silica column using CH2Cl2/AcOEt (20/1, v/v) as On evaporation of the 30 mg of compound II (yield 74%) were obtained as colourless rod-like crystals.
Analytical data for II: Rf (CH2Cl2/AcOEt: 15/2, UV) 0.26. 1H NMR (400 MHz, CDCl3, 298K): 2.26 [d, 4J(3a-4) = 0.8, 3H, CH3], 4.02 (s, 6H, 2 × OCH3), 6.45 (s, 1H, ArH-7), 6.58 [q, 4J(4-3a) = 0.8, 1H, H-4]. 13C NMR (100 Hz, CDCl3, 298K, HETCOR–SR): 20.31 C(3a), 56.80 C(OCH3), 56.90 C(OCH3), 94.67 C(7), 98.47 C(5), 102.73 C(4), 103.56 C(9), 140.41 C(10), 156.86 C(3), 159.28 C(1), 161.67 C(8), 163.37 C(6). MS[ESI(+)]: ms 299.1 [M(79Br) + H]+, ms 301.1 [M(81Br) + H]+. HR–MS [ESI(+)]: ms 320.97315 [M(79Br) + Na]+, ms 322.97144 [M(81Br) + Na]+. IR (KBr disk, cm−1): 1724 vs, 1667 s, 1580 vs, 1215 vs, 1038 m.
7. Refinement
Crystal data, data collection and structure . For both I and II the C-bound H atoms were included in calculated positions and treated as riding on their parent C atom: C—H = 0.95–1.00 Å with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms.
details are summarized in Table 4
|
Compound II·CHCl3 was refined as a two-component twin with a 180° rotation about axis c*. Details are given in the archived The final refined BASF factor is 0.2590 (19). Two of the chloroform solvate chlorine atoms (Cl2 and Cl3) are disordered over two positions and were refined with a fixed occupancy ratio (Cl2A:Cl2B and Cl3A:Cl3B) of 0.5:0.5.
Supporting information
https://doi.org/10.1107/S2056989020007975/dj2010sup1.cif
contains datablocks I, II, Global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020007975/dj2010Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989020007975/dj2010IIsup3.hkl
Data collection: X-AREA (Stoe & Cie, 2005) for (I); EXPOSE in IPDS-I (Stoe & Cie, 2004) for (II). Cell
X-AREA (Stoe & Cie, 2005) for (I); CELL in IPDS-I (Stoe & Cie, 2004) for (II). Data reduction: X-RED32 (Stoe & Cie, 2005) for (I); INTEGRATE in IPDS-I (Stoe & Cie, 2004) for (II). For both structures, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015). Molecular graphics: PLATON (Spek, 2020) and Mercury (Macrae et al., 2020) for (I); Mercury (Macrae et al., 2020) for (II). For both structures, software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015), PLATON (Spek, 2020) and publCIF (Westrip, 2010).C12H12O4 | Dx = 1.400 Mg m−3 |
Mr = 220.22 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 10689 reflections |
a = 12.7875 (9) Å | θ = 1.7–29.6° |
b = 11.3732 (12) Å | µ = 0.11 mm−1 |
c = 14.3637 (12) Å | T = 173 K |
V = 2089.0 (3) Å3 | Block, colourless |
Z = 8 | 0.36 × 0.28 × 0.26 mm |
F(000) = 928 |
STOE IPDS 2 diffractometer | 2835 independent reflections |
