research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures and Hirshfeld surface analyses of 6,8-dimeth­­oxy-3-methyl-1H-isochromen-1-one and 5-bromo-6,8-dimeth­­oxy-3-methyl-1H-isochromen-1-one chloro­form monosolvate

CROSSMARK_Color_square_no_text.svg

aInstitute of Chemistry, University of Neuchâtel, Av. de Bellevax 51, CH-2000 Neuchâtel, Switzerland, and bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: helen.stoeckli-evans@unine.ch

Edited by G. Diaz de Delgado, Universidad de Los Andes, Venezuela (Received 2 June 2020; accepted 14 June 2020; online 19 June 2020)

In the mol­ecule of 6,8-dimeth­oxy-3-methyl-1H-isochromen-1-one, C12H12O4, (I), the two meth­oxy groups are directed anti with respect to each other. In the mol­ecule of the brom­inated derivative, 5-bromo-6,8-dimeth­oxy-3-methyl-1H-isochromen-1-one, that crystallized as a chloro­form monosolvate, C12H11BrO4·CHCl3, (II·CHCl3), the meth­oxy groups are directed syn to each other. In the crystal of I, mol­ecules are linked by bifurcated C—H⋯O hydrogen bonds, forming chains along the c-axis direction. The chains are linked by C—H⋯π inter­actions, forming a supra­molecular framework. In the crystal of II·CHCl3, mol­ecules are linked by C—H⋯O hydrogen bonds forming 21 helices parallel to the b-axis direction. The chloro­form solvate mol­ecules are linked to the helices by C—H⋯O(carbon­yl) hydrogen bonds. The helices stack up the c-axis direction and are linked by offset ππ inter­actions [inter­centroid distance = 3.517 (3) Å], forming layers parallel to the (100) plane. Compound II·CHCl3 was refined as a two-component twin. Two chlorine atoms of the chloro­form solvate are disordered over two positions and were refined with a fixed occupancy ratio of 0.5:0.5.

1. Chemical context

Compound I is the protected form of the isocoumarin 6,8-dihy­droxy-3-methyl-1H-isochromen-1-one (L), which is a phytotoxin produced by the Ceratocystis fimbriata species coffea and platani (Gremaud & Tabacchi, 1994[Gremaud, G. & Tabacchi, R. (1994). Nat. Prod. Lett. 5, 95-103.]; Bürki et al., 2003[Bürki, N., Michel, A. & Tabacchi, R. (2003). Phytopathol. Mediterr. 42, 191-198.]). These fungi are pathogenic agents responsible for infections of coffee, plane and elm trees (Michel, 2001[Michel, A. (2001). PhD Thesis. University of Neuchâtel, Switzerland.]). Compound L has also been isolated from the organic extracts of the fungus Ceratocystis minor (Hemingway et al., 1977[Hemingway, R. W., McGraw, G. W. & Barras, S. J. (1977). J. Agric. Food Chem. 25, 717-722.]). The crystal structure of L has been reported for a sample obtained from the fermented culture of the endophytic marine fungus Cephalosporium sp. (Shao et al., 2009[Shao, C., Han, L., Li, C., Liu, Z. & Wang, C. (2009). Acta Cryst. E65, o736.]). Herein, we report on the crystal structures and Hirshfeld surface analyses of the 6,8-dimeth­oxy derivative of L, viz. 6,8-dimeth­oxy-3-methyl-1H-isochromen-1-one (I) and compound II, 5-bromo-6,8-dimeth­oxy-3-methyl-1H-isochromen-1-one, the brominated derivative of I. The syntheses of compounds I and II were undertaken during the syntheses of derivatives of natural isocoumarins, metabolites of the pathogenic fungus Ceratocystis fimbriata sp. (Tiouabi, 2005[Tiouabi, M. (2005). PhD Thesis. University of Neuchâtel, Switzerland.]).

[Scheme 1]

2. Structural commentary

The mol­ecular structures of compounds I and II are illustrated in Figs. 1[link] and 2[link], respectively. Compound II crystallized as a chloro­form monosolvate. Both isocoumarin mol­ecules are essentially planar with an r.m.s. deviation of 0.02 Å for I and 0.016 Å for II (H atoms not included). The maximum deviation from their mean planes is 0.047 (1) Å for atom O2 in I, and 0.035 (8) Å for atom C10 in II. The two mol­ecules differ essentially in the orientation of the meth­oxy group on atom C2. In I it is anti with respect to that on atom C4, while in II, owing to the steric hindrance of the Br atom, it has been rotated by 180° about the C2—O3 bond and is positioned syn with respect to the meth­oxy group on atom C4 (Fig. 3[link]).

[Figure 1]
Figure 1
The mol­ecular structure of compound I, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of compound II, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. For clarity, the chloro­form solvate mol­ecule has been omitted.
[Figure 3]
Figure 3
The structural overlap of compounds I (blue) and II (red); r.m.s. deviation = 0.0107 Å (Mercury; Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

3. Supra­molecular features

The crystal packing of compound I is illustrated in Fig. 4[link]. Mol­ecules are linked by bifurcated C—H⋯O hydrogen bonds, C1—H1⋯O1i and C7—H7⋯O1i, forming chains propagating along the c-axis direction (Table 1[link]). The chains are linked by C—H⋯π inter­actions (C12—H12ACgii and C12—H12BCgiii, where Cg is the centroid of the C1–C4/C8/C9 benzene ring), forming a supra­molecular framework (Table 1[link] and Fig. 4[link]).

Table 1
Hydrogen-bond geometry (Å, °) for I[link]

Cg is the centroid of the C1–C4/C8/C9 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1i 0.95 2.55 3.366 (2) 144
C7—H7⋯O1i 0.95 2.50 3.3269 (19) 146
C12—H12ACgii 0.98 2.67 3.4902 (18) 141
C12—H12BCgiii 0.98 2.88 3.5456 (18) 126
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].
[Figure 4]
Figure 4
A view along the a axis of the crystal packing of compound I. The hydrogen bonds (Table 1[link]) are shown as dashed lines and the C—H⋯π inter­actions as blue arrows. For clarity, only the H atoms (grey sticks and blue balls) involved in these inter­actions have been included.