Radiation source: fine-focus sealed tube | 1990 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.077 |
φ + ω scans | θmax = 29.3°, θmin = 2.8° |
Absorption correction: multi-scan (MULABS; Spek, 2020) | h = −17→16 |
Tmin = 0.903, Tmax = 1.000 | k = −15→15 |
24778 measured reflections | l = −19→19 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.052 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.116 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.051P)2 + 0.3781P] where P = (Fo2 + 2Fc2)/3 |
2835 reflections | (Δ/σ)max < 0.001 |
148 parameters | Δρmax = 0.22 e Å−3 |
0 restraints | Δρmin = −0.18 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.15786 (9) | 0.27567 (12) | 0.46504 (8) | 0.0395 (3) | |
O2 | 0.23972 (8) | 0.33408 (10) | 0.33972 (7) | 0.0268 (3) | |
O3 | −0.14208 (10) | 0.07550 (12) | 0.14615 (9) | 0.0404 (3) | |
O4 | −0.01901 (9) | 0.15403 (11) | 0.44753 (8) | 0.0314 (3) | |
C1 | 0.01713 (12) | 0.18950 (14) | 0.16114 (11) | 0.0266 (3) | |
H1 | 0.024720 | 0.199167 | 0.095797 | 0.032* | |
C2 | −0.06630 (12) | 0.12755 (14) | 0.19739 (11) | 0.0282 (3) | |
C3 | −0.07906 (12) | 0.11400 (14) | 0.29319 (12) | 0.0292 (3) | |
H3 | −0.136951 | 0.070662 | 0.316450 | 0.035* | |
C4 | −0.00875 (12) | 0.16271 (14) | 0.35416 (11) | 0.0258 (3) | |
C5 | 0.15644 (12) | 0.27686 (14) | 0.38113 (11) | 0.0263 (3) | |
C6 | 0.24844 (12) | 0.34840 (13) | 0.24518 (10) | 0.0248 (3) | |
C7 | 0.17841 (12) | 0.30230 (14) | 0.18753 (10) | 0.0248 (3) | |
H7 | 0.186695 | 0.312124 | 0.122268 | 0.030* | |
C8 | 0.09018 (11) | 0.23769 (13) | 0.22263 (10) | 0.0233 (3) | |
C9 | 0.07889 (11) | 0.22557 (13) | 0.31981 (10) | 0.0238 (3) | |
C10 | −0.13653 (15) | 0.08442 (17) | 0.04763 (13) | 0.0387 (4) | |
H10A | −0.068771 | 0.054680 | 0.026132 | 0.058* | |
H10B | −0.144175 | 0.166918 | 0.029140 | 0.058* | |
H10C | −0.192803 | 0.037821 | 0.019638 | 0.058* | |
C11 | −0.10579 (14) | 0.08855 (17) | 0.48242 (13) | 0.0372 (4) | |
H11A | −0.101267 | 0.007171 | 0.460350 | 0.056* | |
H11B | −0.171053 | 0.123974 | 0.460230 | 0.056* | |
H11C | −0.104631 | 0.089534 | 0.550635 | 0.056* | |
C12 | 0.34151 (12) | 0.42031 (15) | 0.22198 (12) | 0.0317 (4) | |
H12A | 0.404473 | 0.381766 | 0.246095 | 0.048* | |
H12B | 0.334533 | 0.498334 | 0.250262 | 0.048* | |
H12C | 0.347075 | 0.428395 | 0.154231 | 0.048* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0350 (6) | 0.0600 (9) | 0.0237 (6) | −0.0096 (6) | −0.0017 (5) | 0.0011 (5) |
O2 | 0.0232 (5) | 0.0312 (6) | 0.0260 (5) | −0.0034 (5) | −0.0004 (4) | −0.0008 (4) |
O3 | 0.0388 (7) | 0.0462 (8) | 0.0363 (7) | −0.0187 (6) | −0.0090 (5) | 0.0013 (6) |
O4 | 0.0312 (6) | 0.0374 (7) | 0.0257 (6) | −0.0052 (5) | 0.0067 (5) | 0.0027 (5) |