In the crystal of II·CHCl3, mol­ecules are linked by C—H⋯O hydrogen bonds, C10—H10C⋯O1i, forming 21 helices lying parallel to the b-axis direction (Table 2[link] and Fig. 5[link]). The chloro­form solvate mol­ecules are linked to the helices by C—H⋯Cl and C—H⋯O hydrogen bonds, C11—H11C⋯Cl3A and C20—H20⋯O1 (Table 2[link]). The helices stack up the c-axis direction and are linked by offset ππ inter­actions: CgCgii = 3.517 (3) Å, where Cg is the centroid of the C1–C4/C8/C9 benzene ring; α = 0.7 (3)°, β = 19.2°, γ = 19.8°, inter­planar distances are 3.359 (2) and 3.373 (2) Å, offset = 1.173 Å, symmetry code: (ii) x, −y + [{1\over 2}], z − [{1\over 2}]. These latter inter­actions result in the formation of layers lying parallel to the bc plane (Fig. 5[link]). There are no inter-layer contacts present.

Table 2
Hydrogen-bond geometry (Å, °) for II·CHCl3[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10C⋯O1i 0.98 2.59 3.511 (6) 156
C11—H11C⋯Cl3A 0.98 2.79 3.629 (9) 144
C20—H20⋯O1 1.00 2.15 3.126 (6) 164
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 5]
Figure 5
A view along the c axis of the crystal packing of compound II·CHCl3. The hydrogen bonds (Table 2[link]) are shown as dashed lines.

4. Hirshfeld surfaces and fingerprint plots for I and II·CHCl3

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the calculation of the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were performed with CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net]), following the protocol of Tiekink and collaborators (Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]). The Hirshfeld surface is colour-mapped with the normalized contact distance, dnorm, from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii).

A summary of the short inter­atomic contacts in I and II·CHCl3 is given in Table 3[link]. The Hirshfeld surfaces of I and II mapped over dnorm, are shown in Fig. 6[link]a and b, respectively. The faint red spots indicate that short contacts are significant in the crystal packing of both compounds.

Table 3
Short inter­atomic contactsa (Å) for I and II·CHCl3

Atom1 Atom2 Length Length − VdW Symm. code Atom 2
I        
H7 O1 2.497 −0.223 x, [{1\over 2}] − y, −[{1\over 2}] + z
H1 O1 2.551 −0.169 x, [{1\over 2}] − y, −[{1\over 2}] + z
H10A H10A 2.281 −0.119 x, −y, −z
H11C O2 2.683 −0.037 [{1\over 2}] + x, [{1\over 2}] − y, 1 − z
H11B O1 2.691 −0.029 [{1\over 2}] + x, [{1\over 2}] − y, 1 − z
O3 O2 3.023 −0.017 x, −[{1\over 2}] + y, [{1\over 2}] − z
H10B C11 2.903 0.003 x, [{1\over 2}] − y, −[{1\over 2}] + z
C10 H12C 2.911 0.011 [{1\over 2}] + x, [{1\over 2}] − y, −z
C11 C11 3.411 0.011 x, −y, 1 − z
O4 H11A 2.735 0.015 x, −y, 1 − z
C8 H12B 2.915 0.015 [{1\over 2}] − x, −[{1\over 2}] + y, z
C8 H12A 2.920 0.020 [{1\over 2}] + x, y, [{1\over 2}] − z
C1 H12A 2.938 0.038 [{1\over 2}] + x, y, [{1\over 2}] − z
H1 O4 2.763 0.043 x, [{1\over 2}] − y, −[{1\over 2}] + z
C11 H11A 2.978 0.078 x, −y, 1 − z
C9 H12B 2.984 0.084 [{1\over 2}] − x, −[{1\over 2}] + y, z
O3 C6 3.310 0.090 x, −[{1\over 2}] + y, [{1\over 2}] − z
H10C C11 2.997 0.097 [{1\over 2}] − x, −y, −[{1\over 2}] + z
H10B O1 2.819 0.099 [{1\over 2}] + x, y, [{1\over 2}] − z
         
II·CHCl3        
O1 H20 2.154 −0.566 x, y, z
H11C Cl3A 2.793 −0.157 x, y, z
H10C O1 2.595 −0.125 1 − x, −[{1\over 2}] + y, [{3\over 2}] − z
H10A H10A 2.291 −0.109 1 − x, −y, 2 − z
O1 C20 3.126 −0.094 x, y, z
H7 Cl3A 2.871 −0.079 −1 + x, y, z
C3 C5 3.375 −0.025 x, [{1\over 2}] − y, −[{1\over 2}] + z
C10 O2 3.196 −0.024 1 − x, −[{1\over 2}] + y, [{3\over 2}] − z
C1 C8 3.399 −0.001 x, [{1\over 2}] − y, −[{1\over 2}] + z
H11A Cl1 2.961 0.011 x, [{1\over 2}] − y, −[{1\over 2}] + z
C4 C4 3.432 0.032 x, [{1\over 2}] − y, −[{1\over 2}] + z
H10C O2 2.754 0.034 1 − x, −[{1\over 2}] + y, [{3\over 2}] − z
Br1 C7 3.591 0.041 x, [{1\over 2}] − y, −[{1\over 2}] + z
C1 C7 3.463 0.063 x, [{1\over 2}] − y, −[{1\over 2}] + z
C8 C8 3.485 0.085 x, [{1\over 2}] − y, −[{1\over 2}] + z
C11 Cl1 3.538 0.088 x, [{1\over 2}] − y, −[{1\over 2}] + z
C9 C4 3.495 0.095 x, [{1\over 2}] − y, −[{1\over 2}] + z
(a) Calculated using Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).
[Figure 6]
Figure 6
(a) The Hirshfeld surface of compound I, mapped over dnorm, in the colour range −0.1596 to 1.1682 a.u., (b) the Hirshfeld surface of compound II·CHCl3, mapped over dnorm, in the colour range −0.0734 to 1.3731 a.u.. The dashed lines indicate the hydrogen bonds linking the two units (see Table 2[link]).

The full two-dimensional fingerprint plot for I and fingerprint plots delineated into H⋯H (40.3%), O⋯H/H⋯O (28.2%), C⋯H/H⋯C (24.6%), C⋯O (3.0%) and O⋯O (2.9%) contacts, are shown in Fig. 7[link]. The C⋯C contacts contribute only 1.0%.

[Figure 7]
Figure 7
The full two-dimensional fingerprint plot for compound I, and fingerprint plots delineated into H⋯H (40.3%), O⋯H/H⋯O (28.2%), C⋯H/H⋯C (24.6%), C⋯O (3.0%), and O⋯O (2.9%) contacts.

The full two-dimensional fingerprint plot for compound II·CHCl3, and fingerprint plots delineated into Cl⋯H/H⋯Cl (28.0%), H⋯H (18.3%), O⋯H/H⋯O (17.9%), C⋯C (9.6%), Br⋯H/H⋯Br (7.9%), Cl⋯Br (7.3%) and Cl⋯Cl (5.7%) contacts are shown in Fig. 8[link]. The C⋯O contacts contribute 2.2% but the C⋯H/H⋯C contacts contribute only 1.2% compared to 24.6% in I.

[Figure 8]
Figure 8
The full two-dimensional fingerprint plot for compound II·CHCl3, and fingerprint plots delineated into Cl⋯H/H⋯Cl (28.0%), H⋯H (18.3%), O⋯H/H⋯O (17.9%), C⋯C (9.6%), Br⋯H/H⋯Br (7.9%), Cl⋯Br (7.3%) and Cl⋯Cl (5.7%),contacts.

The H⋯H contacts in II·CHCl3 (18.3%) are considerably reduced compared to those in I (H⋯H at 40.3%), while the Cl⋯H/H⋯Cl (28.0%) and O⋯H/H⋯O (17.9%) contacts dominate the inter­atomic contacts and combined are stronger that those in I (O⋯H/H⋯O at 28.2%).

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.41, last update March 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 1H-isochromen-1-one skeleton gave 217 hits. Only one compound contains 6,8-dimeth­oxy substituents, viz. 5,6,8-trimeth­oxy-3,4,7-tri­methyl­isocoumarin (CSD refcode JICLOW; Botha et al., 1991[Botha, M. E., Giles, R. G. F., Moorhoff, C. M., Engelhardt, L. M., White, A. H., Jardine, A. & Yorke, S. C. (1991). J. Chem. Soc. Perkin Trans. 1, pp. 89-95.]). A search for the 3-methyl-1H-isochromen-1-one substructure gave 16 hits. Apart from the structure of 3-methyl-1H-isochromen-1-one itself (GECYUK; Liu et al., 2012[Liu, L., Hu, J., Wang, X.-C., Zhong, M.-J., Liu, X.-Y., Yang, S.-D. & Liang, Y.-M. (2012). Tetrahedron, 68, 5391-5395.]), the most important structure is that for 6,8-dihy­droxy-3-methyl-1H-isochromen-1-one (MOSLOW; Shao et al., 2009[Shao, C., Han, L., Li, C., Liu, Z. & Wang, C. (2009). Acta Cryst. E65, o736.]), viz. compound L described above (see §1. Chemical context).

6. Synthesis and crystallization

The syntheses of compounds I and II are illustrated in Fig. 9[link], together with the atom labelling in relation to the NMR spectra. The syntheses of the keto-acid, 1,2,4-dimeth­oxy-6-(2-oxoprop­yl)benzoic acid (1), together with compounds I and II were undertaken during the syntheses of derivatives of natural isocoumarins, metabolites of the pathogenic fungus Ceratocystis fimbriata sp. (Tiouabi, 2005[Tiouabi, M. (2005). PhD Thesis. University of Neuchâtel, Switzerland.]).

[Figure 9]
Figure 9
Reaction schemes for the syntheses of compounds I and II, with atom-labelling schemes in relation to the NMR spectra (see §6. Synthesis and crystallization).

Preparation of Reagent A (1 M Ac2O; 10−3 M HClO4), was carried out according to the protocol of Edwards & Rao (Edwards & Rao, 1966[Edwards, B. E. & Rao, P. N. (1966). J. Org. Chem. 31, 324-327.]). 0.0501 ml of HClO4 at 70% (0.575 mmol) were dissolved in 50 ml of AcOEt. 30 ml of this solution were added to a solution of 14.4 ml of Ac2O (0.153 mol) in 105.6 ml of AcOEt to give 150 ml of Reagent A.

Synthesis of 6,8-dimeth­oxy-3-methyl-1H-isochromen-1-one (I)[link]: In a 250 ml flask equipped with a magnetic stirrer and under an atmosphere of argon, the keto-acid (1) was dissolved in 150 ml of Reagent A. The mixture was stirred vigorously for 10–15 min, then washed with an aqueous solution of saturated NaHCO3. The organic phase was dried over anhydrous Na2SO4, then filtered and the filtrate concentrated using rotary evaporation. The brown solid obtained was purified by chromatography on a silica column using as eluent CH2Cl2/AcOEt (15/1, v/v). On evaporation of the eluent 1.20 g of compound I (yield 95%) were obtained as colourless block-like crystals.

Analytical data for I: Rf (CH2Cl2/MeOH: 20/0.5; UV) 0.735. 1H NMR (400 MHz, CDCl3, 298 K): 2.16 [d, 4J(3a-4) = 1, 3H, CH3], 3.84 (s, 3H, OCH3), 3.90 (s, 3H, OCH3), 6.03 [q, 4J(4-3a) = 1.0, 1H, H-4], 6.24 (d, Jm = 2.3, 1H, ArH-5), 6.36 (d, Jm = 2.3, 1H, ArH-7). 13C NMR (100 Hz, CDCl3, 298 K, HETCOR–SR/LR): 19.82 C(3a), 55.97 C(OCH3, 56.59 C(OCH3), 98.46 C(7), 99.80 C(5), 103.04 C(9), 104.08 C(4), 142.80 C(10), 155.79 C(3), 159.97 C(1), 163.56 C(8), 165.75 C(6). MS [ESI(+)]: ms 243.1 [M + Na]+; ms 221.3 [M + H]+. HR–MS (ESI(+)): ms 243.06256 [M + Na]+. IR (KBr disk, cm−1): 1713 vs, 1667 m, 1599 vs, 1168 m, 969 m.