C1 | 0.0281 (7) | 0.0279 (8) | 0.0238 (7) | 0.0008 (6) | −0.0029 (6) | −0.0004 (6) |
C2 | 0.0268 (7) | 0.0268 (8) | 0.0310 (8) | −0.0025 (6) | −0.0053 (6) | −0.0013 (6) |
C3 | 0.0249 (7) | 0.0276 (8) | 0.0352 (9) | −0.0042 (6) | 0.0019 (6) | 0.0040 (7) |
C4 | 0.0248 (7) | 0.0259 (8) | 0.0266 (7) | 0.0021 (6) | 0.0022 (6) | 0.0012 (6) |
C5 | 0.0233 (7) | 0.0312 (8) | 0.0244 (7) | 0.0007 (6) | 0.0011 (6) | 0.0005 (6) |
C6 | 0.0229 (7) | 0.0258 (7) | 0.0258 (7) | 0.0014 (6) | 0.0025 (6) | 0.0006 (6) |
C7 | 0.0235 (7) | 0.0273 (7) | 0.0235 (7) | 0.0009 (6) | 0.0011 (6) | 0.0013 (6) |
C8 | 0.0216 (6) | 0.0223 (7) | 0.0260 (7) | 0.0026 (6) | 0.0004 (6) | 0.0003 (6) |
C9 | 0.0222 (7) | 0.0244 (7) | 0.0249 (7) | 0.0021 (6) | 0.0011 (6) | −0.0006 (6) |
C10 | 0.0384 (9) | 0.0419 (11) | 0.0358 (9) | −0.0055 (8) | −0.0114 (8) | −0.0041 (8) |
C11 | 0.0348 (9) | 0.0403 (10) | 0.0365 (9) | −0.0037 (8) | 0.0118 (7) | 0.0048 (8) |
C12 | 0.0258 (7) | 0.0349 (9) | 0.0343 (8) | −0.0060 (7) | 0.0006 (7) | 0.0024 (7) |
O1—C5 | 1.2056 (19) | C6—C7 | 1.328 (2) |
O2—C6 | 1.3722 (18) | C6—C12 | 1.482 (2) |
O2—C5 | 1.3825 (18) | C7—C8 | 1.438 (2) |
O3—C2 | 1.3532 (19) | C7—H7 | 0.9500 |
O3—C10 | 1.421 (2) | C8—C9 | 1.410 (2) |
O4—C4 | 1.3511 (19) | C10—H10A | 0.9800 |
O4—C11 | 1.427 (2) | C10—H10B | 0.9800 |
C1—C2 | 1.380 (2) | C10—H10C | 0.9800 |
C1—C8 | 1.397 (2) | C11—H11A | 0.9800 |
C1—H1 | 0.9500 | C11—H11B | 0.9800 |
C2—C3 | 1.394 (2) | C11—H11C | 0.9800 |
C3—C4 | 1.372 (2) | C12—H12A | 0.9800 |
C3—H3 | 0.9500 | C12—H12B | 0.9800 |
C4—C9 | 1.418 (2) | C12—H12C | 0.9800 |
C5—C9 | 1.449 (2) | ||
C6—O2—C5 | 122.97 (12) | C1—C8—C9 | 121.25 (14) |
C2—O3—C10 | 118.34 (14) | C1—C8—C7 | 120.23 (14) |
C4—O4—C11 | 117.52 (13) | C9—C8—C7 | 118.52 (14) |
C2—C1—C8 | 118.58 (14) | C8—C9—C4 | 118.34 (14) |
C2—C1—H1 | 120.7 | C8—C9—C5 | 119.49 (14) |
C8—C1—H1 | 120.7 | C4—C9—C5 | 122.18 (14) |
O3—C2—C1 | 124.86 (15) | O3—C10—H10A | 109.5 |
O3—C2—C3 | 113.86 (14) | O3—C10—H10B | 109.5 |
C1—C2—C3 | 121.28 (14) | H10A—C10—H10B | 109.5 |
C4—C3—C2 | 120.57 (14) | O3—C10—H10C | 109.5 |
C4—C3—H3 | 119.7 | H10A—C10—H10C | 109.5 |
C2—C3—H3 | 119.7 | H10B—C10—H10C | 109.5 |
O4—C4—C3 | 122.72 (14) | O4—C11—H11A | 109.5 |
O4—C4—C9 | 117.32 (14) | O4—C11—H11B | 109.5 |
C3—C4—C9 | 119.97 (14) | H11A—C11—H11B | 109.5 |
O1—C5—O2 | 115.07 (14) | O4—C11—H11C | 109.5 |
O1—C5—C9 | 127.84 (15) | H11A—C11—H11C | 109.5 |
O2—C5—C9 | 117.08 (13) | H11B—C11—H11C | 109.5 |
C7—C6—O2 | 121.03 (14) | C6—C12—H12A | 109.5 |
C7—C6—C12 | 128.27 (15) | C6—C12—H12B | 109.5 |
O2—C6—C12 | 110.69 (13) | H12A—C12—H12B | 109.5 |
C6—C7—C8 | 120.83 (14) | C6—C12—H12C | 109.5 |