Synthesis of 5-bromo-6,8-dimeth­oxy-3-methyl-1H-isochro­men-1-one (II)[link]: In a 25 ml flask equipped with a magnetic stirrer and under an atmosphere of argon, NBS (N-bromosuccinimide) (28 mg, 0.158 mmol) was added under stirring to a solution of compound I (0.136 mmol) dissolved in CH3CN (1.5 ml). The reaction mixture was stirred for 2 h at room temperature. On completion of the reaction, followed by thin-layer chromatography using CH2Cl2/AcOEt (15/2, v/v) as eluent, NaBH4 (5.2 mg, 0.136 mmol) was added, resulting in the transformation of the yellow solution into a white suspension. After 1 h the reaction mixture was diluted using water and then extracted five times using AcOEt. The organic phases were combined, dried over anhydrous Na2SO4, then filtered and the filtrate concentrated using rotary evaporation. The white solid obtained was purified by chromatography on a silica column using CH2Cl2/AcOEt (20/1, v/v) as eluent. On evaporation of the eluent, 30 mg of compound II (yield 74%) were obtained as colourless rod-like crystals.

Analytical data for II: Rf (CH2Cl2/AcOEt: 15/2, UV) 0.26. 1H NMR (400 MHz, CDCl3, 298K): 2.26 [d, 4J(3a-4) = 0.8, 3H, CH3], 4.02 (s, 6H, 2 × OCH3), 6.45 (s, 1H, ArH-7), 6.58 [q, 4J(4-3a) = 0.8, 1H, H-4]. 13C NMR (100 Hz, CDCl3, 298K, HETCOR–SR): 20.31 C(3a), 56.80 C(OCH3), 56.90 C(OCH3), 94.67 C(7), 98.47 C(5), 102.73 C(4), 103.56 C(9), 140.41 C(10), 156.86 C(3), 159.28 C(1), 161.67 C(8), 163.37 C(6). MS[ESI(+)]: ms 299.1 [M(79Br) + H]+, ms 301.1 [M(81Br) + H]+. HR–MS [ESI(+)]: ms 320.97315 [M(79Br) + Na]+, ms 322.97144 [M(81Br) + Na]+. IR (KBr disk, cm−1): 1724 vs, 1667 s, 1580 vs, 1215 vs, 1038 m.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. For both I and II the C-bound H atoms were included in calculated positions and treated as riding on their parent C atom: C—H = 0.95–1.00 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms.

Table 4
Experimental details

  I II·CHCl3
Crystal data
Chemical formula C12H12O4 C12H11BrO4·CHCl3
Mr 220.22 418.49
Crystal system, space group Orthorhombic, Pbca Monoclinic, P21/c
Temperature (K) 173 173
a, b, c (Å) 12.7875 (9), 11.3732 (12), 14.3637 (12) 11.7655 (9), 20.4640 (17), 6.7332 (5)
α, β, γ (°) 90, 90, 90 90, 90.161 (9), 90
V3) 2089.0 (3) 1621.1 (2)
Z 8 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.11 3.04
Crystal size (mm) 0.36 × 0.28 × 0.26 0.30 × 0.11 × 0.10
 
Data collection
Diffractometer Stoe IPDS 2 Stoe IPDS 1
Absorption correction Multi-scan (MULABS; Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) Multi-scan (MULABS; Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.])
Tmin, Tmax 0.903, 1.000 0.894, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 24778, 2835, 1990 3131, 3131, 2066
Rint 0.077 0.087
(sin θ/λ)max−1) 0.689 0.616
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.116, 1.05 0.040, 0.100, 0.88
No. of reflections 2835 3131
No. of parameters 148 211
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.22, −0.18 0.57, −0.40
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2005[Stoe & Cie. (2005). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), EXPOSE, CELL and INTEGRATE in IPDS-I (Stoe & Cie, 2004[Stoe & Cie (2004). IPDSI Bedienungshandbuch. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Compound II·CHCl3 was refined as a two-component twin with a 180° rotation about axis c*. Details are given in the archived CIF. The final refined BASF factor is 0.2590 (19). Two of the chloro­form solvate chlorine atoms (Cl2 and Cl3) are disordered over two positions and were refined with a fixed occupancy ratio (Cl2A:Cl2B and Cl3A:Cl3B) of 0.5:0.5.

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2005) for (I); EXPOSE in IPDS-I (Stoe & Cie, 2004) for (II). Cell refinement: X-AREA (Stoe & Cie, 2005) for (I); CELL in IPDS-I (Stoe & Cie, 2004) for (II). Data reduction: X-RED32 (Stoe & Cie, 2005) for (I); INTEGRATE in IPDS-I (Stoe & Cie, 2004) for (II). For both structures, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015). Molecular graphics: PLATON (Spek, 2020) and Mercury (Macrae et al., 2020) for (I); Mercury (Macrae et al., 2020) for (II). For both structures, software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015), PLATON (Spek, 2020) and publCIF (Westrip, 2010).