C6—C7—H7 | 119.6 | H12A—C12—H12C | 109.5 |
C8—C7—H7 | 119.6 | H12B—C12—H12C | 109.5 |
C10—O3—C2—C1 | 0.0 (2) | C2—C1—C8—C9 | −1.0 (2) |
C10—O3—C2—C3 | 179.81 (16) | C2—C1—C8—C7 | 179.69 (15) |
C8—C1—C2—O3 | −179.38 (16) | C6—C7—C8—C1 | −179.92 (15) |
C8—C1—C2—C3 | 0.8 (2) | C6—C7—C8—C9 | 0.8 (2) |
O3—C2—C3—C4 | −179.52 (15) | C1—C8—C9—C4 | 0.1 (2) |
C1—C2—C3—C4 | 0.3 (3) | C7—C8—C9—C4 | 179.43 (14) |
C11—O4—C4—C3 | 1.6 (2) | C1—C8—C9—C5 | 179.98 (14) |
C11—O4—C4—C9 | −178.59 (14) | C7—C8—C9—C5 | −0.7 (2) |
C2—C3—C4—O4 | 178.59 (15) | O4—C4—C9—C8 | −178.83 (14) |
C2—C3—C4—C9 | −1.2 (2) | C3—C4—C9—C8 | 1.0 (2) |
C6—O2—C5—O1 | −177.08 (15) | O4—C4—C9—C5 | 1.3 (2) |
C6—O2—C5—C9 | 3.2 (2) | C3—C4—C9—C5 | −178.86 (15) |
C5—O2—C6—C7 | −3.2 (2) | O1—C5—C9—C8 | 179.13 (17) |
C5—O2—C6—C12 | 175.88 (13) | O2—C5—C9—C8 | −1.2 (2) |
O2—C6—C7—C8 | 1.1 (2) | O1—C5—C9—C4 | −1.0 (3) |
C12—C6—C7—C8 | −177.82 (15) | O2—C5—C9—C4 | 178.68 (14) |
Cg is the centroid of the C1–C4/C8/C9 benzene ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···O1i | 0.95 | 2.55 | 3.366 (2) | 144 |
C7—H7···O1i | 0.95 | 2.50 | 3.3269 (19) | 146 |
C12—H12A···Cgii | 0.98 | 2.67 | 3.4902 (18) | 141 |
C12—H12B···Cgiii | 0.98 | 2.88 | 3.5456 (18) | 126 |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x+1/2, y, −z+1/2; (iii) −x+1/2, y+1/2, z. |
C12H11BrO4·CHCl3 | F(000) = 832 |
Mr = 418.49 | Dx = 1.715 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 11.7655 (9) Å | Cell parameters from 6618 reflections |
b = 20.4640 (17) Å | θ = 2.0–25.9° |
c = 6.7332 (5) Å | µ = 3.04 mm−1 |
β = 90.161 (9)° | T = 173 K |
V = 1621.1 (2) Å3 | Rod, colourless |
Z = 4 | 0.30 × 0.11 × 0.10 mm |
STOE IPDS 1 diffractometer | 3131 independent reflections |
Radiation source: fine-focus sealed tube | 2066 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.087 |
φ rotation scans | θmax = 25.9°, θmin = 2.0° |
Absorption correction: multi-scan (MULABS; Spek, 2020) | h = −14→14 |
Tmin = 0.894, Tmax = 1.000 | k = −25→25 |
3131 measured reflections | l = 0→8 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: mixed |
wR(F2) = 0.100 | H-atom parameters constrained |
S = 0.88 | w = 1/[σ2(Fo2) + (0.0526P)2] where P = (Fo2 + 2Fc2)/3 |
3131 reflections | (Δ/σ)max < 0.001 |
211 parameters | Δρmax = 0.57 e Å−3 |
0 restraints | Δρmin = −0.40 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component twin. BASF = 0.2590 (19) 2-axis ( 0 0 1 ) [ 0 0 1 ], Angle () [] = 0.16 Deg, Freq = 49 ************* (-1.000 0.000 0.000) (h1) (h2) Nr Overlap = 3120 ( 0.000 -1.000 0.000) * (k1) = (k2) BASF = 0.15 ( 0.003 0.000 1.000) (l1) (l2) DEL-R =-0.011 |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Br1 | 0.17186 (4) | 0.18589 (2) | 0.76040 (12) | 0.03702 (17) | |