6,8-Dimethoxy-3-methyl-1H-isochromem-1-one (I) top
Crystal data top
C12H12O4Dx = 1.400 Mg m3
Mr = 220.22Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 10689 reflections
a = 12.7875 (9) Åθ = 1.7–29.6°
b = 11.3732 (12) ŵ = 0.11 mm1
c = 14.3637 (12) ÅT = 173 K
V = 2089.0 (3) Å3Block, colourless
Z = 80.36 × 0.28 × 0.26 mm
F(000) = 928
Data collection top
STOE IPDS 2
diffractometer
2835 independent reflections
Radiation source: fine-focus sealed tube1990 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.077
φ + ω scansθmax = 29.3°, θmin = 2.8°
Absorption correction: multi-scan
(MULABS; Spek, 2020)
h = 1716
Tmin = 0.903, Tmax = 1.000k = 1515
24778 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.051P)2 + 0.3781P]
where P = (Fo2 + 2Fc2)/3
2835 reflections(Δ/σ)max < 0.001
148 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.18 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.15786 (9)0.27567 (12)0.46504 (8)0.0395 (3)
O20.23972 (8)0.33408 (10)0.33972 (7)0.0268 (3)
O30.14208 (10)0.07550 (12)0.14615 (9)0.0404 (3)
O40.01901 (9)0.15403 (11)0.44753 (8)0.0314 (3)
C10.01713 (12)0.18950 (14)0.16114 (11)0.0266 (3)
H10.0247200.1991670.0957970.032*
C20.06630 (12)0.12755 (14)0.19739 (11)0.0282 (3)
C30.07906 (12)0.11400 (14)0.29319 (12)0.0292 (3)
H30.1369510.0706620.3164500.035*
C40.00875 (12)0.16271 (14)0.35416 (11)0.0258 (3)
C50.15644 (12)0.27686 (14)0.38113 (11)0.0263 (3)
C60.24844 (12)0.34840 (13)0.24518 (10)0.0248 (3)
C70.17841 (12)0.30230 (14)0.18753 (10)0.0248 (3)
H70.1866950.3121240.1222680.030*
C80.09018 (11)0.23769 (13)0.22263 (10)0.0233 (3)
C90.07889 (11)0.22557 (13)0.31981 (10)0.0238 (3)
C100.13653 (15)0.08442 (17)0.04763 (13)0.0387 (4)
H10A0.0687710.0546800.0261320.058*
H10B0.1441750.1669180.0291400.058*
H10C0.1928030.0378210.0196380.058*
C110.10579 (14)0.08855 (17)0.48242 (13)0.0372 (4)
H11A0.1012670.0071710.4603500.056*
H11B0.1710530.1239740.4602300.056*
H11C0.1046310.0895340.5506350.056*
C120.34151 (12)0.42031 (15)0.22198 (12)0.0317 (4)
H12A0.4044730.3817660.2460950.048*
H12B0.3345330.4983340.2502620.048*
H12C0.3470750.4283950.1542310.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0350 (6)0.0600 (9)0.0237 (6)0.0096 (6)0.0017 (5)0.0011 (5)
O20.0232 (5)0.0312 (6)0.0260 (5)0.0034 (5)0.0004 (4)0.0008 (4)
O30.0388 (7)0.0462 (8)0.0363 (7)0.0187 (6)0.0090 (5)0.0013 (6)
O40.0312 (6)0.0374 (7)0.0257 (6)0.0052 (5)0.0067 (5)0.0027 (5)
C10.0281 (7)0.0279 (8)0.0238 (7)0.0008 (6)0.0029 (6)0.0004 (6)
C20.0268 (7)0.0268 (8)0.0310 (8)0.0025 (6)0.0053 (6)0.0013 (6)
C30.0249 (7)0.0276 (8)0.0352 (9)0.0042 (6)0.0019 (6)0.0040 (7)
C40.0248 (7)0.0259 (8)0.0266 (7)0.0021 (6)0.0022 (6)0.0012 (6)
C50.0233 (7)0.0312 (8)0.0244 (7)0.0007 (6)0.0011 (6)0.0005 (6)
C60.0229 (7)0.0258 (7)0.0258 (7)0.0014 (6)0.0025 (6)0.0006 (6)
C70.0235 (7)0.0273 (7)0.0235 (7)0.0009 (6)0.0011 (6)0.0013 (6)
C80.0216 (6)0.0223 (7)0.0260 (7)0.0026 (6)0.0004 (6)0.0003 (6)
C90.0222 (7)0.0244 (7)0.0249 (7)0.0021 (6)0.0011 (6)0.0006 (6)
C100.0384 (9)0.0419 (11)0.0358 (9)0.0055 (8)0.0114 (8)0.0041 (8)
C110.0348 (9)0.0403 (10)0.0365 (9)0.0037 (8)0.0118 (7)0.0048 (8)
C120.0258 (7)0.0349 (9)0.0343 (8)0.0060 (7)0.0006 (7)0.0024 (7)
Geometric parameters (Å, º) top
O1—C51.2056 (19)C6—C71.328 (2)
O2—C61.3722 (18)C6—C121.482 (2)
O2—C51.3825 (18)C7—C81.438 (2)
O3—C21.3532 (19)C7—H70.9500
O3—C101.421 (2)C8—C91.410 (2)
O4—C41.3511 (19)C10—H10A0.9800
O4—C111.427 (2)C10—H10B0.9800
C1—C21.380 (2)C10—H10C0.9800
C1—C81.397 (2)C11—H11A0.9800
C1—H10.9500C11—H11B0.9800
C2—C31.394 (2)C11—H11C0.9800
C3—C41.372 (2)C12—H12A0.9800
C3—H30.9500C12—H12B0.9800
C4—C91.418 (2)C12—H12C0.9800
C5—C91.449 (2)
C6—O2—C5122.97 (12)C1—C8—C9121.25 (14)
C2—O3—C10118.34 (14)C1—C8—C7120.23 (14)
C4—O4—C11117.52 (13)C9—C8—C7118.52 (14)
C2—C1—C8118.58 (14)C8—C9—C4118.34 (14)
C2—C1—H1120.7C8—C9—C5119.49 (14)
C8—C1—H1120.7C4—C9—C5122.18 (14)
O3—C2—C1124.86 (15)O3—C10—H10A109.5
O3—C2—C3113.86 (14)O3—C10—H10B109.5
C1—C2—C3121.28 (14)H10A—C10—H10B109.5
C4—C3—C2120.57 (14)O3—C10—H10C109.5
C4—C3—H3119.7H10A—C10—H10C109.5
C2—C3—H3119.7H10B—C10—H10C109.5
O4—C4—C3122.72 (14)O4—C11—H11A109.5
O4—C4—C9117.32 (14)O4—C11—H11B109.5
C3—C4—C9119.97 (14)H11A—C11—H11B109.5
O1—C5—O2115.07 (14)O4—C11—H11C109.5
O1—C5—C9127.84 (15)H11A—C11—H11C109.5
O2—C5—C9117.08 (13)H11B—C11—H11C109.5
C7—C6—O2121.03 (14)C6—C12—H12A109.5
C7—C6—C12128.27 (15)C6—C12—H12B109.5
O2—C6—C12110.69 (13)H12A—C12—H12B109.5
C6—C7—C8120.83 (14)C6—C12—H12C109.5
C6—C7—H7119.6H12A—C12—H12C109.5
C8—C7—H7119.6H12B—C12—H12C109.5
C10—O3—C2—C10.0 (2)C2—C1—C8—C91.0 (2)
C10—O3—C2—C3179.81 (16)C2—C1—C8—C7179.69 (15)
C8—C1—C2—O3179.38 (16)C6—C7—C8—C1179.92 (15)
C8—C1—C2—C30.8 (2)C6—C7—C8—C90.8 (2)
O3—C2—C3—C4179.52 (15)C1—C8—C9—C40.1 (2)
C1—C2—C3—C40.3 (3)C7—C8—C9—C4179.43 (14)
C11—O4—C4—C31.6 (2)C1—C8—C9—C5179.98 (14)
C11—O4—C4—C9178.59 (14)C7—C8—C9—C50.7 (2)
C2—C3—C4—O4178.59 (15)O4—C4—C9—C8178.83 (14)
C2—C3—C4—C91.2 (2)C3—C4—C9—C81.0 (2)
C6—O2—C5—O1177.08 (15)O4—C4—C9—C51.3 (2)
C6—O2—C5—C93.2 (2)C3—C4—C9—C5178.86 (15)
C5—O2—C6—C73.2 (2)O1—C5—C9—C8179.13 (17)
C5—O2—C6—C12175.88 (13)O2—C5—C9—C81.2 (2)
O2—C6—C7—C81.1 (2)O1—C5—C9—C41.0 (3)
C12—C6—C7—C8177.82 (15)O2—C5—C9—C4178.68 (14)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C4/C8/C9 benzene ring.
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.952.553.366 (2)144
C7—H7···O1i0.952.503.3269 (19)146
C12—H12A···Cgii0.982.673.4902 (18)141
C12—H12B···Cgiii0.982.883.5456 (18)126
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1/2, y, z+1/2; (iii) x+1/2, y+1/2, z.
5-Bromo-6,8-dimethoxy-3-methyl-1H-isochromen-1-one chloroform monosolvate (II) top
Crystal data top
C12H11BrO4·CHCl3F(000) = 832
Mr = 418.49Dx = 1.715 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.7655 (9) ÅCell parameters from 6618 reflections
b = 20.4640 (17) Åθ = 2.0–25.9°
c = 6.7332 (5) ŵ = 3.04 mm1
β = 90.161 (9)°T = 173 K
V = 1621.1 (2) Å3Rod, colourless
Z = 40.30 × 0.11 × 0.10 mm
Data collection top
STOE IPDS 1
diffractometer
3131 independent reflections
Radiation source: fine-focus sealed tube2066 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.087
φ rotation scansθmax = 25.9°, θmin = 2.0°
Absorption correction: multi-scan
(MULABS; Spek, 2020)
h = 1414
Tmin = 0.894, Tmax = 1.000k = 2525
3131 measured reflectionsl = 08
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: mixed
wR(F2) = 0.100H-atom parameters constrained
S = 0.88 w = 1/[σ2(Fo2) + (0.0526P)2]
where P = (Fo2 + 2Fc2)/3
3131 reflections(Δ/σ)max < 0.001
211 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.40 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin. BASF = 0.2590 (19)

2-axis ( 0 0 1 ) [ 0 0 1 ], Angle () [] = 0.16 Deg, Freq = 49

************* (-1.000 0.000 0.000) (h1) (h2) Nr Overlap = 3120

( 0.000 -1.000 0.000) * (k1) = (k2) BASF = 0.15

( 0.003 0.000 1.000) (l1) (l2) DEL-R =-0.011

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.17186 (4)0.18589 (2)0.76040 (12)0.03702 (17)
O10.6171 (3)0.37438 (16)0.7786 (8)0.0409 (11)
O20.4383 (2)0.40139 (13)0.7725 (6)0.0265 (8)
O30.3644 (3)0.09462 (14)0.7647 (7)0.0386 (9)
O40.6719 (3)0.24940 (16)0.7829 (7)0.0390 (9)
C10.3284 (4)0.2074 (2)0.7669 (9)0.0245 (11)
C20.4075 (4)0.1564 (2)0.7681 (9)0.0281 (11)
C30.5225 (4)0.1697 (2)0.7730 (9)0.0292 (12)
H30.5756340.1346980.7747370.035*
C40.5612 (4)0.2337 (2)0.7756 (9)0.0260 (12)
C50.5216 (4)0.3538 (2)0.7769 (9)0.0249 (11)
C60.3248 (4)0.3877 (2)0.7700 (8)0.0258 (11)
C70.2865 (4)0.32622 (19)0.7680 (9)0.0215 (10)
H70.2070100.3181840.7651220.026*
C80.3647 (4)0.2720 (2)0.7702 (8)0.0204 (10)
C90.4828 (4)0.2862 (2)0.7722 (8)0.0203 (10)
C100.4443 (5)0.0418 (2)0.7595 (12)0.0515 (15)
H10A0.4869060.0404900.8847180.077*
H10B0.4970840.0482810.6489420.077*
H10C0.4034880.0004610.7413270.077*
C110.7509 (5)0.1961 (3)0.7800 (16)0.069 (2)
H11A0.7427840.1719330.6550460.104*
H11B0.7354240.1667590.8918180.104*
H11C0.8285650.2130360.7911780.104*
C120.2546 (4)0.4485 (2)0.7733 (11)0.0395 (14)
H12A0.2833640.4792410.6738780.047*
H12B0.2591350.4684490.9053180.047*
H12C0.1753350.4376000.7428780.047*
C200.8802 (5)0.3955 (4)0.7872 (12)0.062 (2)
H200.7993420.3812920.8014030.075*
Cl10.93131 (17)0.41367 (10)1.0251 (3)0.0703 (6)
Cl2A0.8846 (9)0.4482 (4)0.6107 (16)0.130 (4)0.5
Cl3A0.9643 (6)0.3226 (3)0.7218 (19)0.100 (3)0.5
Cl2B0.8631 (8)0.4812 (4)0.6905 (16)0.104 (3)0.5
Cl3B0.9684 (6)0.3556 (4)0.6389 (15)0.134 (4)0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0368 (3)0.0338 (2)0.0405 (3)0.0140 (2)0.0035 (3)0.0009 (4)
O10.0160 (16)0.0347 (19)0.072 (3)0.0049 (14)0.001 (2)0.003 (2)
O20.0222 (16)0.0183 (14)0.039 (2)0.0000 (12)0.0005 (19)0.0003 (19)
O30.066 (2)0.0165 (16)0.034 (2)0.0002 (14)0.002 (2)0.003 (2)
O40.0244 (17)0.0432 (19)0.049 (3)0.0139 (16)0.003 (2)0.001 (2)
C10.028 (2)0.022 (2)0.023 (3)0.0028 (18)0.006 (3)0.006 (2)
C20.045 (3)0.021 (2)0.018 (3)0.001 (2)0.004 (3)0.000 (3)
C30.044 (3)0.025 (2)0.019 (3)0.017 (2)0.001 (3)0.005 (2)
C40.024 (2)0.032 (2)0.022 (3)0.0108 (19)0.002 (2)0.000 (3)
C50.026 (3)0.026 (2)0.022 (3)0.0002 (19)0.002 (2)0.000 (3)
C60.026 (2)0.025 (2)0.027 (3)0.0016 (19)0.000 (3)0.002 (3)
C70.0186 (19)0.026 (2)0.020 (3)0.0001 (16)0.002 (2)0.002 (3)
C80.025 (2)0.023 (2)0.014 (3)0.0008 (17)0.000 (2)0.005 (3)
C90.022 (2)0.023 (2)0.016 (3)0.0009 (17)0.001 (2)0.001 (2)
C100.091 (4)0.022 (2)0.041 (4)0.018 (3)0.000 (5)0.004 (3)
C110.033 (3)0.063 (4)0.112 (7)0.027 (3)0.004 (5)0.006 (5)
C120.029 (2)0.027 (3)0.063 (4)0.006 (2)0.000 (3)0.003 (3)
C200.025 (3)0.092 (5)0.070 (6)0.002 (3)0.001 (3)0.009 (5)
Cl10.0589 (11)0.0721 (12)0.0799 (15)0.0165 (9)0.0007 (10)0.0057 (11)
Cl2A0.129 (7)0.121 (7)0.138 (9)0.055 (6)0.047 (6)0.096 (6)
Cl3A0.028 (2)0.074 (3)0.198 (9)0.002 (2)0.013 (4)0.042 (5)
Cl2B0.094 (4)0.100 (5)0.119 (8)0.026 (4)0.037 (4)0.055 (5)
Cl3B0.035 (3)0.204 (9)0.164 (9)0.011 (6)0.007 (4)0.136 (8)
Geometric parameters (Å, º) top
Br1—C11.894 (4)C7—H70.9500
O1—C51.201 (5)C8—C91.419 (6)
O2—C61.364 (5)C10—H10A0.9800
O2—C51.382 (5)C10—H10B0.9800
O3—C21.361 (5)C10—H10C0.9800
O3—C101.433 (6)C11—H11A0.9800
O4—C41.343 (6)C11—H11B0.9800
O4—C111.434 (6)C11—H11C0.9800
C1—C81.389 (6)C12—H12A0.9800
C1—C21.398 (6)C12—H12B0.9800
C2—C31.381 (7)C12—H12C0.9799
C3—C41.387 (6)C20—Cl2A1.605 (12)