O1 | 0.6171 (3) | 0.37438 (16) | 0.7786 (8) | 0.0409 (11) | |
O2 | 0.4383 (2) | 0.40139 (13) | 0.7725 (6) | 0.0265 (8) | |
O3 | 0.3644 (3) | 0.09462 (14) | 0.7647 (7) | 0.0386 (9) | |
O4 | 0.6719 (3) | 0.24940 (16) | 0.7829 (7) | 0.0390 (9) | |
C1 | 0.3284 (4) | 0.2074 (2) | 0.7669 (9) | 0.0245 (11) | |
C2 | 0.4075 (4) | 0.1564 (2) | 0.7681 (9) | 0.0281 (11) | |
C3 | 0.5225 (4) | 0.1697 (2) | 0.7730 (9) | 0.0292 (12) | |
H3 | 0.575634 | 0.134698 | 0.774737 | 0.035* | |
C4 | 0.5612 (4) | 0.2337 (2) | 0.7756 (9) | 0.0260 (12) | |
C5 | 0.5216 (4) | 0.3538 (2) | 0.7769 (9) | 0.0249 (11) | |
C6 | 0.3248 (4) | 0.3877 (2) | 0.7700 (8) | 0.0258 (11) | |
C7 | 0.2865 (4) | 0.32622 (19) | 0.7680 (9) | 0.0215 (10) | |
H7 | 0.207010 | 0.318184 | 0.765122 | 0.026* | |
C8 | 0.3647 (4) | 0.2720 (2) | 0.7702 (8) | 0.0204 (10) | |
C9 | 0.4828 (4) | 0.2862 (2) | 0.7722 (8) | 0.0203 (10) | |
C10 | 0.4443 (5) | 0.0418 (2) | 0.7595 (12) | 0.0515 (15) | |
H10A | 0.486906 | 0.040490 | 0.884718 | 0.077* | |
H10B | 0.497084 | 0.048281 | 0.648942 | 0.077* | |
H10C | 0.403488 | 0.000461 | 0.741327 | 0.077* | |
C11 | 0.7509 (5) | 0.1961 (3) | 0.7800 (16) | 0.069 (2) | |
H11A | 0.742784 | 0.171933 | 0.655046 | 0.104* | |
H11B | 0.735424 | 0.166759 | 0.891818 | 0.104* | |
H11C | 0.828565 | 0.213036 | 0.791178 | 0.104* | |
C12 | 0.2546 (4) | 0.4485 (2) | 0.7733 (11) | 0.0395 (14) | |
H12A | 0.283364 | 0.479241 | 0.673878 | 0.047* | |
H12B | 0.259135 | 0.468449 | 0.905318 | 0.047* | |
H12C | 0.175335 | 0.437600 | 0.742878 | 0.047* | |
C20 | 0.8802 (5) | 0.3955 (4) | 0.7872 (12) | 0.062 (2) | |
H20 | 0.799342 | 0.381292 | 0.801403 | 0.075* | |
Cl1 | 0.93131 (17) | 0.41367 (10) | 1.0251 (3) | 0.0703 (6) | |
Cl2A | 0.8846 (9) | 0.4482 (4) | 0.6107 (16) | 0.130 (4) | 0.5 |
Cl3A | 0.9643 (6) | 0.3226 (3) | 0.7218 (19) | 0.100 (3) | 0.5 |
Cl2B | 0.8631 (8) | 0.4812 (4) | 0.6905 (16) | 0.104 (3) | 0.5 |
Cl3B | 0.9684 (6) | 0.3556 (4) | 0.6389 (15) | 0.134 (4) | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0368 (3) | 0.0338 (2) | 0.0405 (3) | −0.0140 (2) | 0.0035 (3) | −0.0009 (4) |
O1 | 0.0160 (16) | 0.0347 (19) | 0.072 (3) | −0.0049 (14) | 0.001 (2) | 0.003 (2) |
O2 | 0.0222 (16) | 0.0183 (14) | 0.039 (2) | 0.0000 (12) | 0.0005 (19) | 0.0003 (19) |
O3 | 0.066 (2) | 0.0165 (16) | 0.034 (2) | −0.0002 (14) | 0.002 (2) | −0.003 (2) |
O4 | 0.0244 (17) | 0.0432 (19) | 0.049 (3) | 0.0139 (16) | −0.003 (2) | 0.001 (2) |
C1 | 0.028 (2) | 0.022 (2) | 0.023 (3) | −0.0028 (18) | 0.006 (3) | −0.006 (2) |
C2 | 0.045 (3) | 0.021 (2) | 0.018 (3) | −0.001 (2) | 0.004 (3) | 0.000 (3) |
C3 | 0.044 (3) | 0.025 (2) | 0.019 (3) | 0.017 (2) | 0.001 (3) | 0.005 (2) |
C4 | 0.024 (2) | 0.032 (2) | 0.022 (3) | 0.0108 (19) | 0.002 (2) | 0.000 (3) |
C5 | 0.026 (3) | 0.026 (2) | 0.022 (3) | −0.0002 (19) | −0.002 (2) | 0.000 (3) |
C6 | 0.026 (2) | 0.025 (2) | 0.027 (3) | 0.0016 (19) | 0.000 (3) | 0.002 (3) |
C7 | 0.0186 (19) | 0.026 (2) | 0.020 (3) | 0.0001 (16) | −0.002 (2) | −0.002 (3) |
C8 | 0.025 (2) | 0.023 (2) | 0.014 (3) | −0.0008 (17) | 0.000 (2) | −0.005 (3) |
C9 | 0.022 (2) | 0.023 (2) | 0.016 (3) | −0.0009 (17) | −0.001 (2) | 0.001 (2) |
C10 | 0.091 (4) | 0.022 (2) | 0.041 (4) | 0.018 (3) | 0.000 (5) | 0.004 (3) |
C11 | 0.033 (3) | 0.063 (4) | 0.112 (7) | 0.027 (3) | −0.004 (5) | −0.006 (5) |
C12 | 0.029 (2) | 0.027 (3) | 0.063 (4) | 0.006 (2) | 0.000 (3) | 0.003 (3) |
C20 | 0.025 (3) | 0.092 (5) | 0.070 (6) | −0.002 (3) | 0.001 (3) | 0.009 (5) |
Cl1 | 0.0589 (11) | 0.0721 (12) | 0.0799 (15) | −0.0165 (9) | −0.0007 (10) | 0.0057 (11) |
Cl2A | 0.129 (7) | 0.121 (7) | 0.138 (9) | −0.055 (6) | −0.047 (6) | 0.096 (6) |
Cl3A | 0.028 (2) | 0.074 (3) | 0.198 (9) | −0.002 (2) | 0.013 (4) | −0.042 (5) |
Cl2B | 0.094 (4) | 0.100 (5) | 0.119 (8) | −0.026 (4) | −0.037 (4) | 0.055 (5) |
Cl3B | 0.035 (3) | 0.204 (9) | 0.164 (9) | −0.011 (6) | 0.007 (4) | −0.136 (8) |
Br1—C1 | 1.894 (4) | C7—H7 | 0.9500 |
O1—C5 | 1.201 (5) | C8—C9 | 1.419 (6) |
O2—C6 | 1.364 (5) | C10—H10A | 0.9800 |
O2—C5 | 1.382 (5) | C10—H10B | 0.9800 |
O3—C2 | 1.361 (5) | C10—H10C | 0.9800 |
O3—C10 | 1.433 (6) | C11—H11A | 0.9800 |
O4—C4 | 1.343 (6) | C11—H11B | 0.9800 |
O4—C11 | 1.434 (6) | C11—H11C | 0.9800 |
C1—C8 | 1.389 (6) | C12—H12A | 0.9800 |
C1—C2 | 1.398 (6) | C12—H12B | 0.9800 |
C2—C3 | 1.381 (7) | C12—H12C | 0.9799 |
C3—C4 | 1.387 (6) | C20—Cl2A | 1.605 (12) |
C3—H3 | 0.9500 | C20—Cl3B | 1.657 (10) |
C4—C9 | 1.416 (6) | C20—Cl1 | 1.749 (8) |
C5—C9 | 1.457 (6) | C20—Cl3A | 1.844 (10) |
C6—C7 | 1.335 (6) | C20—Cl2B | 1.882 (11) |
C6—C12 | 1.494 (6) | C20—H20 | 1.0000 |
C7—C8 | 1.441 (6) | ||
C6—O2—C5 | 123.3 (3) | C8—C9—C5 | 120.1 (4) |
C2—O3—C10 | 117.2 (4) | O3—C10—H10A | 109.5 |
C4—O4—C11 | 116.5 (4) | O3—C10—H10B | 109.5 |
C8—C1—C2 | 120.4 (4) | H10A—C10—H10B | 109.5 |
C8—C1—Br1 | 121.3 (3) | O3—C10—H10C | 109.5 |
C2—C1—Br1 | 118.3 (3) | H10A—C10—H10C | 109.5 |
O3—C2—C3 | 123.2 (4) | H10B—C10—H10C | 109.5 |
O3—C2—C1 | 116.5 (4) | O4—C11—H11A | 109.5 |
C3—C2—C1 | 120.3 (4) | O4—C11—H11B | 109.5 |
C2—C3—C4 | 120.5 (4) | H11A—C11—H11B | 109.5 |
C2—C3—H3 | 119.7 | O4—C11—H11C | 109.5 |
C4—C3—H3 | 119.7 | H11A—C11—H11C | 109.5 |
O4—C4—C3 | 123.0 (4) | H11B—C11—H11C | 109.5 |
O4—C4—C9 | 116.8 (4) | C6—C12—H12A | 109.5 |
C3—C4—C9 | 120.2 (4) | C6—C12—H12B | 109.4 |