C3—H30.9500C20—Cl3B1.657 (10)
C4—C91.416 (6)C20—Cl11.749 (8)
C5—C91.457 (6)C20—Cl3A1.844 (10)
C6—C71.335 (6)C20—Cl2B1.882 (11)
C6—C121.494 (6)C20—H201.0000
C7—C81.441 (6)
C6—O2—C5123.3 (3)C8—C9—C5120.1 (4)
C2—O3—C10117.2 (4)O3—C10—H10A109.5
C4—O4—C11116.5 (4)O3—C10—H10B109.5
C8—C1—C2120.4 (4)H10A—C10—H10B109.5
C8—C1—Br1121.3 (3)O3—C10—H10C109.5
C2—C1—Br1118.3 (3)H10A—C10—H10C109.5
O3—C2—C3123.2 (4)H10B—C10—H10C109.5
O3—C2—C1116.5 (4)O4—C11—H11A109.5
C3—C2—C1120.3 (4)O4—C11—H11B109.5
C2—C3—C4120.5 (4)H11A—C11—H11B109.5
C2—C3—H3119.7O4—C11—H11C109.5
C4—C3—H3119.7H11A—C11—H11C109.5
O4—C4—C3123.0 (4)H11B—C11—H11C109.5
O4—C4—C9116.8 (4)C6—C12—H12A109.5
C3—C4—C9120.2 (4)C6—C12—H12B109.4
O1—C5—O2114.6 (4)H12A—C12—H12B109.5
O1—C5—C9128.8 (4)C6—C12—H12C109.5
O2—C5—C9116.5 (4)H12A—C12—H12C109.5
C7—C6—O2121.6 (4)H12B—C12—H12C109.5
C7—C6—C12126.7 (4)Cl2A—C20—Cl1121.6 (6)
O2—C6—C12111.7 (4)Cl3B—C20—Cl1116.2 (5)
C6—C7—C8120.6 (4)Cl2A—C20—Cl3A110.4 (7)
C6—C7—H7119.7Cl1—C20—Cl3A102.0 (5)
C8—C7—H7119.7Cl3B—C20—Cl2B108.5 (6)
C1—C8—C9119.7 (4)Cl1—C20—Cl2B98.9 (5)
C1—C8—C7122.5 (4)Cl2A—C20—H20107.4
C9—C8—C7117.8 (4)Cl1—C20—H20107.4
C4—C9—C8118.8 (4)Cl3A—C20—H20107.4
C4—C9—C5121.0 (4)
C10—O3—C2—C32.1 (9)C2—C1—C8—C90.8 (8)
C10—O3—C2—C1178.1 (6)Br1—C1—C8—C9179.1 (4)
C8—C1—C2—O3180.0 (5)C2—C1—C8—C7179.6 (6)
Br1—C1—C2—O30.1 (7)Br1—C1—C8—C70.2 (8)
C8—C1—C2—C30.2 (9)C6—C7—C8—C1179.6 (6)
Br1—C1—C2—C3179.9 (5)C6—C7—C8—C90.7 (8)
O3—C2—C3—C4179.8 (6)O4—C4—C9—C8178.2 (5)
C1—C2—C3—C40.4 (9)C3—C4—C9—C81.2 (8)
C11—O4—C4—C32.5 (9)O4—C4—C9—C50.1 (8)
C11—O4—C4—C9178.1 (6)C3—C4—C9—C5179.4 (6)
C2—C3—C4—O4179.1 (6)C1—C8—C9—C41.4 (8)
C2—C3—C4—C90.3 (9)C7—C8—C9—C4179.6 (5)
C6—O2—C5—O1180.0 (5)C1—C8—C9—C5179.6 (5)
C6—O2—C5—C91.9 (8)C7—C8—C9—C51.4 (8)
C5—O2—C6—C71.2 (9)O1—C5—C9—C42.1 (10)
C5—O2—C6—C12177.8 (5)O2—C5—C9—C4179.8 (5)
O2—C6—C7—C80.5 (9)O1—C5—C9—C8179.8 (6)
C12—C6—C7—C8178.3 (6)O2—C5—C9—C82.0 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10C···O1i0.982.593.511 (6)156
C11—H11C···Cl3A0.982.793.629 (9)144
C20—H20···O11.002.153.126 (6)164
Symmetry code: (i) x+1, y1/2, z+3/2.
Table 3. Short interatomic contactsa (Å) for I and II top
Atom1Atom2LengthLength-VdWSymm. code Atom 2
I
H7O12.497-0.223x, 1/2 - y, -1/2 + z
H1O12.551-0.169x, 1/2 - y, -1/2 + z
H10AH10A2.281-0.119-x, -y, -z
H11CO22.683-0.037-1/2 + x, 1/2 - y, 1 - z
H11BO12.691-0.029-1/2 + x, 1/2 - y, 1 - z
O3O23.023-0.017-x, -1/2 + y, 1/2 - z
H10BC112.9030.003x, 1/2 - y, -1/2 + z
C10H12C2.9110.011-1/2 + x, 1/2 - y, -z
C11C113.4110.011-x, -y, 1 - z
O4H11A2.7350.015-x, -y, 1 - z
C8H12B2.9150.0151/2 - x, -1/2 + y, z
C8H12A2.9200.020-1/2 + x, y, 1/2 - z
C1H12A2.9380.038-1/2 + x, y, 1/2 - z
H1O42.7630.043x, 1/2 - y, -1/2 + z
C11H11A2.9780.078-x, -y, 1 - z
C9H12B2.9840.0841/2 - x, -1/2 + y, z
O3C63.3100.090-x, -1/2 + y, 1/2 - z
H10CC112.9970.097-1/2 - x, -y, -1/2 + z
H10BO12.8190.099-1/2 + x, y, 1/2 - z
II
O1H202.154-0.566x, y, z
H11CCl3A2.793-0.157x, y, z
H10CO12.595-0.1251 - x, -1/2 + y, 3/2 - z
H10AH10A2.291-0.1091 - x, -y, 2 - z
O1C203.126-0.094x, y, z
H7Cl3A2.871-0.079-1 + x, y, z
C3C53.375-0.025x, 1/2 - y, -1/2 + z
C10O23.196-0.0241 - x, -1/2 + y, 3/2 - z
C1C83.399-0.001x, 1/2 - y, -1/2 + z
H11ACl12.9610.011x, 1/2 - y, -1/2 + z
C4C43.4320.032x, 1/2 - y, -1/2 + z
H10CO22.7540.0341 - x, -1/2 + y, 3/2 - z
Br1C73.5910.041x, 1/2 - y, -1/2 + z
C1C73.4630.063x, 1/2 - y, -1/2 + z
C8C83.4850.085x, 1/2 - y, -1/2 + z
C11Cl13.5380.088x, 1/2 - y, -1/2 + z
C9C43.4950.095x, 1/2 - y, -1/2 + z
(a) Calculated using Mercury (Macrae et al., 2020).
 