O1—C5—O2 | 114.6 (4) | H12A—C12—H12B | 109.5 |
O1—C5—C9 | 128.8 (4) | C6—C12—H12C | 109.5 |
O2—C5—C9 | 116.5 (4) | H12A—C12—H12C | 109.5 |
C7—C6—O2 | 121.6 (4) | H12B—C12—H12C | 109.5 |
C7—C6—C12 | 126.7 (4) | Cl2A—C20—Cl1 | 121.6 (6) |
O2—C6—C12 | 111.7 (4) | Cl3B—C20—Cl1 | 116.2 (5) |
C6—C7—C8 | 120.6 (4) | Cl2A—C20—Cl3A | 110.4 (7) |
C6—C7—H7 | 119.7 | Cl1—C20—Cl3A | 102.0 (5) |
C8—C7—H7 | 119.7 | Cl3B—C20—Cl2B | 108.5 (6) |
C1—C8—C9 | 119.7 (4) | Cl1—C20—Cl2B | 98.9 (5) |
C1—C8—C7 | 122.5 (4) | Cl2A—C20—H20 | 107.4 |
C9—C8—C7 | 117.8 (4) | Cl1—C20—H20 | 107.4 |
C4—C9—C8 | 118.8 (4) | Cl3A—C20—H20 | 107.4 |
C4—C9—C5 | 121.0 (4) | ||
C10—O3—C2—C3 | −2.1 (9) | C2—C1—C8—C9 | 0.8 (8) |
C10—O3—C2—C1 | 178.1 (6) | Br1—C1—C8—C9 | −179.1 (4) |
C8—C1—C2—O3 | 180.0 (5) | C2—C1—C8—C7 | 179.6 (6) |
Br1—C1—C2—O3 | −0.1 (7) | Br1—C1—C8—C7 | −0.2 (8) |
C8—C1—C2—C3 | 0.2 (9) | C6—C7—C8—C1 | −179.6 (6) |
Br1—C1—C2—C3 | −179.9 (5) | C6—C7—C8—C9 | −0.7 (8) |
O3—C2—C3—C4 | 179.8 (6) | O4—C4—C9—C8 | −178.2 (5) |
C1—C2—C3—C4 | −0.4 (9) | C3—C4—C9—C8 | 1.2 (8) |
C11—O4—C4—C3 | 2.5 (9) | O4—C4—C9—C5 | −0.1 (8) |
C11—O4—C4—C9 | −178.1 (6) | C3—C4—C9—C5 | 179.4 (6) |
C2—C3—C4—O4 | 179.1 (6) | C1—C8—C9—C4 | −1.4 (8) |
C2—C3—C4—C9 | −0.3 (9) | C7—C8—C9—C4 | 179.6 (5) |
C6—O2—C5—O1 | 180.0 (5) | C1—C8—C9—C5 | −179.6 (5) |
C6—O2—C5—C9 | 1.9 (8) | C7—C8—C9—C5 | 1.4 (8) |
C5—O2—C6—C7 | −1.2 (9) | O1—C5—C9—C4 | 2.1 (10) |
C5—O2—C6—C12 | 177.8 (5) | O2—C5—C9—C4 | 179.8 (5) |
O2—C6—C7—C8 | 0.5 (9) | O1—C5—C9—C8 | −179.8 (6) |
C12—C6—C7—C8 | −178.3 (6) | O2—C5—C9—C8 | −2.0 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10C···O1i | 0.98 | 2.59 | 3.511 (6) | 156 |
C11—H11C···Cl3A | 0.98 | 2.79 | 3.629 (9) | 144 |
C20—H20···O1 | 1.00 | 2.15 | 3.126 (6) | 164 |
Symmetry code: (i) −x+1, y−1/2, −z+3/2. |
Atom1 | Atom2 | Length | Length-VdW | Symm. code Atom 2 |
I | ||||
H7 | O1 | 2.497 | -0.223 | x, 1/2 - y, -1/2 + z |
H1 | O1 | 2.551 | -0.169 | x, 1/2 - y, -1/2 + z |
H10A | H10A | 2.281 | -0.119 | -x, -y, -z |
H11C | O2 | 2.683 | -0.037 | -1/2 + x, 1/2 - y, 1 - z |
H11B | O1 | 2.691 | -0.029 | -1/2 + x, 1/2 - y, 1 - z |
O3 | O2 | 3.023 | -0.017 | -x, -1/2 + y, 1/2 - z |
H10B | C11 | 2.903 | 0.003 | x, 1/2 - y, -1/2 + z |
C10 | H12C | 2.911 | 0.011 | -1/2 + x, 1/2 - y, -z |
C11 | C11 | 3.411 | 0.011 | -x, -y, 1 - z |
O4 | H11A | 2.735 | 0.015 | -x, -y, 1 - z |
C8 | H12B | 2.915 | 0.015 | 1/2 - x, -1/2 + y, z |
C8 | H12A | 2.920 | 0.020 | -1/2 + x, y, 1/2 - z |
C1 | H12A | 2.938 | 0.038 | -1/2 + x, y, 1/2 - z |
H1 | O4 | 2.763 | 0.043 | x, 1/2 - y, -1/2 + z |
C11 | H11A | 2.978 | 0.078 | -x, -y, 1 - z |
C9 | H12B | 2.984 | 0.084 | 1/2 - x, -1/2 + y, z |
O3 | C6 | 3.310 | 0.090 | -x, -1/2 + y, 1/2 - z |
H10C | C11 | 2.997 | 0.097 | -1/2 - x, -y, -1/2 + z |
H10B | O1 | 2.819 | 0.099 | -1/2 + x, y, 1/2 - z |
II | ||||
O1 | H20 | 2.154 | -0.566 | x, y, z |
H11C | Cl3A | 2.793 | -0.157 | x, y, z |
H10C | O1 | 2.595 | -0.125 | 1 - x, -1/2 + y, 3/2 - z |
H10A | H10A | 2.291 | -0.109 | 1 - x, -y, 2 - z |
O1 | C20 | 3.126 | -0.094 | x, y, z |
H7 | Cl3A | 2.871 | -0.079 | -1 + x, y, z |
C3 | C5 | 3.375 | -0.025 | x, 1/2 - y, -1/2 + z |
C10 | O2 | 3.196 | -0.024 | 1 - x, -1/2 + y, 3/2 - z |
C1 | C8 | 3.399 | -0.001 | x, 1/2 - y, -1/2 + z |
H11A | Cl1 | 2.961 | 0.011 | x, 1/2 - y, -1/2 + z |
C4 | C4 | 3.432 | 0.032 | x, 1/2 - y, -1/2 + z |
H10C | O2 | 2.754 | 0.034 | 1 - x, -1/2 + y, 3/2 - z |
Br1 | C7 | 3.591 | 0.041 | x, 1/2 - y, -1/2 + z |
C1 | C7 | 3.463 | 0.063 | x, 1/2 - y, -1/2 + z |
C8 | C8 | 3.485 | 0.085 | x, 1/2 - y, -1/2 + z |
C11 | Cl1 | 3.538 | 0.088 | x, 1/2 - y, -1/2 + z |
C9 | C4 | 3.495 | 0.095 | x, 1/2 - y, -1/2 + z |
(a) Calculated using Mercury (Macrae et al., 2020). |
Acknowledgements
RT and HSE are grateful to the University of Neuchâtel for their support over the years.
Funding information
Funding for this research was provided by: Swiss National Science Foundation and the University of Neuchâtel.
References
Botha, M. E., Giles, R. G. F., Moorhoff, C. M., Engelhardt, L. M., White, A. H., Jardine, A. & Yorke, S. C. (1991). J. Chem. Soc. Perkin Trans. 1, pp. 89–95. CSD CrossRef Google Scholar
Bürki, N., Michel, A. & Tabacchi, R. (2003). Phytopathol. Mediterr. 42, 191–198. Google Scholar
Edwards, B. E. & Rao, P. N. (1966). J. Org. Chem. 31, 324–327. CrossRef CAS Google Scholar
Gremaud, G. & Tabacchi, R. (1994). Nat. Prod. Lett. 5, 95–103. CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hemingway, R. W., McGraw, G. W. & Barras, S. J. (1977). J. Agric. Food Chem. 25, 717–722. CrossRef CAS Web of Science Google Scholar
Liu, L., Hu, J., Wang, X.-C., Zhong, M.-J., Liu, X.-Y., Yang, S.-D. & Liang, Y.-M. (2012). Tetrahedron, 68, 5391–5395. CSD CrossRef CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Michel, A. (2001). PhD Thesis. University of Neuchâtel, Switzerland. Google Scholar
Shao, C., Han, L., Li, C., Liu, Z. & Wang, C. (2009). Acta Cryst. E65, o736. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Stoe & Cie (2004). IPDSI Bedienungshandbuch. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Stoe & Cie. (2005). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318. Web of Science CrossRef IUCr Journals Google Scholar
Tiouabi, M. (2005). PhD Thesis. University of Neuchâtel, Switzerland. Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.