Acknowledgements

RT and HSE are grateful to the University of Neuchâtel for their support over the years.

Funding information

Funding for this research was provided by: Swiss National Science Foundation and the University of Neuchâtel.

References

First citationBotha, M. E., Giles, R. G. F., Moorhoff, C. M., Engelhardt, L. M., White, A. H., Jardine, A. & Yorke, S. C. (1991). J. Chem. Soc. Perkin Trans. 1, pp. 89–95.  CSD CrossRef Google Scholar
First citationBürki, N., Michel, A. & Tabacchi, R. (2003). Phytopathol. Mediterr. 42, 191–198.  Google Scholar
First citationEdwards, B. E. & Rao, P. N. (1966). J. Org. Chem. 31, 324–327.  CrossRef CAS Google Scholar
First citationGremaud, G. & Tabacchi, R. (1994). Nat. Prod. Lett. 5, 95–103.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHemingway, R. W., McGraw, G. W. & Barras, S. J. (1977). J. Agric. Food Chem. 25, 717–722.  CrossRef CAS Web of Science Google Scholar
First citationLiu, L., Hu, J., Wang, X.-C., Zhong, M.-J., Liu, X.-Y., Yang, S.-D. & Liang, Y.-M. (2012). Tetrahedron, 68, 5391–5395.  CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMichel, A. (2001). PhD Thesis. University of Neuchâtel, Switzerland.  Google Scholar
First citationShao, C., Han, L., Li, C., Liu, Z. & Wang, C. (2009). Acta Cryst. E65, o736.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2004). IPDSI Bedienungshandbuch. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationStoe & Cie. (2005). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTiouabi, M. (2005). PhD Thesis. University of Neuchâtel, Switzerland.  Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds