research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of two heterotrimetallic dysprosium–manganese–sodium 12-metallacrown-4 complexes with the bridging ligands 3-hy­dr­oxy­benzoate and 4-hy­dr­oxy­benzoate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Biochemistry, Shippensburg University, Shippensburg, PA 17257, USA, and bDepartment of Chemistry, Purdue University, West Lafayette, IN 47907, USA
*Correspondence e-mail: cmzaleski@ship.edu

Edited by S. Parkin, University of Kentucky, USA (Received 10 June 2020; accepted 30 June 2020; online 7 July 2020)

The syntheses and crystal structures for the compounds tetra-μ-aqua-­tetra­kis­{2-[aza­nid­yl­ene(oxido)meth­yl]phenolato}tetra­kis­(μ2-3-hy­droxy­benzoato)dys­pro­s­ium(III)­tetra­manganese(III)sodium(I) N,N-di­methyl­acetamide deca­solvate, [DyMn4Na(C7H5O3)4(C7H4NO2)4(H2O)4]·10C4H9NO or [DyIIINa(4-OHben)4{12-MCMn(III)N(shi)-4}(H2O)4]·10DMA, 1, and tetra-μ-aqua-­tetra­kis­{2-[aza­nid­yl­ene(oxido)meth­yl]phenolato}tetra­kis­(μ2-3-hy­droxy­benzoato)dys­pros­ium(III)tetra­manganese(III)sodium(I) N,N-di­methylformamide tetra­solvate, [DyMn4Na(C7H5O3)4(C7H4NO2)4(H2O)4]·4C3H7NO or [DyIIINa(3-OHben)4{12-MCMn(III)N(shi)-4}(H2O)4]·4DMF, 2, and where MC is metallacrown, shi3− is salicyl­hydroximate, 3-OHben is 3-hy­droxy­benzoate, DMA is N,N-di­methyl­acetamide, 4-OHben is 4-hy­droxy­benzoate, and DMF is N,N-di­methyl­formamide, are reported. For both 1 and 2, the macrocyclic metallacrown consists of an [MnIII—N—O] ring repeat unit, and the domed metallacrown captures two ions in the central cavity: a DyIII ion on the convex side of the metallacrown and an Na+ ion the concave side. The MnIII ions are six-coordinate with an elongated tetra­gonally distorted octa­hedral geometry. Both the DyIII and Na+ ions are eight-coordinate. The DyIII ions possess a square-anti­prismatic geometry, while the Na+ ions have a distorted biaugmented trigonal–prismatic geometry. Four 3-hy­droxy­benzoate or 4-hy­droxy­benzoate ligands bridge each MnIII ion to the central DyIII ion. For 1, whole-mol­ecule disorder is observed for the main mol­ecule, excluding only the DyIII and Na+ ions, and the occupancy ratio refined to 0.8018 (14):0.1982 (14). Three DMA mol­ecules were refined as disordered with two in general positions by an approximate 180° rotation and the third disordered twice by general disorder as well as by an exact 180° rotation about a twofold axis that bis­ects it. The occupancy ratios refined to 0.496 (8):0.504 (8), 0.608 (9):0.392 (9), and 2×0.275 (7):2×0.225 (7), respectively. For 2, segments of the metallacrown are disordered including the DyIII ion, one of the Mn ions, two of the Mn-bound 4-hy­droxy­benzoate ligands, the Mn-bridging salicyl­hydroximate ligand, and portions of the remaining three shi3− ligands. The occupancy ratio for the metallacrown disorder refined to 0.849 (9):0.151 (9). Two DMF solvent mol­ecules are also disordered, each over two orientations. The disorder ratios refined to 0.64 (3):0.36 (3) and to 0.51 (2):0.49 (2), respectively. For 2, the crystal under investigation was refined as a non-merohedric twin by a 90° rotation around the real a axis [twin ratio 0.9182 (8):0.0818 (8)].

1. Chemical context

Metallacrowns (MC) were first discovered in 1989 by Pecoraro, and the compounds have grown into a class of coordination complexes with a wide range of applications including single-mol­ecule magnets, magnetorefrigerants, luminescent agents, cell imaging agents, and magnetic resonance imaging agents (Mezei et al., 2007[Mezei, G., Zaleski, C. M. & Pecoraro, V. L. (2007). Chem. Rev. 107, 4933-5003.]; Nguyen & Pecoraro, 2017[Nguyen, T. N. & Pecoraro, V. L. (2017). Comprehensive Supramol­ecular Chemistry II, edited by J. L. Atwood, pp. 195-212. Amsterdam: Elsevier.]; Lutter et al., 2018[Lutter, J. C., Zaleski, C. M. & Pecoraro, V. L. (2018). Advances in Inorganic Chemistry, edited by R. van Eldik & R. Puchta, pp. 177-246. Amsterdam: Elsevier.]; Anthanasopoulou et al., 2018[Anthanasopoulou, A. A., Gamer, C., Völker, L. & Rentschler, E. (2018). Novel Magnetic Nanostructures, edited by N. Domracheva, M. Caporali, & E. Rentschler, pp. 51-96. Amsterdam: Elsevier.]). MCs, the inorganic equivalent of crown ethers, are macrocyclic mol­ecules that follow a metal–nitro­gen–oxygen [M–N–O] repeat in the ring of the mol­ecule, similar to the carbon–carbon–oxygen [C–C–O] repeat of a crown ether. The self-assembly synthetic strategy of MCs lends itself to the ability to place metal ions in specific positions in the mol­ecules and the controllable formation of specific mol­ecules. While heterobimetallic MCs have been known since the 1990s, heterotrimetallic MCs have only been recently reported (Azar et al., 2014[Azar, M. R., Boron, T. T. III, Lutter, J. C., Daly, C. I., Zegalia, K. A., Nimthong, R., Ferrence, G. M., Zeller, M., Kampf, J. W., Pecoraro, V. L. & Zaleski, C. M. (2014). Inorg. Chem. 53, 1729-1742.]; Travis et al., 2015[Travis, J. R., Zeller, M. & Zaleski, C. M. (2015). Acta Cryst. E71, 1300-1306.], 2016[Travis, J. R., Zeller, M. & Zaleski, C. M. (2016). Polyhedron, 114, 29-36.]; Cao et al., 2016[Cao, F., Wei, R.-M., Li, J., Yang, L., Han, Y., Song, Y. & Dou, J.-M. (2016). Inorg. Chem. 55, 5914-5923.]; Boron et al., 2016[Boron, T. T. III, Lutter, J. C., Daly, C. I., Chow, C. Y., Davis, A. H., Nimthong-Roldán, A., Zeller, M., Kampf, J. W., Zaleski, C. M. & Pecoraro, V. L. (2016). Inorg. Chem. 55, 10597-10607.]; Lutter et al., 2020[Lutter, J. C., Eliseeva, S. V., Collet, G., Martinić, I., Kampf, J. W., Schneider, B. L., Carichner, A., Sobilo, J., Lerondel, S., Petoud, S. & Pecoraro, V. L. (2020). Chem. Eur. J. 26, 1274-1277.]). These structures are based on a 12-MC-4 framework with manganese(III) or gallium(III) as the ring metal, a central lanthanide ion, and typically an alkali metal ion bound opposite to the lanthanide ion – though in one case a tungsten(V) ion is bound opposite the lanthanide ion. In general, the controllable formation of heterotrimetallic systems remains difficult from a synthetic perspective; however, MCs provide a pathway that demonstrates that such systems are achievable in a straightforward and predictable fashion.

In 2014 we reported a series of LnIIINa(OAc)4[12-MCMn(III)N(shi)-4](H2O)4 complexes, where LnIII is PrIII to YbIII (except PmIII) and YIII, OAc is acetate, and shi3− is salicyl­hydroximate, that were the first heterotrimetallic MCs and the first 12-MC-4 complexes to bind a lanthanide ion in the central cavity (Azar et al., 2014[Azar, M. R., Boron, T. T. III, Lutter, J. C., Daly, C. I., Zegalia, K. A., Nimthong, R., Ferrence, G. M., Zeller, M., Kampf, J. W., Pecoraro, V. L. & Zaleski, C. M. (2014). Inorg. Chem. 53, 1729-1742.]). The lanthanide ion is tethered to the MC via four acetate bridges that link the central LnIII to the ring MnIII ions. Since then we have reported other LnIIINa(X)4[12-MCMn(III)N(shi)-4] complexes, where LnIII is YIII, ErIII, and DyIII, and X is 2-hy­droxy­benzoate, benzoate, and tri­methyl­acetate, which demonstrate that the bridging carboxyl­ate anion can be easily substituted in these structures (Travis et al., 2015[Travis, J. R., Zeller, M. & Zaleski, C. M. (2015). Acta Cryst. E71, 1300-1306.], 2016[Travis, J. R., Zeller, M. & Zaleski, C. M. (2016). Polyhedron, 114, 29-36.]; Boron et al., 2016[Boron, T. T. III, Lutter, J. C., Daly, C. I., Chow, C. Y., Davis, A. H., Nimthong-Roldán, A., Zeller, M., Kampf, J. W., Zaleski, C. M. & Pecoraro, V. L. (2016). Inorg. Chem. 55, 10597-10607.]). In addition, the identity of the bridging ligand affects the single-mol­ecule magnet (SMM) properties of a series of [12-MCMn(III)N(shi)-4] complexes with DyIII as the central lanthanide ion (Boron et al., 2016[Boron, T. T. III, Lutter, J. C., Daly, C. I., Chow, C. Y., Davis, A. H., Nimthong-Roldán, A., Zeller, M., Kampf, J. W., Zaleski, C. M. & Pecoraro, V. L. (2016). Inorg. Chem. 55, 10597-10607.]). Specifically, the pKa value of the parent acid of the bridging ligand, which indicates the Lewis basicity of the anion, directly impacts the SMM behavior of the MCs. Only the 2-hy­droxy­benzoate (i.e. salicylate) version of the MCs behaves as an SMM, while the benzoate, acetate, and tri­methyl­acetate analogues do not possess any SMM behavior. 2-Hy­droxy­benzoic acid has the smallest pKa value (2.98) of the species investigated, and the subsequent pKa values increase from benzoic acid (4.20) to acetic acid (4.76) to tri­methyl­acetic acid (5.03). Thus, 2-hy­droxy­benzoate is the most electron-withdrawing of the set of anions, and this could affect the magnetic coupling between the ring MnIII ions and central DyIII ion.

Herein we report the syntheses and crystal structures of DyIIINa(3-OHben)4[12-MCMn(III)N(shi)-4](H2O)4·10DMA, 1, and DyIIINa(4-OHben)4[12-MCMn(III)N(shi)-4](H2O)4·4DMF, 2, where 3-OHben is 3-hy­droxy­benzoate, DMA is N,N-di­methyl­acetamide, 4-OHben is 4-hy­droxy­benzoate, and DMF is N,N-di­methyl­formamide. The pKa values of 3-hy­droxy­benzoic acid and 4-hy­droxy­benzoic acid are 4.08 and 4.57, respectively, which are greater than the pKa of 2-hy­droxy­benzoic acid. Future studies will investigate the magnetic properties of 1 and 2 and the impact of the identity of the bridging ligand on the single-mol­ecule magnetism of the MCs.

[Scheme 1]
[Scheme 2]

2. Structural commentary

The metallacrown complexes DyIIINa(3-OHben)4[12-MCMn(III)N(shi)-4](H2O)4·10DMA, 1, and DyIIINa(4-OHben)4[12-MCMn(III)N(shi)-4](H2O)4·4DMF, 2, both possess the typical 12-MC-4 framework with a repeat unit of MnIII–N–O that recurs four times to generate an approximately square-shaped mol­ecule (Figs. 1[link] and 2[link]). Each MC contains one DyIII ion, one Na+ ion, and four MnIII ions, which provides a total 16+ charge. This positive charge is counterbalanced by the four shi3− ligands and four carboxyl­ate anions of the MCs (total 16− charge). Beyond overall mol­ecular charge considerations, the metal oxidation states are confirmed by average bond lengths and bond-valence sum (BVS) values (Table 1[link]; Liu & Thorp, 1993[Liu, W. & Thorp, H. H. (1993). Inorg. Chem. 32, 4102-4105.] and Trzesowska et al., 2004[Trzesowska, A., Kruszynski, R. & Bartczak, T. J. (2004). Acta Cryst. B60, 174-178.]). The four MnIII ions and four shi3− ligands provide an MC framework that is able to bind the two central ions. The oxime oxygen atoms of the shi3− ligands form the central MC cavity that binds DyIII and Na+ ions on opposite faces of the MC. The metallacrown is slightly domed with the DyIII ion bound to the convex side of the MC cavity and the Na+ ion attached to the concave side. As previously reported, the doming effect is likely due to the displacement of the ring metal atoms from the equatorial plane of the first coordination sphere ligand atoms (Azar et al., 2014[Azar, M. R., Boron, T. T. III, Lutter, J. C., Daly, C. I., Zegalia, K. A., Nimthong, R., Ferrence, G. M., Zeller, M., Kampf, J. W., Pecoraro, V. L. & Zaleski, C. M. (2014). Inorg. Chem. 53, 1729-1742.]). For both 1 and 2, the average distance of the MnIII ions from the equatorial plane is 0.14 Å. The DyIII ion is further attached to the MC via either four 3-hy­droxy­benzoate or 4-hy­droxy­benzoate anions that bridge between the DyIII ion and each ring MnIII ion. For 1 the mol­ecule possesses a fourfold rotation axis along the DyIII and Na+ ions, and whole-mol­ecule disorder is observed for the main mol­ecule, excluding only the DyIII and Na+ ions, with the occupancy ratio refined to 0.8018 (14):0.1982 (14). For 2, large sections of the metallacrown are disordered, including the DyIII ion, Mn1, two of the 4-hy­droxy­benzoate ligands bound to Mn1 and Mn2, the shi3− ligand that connects Mn1 and Mn4, and portions of the remaining three shi3− ligands. The occupancy ratio for the metallacrown disorder refined to 0.849 (9):0.151 (9). Complete details describing the treatment of the disorder are given in the Refinement section. The following structural descriptions focus only on the major disorder components.

Table 1
Average bond length (Å) and bond-valence-sum (BVS) values (v.u.) used to support assigned oxidation states of the dysprosium and manganese ions of 1 and 2

  Avg. bond length BVS value Assigned oxidation state
1      
Dy1 2.339 3.32 3+
Mn1 2.053 3.02 3+
       
2      
Dy1 2.357 3.17 3+
Mn1 2.038 3.13 3+
Mn2 2.03 3.11 3+
Mn3 2.031 3.22 3+
Mn4 2.055 3.05 3+
[Figure 1]
Figure 1
The single-crystal X-ray structure of DyIIINa(3-OHben)4[12-MCMn(III)N(shi)-4](H2O)4·10DMA, 1, (a) top view with only the metal atoms and shi3− ligands labeled for clarity and (b) side view with only the metal atoms and axial ligands labeled for clarity. The displacement ellipsoids are drawn at the 50% probability level. For clarity, hydrogen atoms, solvent mol­ecules, and disorder have been omitted. Color scheme: purple – DyIII, green – MnIII, yellow – Na+, red – oxygen, blue – nitro­gen, and gray – carbon. All figures were generated with the program Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]). [Symmetry codes: (i) +x, −y + [{3\over 2}], +z; (ii) −x + [{3\over 2}], −y + [{3\over 2}], +z; (iii) −x + [{3\over 2}], +y, +z.]
[Figure 2]
Figure 2
The single-crystal X-ray structure of DyIIINa(4-OHben)4[12-MCMn(III)N(shi)-4](H2O)4·4DMF, 2, (a) top view with only the metal atoms and shi3− ligands labeled for clarity and (b) side view with only the metal atoms and axial ligands labeled for clarity. The displacement ellipsoids are drawn at the 50% probability level. For clarity, hydrogen atoms, solvent mol­ecules, and disorder have been omitted. See Fig. 1[link] for additional display details.

For both 1 and 2, each MnIII ion is six-coordinate, with a tetra­gonally distorted octa­hedral geometry. The elongated Jahn–Teller axis along the z direction is expected for a high-spin d4 electron configuration. The geometry assignment is supported by a continuous shape measures (CShM) analysis (SHAPE 2.1; Llunell et al., 2013[Llunell, M., Casanova, D., Cirera, J., Alemany, P. & Alvarez, S. (2013). SHAPE (version 2.1). Barcelona, Spain.]; Pinsky & Avnir, 1998[Pinsky, M. & Avnir, D. (1998). Inorg. Chem. 37, 5575-5582.]). The CShM values of the MnIII ions range from 1.115 to 1.434 (Table 2[link]). Typically CShM values less than 1.0 indicate only minor distortions of the assigned geometry from the ideal shape (Cirera et al., 2005[Cirera, J., Ruiz, E. & Alvarez, S. (2005). Organometallics, 24, 1556-1562.]), while CShM values up to 3.0 indicate significant distortions from the ideal geometry; however, a value up to 3.0 still represents an acceptable description of the geometry. The CShM values for the MnIII ions are likely greater than 1.0 due to the presence of the Jahn–Teller axis. The elongated Jahn–Teller distortion is composed of a carboxyl­ate oxygen atom from a 3-hy­droxy­benzoate or 4-hy­droxy­benzoate anion and a bridging water mol­ecule that is also bound to the central Na+ ion. The equatorial donor atoms form two trans chelate rings about each MnIII ion. A five-membered chelate ring is comprised of an oxime oxygen atom and a carbonyl oxygen atom from a shi3− ligand, and a six-membered chelate ring is formed by an oxime nitro­gen atom and a phenolate oxygen atom from a different shi3− ligand.

Table 2
Continuous Shapes Measures (CShM) values for the geometry about the six-coordinate ring MnIII ions in 1 and 2

Shape Hexagon (D6h) Penta­gonal pyramid (C5v) Octa­hedron (Oh) Trigonal prism (D3h) Johnson penta­gonal pyramid (J2; C5v)
1          
Mn1 30.226 27.832 1.147 17.090 30.691
           
2          
Mn1 30.178 27.324 1.126 16.539 30.302
Mn2 29.625 27.265 1.115 16.232 29.492
Mn3 30.366 28.015 1.145 16.300 30.249
Mn4 29.517 26.990 1.434 15.615 29.813

The central DyIII ion on the convex side of the MC is eight-coordinate, with a distorted square anti­prismatic geometry (CShM values: 0.550 for 1 and 0.818 for 2; Table 3[link]; Casanova et al., 2005[Casanova, D., Llunell, M., Alemany, P. & Alvarez, S. (2005). Chem. Eur. J. 11, 1479-1494.]). Two different planes of oxygen atoms complete the coordination sphere. One plane is composed of four oxime oxygen atoms from the MC cavity, while the second plane is formed from four carboxyl­ate oxygen atoms from either the 3-hy­droxy­benzoate or 4-hy­droxy­benzoate anions. The DyIII lies closer to the mean plane of carboxyl­ate oxygen atoms [1.055 (3) Å for 1 and 1.076 (7) Å for 2] than to the mean plane of oxime oxygen atoms [1.546 (3) Å for 1 and 1.593 (7) Å for 2], indicating that the geometry is distorted from an ideal square anti­prism geometry. The mean plane distances were calculated with SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and determined as previously described (Azar et al., 2014[Azar, M. R., Boron, T. T. III, Lutter, J. C., Daly, C. I., Zegalia, K. A., Nimthong, R., Ferrence, G. M., Zeller, M., Kampf, J. W., Pecoraro, V. L. & Zaleski, C. M. (2014). Inorg. Chem. 53, 1729-1742.]).

Table 3
Continuous Shapes Measures (CShM) values for the geometry about the eight-coordinate central DyIII and Na+ ions in 1 and 2

Shape 1 2
  DyIII Na+ DyIII Na+
Octa­gon (D8h) 31.416 30.418 32.709 29.627
Heptagonal pyramid (C7v) 23.704 25.842 23.084 25.952
Hexagonal bipyramid (D6h) 17.239 13.946 16.431 14.078
Cube (Oh) 9.655 6.064 9.477 6.784
Square anti­prism (D4d) 0.550 3.063 0.818 3.657
Triangular dodeca­hedron (D2d) 2.708 3.797 2.517 4.233
Johnson – gyrobifastigium (J26; D2d) 17.567 16.821 16.670 16.504
Johnson – elongated triangular bipyramid (J14; D3h) 30.145 29.438 29.907 29.093
Johnson – biaugmented trigonal prism (J50; C2v) 2.927 4.700 3.128 5.084
Biaugmented trigonal prism (C2v) 1.995 3.002 2.160 3.196
Johnson – snub disphenoid (J84; D2d) 5.823 7.668 5.580 7.860
Triakis tetra­hedron (Td) 10.516 6.959 10.266 7.625
Elongated trigonal bipyramid (D3h) 25.542 25.071 25.294 24.594

The Na+ ion captured on the concave side of the MC is also eight-coordinate; however, the geometry assignment is not clearly defined based on CShM values (Table 3[link]). The CShM analysis slightly favors a biaugmented trigonal–prismatic assignment (CShM values: 3.002 for 1 and 3.196 for 2); however, a square-anti­prismatic geometry assignment is comparable (CShM values: 3.063 for 1 and 3.657 for 2). Both values are above 3.0; thus, there are substantial distortions from each ideal geometry. The biaugmented trigonal–prismatic geometry is a trigonal prism capped on two of the three rectangular faces. As for the DyIII ion, the Na+ ion is surrounded by two groups of oxygen atoms. One group of oxygen atoms is formed from the oxime oxygen atoms of the MC cavity, and the second group is comprised of four oxygen atoms from water mol­ecules. The Na+ ion is positioned closer to the mean plane of water oxygen atoms [0.677 (5) Å for 1 and 0.561 (9) Å for 2] than to the mean plane of the oxime oxygen atoms [1.922 (4) Å for 1 and 1.991 (9) Å for 2].

Lastly, in both 1 and 2 solvent mol­ecules are located in the structure, which are also hydrogen bonded to their respective MCs (described in the Supra­molecular features section). For 1, the DMA mol­ecules associated with N2 and N3 are disordered over two positions with occupancy ratios that refined to 0.496 (8):0.504 (8) and 0.608 (9):0.392 (9), respectively. The DMA molecule associated with N4 is disordered over four positions with occupancy ratios that refined to 2×0.275 (7):2×0.225 (7). For 2, two DMF mol­ecules associated with N6 and N7 are not disordered, while the two DMF mol­ecules associated with N5 and N8 are disordered over two different orientations, which refined to 0.64 (3):0.36 (3) and 0.51 (2):0.49 (2), respectively. Complete details describing the treatment of the solvent disorder are given in the Refinement section.

3. Supra­molecular features

For both 1 and 2 the solvent mol­ecules form hydrogen bonds with the MC complexes. For 1, the MC complex forms hydrogen bonds to the DMA mol­ecules, and the MCs are inter­connected via the DMA mol­ecules (Table 4[link]). The hydroxyl group (O6) of each 3-hy­droxy­benzoate forms a hydrogen bond to the carbonyl oxygen atom (O9i) of a DMA mol­ecule [Fig. 3[link]; symmetry code: (i) x, y, z − 1]. In addition, the water mol­ecule (O7) coordinated to the central Na+ ion hydrogen bonds to the carbonyl oxygen atoms (O8 and O8ii) of two DMA mol­ecules [Fig. 4[link]; symmetry code: (ii) −x + [{3\over 2}], y, z]. Then, the methyl group (associated with C17) of the same DMA mol­ecules forms a C—H⋯O inter­action with the hydroxyl group (O6iii) of a 3-hy­droxy­benzoate of a neighboring MC [symmetry code: (iii) −x + 2, y − [{1\over 2}], −z + 1]. These inter­actions are repeated about the fourfold axis of the MC; thus, a network is generated between neighboring MCs mediated by the DMA mol­ecule associated with N2. The connection between the neighboring MCs, the hydrogen bonds between the MCs and the DMA mol­ecules, and pure van der Waals forces contribute to the overall packing of the mol­ecules.

Table 4
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6A1⋯O9i 0.84 1.82 2.542 (13) 143
O7—H7A⋯O8 0.82 1.85 2.653 (9) 165
O7—H7B⋯O8ii 0.82 2.05 2.785 (9) 151
C17—H17B⋯O6iii 0.98 2.53 3.348 (19) 141
Symmetry codes: (i) x, y, z-1; (ii) [y, -x+{\script{3\over 2}}, z]; (iii) [y-{\script{1\over 2}}, -x+2, -z+1].
[Figure 3]
Figure 3
Inter­molecular hydrogen bonding between 1 and the carbonyl oxygen atom of a DMA mol­ecule. For clarity only the hydrogen atoms (white) involved in the inter­actions have been included, and only the atoms involved in the inter­actions have been labeled. See Fig. 1[link] for additional display details. [Symmetry code: (i) x, y, z − 1.]
[Figure 4]
Figure 4
Inter­molecular hydrogen bonding between the water mol­ecule coordinated to the Na+ ion of 1 and the DMA mol­ecules. The DMA mol­ecules then form C—H⋯O inter­actions with the hydroxyl groups of 3-hy­droxy­benzoate anions of neighboring MCs to generate a network between the complexes. For clarity only the hydrogen atoms (white) involved in the inter­actions have been included, and only the atoms involved in the inter­actions have been labeled. See Fig. 1[link] for additional display details. [Symmetry codes: (ii) y, −x + [{3\over 2}], z; (iii) y − [{1\over 2}], −x + 2, −z + 1.]

For 2, several DMF mol­ecules are hydrogen bonded to each metallacrown and a small hydrogen-bonding network exists between neighboring metallacrowns (Table 5[link]). The four water mol­ecules (O25–O28) coordinated to the central Na+ ion hydrogen bond to the carbonyl oxygen atoms of four DMF mol­ecules (Fig. 5[link]). There is also one intra­molecular hydrogen bond between one of the water mol­ecules (O25) coordinated to the Na+ ion and a phenolate oxygen atom (O12) of the metallacrown (Fig. 5[link]c). In addition, several hydrogen bonds exist between neighboring metallacrowns (Fig. 6[link]). The hydrogen bonding occurs via the 4-hy­droxy­benzoate ligands. The hydroxyl group (O15) of a 4-hy­droxy­benzoate anion forms a hydrogen bond to O3i (a phenolate oxygen atom of a shi3− ligand) of a neighboring MC through two hydrogen bonds: O15—H15O⋯O3i and C32—H32⋯O3i [symmetry code: (i) x − [{1\over 2}], −y + 1, z + [{1\over 2}]]. The hydroxyl group (O21) of a 4-hy­droxy­benzoate anion also forms a hydrogen bond to a second MC via two hydrogen bonds: O21—H21O⋯O22ii (a 4-hy­droxy­benzoate carboxyl­ate oxygen atom) and C46—H46⋯O9ii [a phenolate oxygen atom of a shi3− ligand; symmetry code: (ii) x − [{1\over 2}], −y + 2, z − [{1\over 2}]]. Lastly, the hydroxyl group (O24) of a 4-hy­droxy­benzoate anion forms a hydrogen bond to a third MC via the hydrogen bond O24—H24O⋯O6iii [a phenolate oxygen atom of a shi3− ligand; symmetry code: (iii) x − [{1\over 2}], −y + 2, z + [{1\over 2}]]. Since each MC then forms reciprocal hydrogen bonds, each MC is hydrogen bonded to six neighboring MCs, forming a network of MCs. The hydrogen bonding between the neighboring MCs, between the MCs and the DMF mol­ecules, and pure van der Waals forces contribute to the overall packing of the mol­ecules.

Table 5
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O25—H25C⋯O29 0.92 2.00 2.74 (3) 137
O25—H25D⋯O12 0.87 2.41 3.06 (2) 132
O26—H26C⋯O30 0.85 (4) 2.04 (9) 2.74 (2) 138 (10)
O26—H26D⋯O29 0.84 (4) 2.03 (11) 2.70 (4) 136 (11)
O27—H27C⋯O30 0.87 (4) 2.12 (14) 2.730 (19) 127 (14)
O27—H27D⋯O31 0.87 (4) 2.09 (7) 2.798 (18) 138 (6)
O28—H28C⋯O31 0.88 (4) 2.07 (10) 2.776 (17) 137 (10)
O28—H28D⋯O32 0.88 (4) 1.94 (7) 2.68 (3) 142 (6)
C32—H32⋯O3i 0.95 2.66 3.35 (2) 131
O15—H15O⋯O3i 0.84 1.93 2.77 (2) 175
C46—H46⋯O9ii 0.95 2.24 3.168 (15) 165
O21—H21O⋯O22ii 0.84 2.01 2.794 (16) 155
O24—H24O⋯O6iii 0.84 2.02 2.815 (16) 158
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+2, z-{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+2, z+{\script{1\over 2}}].
[Figure 5]
Figure 5
Inter­molecular hydrogen bonding between the water mol­ecules coordinated to the Na+ ion of 2 and the DMF mol­ecules and intra­molecular hydrogen bonding between a water mol­ecule coordinated to the Na+ ion and a phenolate oxygen atom of the metallacrown. For clarity the hydrogen bonding has been divided into three sections (a), (b) and (c), only the hydrogen atoms (white) involved in the hydrogen bonding have been included, and only the atoms involved in the hydrogen bonding have been labeled. See Fig. 1[link] for additional display details.
[Figure 6]
Figure 6
Inter­molecular hydrogen bonding between adjacent metallacrowns of 2, which generate a network between the MCs. For clarity only the hydrogen atoms (white) involved in the inter­actions have been included, and only the atoms involved in the inter­actions have been labeled. See Fig. 1[link] for additional display details. [Symmetry codes: (i) x − [{1\over 2}], −y + 1, z + [{1\over 2}]; (ii) x − [{1\over 2}], −y + 2, z − [{1\over 2}]; (iii) x − [{1\over 2}], −y + 2, z + [{1\over 2}].]

4. Database survey

A survey of the Cambridge Structural Database (CSD version 5.41, update March 2020, Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) reveals that twenty-six Ln[12-MCMn(III)N(shi)-4] complexes have been previously reported. Four of the metallacrowns contain both DyIII and Na+ ions in the central cavity of the MC. The complexes have different bridging carboxyl­ate anions – acetate (OAc), benzoate (ben), 2-hy­droxy­benzoate (2-OHben), and tri­methyl­acetate (TMA): Dy(OAc)4Na[12-MCMn(III)N(shi)-4](H2O)4·6DMF, 3 (TIWVIG; Azar et al., 2014[Azar, M. R., Boron, T. T. III, Lutter, J. C., Daly, C. I., Zegalia, K. A., Nimthong, R., Ferrence, G. M., Zeller, M., Kampf, J. W., Pecoraro, V. L. & Zaleski, C. M. (2014). Inorg. Chem. 53, 1729-1742.]), Dy(ben)4Na[12-MCMn(III)N(shi)-4](H2O)4·5DMF, 4 (HADFEA; Boron III et al., 2016[Boron, T. T. III, Lutter, J. C., Daly, C. I., Chow, C. Y., Davis, A. H., Nimthong-Roldán, A., Zeller, M., Kampf, J. W., Zaleski, C. M. & Pecoraro, V. L. (2016). Inorg. Chem. 55, 10597-10607.]), Dy(2-OHben)4Na[12-MCMn(III)N(shi)-4](DMF)(H2O)3·4DMF, 5 (HADFAW; Boron III et al., 2016[Boron, T. T. III, Lutter, J. C., Daly, C. I., Chow, C. Y., Davis, A. H., Nimthong-Roldán, A., Zeller, M., Kampf, J. W., Zaleski, C. M. & Pecoraro, V. L. (2016). Inorg. Chem. 55, 10597-10607.]), and Dy(TMA)4Na[12-MCMn(III)N(shi)-4](H2O)2.59(DMF)1.41·4DMF·0.59H2O, 6 (HADFOK; Boron III et al., 2016[Boron, T. T. III, Lutter, J. C., Daly, C. I., Chow, C. Y., Davis, A. H., Nimthong-Roldán, A., Zeller, M., Kampf, J. W., Zaleski, C. M. & Pecoraro, V. L. (2016). Inorg. Chem. 55, 10597-10607.]).

In addition, three of the 12-MC-4 complexes contain both DyIII and K+ in the central cavity with the bridging ligands acetate, benzoate, and 2-hy­droxy­benzoate: Dy(OAc)4K[12-MCMn(III)N(shi)-4](DMF)4·DMF (TIWWUT; Azar et al., 2014[Azar, M. R., Boron, T. T. III, Lutter, J. C., Daly, C. I., Zegalia, K. A., Nimthong, R., Ferrence, G. M., Zeller, M., Kampf, J. W., Pecoraro, V. L. & Zaleski, C. M. (2014). Inorg. Chem. 53, 1729-1742.]), Dy(ben)4K[12-MCMn(III)N(shi)-4](H2O)4·4DMF·1.6H2O (HADFIE; Boron et al., 2016[Boron, T. T. III, Lutter, J. C., Daly, C. I., Chow, C. Y., Davis, A. H., Nimthong-Roldán, A., Zeller, M., Kampf, J. W., Zaleski, C. M. & Pecoraro, V. L. (2016). Inorg. Chem. 55, 10597-10607.]), and Dy(2-OHben)3.5(OAc)0.5K[12-MCMn(III)N(shi)-4](DMF)1.5(H2O)3.5·5DMF (HADDUO; Boron et al., 2016[Boron, T. T. III, Lutter, J. C., Daly, C. I., Chow, C. Y., Davis, A. H., Nimthong-Roldán, A., Zeller, M., Kampf, J. W., Zaleski, C. M. & Pecoraro, V. L. (2016). Inorg. Chem. 55, 10597-10607.]).

Lastly, one dysprosium-manganese 12-MC-4 complex has an unbound tri­ethyl­ammonium as the counter-cation instead of an alkali metal cation and acetate as the bridging ligand:

[NH(C2H5)3]{Dy(OAc)4[12-MCMn(III)N(shi)-4]} (QIBWUW; Qin et al., 2017[Qin, Y., Gao, Q., Chen, Y., Liu, W., Lin, F., Zhang, X., Dong, Y. & Li, Y. (2017). J. Clust. Sci 28, 891-903.]).

As complexes 1 and 2 contain a sodium cation, the discussion will be limited to the [12-MCMn(III)N(shi)-4] complexes 36 that also capture a dysprosium and a sodium cation in the central cavity. The use of 3-hy­droxy­benzoate and 4-hy­droxy­benzoate does not significantly alter the overall MC framework as a structural comparison of complexes 16 reveals that the metrical parameters of the structures are similar (Table 6[link]). These features were measured and calculated using the program Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and in the same fashion as previously described (Azar et al., 2014[Azar, M. R., Boron, T. T. III, Lutter, J. C., Daly, C. I., Zegalia, K. A., Nimthong, R., Ferrence, G. M., Zeller, M., Kampf, J. W., Pecoraro, V. L. & Zaleski, C. M. (2014). Inorg. Chem. 53, 1729-1742.]). For 1 and 2, all metrical values fall within the range of 36. In addition, 1 and 2 are domed in a similar fashion as 36 with the average distance of the ring MnIII ions above their equatorial plane being 0.14 Å for both 1 and 2, which is consistent with the values for 36. Overall the mol­ecular structure of the six complexes are analogous with only differing bridging carboxyl­ate anions.

Table 6
Structural comparison of 1 and 2 with other DyIIINa(X)4[12-MCMn(III)N(shi)-4] complexes (Å)

Compound DyIII crystal radius MC crystal radius Avg. cross-cavity MnIII⋯MnIII distance Avg. cross-cavity Oox⋯Oox distance DyIII—OoxMP distance DyIII—OcarMP distance Avg. distance of Mn to equatorial atom MP
1 1.04 0.56 6.53 3.72 1.55 1.06 0.14
2 1.06 0.54 6.49 3.69 1.59 1.08 0.14
3 1.06 0.55 6.52 3.71 1.59 1.03 0.17
4 1.05 0.54 6.51 3.69 1.58 1.05 0.14
5 1.03 0.54 6.47 3.68 1.51 1.15 0.06
6 1.06 0.56 6.51 3.73 1.58 1.05 0.17

5. Synthesis and crystallization

Materials

Sodium 3-hy­droxy­benzoate (>99.0%) and sodium 4-hy­droxy­benzoate (>99.0%) were purchased from TCI America. Salicyl­hydroxamic acid (H3shi, 99%) and dysprosium(III) nitrate penta­hydrate (99.9%) were purchased from Alfa Aesar. Manganese(II) acetate tetra­hydrate (99+%) was purchased from Acros Organics. N,N-di­methyl­formamide (ACS grade) and methanol (ACS grade) were purchased from Pharmco–Aaper. N,N-di­methyl­acetamide (>99.5%) was purchased from VWR Chemicals BDH. All reagents were used as received and without further purification.

Synthesis of DyIIINa(3-OHben)4[12-MCMn(III)N(shi)-4](H2O)4·10DMA, 1. Manganese(II) acetate tetra­hydrate (2 mmol, 0.4912 g) was dissolved in 8 mL of DMA, resulting in a clear orange solution. In a separate beaker, dysprosium(III) nitrate penta­hydrate (0.250 mmol, 0.1108 g) and salicyl­hydroxamic acid (2 mmol, 0.3070 g) were dissolved in 8 mL of DMA, resulting in a clear and colorless solution. In another beaker, sodium 3-hy­droxy­benzoate (4 mmol, 0.6413 g) was mixed in 8 mL of DMA, resulting in an opaque yellow mixture as not all of the reagent dissolved. Then the manganese(II) acetate solution was added to the Dy(NO3)3/H3shi solution, resulting in a dark-brown solution. Following, the sodium 3-hy­droxy­benzoate solution was added to the former solution and no color change was observed. The solution was stirred overnight and filtered the next day. A brown precipitate and clear and colorless solid were recovered and discarded. The filtrate was a dark-brown solution. Slow evaporation of the filtrate at room temperature afforded X-ray quality black/dark-brown block-shaped crystals after six days. The percentage yield was 44% based on dysprosium(III) nitrate penta­hydrate.

Synthesis of DyIIINa(4-OHben)4[12-MCMn(III)N(shi)-4](H2O)4·4DMF, 2. Manganese(II) acetate tetra­hydrate (2 mmol, 0.4904 g) was dissolved in a solvent mixture of 5 mL of DMF and 5 mL of methanol, resulting in a clear orange solution. In a separate beaker, dysprosium(III) nitrate penta­hydrate (0.250 mmol, 0.1099 g), sodium 4-hy­droxy­benzoate (4 mmol, 0.6411 g), and salicyl­hydroxamic acid (2 mmol, 0.3072 g) were mixed in a solvent mixture of 5 mL of DMF and 5 mL of methanol, and the resulting mixture had an opaque white color as not all of the reagents had dissolved. Then the manganese(II) acetate solution was added to the latter mixture, resulting in an opaque green solution. The solution was stirred overnight and filtered the next day. A green precipitate was recovered and discarded. The filtrate was a dark green–brown solution. Slow evaporation of the filtrate at room temperature afforded X-ray quality black/dark-brown block-shaped crystals after three weeks. The percentage yield was 56% based on dysprosium(III) nitrate penta­hydrate.

6. Refinement

For 1, whole mol­ecule disorder is observed for the main mol­ecule, excluding only the Dy and Na ions. Equivalent disordered organic moieties were restrained to have similar geometries (SAME command of SHELXL), and Uij components of ADPs for all disordered atoms closer to each other than 2.0 Å were restrained to be similar (SIMU command of SHELXL). Subject to these conditions, the occupancy ratio refined to 0.8018 (14):0.1982 (14). Three DMA mol­ecules were refined as disordered. The two DMA mol­ecules associated with N2 and N3 are in general positions by an approximate 180° rotation. The third DMA mol­ecule associated with N4 is disordered by an exact 180° rotation from a twofold axis that bis­ects it as well as by additional general disorder. All DMA moieties were restrained to have similar geometries (SAME command of SHELXL). All N—CH3 bond lengths were restrained to be similar in length and all 1,3 distances of the C—N—CH3 angles were also restrained to be similar to each other. Uij components of ADPs for all DMA atoms closer to each other than 2.0 Å were restrained to be similar, and the atoms of the fourfold-disordered mol­ecule were restrained to be close to isotropic. The lowest occupancy DMA mol­ecule (the minor component disordered by twofold symmetry) was restrained to be close to planar. Subject to these conditions the occupancy ratios of the DMA mol­ecules associated with N2, N3, and N4 refined to 0.496 (8):0.504 (8), 0.608 (9):0.392 (9), and 2×0.275 (7):2×0.225 (7), respectively. Initially alcohol hydrogen atoms were allowed to rotate about their respective oxygen atoms, and water hydrogen-atom positions were refined while a damping factor was applied, and O—H and H⋯H distances were restrained to 0.84 (2) and 1.36 (2) Å, respectively. Some water hydrogen-atom positions were further restrained based on hydrogen-bonding considerations. In the final refinement cycles these hydrogen atoms were set to ride on their carrier oxygen atoms and the damping factor was removed. Additional crystal data, data collection, and structure refinement details are summarized in Table 7[link].

Table 7
Experimental details

  1 2
Crystal data
Chemical formula [DyMn4Na(C7H5O3)4(C7H4NO2)4(H2O)4]·10C4H9NO [DyMn4Na(C7H5O3)4(C7H4NO2)4(H2O)4]·4C3H7NO
Mr 2497.41 1918.58
Crystal system, space group Tetragonal, P4/n Monoclinic, Pn
Temperature (K) 150 150
a, b, c (Å) 19.9869 (9), 19.9869 (9), 13.9570 (11) 14.3622 (11), 16.5258 (11), 16.8246 (12)
α, β, γ (°) 90, 90, 90 90, 92.347 (3), 90
V3) 5575.5 (7) 3989.9 (5)
Z 2 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 1.19 1.64
Crystal size (mm) 0.25 × 0.23 × 0.15 0.30 × 0.20 × 0.19
 
Data collection
Diffractometer Bruker AXS D8 Quest CMOS Bruker AXS D8 Quest CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (TWINABS; Sheldrick, 2012[Sheldrick, G. M. (2012). TWINABS. University of Göttingen, Germany.])
Tmin, Tmax 0.024, 0.055 0.053, 0.109
No. of measured, independent and observed [I > 2σ(I)] reflections 58638, 7967, 6605 40158, 40158, 29137
Rint 0.042 0.084
(sin θ/λ)max−1) 0.714 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.151, 1.04 0.073, 0.219, 1.07
No. of reflections 7967 40158
No. of parameters 761 1433
No. of restraints 1550 1908
H-atom treatment H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 2.49, −0.91 1.86, −1.83
Absolute structure Flack x determined using 5372 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.025 (7)
Computer programs: APEX3 and SAINT (Bruker, 2018[Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008a[Sheldrick, G. M. (2008a). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), shelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

For 2 the crystal under investigation was found to be a non-merohedric twin. The orientation matrices for the two components were identified using the program CELL_NOW (Sheldrick, 2008b[Sheldrick, G. M. (2008b). CELL_NOW. University of Göttingen, Germany.]), with the two components being related by a 90° rotation around the real a axis. The two components were integrated using SAINT (Bruker, 2018[Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) and corrected for absorption using TWINABS (Sheldrick, 2012[Sheldrick, G. M. (2012). TWINABS. University of Göttingen, Germany.]). The twin matrix obtained by the integration program was (1 0 0 0 0 1 0 − 1 0).

The structure was solved by direct methods with only the non-overlapping reflections of component 1. The structure was refined using all reflections of component 1 (including overlaps), resulting in a minor-component fraction of 0.0818 (8). The Rint value given is for all reflections and is based on agreement between observed single and composite intensities and those calculated from refined unique intensities and twin fractions (TWINABS; Sheldrick 2012[Sheldrick, G. M. (2012). TWINABS. University of Göttingen, Germany.]). Sections of the metallacrown are disordered including the Dy ion, Mn1, two of the 4-hy­droxy­benzoate ligands bound to Mn1 and Mn2, the salicyl­hydroximate ligand that connects Mn1 and Mn4, and portions of the remaining three salicyl­hydroximate ligands. The major moiety 4-hy­droxy­benzoate anion geometry was restrained to be similar to that of a non-disordered 4-hy­droxy­benzoate. The geometry of the entire minor moiety was restrained to be similar to that of the major moiety. Some sections of the minor disordered salicyl­hydroximate ligands were restrained to be planar. Pairs of close to overlapping equivalent atoms of the major and minor moieties were constrained to have identical ADPs (C1 and C1B, N2 and N2B, O4 and O4B, O7 and O7B, C22 and C22B, Dy1 and Dy1B). Two solvate DMF mol­ecules are disordered over different orientations. The major and minor disordered moieties were each restrained to have similar geometries. Uij components of ADPs for all disordered atoms closer to each other than 2.0 Å were restrained to be similar. Subject to these conditions the occupancy ratio for the main mol­ecule disorder refined to 0.849 (9):0.151 (9). The disorder of the two DMF moieties refined to 0.64 (3):0.36 (3) for the DMF associated with N5 and to 0.51 (2):0.49 (2) for the DMF mol­ecule associated with N8. Water hydrogen atom positions were refined and O—H and H⋯H distances were restrained to 0.84 (2) and 1.36 (2) Å, respectively. Some water hydrogen-atom positions were further restrained based on hydrogen-bonding considerations and were restrained to be at least 3.10 (2) Å from the sodium ion. Additional crystal data, data collection, and structure refinement details are summarized in Table 7[link].

Supporting information


Computing details top

For both structures, data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015), shelXle (Hübschle et al., 2011); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

Tetra-µ-aqua-tetrakis{2-[azanidylene(oxido)methyl]phenolato}tetrakis(µ2-3-hydroxybenzoato)dysprosium(III)tetramanganese(III)sodium(I) N,N-dimethylformamide tetrasolvate (2) top
Crystal data top
[DyMn4Na(C7H5O3)4(C7H4NO2)4(H2O)4]·4C3H7NOF(000) = 1938
Mr = 1918.58Dx = 1.597 Mg m3
Monoclinic, PnMo Kα radiation, λ = 0.71073 Å
a = 14.3622 (11) ÅCell parameters from 9804 reflections
b = 16.5258 (11) Åθ = 2.8–34.6°
c = 16.8246 (12) ŵ = 1.64 mm1
β = 92.347 (3)°T = 150 K
V = 3989.9 (5) Å3Prism, green
Z = 20.30 × 0.20 × 0.19 mm
Data collection top
Bruker AXS D8 Quest CMOS
diffractometer
40158 independent reflections
Radiation source: sealed tube X-ray source29137 reflections with I > 2σ(I)
Triumph curved graphite crystal monochromatorRint = 0.084
ω and phi scansθmax = 28.3°, θmin = 2.9°
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2012)
h = 1919
Tmin = 0.053, Tmax = 0.109k = 2222
40158 measured reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.073H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.219 w = 1/[σ2(Fo2) + (0.1018P)2 + 15.3803P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
40158 reflectionsΔρmax = 1.86 e Å3
1433 parametersΔρmin = 1.83 e Å3
1908 restraintsAbsolute structure: Flack x determined using 5372 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.025 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The crystal under investigation was found to be non-merohedrally twinned. The orientation matrices for the two components were identified using the program Cell_Now, with the two components being related by a 90 degree rotation around the real a-axis. The two components were integrated using Saint and corrected for absorption using twinabs, resulting in the following statistics:

20647 data (5279 unique) involve domain 1 only, mean I/sigma 37.1 19807 data (5143 unique) involve domain 2 only, mean I/sigma 9.5 63719 data (23583 unique) involve 2 domains, mean I/sigma 23.2 172 data (172 unique) involve 3 domains, mean I/sigma 29.5

The exact twin matrix identified by the integration program was found to be:

0.99975 -0.00605 -0.00410 0.04844 0.02512 0.98410 -0.05702 -1.01529 0.02202

The structure was solved using direct methods with only the non-overlapping reflections of component 1. The structure was refined using the hklf 5 routine with all reflections of component 1 (including the overlapping ones), resulting in a BASF value of 0.0818 (8).

The Rint value given is for all reflections and is based on agreement between observed single and composite intensities and those calculated from refined unique intensities and twin fractions (TWINABS (Sheldrick, 2012)).

Large sections of the main molecule are disordered, including two of the 4-hydroxybenzoate ligands, the Dy atom, manganese atom Mn1, one of the salicylhydroximate ligands, and part of another. The main difference between the major and minor moieties is the coordination mode of one of the 4-hydroxybenzoate anions. In the major moiety, all 4-hydroxybenzoate anions are coordinated to the Dy atom. In the minor moiety, O17B is detached from the Dy atom. Major moiety 4-hydroxybenzoate anion geometries were restrained to be similar to that of a not disordered 4-hydroxybenzoate. The geometry of the whole minor moiety was restrained to be similar to that of the major moiety. Some sections of the minor disordered salicylhydroximate ligands were restrained to be planar. Pairs of close to overlapping equivalent atoms of the major and minor moieties were constrained to have identical ADPs (C1 and C1B, N2 and N2B, O4 and O4B, O7 and O7B, C22 and C22B, Dy1 and Dy1B). Two solvate DMF molecules are disordered over different orientations. The major and minor disordered moieties were each restrained to have similar geometries. Uij components of ADPs for all disordered atoms closer to each other than 1.7 Angstrom were restrained to be similar. Subject to these conditions the occupancy ratio for the main molecule disorder refined to 0.849 (9) to 0.151 (9). The disorder of the two DMF moieties refined to 0.64 (3) to 0.36 (3) and 0.51 (2) to 0.49 (2).

Water H atom positions were refined and O-H and H···H distances were restrained to 0.84 (2) and 1.36 (2) Angstrom, respectively. Some water H atom positions were further restrained based on hydrogen bonding considerations, and were restrained to be at least 3.1 Angstrom from the next sodium ions.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn20.2835 (2)0.54730 (13)0.06110 (14)0.0270 (5)
Mn30.31469 (19)0.79391 (13)0.18204 (14)0.0229 (5)
Mn40.3714 (2)0.91325 (13)0.06191 (14)0.0241 (5)
Na10.4472 (5)0.7150 (4)0.0061 (4)0.0308 (13)
O30.2981 (10)0.4372 (7)0.0438 (7)0.045 (3)
O50.2923 (9)0.5445 (6)0.1758 (6)0.035 (3)
O60.3280 (8)0.7720 (7)0.2890 (6)0.033 (2)
O80.3581 (8)0.9052 (6)0.1857 (6)0.028 (2)
O90.4259 (8)1.0102 (6)0.0385 (6)0.032 (2)
O250.4984 (13)0.6609 (10)0.1204 (8)0.073 (5)
H25C0.5216900.6100500.1311640.110*
H25D0.5070050.6797230.1684350.110*
O260.4477 (10)0.5722 (8)0.0585 (8)0.047 (3)
H26C0.458 (16)0.560 (4)0.106 (4)0.070*
H26D0.461 (15)0.531 (3)0.031 (4)0.070*
O270.4763 (9)0.7604 (8)0.1437 (8)0.041 (3)
H27C0.473 (14)0.732 (6)0.187 (3)0.062*
H27D0.514 (12)0.799 (8)0.157 (4)0.062*
O280.5181 (8)0.8430 (7)0.0402 (7)0.037 (3)
H28C0.539 (12)0.882 (6)0.010 (4)0.055*
H28D0.555 (11)0.849 (5)0.082 (6)0.055*
N10.2942 (9)0.5681 (7)0.0536 (7)0.025 (3)
N30.3442 (8)0.8943 (7)0.0522 (7)0.021 (2)
C20.3108 (13)0.4324 (9)0.1012 (10)0.036 (4)
C30.3158 (14)0.3808 (11)0.1678 (11)0.045 (4)
H30.3215000.4046340.2191650.054*
C40.3131 (14)0.3007 (10)0.1630 (13)0.048 (5)
H40.3186590.2687510.2098940.057*
C50.3019 (15)0.2639 (11)0.0889 (13)0.050 (5)
H50.2983480.2066210.0851890.060*
C60.2960 (13)0.3110 (9)0.0199 (11)0.041 (4)
H60.2884180.2858580.0307550.049*
C70.3011 (13)0.3945 (9)0.0258 (10)0.036 (4)
C80.2950 (10)0.6170 (9)0.2053 (9)0.025 (3)
C90.3028 (11)0.6270 (10)0.2927 (9)0.031 (3)
C100.2919 (13)0.5583 (12)0.3392 (10)0.041 (4)
H100.2834750.5075650.3139510.050*
C110.2931 (16)0.5613 (14)0.4217 (11)0.057 (5)
H110.2898980.5129840.4523670.068*
C120.2989 (15)0.6353 (14)0.4581 (11)0.055 (5)
H120.2942880.6389690.5144570.067*
C130.3114 (14)0.7048 (12)0.4129 (9)0.043 (4)
H130.3190220.7554530.4385310.052*
C140.3130 (12)0.7010 (11)0.3293 (9)0.036 (4)
C150.3678 (10)0.9356 (8)0.1154 (9)0.024 (3)
C160.4047 (11)1.0180 (9)0.1058 (10)0.029 (3)
C170.4135 (12)1.0652 (10)0.1742 (12)0.040 (4)
H170.3967351.0434550.2250690.048*
C180.4466 (15)1.1437 (11)0.1674 (12)0.051 (5)
H180.4537491.1752570.2139230.062*
C190.4683 (17)1.1751 (12)0.0974 (13)0.058 (6)
H190.4891611.2296040.0943240.070*
C200.4617 (13)1.1311 (10)0.0281 (11)0.042 (4)
H200.4791561.1555890.0213460.051*
C210.4290 (11)1.0496 (9)0.0294 (10)0.033 (3)
Dy10.20229 (13)0.74838 (9)0.01112 (12)0.0316 (4)0.849 (9)
O10.3067 (10)0.6491 (7)0.0745 (7)0.026 (3)0.849 (9)
O20.3466 (11)0.5481 (7)0.1814 (8)0.035 (3)0.849 (9)
O40.2849 (9)0.6613 (8)0.0795 (7)0.022 (3)0.849 (9)
N20.2911 (19)0.6821 (12)0.1615 (10)0.025 (3)0.849 (9)
C10.3227 (16)0.5211 (11)0.1115 (10)0.035 (3)0.849 (9)
N40.3568 (11)0.7807 (8)0.1614 (8)0.020 (3)0.849 (9)
O70.3147 (10)0.8160 (9)0.0710 (8)0.024 (3)0.849 (9)
O100.3366 (8)0.8047 (7)0.0836 (7)0.018 (2)0.849 (9)
O110.4079 (13)0.9099 (9)0.1749 (7)0.025 (4)0.849 (9)
C220.3931 (13)0.8404 (10)0.2061 (10)0.026 (3)0.849 (9)
C230.4176 (12)0.8262 (10)0.2907 (9)0.025 (3)0.849 (9)
C240.4365 (16)0.8932 (12)0.3390 (10)0.029 (4)0.849 (9)
H240.4329460.9462830.3175360.035*0.849 (9)
C250.4608 (18)0.8812 (13)0.4194 (11)0.038 (4)0.849 (9)
H250.4727520.9268920.4525560.045*0.849 (9)
C260.4678 (16)0.8065 (13)0.4509 (12)0.039 (4)0.849 (9)
H260.4857720.8000580.5054690.047*0.849 (9)
C270.4487 (15)0.7389 (12)0.4041 (10)0.034 (4)0.849 (9)
H270.4535980.6864910.4271000.041*0.849 (9)
C280.4225 (14)0.7469 (10)0.3235 (9)0.031 (3)0.849 (9)
O120.4088 (12)0.6786 (8)0.2813 (7)0.037 (3)0.849 (9)
Mn10.3482 (3)0.6653 (2)0.1823 (2)0.0277 (9)0.849 (9)
O130.2110 (11)0.6665 (9)0.2286 (9)0.043 (3)0.849 (9)
O140.1442 (12)0.7440 (9)0.1332 (9)0.044 (3)0.849 (9)
C290.1409 (15)0.6966 (12)0.1932 (12)0.044 (4)0.849 (9)
C300.0464 (14)0.6781 (13)0.2227 (12)0.051 (4)0.849 (9)
C310.0398 (15)0.6421 (12)0.2982 (12)0.049 (4)0.849 (9)
H310.0943440.6281830.3290670.058*0.849 (9)
C320.0473 (14)0.6277 (13)0.3264 (13)0.050 (4)0.849 (9)
H320.0524850.6041360.3775660.060*0.849 (9)
C330.1284 (15)0.647 (2)0.2815 (14)0.052 (5)0.849 (9)
C340.1207 (16)0.6812 (15)0.2059 (14)0.058 (4)0.849 (9)
H340.1750240.6930900.1739600.069*0.849 (9)
C350.0328 (15)0.6978 (15)0.1778 (14)0.054 (4)0.849 (9)
H350.0274760.7229490.1274040.065*0.849 (9)
O150.2158 (12)0.6408 (10)0.3106 (11)0.063 (5)0.849 (9)
H15O0.2131720.6143490.3532460.095*0.849 (9)
Dy1B0.1734 (8)0.7497 (7)0.0004 (8)0.0316 (4)0.151 (9)
O1B0.272 (4)0.650 (2)0.075 (2)0.022 (9)0.151 (9)
O2B0.299 (6)0.553 (2)0.187 (3)0.030 (6)0.151 (9)
O4B0.262 (6)0.655 (4)0.079 (4)0.022 (3)0.151 (9)
N2B0.282 (11)0.669 (7)0.160 (5)0.025 (3)0.151 (9)
C1B0.300 (4)0.522 (2)0.116 (3)0.035 (3)0.151 (9)
N4B0.315 (5)0.783 (2)0.161 (3)0.022 (5)0.151 (9)
O7B0.297 (6)0.807 (5)0.076 (4)0.024 (3)0.151 (9)
O10B0.306 (4)0.804 (3)0.080 (3)0.020 (7)0.151 (9)
O11B0.388 (10)0.908 (5)0.175 (2)0.026 (7)0.151 (9)
C22B0.363 (7)0.838 (3)0.200 (3)0.026 (3)0.151 (9)
C23B0.390 (5)0.827 (3)0.286 (3)0.028 (5)0.151 (9)
C24B0.422 (8)0.895 (3)0.327 (4)0.032 (6)0.151 (9)
H24B0.4258250.9455950.2997770.038*0.151 (9)
C25B0.449 (9)0.890 (4)0.407 (4)0.035 (6)0.151 (9)
H25B0.4706310.9362080.4347530.042*0.151 (9)
C26B0.444 (8)0.816 (5)0.446 (3)0.036 (6)0.151 (9)
H26B0.4617230.8119410.5006800.043*0.151 (9)
C27B0.412 (6)0.748 (4)0.405 (3)0.034 (6)0.151 (9)
H27B0.4080090.6970620.4316300.041*0.151 (9)
C28B0.385 (4)0.753 (3)0.325 (3)0.031 (5)0.151 (9)
O12B0.355 (5)0.684 (3)0.288 (2)0.027 (6)0.151 (9)
Mn1B0.3022 (17)0.6696 (11)0.1860 (10)0.022 (3)0.151 (9)
O13B0.160 (3)0.676 (4)0.221 (3)0.046 (6)0.151 (9)
O14B0.106 (4)0.750 (4)0.117 (3)0.047 (8)0.151 (9)
C29B0.093 (3)0.704 (6)0.178 (4)0.047 (5)0.151 (9)
C30B0.005 (4)0.677 (7)0.185 (5)0.052 (6)0.151 (9)
C31B0.036 (4)0.647 (7)0.257 (5)0.052 (5)0.151 (9)
H31B0.0066840.6304460.2982380.063*0.151 (9)
C32B0.132 (5)0.641 (14)0.265 (6)0.053 (6)0.151 (9)
H32B0.1543610.6291960.3165360.064*0.151 (9)
C33B0.196 (4)0.651 (7)0.202 (5)0.055 (7)0.151 (9)
C34B0.164 (4)0.692 (8)0.136 (5)0.055 (7)0.151 (9)
H34B0.2076990.7072940.0942010.066*0.151 (9)
C35B0.071 (4)0.710 (7)0.130 (6)0.054 (7)0.151 (9)
H35B0.0516310.7449380.0884350.064*0.151 (9)
O15B0.290 (4)0.644 (6)0.211 (6)0.068 (15)0.151 (9)
H15B0.3182930.6771200.1811760.103*0.151 (9)
O160.1346 (10)0.5323 (9)0.0740 (8)0.041 (3)0.849 (9)
O170.1018 (12)0.6375 (8)0.0031 (8)0.045 (3)0.849 (9)
C360.0793 (16)0.5813 (15)0.0465 (14)0.049 (4)0.849 (9)
C370.0219 (16)0.5729 (15)0.0671 (16)0.063 (4)0.849 (9)
C380.0536 (19)0.5039 (17)0.108 (2)0.069 (5)0.849 (9)
H380.0129440.4616900.1226840.083*0.849 (9)
C390.1498 (19)0.5016 (18)0.125 (2)0.078 (5)0.849 (9)
H390.1755990.4558060.1521220.094*0.849 (9)
C400.2081 (19)0.5630 (18)0.104 (2)0.086 (6)0.849 (9)
C410.172 (2)0.6317 (18)0.067 (2)0.089 (6)0.849 (9)
H410.2123670.6761460.0572680.106*0.849 (9)
C420.0804 (19)0.6362 (17)0.0426 (19)0.079 (5)0.849 (9)
H420.0569170.6798740.0110340.095*0.849 (9)
O180.3015 (16)0.561 (2)0.121 (2)0.122 (8)0.849 (9)
H18O0.3114440.5645540.1706320.182*0.849 (9)
O16B0.135 (3)0.581 (5)0.074 (4)0.043 (6)0.151 (9)
O17B0.054 (6)0.606 (6)0.035 (4)0.065 (13)0.151 (9)
C36B0.060 (3)0.584 (8)0.038 (4)0.050 (6)0.151 (9)
C37B0.029 (3)0.571 (6)0.085 (5)0.065 (6)0.151 (9)
C38B0.051 (3)0.492 (6)0.107 (9)0.070 (6)0.151 (9)
H38B0.0048840.4514730.1044250.084*0.151 (9)
C39B0.142 (4)0.473 (5)0.132 (10)0.078 (7)0.151 (9)
H39B0.1577290.4194310.1466200.093*0.151 (9)
C40B0.210 (3)0.533 (5)0.135 (8)0.085 (7)0.151 (9)
C41B0.187 (4)0.612 (4)0.114 (8)0.084 (6)0.151 (9)
H41B0.2337270.6532080.1160840.101*0.151 (9)
C42B0.096 (5)0.631 (5)0.089 (7)0.077 (6)0.151 (9)
H42B0.0808820.6852510.0738880.092*0.151 (9)
O18B0.300 (3)0.516 (5)0.154 (9)0.095 (15)0.151 (9)
H18B0.3200780.5459310.1912010.142*0.151 (9)
O190.1728 (8)0.8272 (7)0.2033 (7)0.036 (3)
O200.1083 (8)0.7685 (7)0.0984 (7)0.042 (3)
C430.1037 (11)0.8116 (9)0.1622 (9)0.033 (4)
C440.0110 (7)0.8429 (9)0.1900 (7)0.032 (4)
C450.0012 (8)0.8741 (8)0.2664 (7)0.030 (3)
H450.0529750.8753700.2996640.036*
C460.0847 (8)0.9036 (8)0.2940 (7)0.030 (3)
H460.0919070.9246370.3464160.036*
C470.1601 (8)0.9022 (9)0.2450 (7)0.033 (3)
C480.1504 (8)0.8704 (11)0.1686 (7)0.040 (4)
H480.2024770.8682840.1355770.048*
C490.0642 (8)0.8419 (10)0.1410 (7)0.035 (4)
H490.0567120.8215830.0882730.043*
O210.2449 (8)0.9304 (8)0.2702 (8)0.047 (3)
H21O0.2381220.9676940.3034440.071*
O220.2392 (8)0.9745 (6)0.0926 (7)0.031 (2)
O230.1592 (8)0.8793 (6)0.0249 (7)0.036 (3)
C500.1623 (11)0.9423 (8)0.0681 (9)0.031 (3)
C510.0719 (9)0.9786 (9)0.0883 (9)0.028 (3)
C520.0658 (10)1.0561 (8)0.1207 (8)0.025 (3)
H520.1210921.0864940.1309620.030*
C530.0200 (10)1.0896 (9)0.1383 (9)0.030 (3)
H530.0231111.1423530.1604520.035*
C540.1002 (10)1.0455 (9)0.1232 (8)0.031 (3)
C550.0946 (11)0.9676 (10)0.0914 (10)0.040 (4)
H550.1500180.9371810.0819300.048*
C560.0104 (10)0.9343 (9)0.0737 (10)0.032 (4)
H560.0077910.8814760.0517590.039*
O240.1870 (8)1.0765 (8)0.1350 (7)0.042 (3)
H24O0.1826461.1262210.1449800.063*
O290.534 (3)0.5064 (18)0.072 (2)0.081 (10)0.64 (3)
C570.551 (3)0.467 (2)0.136 (2)0.079 (7)0.64 (3)
H570.5632210.4995960.1821110.095*0.64 (3)
N50.5544 (15)0.3896 (13)0.1484 (13)0.079 (5)0.64 (3)
C580.548 (4)0.341 (3)0.079 (3)0.100 (10)0.64 (3)
H58A0.5513540.2838570.0935640.151*0.64 (3)
H58B0.4892320.3520430.0495070.151*0.64 (3)
H58C0.6002800.3541580.0448970.151*0.64 (3)
C590.560 (3)0.353 (3)0.226 (2)0.078 (9)0.64 (3)
H59A0.5915400.3006130.2230100.117*0.64 (3)
H59B0.4967070.3447810.2446520.117*0.64 (3)
H59C0.5946820.3884220.2631370.117*0.64 (3)
O29B0.558 (7)0.506 (3)0.075 (5)0.083 (13)0.36 (3)
C57B0.544 (5)0.430 (3)0.082 (2)0.077 (7)0.36 (3)
H57B0.5250020.4008310.0352920.093*0.36 (3)
N5B0.5544 (15)0.3896 (13)0.1484 (13)0.079 (5)0.36 (3)
C58B0.550 (5)0.437 (4)0.219 (3)0.085 (12)0.36 (3)
H58D0.5589300.4012300.2655230.127*0.36 (3)
H58E0.5999500.4774260.2198190.127*0.36 (3)
H58F0.4897160.4634690.2203810.127*0.36 (3)
C59B0.564 (6)0.305 (2)0.157 (4)0.091 (12)0.36 (3)
H59D0.5647640.2797210.1041870.136*0.36 (3)
H59E0.5119960.2834170.1860610.136*0.36 (3)
H59F0.6229150.2927770.1863640.136*0.36 (3)
O300.5200 (10)0.6114 (9)0.2014 (9)0.059 (4)
C600.5257 (15)0.5688 (14)0.2619 (15)0.059 (6)
H600.5128420.5127760.2561710.070*
N60.5476 (11)0.5933 (11)0.3324 (10)0.049 (4)
C610.5632 (18)0.6748 (15)0.3471 (16)0.071 (7)
H61A0.5515640.7062760.2991620.085*
H61B0.5210150.6930880.3907890.085*
H61C0.6278740.6826280.3618520.085*
C620.544 (2)0.535 (2)0.3995 (18)0.094 (9)
H62A0.4936020.5496490.4374760.141*
H62B0.5337040.4802790.3791980.141*
H62C0.6037210.5362980.4262820.141*
O310.5907 (9)0.8921 (8)0.1024 (8)0.049 (3)
C630.6086 (12)0.9537 (12)0.1448 (12)0.050 (5)
H630.5855490.9523410.1984970.060*
N70.6549 (12)1.0184 (11)0.1227 (11)0.064 (5)
C640.690 (2)1.025 (2)0.0426 (18)0.115 (14)
H64A0.6722930.9761600.0131180.172*
H64B0.6630441.0725590.0178710.172*
H64C0.7577411.0294810.0416430.172*
C650.6753 (16)1.0815 (13)0.1768 (16)0.069 (7)
H65A0.6623791.0628230.2314070.104*
H65B0.7411361.0964590.1699710.104*
H65C0.6363201.1286480.1661890.104*
O320.6075 (19)0.7910 (17)0.1735 (14)0.050 (7)0.51 (2)
C660.633 (3)0.799 (2)0.248 (2)0.058 (6)0.51 (2)
H660.6329760.7511060.2795960.070*0.51 (2)
N80.660 (3)0.867 (2)0.2832 (19)0.059 (6)0.51 (2)
C670.664 (4)0.937 (3)0.239 (3)0.069 (9)0.51 (2)
H67A0.7284620.9574850.2406660.103*0.51 (2)
H67B0.6228840.9778600.2601720.103*0.51 (2)
H67C0.6448840.9253930.1832260.103*0.51 (2)
C680.692 (4)0.859 (3)0.365 (2)0.075 (11)0.51 (2)
H68A0.7589260.8483500.3672870.112*0.51 (2)
H68B0.6591830.8135190.3890900.112*0.51 (2)
H68C0.6786730.9087940.3934180.112*0.51 (2)
O32B0.637 (3)0.847 (2)0.173 (2)0.076 (8)0.49 (2)
C66B0.640 (4)0.911 (3)0.219 (2)0.063 (7)0.49 (2)
H66B0.6235160.9622440.1959810.076*0.49 (2)
N8B0.664 (3)0.907 (2)0.294 (2)0.058 (6)0.49 (2)
C67B0.677 (4)0.829 (2)0.328 (3)0.067 (10)0.49 (2)
H67D0.7332640.8040460.3071320.100*0.49 (2)
H67E0.6231480.7947130.3152170.100*0.49 (2)
H67F0.6854590.8339730.3862130.100*0.49 (2)
C68B0.661 (3)0.976 (2)0.344 (2)0.051 (9)0.49 (2)
H68D0.6588891.0254450.3113700.076*0.49 (2)
H68E0.7167030.9774960.3797070.076*0.49 (2)
H68F0.6052510.9741110.3759190.076*0.49 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn20.0437 (14)0.0177 (10)0.0200 (10)0.0027 (10)0.0047 (9)0.0002 (8)
Mn30.0299 (11)0.0232 (11)0.0161 (10)0.0002 (9)0.0046 (8)0.0032 (8)
Mn40.0341 (12)0.0179 (10)0.0206 (10)0.0012 (9)0.0034 (9)0.0003 (8)
Na10.042 (3)0.023 (3)0.027 (3)0.003 (3)0.008 (3)0.004 (2)
O30.078 (9)0.023 (5)0.034 (6)0.002 (6)0.006 (6)0.002 (5)
O50.061 (8)0.017 (5)0.027 (5)0.004 (5)0.008 (5)0.006 (4)
O60.038 (6)0.043 (6)0.020 (5)0.011 (5)0.006 (4)0.006 (5)
O80.035 (6)0.027 (5)0.021 (5)0.003 (4)0.005 (4)0.005 (4)
O90.044 (6)0.022 (5)0.031 (6)0.009 (5)0.003 (5)0.000 (4)
O250.113 (13)0.061 (10)0.045 (8)0.043 (9)0.013 (8)0.011 (7)
O260.059 (8)0.046 (7)0.036 (7)0.022 (6)0.006 (6)0.003 (6)
O270.034 (6)0.044 (7)0.046 (7)0.000 (5)0.008 (5)0.008 (6)
O280.041 (7)0.038 (6)0.032 (6)0.004 (5)0.001 (5)0.000 (5)
N10.037 (7)0.014 (5)0.025 (6)0.001 (5)0.005 (5)0.000 (5)
N30.026 (6)0.012 (5)0.024 (6)0.005 (5)0.001 (5)0.000 (4)
C20.052 (10)0.024 (8)0.030 (8)0.005 (7)0.004 (7)0.001 (6)
C30.068 (12)0.037 (9)0.029 (8)0.002 (9)0.008 (8)0.011 (7)
C40.058 (11)0.028 (8)0.057 (12)0.002 (8)0.004 (9)0.019 (8)
C50.060 (12)0.033 (9)0.057 (12)0.009 (8)0.014 (10)0.009 (8)
C60.058 (11)0.019 (7)0.046 (10)0.001 (7)0.015 (8)0.004 (7)
C70.050 (10)0.020 (7)0.037 (9)0.002 (7)0.008 (7)0.003 (6)
C80.024 (7)0.029 (7)0.024 (6)0.002 (6)0.002 (5)0.004 (5)
C90.028 (8)0.038 (8)0.028 (7)0.002 (7)0.011 (6)0.005 (7)
C100.048 (10)0.045 (10)0.032 (9)0.006 (8)0.008 (8)0.003 (7)
C110.067 (14)0.071 (14)0.033 (10)0.014 (11)0.016 (9)0.021 (10)
C120.060 (13)0.083 (15)0.024 (8)0.011 (11)0.006 (8)0.009 (9)
C130.057 (11)0.056 (11)0.017 (7)0.012 (9)0.010 (7)0.006 (7)
C140.035 (9)0.054 (10)0.018 (7)0.011 (8)0.004 (6)0.006 (7)
C150.025 (7)0.018 (6)0.028 (7)0.003 (5)0.004 (6)0.007 (6)
C160.026 (8)0.029 (8)0.034 (8)0.002 (6)0.005 (6)0.002 (6)
C170.039 (9)0.022 (8)0.060 (12)0.004 (7)0.009 (8)0.006 (7)
C180.065 (13)0.039 (10)0.050 (11)0.018 (9)0.007 (9)0.026 (9)
C190.085 (15)0.031 (9)0.060 (13)0.013 (10)0.032 (12)0.010 (9)
C200.052 (11)0.027 (8)0.048 (10)0.009 (7)0.014 (8)0.004 (7)
C210.028 (8)0.028 (8)0.045 (9)0.000 (6)0.017 (7)0.003 (7)
Dy10.0381 (12)0.0309 (4)0.0258 (6)0.0046 (7)0.0024 (7)0.0003 (4)
O10.042 (8)0.019 (5)0.016 (5)0.005 (5)0.002 (5)0.001 (4)
O20.052 (7)0.028 (6)0.024 (5)0.002 (6)0.003 (6)0.008 (5)
O40.037 (7)0.021 (5)0.010 (4)0.009 (5)0.006 (4)0.007 (4)
N20.030 (6)0.026 (6)0.020 (5)0.017 (5)0.006 (4)0.007 (4)
C10.054 (9)0.030 (6)0.022 (6)0.001 (7)0.001 (6)0.001 (5)
N40.031 (6)0.015 (5)0.016 (5)0.001 (5)0.004 (5)0.000 (4)
O70.045 (8)0.014 (5)0.014 (5)0.005 (5)0.000 (5)0.003 (4)
O100.021 (6)0.017 (5)0.015 (5)0.001 (5)0.006 (4)0.007 (4)
O110.032 (10)0.021 (5)0.022 (5)0.001 (5)0.002 (5)0.004 (4)
C220.036 (7)0.022 (5)0.022 (5)0.005 (5)0.010 (5)0.003 (4)
C230.032 (8)0.029 (6)0.013 (6)0.001 (6)0.007 (5)0.001 (5)
C240.036 (9)0.041 (7)0.012 (7)0.003 (7)0.000 (6)0.005 (6)
C250.042 (10)0.054 (8)0.018 (7)0.004 (8)0.000 (7)0.007 (7)
C260.047 (10)0.050 (8)0.021 (7)0.009 (8)0.005 (7)0.006 (7)
C270.044 (9)0.042 (8)0.016 (6)0.001 (7)0.004 (6)0.006 (6)
C280.040 (8)0.036 (7)0.016 (6)0.001 (7)0.000 (6)0.004 (5)
O120.059 (8)0.030 (6)0.021 (6)0.002 (6)0.010 (6)0.001 (5)
Mn10.044 (2)0.0216 (14)0.0174 (13)0.0003 (16)0.0023 (16)0.0004 (10)
O130.056 (8)0.035 (6)0.040 (7)0.008 (6)0.021 (6)0.007 (6)
O140.051 (8)0.037 (7)0.046 (7)0.004 (7)0.015 (6)0.001 (6)
C290.069 (9)0.022 (7)0.043 (8)0.003 (8)0.024 (8)0.005 (7)
C300.063 (8)0.036 (7)0.055 (8)0.003 (7)0.020 (7)0.007 (7)
C310.063 (10)0.028 (8)0.057 (10)0.015 (8)0.030 (8)0.003 (8)
C320.063 (9)0.034 (8)0.055 (9)0.013 (8)0.025 (8)0.004 (8)
C330.062 (9)0.035 (9)0.060 (9)0.007 (8)0.024 (8)0.008 (9)
C340.068 (9)0.046 (8)0.061 (9)0.005 (8)0.022 (8)0.006 (8)
C350.063 (9)0.046 (8)0.056 (9)0.008 (8)0.025 (8)0.001 (8)
O150.071 (10)0.051 (9)0.071 (10)0.004 (8)0.026 (9)0.014 (8)
Dy1B0.0381 (12)0.0309 (4)0.0258 (6)0.0046 (7)0.0024 (7)0.0003 (4)
O1B0.034 (17)0.019 (14)0.013 (14)0.002 (15)0.005 (15)0.000 (13)
O2B0.048 (11)0.025 (10)0.018 (10)0.003 (10)0.001 (10)0.005 (10)
O4B0.037 (7)0.021 (5)0.010 (4)0.009 (5)0.006 (4)0.007 (4)
N2B0.030 (6)0.026 (6)0.020 (5)0.017 (5)0.006 (4)0.007 (4)
C1B0.054 (9)0.030 (6)0.022 (6)0.001 (7)0.001 (6)0.001 (5)
N4B0.032 (10)0.016 (9)0.019 (9)0.002 (10)0.001 (10)0.004 (9)
O7B0.045 (8)0.014 (5)0.014 (5)0.005 (5)0.000 (5)0.003 (4)
O10B0.026 (14)0.017 (12)0.017 (12)0.002 (13)0.001 (13)0.001 (12)
O11B0.033 (15)0.022 (12)0.023 (12)0.002 (12)0.014 (12)0.001 (12)
C22B0.036 (7)0.022 (5)0.022 (5)0.005 (5)0.010 (5)0.003 (4)
C23B0.038 (10)0.032 (9)0.016 (9)0.000 (9)0.004 (9)0.001 (9)
C24B0.038 (12)0.042 (11)0.016 (11)0.000 (11)0.003 (10)0.001 (10)
C25B0.041 (12)0.047 (11)0.017 (11)0.004 (11)0.001 (11)0.003 (10)
C26B0.042 (12)0.047 (11)0.018 (10)0.003 (11)0.004 (11)0.002 (10)
C27B0.044 (12)0.042 (11)0.016 (10)0.002 (11)0.003 (11)0.004 (10)
C28B0.043 (10)0.035 (9)0.016 (9)0.001 (9)0.001 (9)0.003 (9)
O12B0.040 (11)0.027 (10)0.014 (10)0.001 (10)0.001 (10)0.002 (9)
Mn1B0.037 (8)0.015 (6)0.015 (6)0.000 (7)0.003 (7)0.005 (5)
O13B0.060 (11)0.032 (11)0.047 (11)0.000 (11)0.017 (11)0.009 (10)
O14B0.060 (15)0.026 (13)0.055 (14)0.003 (14)0.017 (14)0.002 (13)
C29B0.059 (10)0.032 (9)0.050 (9)0.003 (9)0.018 (9)0.003 (9)
C30B0.063 (11)0.039 (11)0.055 (11)0.006 (10)0.021 (10)0.002 (10)
C31B0.063 (9)0.038 (9)0.057 (9)0.008 (9)0.024 (9)0.002 (9)
C32B0.064 (11)0.038 (11)0.060 (11)0.007 (11)0.024 (11)0.006 (11)
C33B0.066 (12)0.040 (12)0.061 (12)0.004 (12)0.023 (12)0.009 (12)
C34B0.064 (13)0.043 (13)0.058 (13)0.008 (13)0.022 (13)0.005 (13)
C35B0.063 (13)0.043 (13)0.056 (13)0.008 (13)0.021 (13)0.007 (13)
O15B0.09 (3)0.04 (3)0.07 (3)0.00 (3)0.03 (3)0.02 (3)
O160.060 (8)0.035 (7)0.030 (6)0.010 (6)0.011 (6)0.006 (6)
O170.069 (9)0.034 (7)0.034 (7)0.007 (6)0.017 (6)0.004 (6)
C360.082 (9)0.028 (7)0.037 (8)0.002 (8)0.005 (8)0.009 (7)
C370.089 (9)0.048 (8)0.053 (9)0.003 (8)0.016 (8)0.009 (8)
C380.095 (11)0.058 (10)0.055 (9)0.001 (9)0.014 (9)0.011 (9)
C390.099 (11)0.076 (11)0.061 (10)0.004 (10)0.015 (10)0.014 (10)
C400.103 (11)0.077 (11)0.077 (11)0.003 (10)0.005 (10)0.013 (10)
C410.104 (12)0.075 (12)0.088 (12)0.012 (11)0.010 (11)0.004 (11)
C420.101 (11)0.063 (10)0.074 (11)0.008 (10)0.010 (10)0.008 (10)
O180.101 (15)0.143 (19)0.119 (18)0.014 (15)0.013 (14)0.021 (15)
O16B0.069 (12)0.030 (12)0.032 (12)0.004 (12)0.010 (11)0.008 (12)
O17B0.09 (3)0.05 (2)0.05 (2)0.01 (2)0.01 (2)0.01 (2)
C36B0.078 (11)0.035 (10)0.038 (10)0.004 (10)0.011 (10)0.009 (9)
C37B0.091 (10)0.051 (10)0.055 (10)0.002 (10)0.011 (10)0.009 (10)
C38B0.095 (12)0.060 (12)0.057 (12)0.001 (12)0.014 (11)0.012 (12)
C39B0.100 (13)0.071 (13)0.063 (12)0.001 (12)0.011 (12)0.013 (12)
C40B0.103 (13)0.080 (14)0.072 (13)0.004 (13)0.010 (13)0.014 (13)
C41B0.102 (12)0.076 (12)0.075 (12)0.006 (11)0.009 (11)0.010 (11)
C42B0.098 (12)0.065 (11)0.069 (12)0.007 (11)0.011 (11)0.009 (11)
O18B0.10 (3)0.09 (3)0.09 (3)0.01 (3)0.00 (3)0.00 (3)
O190.027 (6)0.033 (6)0.049 (7)0.000 (5)0.007 (5)0.003 (5)
O200.037 (6)0.046 (7)0.044 (7)0.003 (5)0.008 (5)0.008 (6)
C430.043 (10)0.025 (8)0.032 (8)0.004 (7)0.003 (7)0.006 (6)
C440.016 (7)0.034 (8)0.045 (10)0.001 (6)0.002 (7)0.005 (7)
C450.031 (8)0.016 (6)0.043 (9)0.003 (6)0.003 (7)0.003 (6)
C460.048 (10)0.017 (6)0.024 (7)0.003 (6)0.005 (7)0.001 (5)
C470.031 (8)0.028 (8)0.042 (9)0.002 (6)0.006 (7)0.003 (7)
C480.028 (8)0.055 (11)0.038 (9)0.007 (8)0.006 (7)0.001 (8)
C490.034 (9)0.050 (10)0.022 (7)0.002 (7)0.003 (6)0.005 (7)
O210.038 (7)0.053 (8)0.051 (8)0.006 (6)0.000 (6)0.021 (6)
O220.038 (6)0.023 (5)0.031 (6)0.008 (5)0.004 (5)0.003 (4)
O230.039 (6)0.023 (5)0.045 (7)0.009 (5)0.001 (5)0.013 (5)
C500.050 (10)0.020 (7)0.020 (7)0.002 (7)0.009 (7)0.005 (6)
C510.029 (8)0.030 (8)0.025 (7)0.001 (6)0.003 (6)0.002 (6)
C520.031 (8)0.022 (7)0.022 (7)0.005 (6)0.004 (6)0.001 (5)
C530.039 (9)0.026 (7)0.023 (7)0.005 (7)0.004 (6)0.000 (6)
C540.033 (8)0.038 (8)0.021 (7)0.008 (7)0.010 (6)0.001 (6)
C550.033 (9)0.052 (11)0.035 (9)0.006 (8)0.004 (7)0.013 (8)
C560.040 (9)0.025 (8)0.031 (8)0.004 (7)0.003 (7)0.009 (6)
O240.037 (6)0.057 (8)0.033 (6)0.007 (6)0.001 (5)0.019 (6)
O290.067 (19)0.091 (15)0.083 (15)0.041 (12)0.006 (14)0.041 (13)
C570.071 (11)0.082 (11)0.085 (11)0.016 (10)0.004 (10)0.027 (10)
N50.070 (8)0.081 (8)0.087 (8)0.014 (7)0.001 (7)0.029 (7)
C580.086 (18)0.105 (19)0.109 (19)0.010 (17)0.002 (17)0.010 (17)
C590.072 (16)0.076 (17)0.086 (17)0.001 (15)0.003 (15)0.032 (15)
O29B0.08 (2)0.09 (2)0.09 (2)0.023 (18)0.001 (18)0.046 (18)
C57B0.072 (12)0.077 (12)0.084 (12)0.012 (11)0.000 (11)0.028 (11)
N5B0.070 (8)0.081 (8)0.087 (8)0.014 (7)0.001 (7)0.029 (7)
C58B0.069 (19)0.09 (2)0.09 (2)0.013 (18)0.003 (18)0.018 (19)
C59B0.08 (2)0.09 (2)0.11 (2)0.018 (19)0.002 (19)0.030 (19)
O300.067 (10)0.063 (9)0.047 (8)0.015 (7)0.006 (7)0.010 (7)
C600.048 (12)0.053 (12)0.076 (16)0.005 (9)0.011 (11)0.008 (12)
N60.041 (9)0.057 (10)0.049 (9)0.016 (7)0.010 (7)0.001 (8)
C610.071 (15)0.062 (14)0.081 (17)0.001 (11)0.028 (13)0.017 (13)
C620.11 (2)0.10 (2)0.078 (19)0.032 (18)0.035 (17)0.004 (17)
O310.039 (7)0.062 (9)0.048 (7)0.003 (6)0.006 (6)0.008 (7)
C630.032 (9)0.065 (13)0.054 (11)0.001 (9)0.012 (8)0.008 (10)
N70.045 (10)0.077 (13)0.070 (12)0.021 (9)0.007 (9)0.013 (11)
C640.069 (19)0.14 (3)0.13 (3)0.002 (18)0.033 (19)0.07 (3)
C650.050 (12)0.053 (13)0.11 (2)0.009 (10)0.029 (13)0.007 (13)
O320.055 (15)0.048 (15)0.045 (13)0.002 (12)0.021 (11)0.011 (12)
C660.047 (12)0.067 (15)0.060 (13)0.003 (12)0.012 (11)0.001 (12)
N80.048 (11)0.071 (15)0.055 (13)0.000 (13)0.015 (10)0.002 (12)
C670.056 (18)0.070 (19)0.078 (19)0.007 (16)0.018 (16)0.000 (17)
C680.07 (2)0.09 (2)0.06 (2)0.01 (2)0.014 (19)0.00 (2)
O32B0.072 (16)0.085 (18)0.069 (16)0.013 (15)0.019 (14)0.001 (15)
C66B0.053 (13)0.070 (16)0.064 (14)0.003 (14)0.016 (12)0.002 (13)
N8B0.043 (11)0.068 (15)0.062 (13)0.005 (13)0.013 (11)0.003 (13)
C67B0.067 (19)0.06 (2)0.07 (2)0.005 (18)0.011 (19)0.000 (18)
C68B0.026 (16)0.048 (18)0.08 (2)0.007 (14)0.011 (16)0.024 (17)
Geometric parameters (Å, º) top
Mn2—O4B1.83 (7)C22B—C23B1.49 (4)
Mn2—O31.854 (12)C23B—C24B1.3900
Mn2—O41.910 (14)C23B—C28B1.3900
Mn2—O51.939 (11)C24B—C25B1.3900
Mn2—N11.960 (13)C24B—H24B0.9500
Mn2—O162.154 (15)C25B—C26B1.3900
Mn2—O16B2.20 (4)C25B—H25B0.9500
Mn2—O262.393 (15)C26B—C27B1.3900
Mn2—Na13.726 (6)C26B—H26B0.9500
Mn3—O7B1.83 (6)C27B—C28B1.3900
Mn3—O61.853 (11)C27B—H27B0.9500
Mn3—O71.904 (13)C28B—O12B1.36 (4)
Mn3—N21.91 (2)O12B—Mn1B1.86 (3)
Mn3—O81.944 (10)Mn1B—O13B2.15 (4)
Mn3—O192.127 (11)O13B—C29B1.26 (3)
Mn3—N2B2.15 (11)O14B—C29B1.29 (3)
Mn3—O272.447 (13)C29B—C30B1.49 (3)
Mn3—Na13.691 (6)C30B—C31B1.40 (3)
Mn4—O91.833 (10)C30B—C35B1.41 (3)
Mn4—O101.901 (12)C31B—C32B1.39 (3)
Mn4—O11B1.90 (4)C31B—H31B0.9500
Mn4—O111.952 (12)C32B—C33B1.39 (3)
Mn4—N31.969 (12)C32B—H32B0.9500
Mn4—O10B2.07 (4)C33B—O15B1.37 (3)
Mn4—O222.230 (11)C33B—C34B1.40 (3)
Mn4—O282.446 (12)C34B—C35B1.38 (3)
Mn4—C22B2.64 (5)C34B—H34B0.9500
Mn4—Na13.651 (6)C35B—H35B0.9500
Na1—O252.396 (14)O15B—H15B0.8400
Na1—O282.460 (13)O16—C361.24 (2)
Na1—O272.486 (15)O17—C361.28 (2)
Na1—O262.519 (15)C36—C371.49 (3)
Na1—O102.682 (14)C37—C381.40 (3)
Na1—O12.704 (15)C37—C421.41 (3)
Na1—O72.725 (18)C38—C391.40 (3)
Na1—O42.740 (15)C38—H380.9500
Na1—O7B2.85 (10)C39—C401.37 (3)
Na1—O10B2.93 (7)C39—H390.9500
Na1—Dy13.583 (7)C40—O181.36 (3)
Na1—Mn13.621 (7)C40—C411.39 (3)
O3—C71.37 (2)C41—C421.37 (3)
O5—C81.299 (18)C41—H410.9500
O6—C141.37 (2)C42—H420.9500
O8—C151.287 (18)O18—H18O0.8400
O9—C211.317 (19)O16B—C36B1.26 (2)
O25—Mn12.435 (19)O17B—C36B1.29 (2)
O25—H25C0.9200C36B—C37B1.488 (19)
O25—H25D0.8696C37B—C38B1.3900
O26—H26C0.85 (4)C37B—C42B1.3900
O26—H26D0.84 (4)C38B—C39B1.3900
O27—H27C0.87 (4)C38B—H38B0.9500
O27—H27D0.87 (4)C39B—C40B1.3900
O28—H28C0.88 (4)C39B—H39B0.9500
O28—H28D0.88 (4)C40B—O18B1.355 (17)
N1—C1B1.30 (4)C40B—C41B1.3900
N1—C11.30 (2)C41B—C42B1.3900
N1—O11.394 (16)C41B—H41B0.9500
N1—O1B1.45 (4)C42B—H42B0.9500
N3—C151.319 (18)O18B—H18B0.8400
N3—O71.395 (17)O19—C431.258 (17)
N3—O7B1.63 (8)O20—C431.288 (18)
C2—C31.41 (2)C43—C441.485 (18)
C2—C71.42 (2)C44—C491.385 (9)
C2—C11.48 (2)C44—C451.387 (9)
C2—C1B1.51 (4)C45—C461.388 (9)
C3—C41.33 (2)C45—H450.9500
C3—H30.9500C46—C471.387 (9)
C4—C51.39 (3)C46—H460.9500
C4—H40.9500C47—O211.356 (15)
C5—C61.40 (3)C47—C481.390 (9)
C5—H50.9500C48—C491.388 (9)
C6—C71.39 (2)C48—H480.9500
C6—H60.9500C49—H490.9500
C8—N2B1.18 (8)O21—H21O0.8400
C8—N21.31 (2)O22—C501.280 (18)
C8—C91.49 (2)O23—C501.268 (16)
C9—C141.38 (2)C50—C511.482 (19)
C9—C101.38 (2)C51—C521.395 (18)
C10—C111.39 (2)C51—C561.402 (19)
C10—H100.9500C52—C531.393 (18)
C11—C121.37 (3)C52—H520.9500
C11—H110.9500C53—C541.38 (2)
C12—C131.38 (3)C53—H530.9500
C12—H120.9500C54—O241.370 (17)
C13—C141.41 (2)C54—C551.40 (2)
C13—H130.9500C55—C561.37 (2)
C15—C161.47 (2)C55—H550.9500
C16—C171.40 (2)C56—H560.9500
C16—C211.42 (2)O24—H24O0.8400
C17—C181.39 (2)O29—C571.28 (3)
C17—H170.9500C57—N51.30 (3)
C18—C191.31 (3)C57—H570.9500
C18—H180.9500N5—C581.42 (3)
C19—C201.38 (3)N5—C591.44 (3)
C19—H190.9500C58—H58A0.9800
C20—C211.43 (2)C58—H58B0.9800
C20—H200.9500C58—H58C0.9800
Dy1—O142.250 (14)C59—H59A0.9800
Dy1—O172.332 (14)C59—H59B0.9800
Dy1—O102.425 (12)C59—H59C0.9800
Dy1—O72.438 (11)O29B—C57B1.28 (3)
Dy1—O12.439 (12)C57B—N5B1.31 (3)
Dy1—O42.440 (10)C57B—H57B0.9500
O1—Mn11.906 (12)N5B—C59B1.41 (3)
O2—C11.29 (2)N5B—C58B1.42 (3)
O2—Mn11.938 (12)C58B—H58D0.9800
O4—N21.427 (17)C58B—H58E0.9800
N4—C221.33 (2)C58B—H58F0.9800
N4—O101.387 (16)C59B—H59D0.9800
N4—Mn11.944 (13)C59B—H59E0.9800
O11—C221.285 (19)C59B—H59F0.9800
C22—C231.47 (2)O30—C601.24 (3)
C23—C241.39 (2)C60—N61.30 (3)
C23—C281.42 (2)C60—H600.9500
C24—C251.40 (2)N6—C611.39 (3)
C24—H240.9500N6—C621.48 (3)
C25—C261.35 (2)C61—H61A0.9800
C25—H250.9500C61—H61B0.9800
C26—C271.39 (2)C61—H61C0.9800
C26—H260.9500C62—H62A0.9800
C27—C281.40 (2)C62—H62B0.9800
C27—H270.9500C62—H62C0.9800
C28—O121.34 (2)O31—C631.27 (2)
O12—Mn11.859 (13)C63—N71.30 (2)
Mn1—O132.147 (16)C63—H630.9500
O13—C291.25 (2)N7—C641.42 (3)
O14—C291.28 (2)N7—C651.42 (2)
C29—C301.49 (2)C64—H64A0.9800
C30—C351.38 (3)C64—H64B0.9800
C30—C311.41 (2)C64—H64C0.9800
C31—C321.38 (2)C65—H65A0.9800
C31—H310.9500C65—H65B0.9800
C32—C331.40 (3)C65—H65C0.9800
C32—H320.9500O32—C661.29 (3)
C33—O151.37 (2)C66—N81.33 (3)
C33—C341.40 (3)C66—H660.9500
C34—C351.39 (2)N8—C671.39 (4)
C34—H340.9500N8—C681.43 (3)
C35—H350.9500C67—H67A0.9800
O15—H15O0.8400C67—H67B0.9800
Dy1B—O201.900 (18)C67—H67C0.9800
Dy1B—O232.193 (15)C68—H68A0.9800
Dy1B—O14B2.23 (3)C68—H68B0.9800
Dy1B—O7B2.43 (4)C68—H68C0.9800
Dy1B—O4B2.45 (4)O32B—C66B1.31 (4)
Dy1B—O10B2.45 (4)C66B—N8B1.30 (3)
Dy1B—O1B2.48 (3)C66B—H66B0.9500
O1B—Mn1B1.92 (3)N8B—C67B1.42 (4)
O2B—C1B1.30 (4)N8B—C68B1.43 (3)
O2B—Mn1B1.93 (3)C67B—H67D0.9800
O4B—N2B1.43 (4)C67B—H67E0.9800
N4B—C22B1.31 (4)C67B—H67F0.9800
N4B—O10B1.40 (4)C68B—H68D0.9800
N4B—Mn1B1.94 (3)C68B—H68E0.9800
O11B—C22B1.28 (4)C68B—H68F0.9800
O4B—Mn2—O3177 (3)O12—Mn1—Na1124.8 (5)
O3—Mn2—O4172.9 (6)O1—Mn1—Na146.9 (4)
O4B—Mn2—O583.0 (17)O2—Mn1—Na1102.9 (4)
O3—Mn2—O597.0 (5)N4—Mn1—Na165.7 (4)
O4—Mn2—O582.0 (5)O13—Mn1—Na1135.6 (5)
O4B—Mn2—N189.8 (18)O25—Mn1—Na141.0 (3)
O3—Mn2—N190.8 (5)C29—O13—Mn1124.3 (12)
O4—Mn2—N189.2 (5)C29—O14—Dy1140.1 (13)
O5—Mn2—N1168.0 (5)O13—C29—O14124.2 (18)
O3—Mn2—O1690.5 (6)O13—C29—C30119.0 (17)
O4—Mn2—O1696.5 (6)O14—C29—C30116.8 (19)
O5—Mn2—O1690.1 (5)C35—C30—C31120.6 (18)
N1—Mn2—O1699.0 (5)C35—C30—C29120.7 (18)
O4B—Mn2—O16B65 (3)C31—C30—C29118.7 (18)
O3—Mn2—O16B111 (2)C32—C31—C30119 (2)
O5—Mn2—O16B90.8 (18)C32—C31—H31120.7
N1—Mn2—O16B95.0 (19)C30—C31—H31120.7
O4B—Mn2—O2690 (3)C31—C32—C33121.5 (19)
O3—Mn2—O2693.5 (5)C31—C32—H32119.2
O4—Mn2—O2679.4 (5)C33—C32—H32119.2
O5—Mn2—O2685.3 (5)O15—C33—C32123.0 (19)
N1—Mn2—O2685.1 (5)O15—C33—C34118 (2)
O16—Mn2—O26174.2 (5)C32—C33—C34119.1 (19)
O16B—Mn2—O26155 (2)C35—C34—C33120 (2)
O4B—Mn2—Na155 (3)C35—C34—H34120.2
O3—Mn2—Na1128.7 (5)C33—C34—H34120.2
O4—Mn2—Na145.3 (4)C30—C35—C34120 (2)
O5—Mn2—Na1101.5 (3)C30—C35—H35119.8
N1—Mn2—Na166.5 (4)C34—C35—H35119.8
O16—Mn2—Na1136.4 (4)C33—O15—H15O109.5
O16B—Mn2—Na1116 (2)O20—Dy1B—O2387.6 (7)
O26—Mn2—Na142.0 (3)O20—Dy1B—O14B123.8 (19)
O7B—Mn3—O6175 (2)O23—Dy1B—O14B77.7 (18)
O6—Mn3—O7174.1 (6)O20—Dy1B—O7B80 (2)
O6—Mn3—N290.8 (6)O23—Dy1B—O7B78 (2)
O7—Mn3—N290.0 (6)O14B—Dy1B—O7B145 (3)
O7B—Mn3—O888 (2)O20—Dy1B—O4B82.8 (19)
O6—Mn3—O896.2 (5)O23—Dy1B—O4B141 (2)
O7—Mn3—O882.1 (5)O14B—Dy1B—O4B137 (2)
N2—Mn3—O8168.3 (9)O7B—Dy1B—O4B63.6 (19)
O7B—Mn3—O1988 (3)O20—Dy1B—O10B139.6 (13)
O6—Mn3—O1991.3 (5)O23—Dy1B—O10B67.5 (16)
O8—Mn3—O1993.2 (5)O14B—Dy1B—O10B83 (2)
O7B—Mn3—N2B85 (3)O7B—Dy1B—O10B64.9 (19)
O6—Mn3—N2B90.8 (16)O4B—Dy1B—O10B97 (2)
O8—Mn3—N2B170 (4)O20—Dy1B—O1B143.5 (11)
O19—Mn3—N2B93 (4)O23—Dy1B—O1B127.4 (11)
O7B—Mn3—O2786 (3)O14B—Dy1B—O1B79.2 (18)
O6—Mn3—O2794.5 (5)O7B—Dy1B—O1B96 (2)
O7—Mn3—O2779.8 (6)O4B—Dy1B—O1B63.6 (18)
N2—Mn3—O2784.7 (9)O10B—Dy1B—O1B63.2 (15)
O8—Mn3—O2785.4 (4)O20—Dy1B—Na1116.8 (6)
O19—Mn3—O27174.2 (5)O23—Dy1B—Na1104.2 (5)
N2B—Mn3—O2787 (4)O14B—Dy1B—Na1119.4 (18)
O7B—Mn3—Na149 (3)O7B—Dy1B—Na145 (2)
O6—Mn3—Na1129.8 (4)O4B—Dy1B—Na150 (2)
O7—Mn3—Na145.7 (5)O10B—Dy1B—Na147.3 (16)
N2—Mn3—Na166.6 (8)O1B—Dy1B—Na151.2 (14)
O8—Mn3—Na1101.8 (3)N1—O1B—Mn1B110.9 (19)
O19—Mn3—Na1133.2 (3)N1—O1B—Dy1B129 (2)
N2B—Mn3—Na168 (4)Mn1B—O1B—Dy1B119.0 (18)
O27—Mn3—Na141.9 (3)C1B—O2B—Mn1B113 (3)
O9—Mn4—O10169.6 (5)N2B—O4B—Mn2106 (4)
O9—Mn4—O11B102.7 (16)N2B—O4B—Dy1B123 (5)
O9—Mn4—O1197.7 (5)Mn2—O4B—Dy1B129 (3)
O10—Mn4—O1181.3 (5)C8—N2B—O4B123 (8)
O9—Mn4—N389.9 (5)C8—N2B—Mn3123 (6)
O10—Mn4—N389.6 (5)O4B—N2B—Mn3112 (4)
O11B—Mn4—N3167.3 (16)N1—C1B—O2B121 (3)
O11—Mn4—N3168.5 (6)N1—C1B—C2117 (3)
O9—Mn4—O10B175.9 (11)O2B—C1B—C2123 (3)
O11B—Mn4—O10B81.3 (18)C22B—N4B—O10B110 (3)
N3—Mn4—O10B86.1 (12)C22B—N4B—Mn1B128 (4)
O9—Mn4—O2291.6 (5)O10B—N4B—Mn1B116 (3)
O11B—Mn4—O2282 (5)N3—O7B—Mn3106 (2)
N3—Mn4—O2299.3 (4)N3—O7B—Dy1B121 (4)
O10B—Mn4—O2288.1 (19)Mn3—O7B—Dy1B127 (4)
O9—Mn4—O2890.3 (5)N3—O7B—Na194 (4)
O10—Mn4—O2879.4 (5)Mn3—O7B—Na1102 (4)
O11B—Mn4—O2893 (5)Dy1B—O7B—Na197 (2)
O11—Mn4—O2886.2 (7)N4B—O10B—Mn4109 (2)
N3—Mn4—O2885.2 (4)N4B—O10B—Dy1B119 (3)
O10B—Mn4—O2890.3 (19)Mn4—O10B—Dy1B126 (2)
O22—Mn4—O28175.2 (4)N4B—O10B—Na1108 (4)
O9—Mn4—C22B129.3 (11)Mn4—O10B—Na192 (2)
O11B—Mn4—C22B26.9 (14)Dy1B—O10B—Na194.8 (16)
N3—Mn4—C22B140.4 (10)C22B—O11B—Mn4110 (4)
O10B—Mn4—C22B54.7 (13)O11B—C22B—N4B127 (4)
O22—Mn4—C22B87 (2)O11B—C22B—C23B112 (4)
O28—Mn4—C22B89 (2)N4B—C22B—C23B121 (4)
O9—Mn4—Na1125.6 (4)O11B—C22B—Mn443 (2)
O10—Mn4—Na145.4 (4)N4B—C22B—Mn486 (3)
O11B—Mn4—Na1104 (3)C23B—C22B—Mn4153 (3)
O11—Mn4—Na1102.0 (6)C24B—C23B—C28B120.0
N3—Mn4—Na166.5 (3)C24B—C23B—C22B116 (3)
O10B—Mn4—Na153.4 (19)C28B—C23B—C22B124 (3)
O22—Mn4—Na1138.3 (3)C23B—C24B—C25B120.0
O28—Mn4—Na142.1 (3)C23B—C24B—H24B120.0
C22B—Mn4—Na183.1 (18)C25B—C24B—H24B120.0
O25—Na1—O2886.1 (5)C26B—C25B—C24B120.0
O25—Na1—O27152.0 (6)C26B—C25B—H25B120.0
O28—Na1—O2787.2 (4)C24B—C25B—H25B120.0
O25—Na1—O2687.5 (5)C25B—C26B—C27B120.0
O28—Na1—O26155.4 (5)C25B—C26B—H26B120.0
O27—Na1—O2687.4 (4)C27B—C26B—H26B120.0
O25—Na1—O1082.8 (5)C28B—C27B—C26B120.0
O28—Na1—O1066.0 (4)C28B—C27B—H27B120.0
O27—Na1—O10118.8 (4)C26B—C27B—H27B120.0
O26—Na1—O10136.5 (5)O12B—C28B—C27B117 (3)
O25—Na1—O167.2 (6)O12B—C28B—C23B123 (3)
O28—Na1—O1119.7 (4)C27B—C28B—C23B120.0
O27—Na1—O1138.2 (5)C28B—O12B—Mn1B130 (3)
O26—Na1—O179.1 (4)O12B—Mn1B—O1B169 (3)
O10—Na1—O158.0 (4)O12B—Mn1B—O2B97 (2)
O25—Na1—O7140.2 (5)O1B—Mn1B—O2B80.7 (18)
O28—Na1—O782.7 (4)O12B—Mn1B—N4B92 (2)
O27—Na1—O765.3 (4)O1B—Mn1B—N4B88.1 (18)
O26—Na1—O7116.5 (5)O2B—Mn1B—N4B167 (2)
O10—Na1—O757.8 (4)O12B—Mn1B—O13B96 (2)
O1—Na1—O785.7 (4)O1B—Mn1B—O13B95 (2)
O25—Na1—O4120.3 (6)O2B—Mn1B—O13B91 (3)
O28—Na1—O4138.9 (4)N4B—Mn1B—O13B97 (3)
O27—Na1—O481.4 (4)C29B—O13B—Mn1B125 (4)
O26—Na1—O463.5 (4)C29B—O14B—Dy1B141 (6)
O10—Na1—O485.4 (4)O13B—C29B—O14B123 (4)
O1—Na1—O457.2 (4)O13B—C29B—C30B123 (4)
O7—Na1—O456.7 (4)O14B—C29B—C30B113 (4)
O25—Na1—O7B139.8 (12)C31B—C30B—C35B119 (4)
O28—Na1—O7B88.0 (16)C31B—C30B—C29B120 (5)
O27—Na1—O7B66.9 (10)C35B—C30B—C29B117 (4)
O26—Na1—O7B111.8 (17)C32B—C31B—C30B118 (4)
O25—Na1—O10B86.6 (9)C32B—C31B—H31B121.1
O28—Na1—O10B72.5 (8)C30B—C31B—H31B121.1
O27—Na1—O10B117.1 (10)C33B—C32B—C31B123 (5)
O26—Na1—O10B130.8 (9)C33B—C32B—H32B118.7
O7B—Na1—O10B53.9 (14)C31B—C32B—H32B118.7
O25—Na1—Dy1104.6 (5)O15B—C33B—C32B122 (5)
O28—Na1—Dy1103.7 (3)O15B—C33B—C34B119 (5)
O27—Na1—Dy1103.4 (3)C32B—C33B—C34B116 (4)
O26—Na1—Dy1100.9 (4)C35B—C34B—C33B121 (4)
O10—Na1—Dy142.6 (3)C35B—C34B—H34B119.6
O1—Na1—Dy142.9 (3)C33B—C34B—H34B119.6
O7—Na1—Dy142.8 (2)C34B—C35B—C30B120 (4)
O4—Na1—Dy142.9 (2)C34B—C35B—H35B120.2
O25—Na1—Mn141.9 (5)C30B—C35B—H35B120.2
O28—Na1—Mn195.2 (3)C33B—O15B—H15B109.5
O27—Na1—Mn1166.1 (4)C36—O16—Mn2122.5 (14)
O26—Na1—Mn195.8 (4)C36—O17—Dy1138.2 (14)
O10—Na1—Mn151.0 (3)O16—C36—O17125 (2)
O1—Na1—Mn131.0 (3)O16—C36—C37119.3 (18)
O7—Na1—Mn1101.3 (3)O17—C36—C37115.9 (19)
O4—Na1—Mn188.0 (3)C38—C37—C42124 (2)
Dy1—Na1—Mn162.77 (13)C38—C37—C36119 (2)
C7—O3—Mn2129.8 (10)C42—C37—C36117 (2)
C8—O5—Mn2111.3 (9)C37—C38—C39115 (2)
C14—O6—Mn3128.9 (9)C37—C38—H38122.5
C15—O8—Mn3111.3 (8)C39—C38—H38122.5
C21—O9—Mn4130.4 (10)C40—C39—C38122 (3)
Na1—O25—Mn197.1 (6)C40—C39—H39118.9
Na1—O25—H25C127.7C38—C39—H39118.9
Mn1—O25—H25C105.4O18—C40—C39122 (3)
Na1—O25—H25D136.0O18—C40—C41117 (3)
Mn1—O25—H25D71.8C39—C40—C41120 (3)
H25C—O25—H25D96.2C42—C41—C40121 (3)
Mn2—O26—Na198.6 (5)C42—C41—H41119.5
Mn2—O26—H26C99 (10)C40—C41—H41119.5
Na1—O26—H26C124 (5)C41—C42—C37117 (3)
Mn2—O26—H26D94 (10)C41—C42—H42121.6
Na1—O26—H26D125 (5)C37—C42—H42121.6
H26C—O26—H26D106 (6)C40—O18—H18O109.5
Mn3—O27—Na196.9 (4)C36B—O16B—Mn2144 (6)
Mn3—O27—H27C83 (10)O16B—C36B—O17B124 (2)
Na1—O27—H27C128 (5)O16B—C36B—C37B118 (2)
Mn3—O27—H27D111 (10)O17B—C36B—C37B118 (2)
Na1—O27—H27D127 (5)C38B—C37B—C42B120.0
H27C—O27—H27D101 (5)C38B—C37B—C36B117.5 (17)
Mn4—O28—Na196.2 (4)C42B—C37B—C36B120.3 (17)
Mn4—O28—H28C93 (10)C37B—C38B—C39B120.0
Na1—O28—H28C126 (5)C37B—C38B—H38B120.0
Mn4—O28—H28D109 (10)C39B—C38B—H38B120.0
Na1—O28—H28D126 (5)C40B—C39B—C38B120.0
H28C—O28—H28D100 (5)C40B—C39B—H39B120.0
C1—N1—O1110.6 (13)C38B—C39B—H39B120.0
C1B—N1—O1B111 (2)O18B—C40B—C39B121.3 (16)
C1B—N1—Mn2133.9 (19)O18B—C40B—C41B118.5 (16)
C1—N1—Mn2130.1 (11)C39B—C40B—C41B120.0
O1—N1—Mn2114.9 (8)C42B—C41B—C40B120.0
O1B—N1—Mn2113.8 (14)C42B—C41B—H41B120.0
C15—N3—O7112.6 (11)C40B—C41B—H41B120.0
C15—N3—O7B112 (2)C41B—C42B—C37B120.0
C15—N3—Mn4131.0 (10)C41B—C42B—H42B120.0
O7—N3—Mn4114.5 (9)C37B—C42B—H42B120.0
O7B—N3—Mn4116 (2)C40B—O18B—H18B109.5
C3—C2—C7116.4 (15)C43—O19—Mn3128.8 (11)
C3—C2—C1120.2 (15)C43—O20—Dy1B145.8 (12)
C7—C2—C1123.3 (14)O19—C43—O20123.8 (14)
C3—C2—C1B118 (2)O19—C43—C44118.2 (13)
C7—C2—C1B125 (2)O20—C43—C44118.0 (13)
C4—C3—C2123.8 (18)C49—C44—C45120.2 (9)
C4—C3—H3118.1C49—C44—C43121.3 (10)
C2—C3—H3118.1C45—C44—C43118.5 (10)
C3—C4—C5119.6 (18)C44—C45—C46119.7 (9)
C3—C4—H4120.2C44—C45—H45120.1
C5—C4—H4120.2C46—C45—H45120.1
C4—C5—C6120.2 (17)C47—C46—C45120.0 (9)
C4—C5—H5119.9C47—C46—H46120.0
C6—C5—H5119.9C45—C46—H46120.0
C7—C6—C5119.6 (17)O21—C47—C46121.4 (10)
C7—C6—H6120.2O21—C47—C48118.3 (10)
C5—C6—H6120.2C46—C47—C48120.3 (9)
O3—C7—C6116.9 (15)C49—C48—C47119.5 (9)
O3—C7—C2122.5 (14)C49—C48—H48120.3
C6—C7—C2120.6 (16)C47—C48—H48120.3
N2B—C8—O5115 (5)C44—C49—C48120.2 (9)
O5—C8—N2122.7 (15)C44—C49—H49119.9
N2B—C8—C9126 (5)C48—C49—H49119.9
O5—C8—C9119.0 (13)C47—O21—H21O109.5
N2—C8—C9118.3 (15)C50—O22—Mn4118.0 (9)
C14—C9—C10119.1 (15)C50—O23—Dy1B155.2 (11)
C14—C9—C8123.5 (14)O23—C50—O22122.3 (14)
C10—C9—C8117.2 (15)O23—C50—C51116.9 (13)
C9—C10—C11122.0 (18)O22—C50—C51120.7 (12)
C9—C10—H10119.0C52—C51—C56118.8 (12)
C11—C10—H10119.0C52—C51—C50122.1 (12)
C12—C11—C10118.7 (18)C56—C51—C50119.2 (13)
C12—C11—H11120.7C53—C52—C51121.2 (13)
C10—C11—H11120.7C53—C52—H52119.4
C11—C12—C13120.2 (17)C51—C52—H52119.4
C11—C12—H12119.9C54—C53—C52119.4 (13)
C13—C12—H12119.9C54—C53—H53120.3
C12—C13—C14120.5 (18)C52—C53—H53120.3
C12—C13—H13119.7O24—C54—C53122.3 (13)
C14—C13—H13119.7O24—C54—C55117.9 (13)
O6—C14—C9123.9 (14)C53—C54—C55119.7 (13)
O6—C14—C13116.9 (15)C56—C55—C54121.2 (14)
C9—C14—C13119.2 (16)C56—C55—H55119.4
O8—C15—N3121.1 (12)C54—C55—H55119.4
O8—C15—C16119.2 (13)C55—C56—C51119.8 (14)
N3—C15—C16119.7 (13)C55—C56—H56120.1
C17—C16—C21120.8 (15)C51—C56—H56120.1
C17—C16—C15118.1 (15)C54—O24—H24O109.5
C21—C16—C15121.1 (14)O29—C57—N5130 (4)
C18—C17—C16119.7 (18)O29—C57—H57115.2
C18—C17—H17120.1N5—C57—H57115.2
C16—C17—H17120.1C57—N5—C58115 (3)
C19—C18—C17120.8 (17)C57—N5—C59124 (3)
C19—C18—H18119.6C58—N5—C59121 (3)
C17—C18—H18119.6N5—C58—H58A109.5
C18—C19—C20121.8 (18)N5—C58—H58B109.5
C18—C19—H19119.1H58A—C58—H58B109.5
C20—C19—H19119.1N5—C58—H58C109.5
C19—C20—C21121.3 (18)H58A—C58—H58C109.5
C19—C20—H20119.4H58B—C58—H58C109.5
C21—C20—H20119.4N5—C59—H59A109.5
O9—C21—C16126.0 (14)N5—C59—H59B109.5
O9—C21—C20118.5 (16)H59A—C59—H59B109.5
C16—C21—C20115.5 (15)N5—C59—H59C109.5
O14—Dy1—O1777.0 (5)H59A—C59—H59C109.5
O14—Dy1—O1082.6 (5)H59B—C59—H59C109.5
O17—Dy1—O10143.9 (5)O29B—C57B—N5B125 (4)
O14—Dy1—O7144.2 (5)O29B—C57B—H57B117.6
O17—Dy1—O7138.6 (5)N5B—C57B—H57B117.6
O10—Dy1—O765.0 (4)C57B—N5B—C59B127 (3)
O14—Dy1—O179.9 (5)C57B—N5B—C58B115 (3)
O17—Dy1—O182.2 (5)C59B—N5B—C58B118 (3)
O10—Dy1—O164.9 (4)N5B—C58B—H58D109.5
O7—Dy1—O198.4 (5)N5B—C58B—H58E109.5
O14—Dy1—O4139.5 (5)H58D—C58B—H58E109.5
O17—Dy1—O479.4 (5)N5B—C58B—H58F109.5
O10—Dy1—O498.3 (4)H58D—C58B—H58F109.5
O7—Dy1—O464.3 (4)H58E—C58B—H58F109.5
O1—Dy1—O464.6 (4)N5B—C59B—H59D109.5
O14—Dy1—Na1118.1 (5)N5B—C59B—H59E109.5
O17—Dy1—Na1118.8 (4)H59D—C59B—H59E109.5
O10—Dy1—Na148.4 (3)N5B—C59B—H59F109.5
O7—Dy1—Na149.5 (4)H59D—C59B—H59F109.5
O1—Dy1—Na149.0 (3)H59E—C59B—H59F109.5
O4—Dy1—Na149.8 (3)O30—C60—N6127 (2)
N1—O1—Mn1114.1 (9)O30—C60—H60116.7
N1—O1—Dy1117.7 (9)N6—C60—H60116.7
Mn1—O1—Dy1118.9 (6)C60—N6—C61121 (2)
N1—O1—Na1110.6 (8)C60—N6—C62119 (2)
Mn1—O1—Na1102.1 (6)C61—N6—C62120 (2)
Dy1—O1—Na188.2 (4)N6—C61—H61A109.5
C1—O2—Mn1110.9 (11)N6—C61—H61B109.5
N2—O4—Mn2113.3 (9)H61A—C61—H61B109.5
N2—O4—Dy1120.9 (10)N6—C61—H61C109.5
Mn2—O4—Dy1118.1 (6)H61A—C61—H61C109.5
N2—O4—Na1105.8 (12)H61B—C61—H61C109.5
Mn2—O4—Na1105.1 (6)N6—C62—H62A109.5
Dy1—O4—Na187.3 (4)N6—C62—H62B109.5
C8—N2—O4110.7 (15)H62A—C62—H62B109.5
C8—N2—Mn3132.9 (13)N6—C62—H62C109.5
O4—N2—Mn3115.2 (10)H62A—C62—H62C109.5
O2—C1—N1122.7 (16)H62B—C62—H62C109.5
O2—C1—C2118.3 (15)O31—C63—N7127.3 (19)
N1—C1—C2118.1 (15)O31—C63—H63116.3
C22—N4—O10112.5 (12)N7—C63—H63116.3
C22—N4—Mn1130.5 (11)C63—N7—C64119 (2)
O10—N4—Mn1116.0 (9)C63—N7—C65122.3 (18)
N3—O7—Mn3112.8 (8)C64—N7—C65119 (2)
N3—O7—Dy1120.0 (9)N7—C64—H64A109.5
Mn3—O7—Dy1119.7 (6)N7—C64—H64B109.5
N3—O7—Na1106.1 (9)H64A—C64—H64B109.5
Mn3—O7—Na1104.4 (7)N7—C64—H64C109.5
Dy1—O7—Na187.7 (5)H64A—C64—H64C109.5
N4—O10—Mn4113.8 (9)H64B—C64—H64C109.5
N4—O10—Dy1119.7 (9)N7—C65—H65A109.5
Mn4—O10—Dy1118.4 (5)N7—C65—H65B109.5
N4—O10—Na1105.5 (8)H65A—C65—H65B109.5
Mn4—O10—Na1104.3 (5)N7—C65—H65C109.5
Dy1—O10—Na189.0 (4)H65A—C65—H65C109.5
C22—O11—Mn4112.4 (11)H65B—C65—H65C109.5
O11—C22—N4119.9 (15)O32—C66—N8126 (3)
O11—C22—C23120.0 (16)O32—C66—H66117.2
N4—C22—C23120.1 (14)N8—C66—H66117.2
C24—C23—C28120.1 (14)C66—N8—C67119 (3)
C24—C23—C22118.1 (15)C66—N8—C68115 (3)
C28—C23—C22121.8 (14)C67—N8—C68125 (4)
C23—C24—C25119.2 (17)N8—C67—H67A109.5
C23—C24—H24120.4N8—C67—H67B109.5
C25—C24—H24120.4H67A—C67—H67B109.5
C26—C25—C24121.5 (17)N8—C67—H67C109.5
C26—C25—H25119.3H67A—C67—H67C109.5
C24—C25—H25119.3H67B—C67—H67C109.5
C25—C26—C27120.4 (17)N8—C68—H68A109.5
C25—C26—H26119.8N8—C68—H68B109.5
C27—C26—H26119.8H68A—C68—H68B109.5
C26—C27—C28120.9 (17)N8—C68—H68C109.5
C26—C27—H27119.6H68A—C68—H68C109.5
C28—C27—H27119.6H68B—C68—H68C109.5
O12—C28—C27117.5 (15)N8B—C66B—O32B122 (4)
O12—C28—C23124.4 (14)N8B—C66B—H66B119.2
C27—C28—C23118.0 (15)O32B—C66B—H66B119.2
C28—O12—Mn1128.7 (11)C66B—N8B—C67B118 (4)
O12—Mn1—O1170.3 (7)C66B—N8B—C68B121 (3)
O12—Mn1—O297.5 (6)C67B—N8B—C68B120 (3)
O1—Mn1—O281.3 (5)N8B—C67B—H67D109.5
O12—Mn1—N490.9 (6)N8B—C67B—H67E109.5
O1—Mn1—N489.2 (5)H67D—C67B—H67E109.5
O2—Mn1—N4168.5 (6)N8B—C67B—H67F109.5
O12—Mn1—O1394.4 (7)H67D—C67B—H67F109.5
O1—Mn1—O1395.2 (6)H67E—C67B—H67F109.5
O2—Mn1—O1390.1 (6)N8B—C68B—H68D109.5
N4—Mn1—O1397.1 (6)N8B—C68B—H68E109.5
O12—Mn1—O2589.8 (6)H68D—C68B—H68E109.5
O1—Mn1—O2580.5 (5)N8B—C68B—H68F109.5
O2—Mn1—O2588.6 (6)H68D—C68B—H68F109.5
N4—Mn1—O2583.5 (6)H68E—C68B—H68F109.5
O13—Mn1—O25175.7 (6)
O5—Mn2—O3—C7178.5 (15)C9—C8—N2B—O4B171 (8)
N1—Mn2—O3—C77.7 (16)O5—C8—N2B—Mn3164 (7)
O16—Mn2—O3—C791.4 (16)C9—C8—N2B—Mn323 (17)
O16B—Mn2—O3—C788 (2)Mn2—O4B—N2B—C810 (16)
O26—Mn2—O3—C792.8 (15)Dy1B—O4B—N2B—C8154 (11)
Na1—Mn2—O3—C767.7 (16)Mn2—O4B—N2B—Mn3157 (7)
N2—Mn3—O6—C146.5 (16)Dy1B—O4B—N2B—Mn339 (12)
O8—Mn3—O6—C14177.1 (13)O1B—N1—C1B—O2B9 (5)
O19—Mn3—O6—C1489.5 (14)Mn2—N1—C1B—O2B174 (4)
N2B—Mn3—O6—C144 (5)O1B—N1—C1B—C2172 (4)
O27—Mn3—O6—C1491.2 (14)Mn2—N1—C1B—C27 (6)
Na1—Mn3—O6—C1466.1 (14)Mn1B—O2B—C1B—N17 (5)
O10—Mn4—O9—C2196 (3)Mn1B—O2B—C1B—C2172 (4)
O11B—Mn4—O9—C21174 (5)C3—C2—C1B—N1179 (3)
O11—Mn4—O9—C21179.4 (14)C7—C2—C1B—N19 (5)
N3—Mn4—O9—C218.0 (13)C3—C2—C1B—O2B3 (5)
O22—Mn4—O9—C2191.3 (13)C7—C2—C1B—O2B172 (4)
O28—Mn4—O9—C2193.2 (13)C15—N3—O7B—Mn310 (6)
C22B—Mn4—O9—C21178 (3)Mn4—N3—O7B—Mn3162 (3)
Na1—Mn4—O9—C2168.6 (14)C15—N3—O7B—Dy1B145 (4)
C7—C2—C3—C41 (3)Mn4—N3—O7B—Dy1B43 (6)
C1—C2—C3—C4175 (2)C15—N3—O7B—Na1113.3 (17)
C1B—C2—C3—C4171 (3)Mn4—N3—O7B—Na159 (2)
C2—C3—C4—C52 (3)O8—Mn3—O7B—N39 (4)
C3—C4—C5—C62 (3)O19—Mn3—O7B—N3102 (4)
C4—C5—C6—C70 (3)N2B—Mn3—O7B—N3164 (6)
Mn2—O3—C7—C6168.7 (13)O27—Mn3—O7B—N377 (4)
Mn2—O3—C7—C212 (3)Na1—Mn3—O7B—N398 (5)
C5—C6—C7—O3177.8 (17)O8—Mn3—O7B—Dy1B144 (5)
C5—C6—C7—C21 (3)O19—Mn3—O7B—Dy1B51 (5)
C3—C2—C7—O3178.1 (17)N2B—Mn3—O7B—Dy1B43 (6)
C1—C2—C7—O33 (3)O27—Mn3—O7B—Dy1B131 (5)
C1B—C2—C7—O312 (3)Na1—Mn3—O7B—Dy1B109 (6)
C3—C2—C7—C61 (3)O8—Mn3—O7B—Na1107.1 (17)
C1—C2—C7—C6176.0 (18)O19—Mn3—O7B—Na1159.6 (18)
C1B—C2—C7—C6169 (3)N2B—Mn3—O7B—Na166 (5)
Mn2—O5—C8—N2B8 (9)O27—Mn3—O7B—Na121.6 (16)
Mn2—O5—C8—N21 (2)C22B—N4B—O10B—Mn41 (9)
Mn2—O5—C8—C9179.4 (11)Mn1B—N4B—O10B—Mn4158 (4)
N2B—C8—C9—C1413 (10)C22B—N4B—O10B—Dy1B155 (6)
O5—C8—C9—C14175.1 (15)Mn1B—N4B—O10B—Dy1B48 (7)
N2—C8—C9—C145 (3)C22B—N4B—O10B—Na198 (7)
N2B—C8—C9—C10162 (10)Mn1B—N4B—O10B—Na159 (5)
O5—C8—C9—C1010 (2)Mn4—O11B—C22B—N4B14 (16)
N2—C8—C9—C10170.0 (19)Mn4—O11B—C22B—C23B170 (6)
C14—C9—C10—C111 (3)O10B—N4B—C22B—O11B10 (15)
C8—C9—C10—C11176.7 (17)Mn1B—N4B—C22B—O11B164 (10)
C9—C10—C11—C124 (3)O10B—N4B—C22B—C23B174 (5)
C10—C11—C12—C135 (3)Mn1B—N4B—C22B—C23B21 (11)
C11—C12—C13—C144 (3)O10B—N4B—C22B—Mn41 (6)
Mn3—O6—C14—C914 (2)Mn1B—N4B—C22B—Mn4154 (6)
Mn3—O6—C14—C13168.4 (12)O11B—C22B—C23B—C24B10 (10)
C10—C9—C14—O6177.1 (16)N4B—C22B—C23B—C24B166 (7)
C8—C9—C14—O68 (3)Mn4—C22B—C23B—C24B25 (10)
C10—C9—C14—C130 (2)O11B—C22B—C23B—C28B170 (10)
C8—C9—C14—C13174.5 (16)N4B—C22B—C23B—C28B14 (7)
C12—C13—C14—O6178.4 (17)Mn4—C22B—C23B—C28B155 (10)
C12—C13—C14—C91 (3)C28B—C23B—C24B—C25B0.0
Mn3—O8—C15—N33.9 (17)C22B—C23B—C24B—C25B180.0 (9)
Mn3—O8—C15—C16176.8 (10)C23B—C24B—C25B—C26B0.0
O7—N3—C15—O83.6 (19)C24B—C25B—C26B—C27B0.0
O7B—N3—C15—O84 (4)C25B—C26B—C27B—C28B0.0
Mn4—N3—C15—O8166.7 (10)C26B—C27B—C28B—O12B180 (3)
O7—N3—C15—C16177.1 (13)C26B—C27B—C28B—C23B0.0
O7B—N3—C15—C16176 (4)C24B—C23B—C28B—O12B180 (3)
Mn4—N3—C15—C1614 (2)C22B—C23B—C28B—O12B0 (3)
O8—C15—C16—C1710 (2)C24B—C23B—C28B—C27B0.0
N3—C15—C16—C17168.9 (14)C22B—C23B—C28B—C27B180.0 (10)
O8—C15—C16—C21171.0 (13)C27B—C28B—O12B—Mn1B173 (5)
N3—C15—C16—C2110 (2)C23B—C28B—O12B—Mn1B7 (6)
C21—C16—C17—C180 (3)C28B—O12B—Mn1B—O1B93 (12)
C15—C16—C17—C18178.9 (16)C28B—O12B—Mn1B—O2B173 (5)
C16—C17—C18—C191 (3)C28B—O12B—Mn1B—N4B2 (5)
C17—C18—C19—C202 (4)C28B—O12B—Mn1B—O13B95 (5)
C18—C19—C20—C211 (3)Mn1B—O13B—C29B—O14B16 (15)
Mn4—O9—C21—C1613 (2)Mn1B—O13B—C29B—C30B152 (8)
Mn4—O9—C21—C20168.7 (12)Dy1B—O14B—C29B—O13B58 (15)
C17—C16—C21—O9178.1 (15)Dy1B—O14B—C29B—C30B111 (9)
C15—C16—C21—O93 (2)O13B—C29B—C30B—C31B28 (17)
C17—C16—C21—C200 (2)O14B—C29B—C30B—C31B163 (10)
C15—C16—C21—C20178.3 (15)O13B—C29B—C30B—C35B176 (11)
C19—C20—C21—O9178.7 (17)O14B—C29B—C30B—C35B6 (15)
C19—C20—C21—C160 (3)C35B—C30B—C31B—C32B9 (20)
C1—N1—O1—Mn16.2 (17)C29B—C30B—C31B—C32B165 (14)
Mn2—N1—O1—Mn1164.9 (7)C30B—C31B—C32B—C33B11 (26)
C1—N1—O1—Dy1152.6 (13)C31B—C32B—C33B—O15B179 (15)
Mn2—N1—O1—Dy148.7 (12)C31B—C32B—C33B—C34B20 (25)
C1—N1—O1—Na1108.2 (14)O15B—C33B—C34B—C35B171 (12)
Mn2—N1—O1—Na150.5 (11)C32B—C33B—C34B—C35B9 (20)
O5—C8—N2—O41 (3)C33B—C34B—C35B—C30B10 (20)
C9—C8—N2—O4179.4 (15)C31B—C30B—C35B—C34B19 (19)
O5—C8—N2—Mn3167.3 (18)C29B—C30B—C35B—C34B176 (12)
C9—C8—N2—Mn313 (3)Mn2—O16—C36—O1712 (3)
Mn2—O4—N2—C80 (2)Mn2—O16—C36—C37171.8 (16)
Dy1—O4—N2—C8149.3 (15)Dy1—O17—C36—O1657 (4)
Na1—O4—N2—C8114.2 (18)Dy1—O17—C36—C37127 (2)
Mn2—O4—N2—Mn3169.5 (11)O16—C36—C37—C389 (4)
Dy1—O4—N2—Mn342 (2)O17—C36—C37—C38167 (3)
Na1—O4—N2—Mn354.9 (17)O16—C36—C37—C42172 (3)
Mn1—O2—C1—N17 (3)O17—C36—C37—C4212 (3)
Mn1—O2—C1—C2175.4 (14)C42—C37—C38—C391 (4)
O1—N1—C1—O29 (3)C36—C37—C38—C39180 (2)
Mn2—N1—C1—O2163.3 (15)C37—C38—C39—C401 (4)
O1—N1—C1—C2177.3 (15)C38—C39—C40—O18180 (3)
Mn2—N1—C1—C228 (3)C38—C39—C40—C412 (5)
C3—C2—C1—O27 (3)O18—C40—C41—C42176 (3)
C7—C2—C1—O2168.5 (18)C39—C40—C41—C426 (5)
C3—C2—C1—N1162.4 (18)C40—C41—C42—C378 (5)
C7—C2—C1—N123 (3)C38—C37—C42—C416 (5)
C15—N3—O7—Mn31.5 (16)C36—C37—C42—C41175 (3)
Mn4—N3—O7—Mn3167.5 (7)Mn2—O16B—C36B—O17B39 (23)
C15—N3—O7—Dy1151.0 (10)Mn2—O16B—C36B—C37B148 (7)
Mn4—N3—O7—Dy143.0 (14)O16B—C36B—C37B—C38B76 (11)
C15—N3—O7—Na1112.2 (10)O17B—C36B—C37B—C38B110 (11)
Mn4—N3—O7—Na153.9 (9)O16B—C36B—C37B—C42B121 (10)
C22—N4—O10—Mn42.8 (17)O17B—C36B—C37B—C42B53 (13)
Mn1—N4—O10—Mn4167.4 (7)C42B—C37B—C38B—C39B0.0
C22—N4—O10—Dy1145.6 (12)C36B—C37B—C38B—C39B163 (6)
Mn1—N4—O10—Dy144.2 (13)C37B—C38B—C39B—C40B0.0
C22—N4—O10—Na1116.5 (13)C38B—C39B—C40B—O18B175 (13)
Mn1—N4—O10—Na153.6 (11)C38B—C39B—C40B—C41B0.0
Mn4—O11—C22—N40 (2)O18B—C40B—C41B—C42B175 (12)
Mn4—O11—C22—C23179.2 (13)C39B—C40B—C41B—C42B0.0
O10—N4—C22—O112 (2)C40B—C41B—C42B—C37B0.0
Mn1—N4—C22—O11166.4 (15)C38B—C37B—C42B—C41B0.0
O10—N4—C22—C23179.1 (14)C36B—C37B—C42B—C41B163 (6)
Mn1—N4—C22—C2313 (3)O23—Dy1B—O20—C4351 (2)
O11—C22—C23—C2414 (3)O14B—Dy1B—O20—C43125 (3)
N4—C22—C23—C24166.7 (17)O7B—Dy1B—O20—C4327 (3)
O11—C22—C23—C28165.5 (19)O4B—Dy1B—O20—C4391 (3)
N4—C22—C23—C2813 (3)O10B—Dy1B—O20—C431 (4)
C28—C23—C24—C250 (3)O1B—Dy1B—O20—C43114 (3)
C22—C23—C24—C25179.4 (17)Na1—Dy1B—O20—C4353 (2)
C23—C24—C25—C261 (3)Mn3—O19—C43—O202 (2)
C24—C25—C26—C271 (3)Mn3—O19—C43—C44179.4 (10)
C25—C26—C27—C280 (3)Dy1B—O20—C43—O1947 (3)
C26—C27—C28—O12177 (2)Dy1B—O20—C43—C44134.3 (18)
C26—C27—C28—C231 (3)O19—C43—C44—C49167.4 (16)
C24—C23—C28—O12177.5 (19)O20—C43—C44—C4914 (2)
C22—C23—C28—O122 (3)O19—C43—C44—C4512 (2)
C24—C23—C28—C271 (3)O20—C43—C44—C45166.4 (15)
C22—C23—C28—C27178.3 (18)C49—C44—C45—C461 (2)
C27—C28—O12—Mn1164.1 (15)C43—C44—C45—C46179.8 (14)
C23—C28—O12—Mn120 (3)C44—C45—C46—C470 (2)
C28—O12—Mn1—O2171.0 (17)C45—C46—C47—O21179.9 (14)
C28—O12—Mn1—N416.8 (17)C45—C46—C47—C481 (2)
C28—O12—Mn1—O1380.4 (17)O21—C47—C48—C49179.4 (16)
C28—O12—Mn1—O25100.4 (17)C46—C47—C48—C492 (3)
C28—O12—Mn1—Na177.5 (18)C45—C44—C49—C481 (3)
Mn1—O13—C29—O1414 (3)C43—C44—C49—C48179.2 (16)
Mn1—O13—C29—C30166.8 (14)C47—C48—C49—C442 (3)
Dy1—O14—C29—O1355 (3)Dy1B—O23—C50—O2273 (3)
Dy1—O14—C29—C30126 (2)Dy1B—O23—C50—C51108 (2)
O13—C29—C30—C35168 (2)Mn4—O22—C50—O232.8 (19)
O14—C29—C30—C3513 (3)Mn4—O22—C50—C51178.3 (10)
O13—C29—C30—C3113 (3)O23—C50—C51—C52166.4 (14)
O14—C29—C30—C31165.6 (19)O22—C50—C51—C5213 (2)
C35—C30—C31—C320 (3)O23—C50—C51—C5613 (2)
C29—C30—C31—C32178 (2)O22—C50—C51—C56168.0 (14)
C30—C31—C32—C331 (3)C56—C51—C52—C530 (2)
C31—C32—C33—O15173 (3)C50—C51—C52—C53179.2 (14)
C31—C32—C33—C340 (4)C51—C52—C53—C540 (2)
O15—C33—C34—C35172 (3)C52—C53—C54—O24176.4 (13)
C32—C33—C34—C352 (5)C52—C53—C54—C551 (2)
C31—C30—C35—C341 (4)O24—C54—C55—C56176.3 (15)
C29—C30—C35—C34179 (2)C53—C54—C55—C561 (3)
C33—C34—C35—C302 (4)C54—C55—C56—C511 (3)
C1B—N1—O1B—Mn1B20 (5)C52—C51—C56—C550 (2)
Mn2—N1—O1B—Mn1B171.3 (19)C50—C51—C56—C55179.4 (15)
C1B—N1—O1B—Dy1B145 (4)O29—C57—N5—C588 (6)
Mn2—N1—O1B—Dy1B24 (5)O29—C57—N5—C59170 (4)
O5—Mn2—O4B—N2B10 (7)O29B—C57B—N5B—C59B162 (8)
N1—Mn2—O4B—N2B160 (7)O29B—C57B—N5B—C58B21 (10)
O16B—Mn2—O4B—N2B104 (8)O30—C60—N6—C613 (3)
O26—Mn2—O4B—N2B75 (7)O30—C60—N6—C62176 (2)
Na1—Mn2—O4B—N2B99 (8)O31—C63—N7—C641 (3)
O5—Mn2—O4B—Dy1B153 (5)O31—C63—N7—C65176.2 (19)
N1—Mn2—O4B—Dy1B37 (5)O32—C66—N8—C672 (7)
O16B—Mn2—O4B—Dy1B59 (5)O32—C66—N8—C68176 (4)
O26—Mn2—O4B—Dy1B122 (5)O32B—C66B—N8B—C67B7 (8)
Na1—Mn2—O4B—Dy1B98 (5)O32B—C66B—N8B—C68B176 (4)
O5—C8—N2B—O4B2 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O25—H25C···O290.922.002.74 (3)137
O25—H25D···O120.872.413.06 (2)132
O26—H26C···O300.85 (4)2.04 (9)2.74 (2)138 (10)
O26—H26D···O290.84 (4)2.03 (11)2.70 (4)136 (11)
O27—H27C···O300.87 (4)2.12 (14)2.730 (19)127 (14)
O27—H27D···O310.87 (4)2.09 (7)2.798 (18)138 (6)
O28—H28C···O310.88 (4)2.07 (10)2.776 (17)137 (10)
O28—H28D···O320.88 (4)1.94 (7)2.68 (3)142 (6)
C32—H32···O3i0.952.663.35 (2)131
O15—H15O···O3i0.841.932.77 (2)175
C46—H46···O9ii0.952.243.168 (15)165
O21—H21O···O22ii0.842.012.794 (16)155
O24—H24O···O6iii0.842.022.815 (16)158
Symmetry codes: (i) x1/2, y+1, z+1/2; (ii) x1/2, y+2, z1/2; (iii) x1/2, y+2, z+1/2.
Tetra-µ-aqua-tetrakis{2-[azanidylene(oxido)methyl]phenolato}tetrakis(µ2-3-hydroxybenzoato)dysprosium(III)tetramanganese(III)sodium(I) N,N-dimethylacetamide decasolvate (1) top
Crystal data top
[DyMn4Na(C7H5O3)4(C7H4NO2)4(H2O)4]·10C4H9NODx = 1.488 Mg m3
Mr = 2497.41Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P4/nCell parameters from 9707 reflections
a = 19.9869 (9) Åθ = 2.7–32.8°
c = 13.9570 (11) ŵ = 1.19 mm1
V = 5575.5 (7) Å3T = 150 K
Z = 2Block, brown
F(000) = 25780.25 × 0.23 × 0.15 mm
Data collection top
Bruker AXS D8 Quest CMOS
diffractometer
7967 independent reflections
Radiation source: fine focus sealed tube X-ray source6605 reflections with I > 2σ(I)
Triumph curved graphite crystal monochromatorRint = 0.042
Detector resolution: 10.4167 pixels mm-1θmax = 30.5°, θmin = 2.5°
ω and phi scansh = 2524
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 2724
Tmin = 0.024, Tmax = 0.055l = 1719
58638 measured reflections
Refinement top
Refinement on F21550 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.151 w = 1/[σ2(Fo2) + (0.0823P)2 + 8.7362P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
7967 reflectionsΔρmax = 2.49 e Å3
761 parametersΔρmin = 0.91 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Whole molecule disorder is observed for the main molecule, excluding only the Dy and Na ions. Equivalent disordered organic moieties were restrained to have similar geometries, and Uij components of ADPs for all disordered atoms closer to each other than 2.0 Angstrom were restrained to be similar. Subject to these conditions the occupancy ratio refined to 0.8018 (14) to 0.1982 (14).

Three DMA molecules were refined as disordered. Two in general positions by an approximate 180 degree rotation. The third is in addition also disordered by an exact 180 degree rotation from a two fold axis that bisects it. All DMA moieties were restrained to have similar geometries SAME command of Shelxl). All N-CH3 bond lengths were restrained to be similar to each other, and all 1,3 distances of the C-N-CH3 angles were also restrained to be similar. Uij components of ADPs for all DMA atoms closer to each other than 2.0 Angstrom were restrained to be similar, and the atoms of the four fold disordered molecule were restrained to be close to isotropic. The least occupied DMA molecule (the minor component disordered by two fold symmetry) was restrained to be close to planar. Subject to these conditions the occupancy ratios refined to 0.496 (8) to 0.504 (8), 0.608 (9) to 0.392 (9), and two times 0.275 (7) to two times 0.225 (7).

Alcohol H atoms were initially allowed to rotate and Water H atom positions were initially refined while a damping factor was applied and O-H and H···H distances were restrained to 0.84 (2) and 1.36 (2) Angstrom, respectively. Some water H atom positions were further restrained based on hydrogen bonding considerations. In the final refinement cycles these H atoms were set to ride on their carrier oxygen atoms and the damping factor was removed.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.84667 (3)0.88157 (3)0.49946 (4)0.02920 (15)0.8018 (14)
O10.76087 (12)0.84232 (12)0.47528 (18)0.0294 (5)0.8018 (14)
N10.7083 (4)0.8872 (3)0.4910 (14)0.0291 (9)0.8018 (14)
O20.79161 (13)0.96071 (14)0.5213 (2)0.0333 (5)0.8018 (14)
C10.72846 (17)0.94758 (17)0.5145 (2)0.0300 (6)0.8018 (14)
C20.67924 (19)1.0008 (2)0.5321 (4)0.0315 (8)0.8018 (14)
C30.7020 (2)1.0669 (2)0.5343 (4)0.0453 (9)0.8018 (14)
H30.7484831.0754930.5269830.054*0.8018 (14)
C40.6587 (3)1.1202 (3)0.5468 (6)0.0559 (13)0.8018 (14)
H40.6747591.1649160.5451250.067*0.8018 (14)
C50.5909 (2)1.1072 (3)0.5619 (5)0.0480 (12)0.8018 (14)
H50.5609121.1431070.5738070.058*0.8018 (14)
C60.5671 (2)1.04252 (19)0.5595 (3)0.0385 (8)0.8018 (14)
H60.5207041.0344860.5687760.046*0.8018 (14)
C70.61041 (18)0.98822 (18)0.5437 (3)0.0326 (7)0.8018 (14)
O30.58331 (14)0.92701 (16)0.5428 (2)0.0378 (6)0.8018 (14)
O40.86173 (16)0.91072 (15)0.3509 (2)0.0427 (6)0.8018 (14)
O50.82694 (16)0.81397 (16)0.2889 (2)0.0477 (7)0.8018 (14)
C80.8473 (2)0.8741 (2)0.2817 (3)0.0448 (8)0.8018 (14)
C90.8557 (2)0.9003 (2)0.1808 (3)0.0501 (9)0.8018 (14)
C100.8788 (3)0.9631 (3)0.1655 (4)0.0600 (12)0.8018 (14)
H100.8893780.9913200.2181850.072*0.8018 (14)
C110.8870 (4)0.9860 (3)0.0718 (4)0.0699 (15)0.8018 (14)
C120.8687 (4)0.9467 (3)0.0058 (4)0.0733 (15)0.8018 (14)
H120.8737060.9632180.0691690.088*0.8018 (14)
C130.8433 (5)0.8838 (4)0.0096 (4)0.0833 (17)0.8018 (14)
H130.8294480.8568410.0428770.100*0.8018 (14)
C140.8382 (4)0.8597 (3)0.1036 (4)0.0731 (14)0.8018 (14)
H140.8226300.8155050.1147320.088*0.8018 (14)
O60.9105 (4)1.0486 (3)0.0591 (5)0.107 (3)0.8018 (14)
H6A10.9309681.0511820.0066810.161*0.8018 (14)
O70.81729 (18)0.8449 (2)0.6615 (3)0.0385 (7)0.8018 (14)
H7A0.7904360.8728750.6817290.058*0.8018 (14)
H7B0.8460550.8357750.7007920.058*0.8018 (14)
Mn1B0.80037 (11)0.90547 (11)0.50499 (15)0.0296 (6)0.1982 (14)
O1B0.6868 (5)0.8187 (5)0.4794 (7)0.0309 (17)0.1982 (14)
N1B0.7022 (16)0.8864 (12)0.494 (6)0.029 (3)0.1982 (14)
O2B0.5921 (5)0.8978 (6)0.5262 (9)0.033 (2)0.1982 (14)
C1B0.6507 (6)0.9230 (6)0.5201 (11)0.0326 (17)0.1982 (14)
C2B0.6592 (7)0.9958 (7)0.5358 (19)0.032 (2)0.1982 (14)
C3B0.6023 (8)1.0354 (7)0.5408 (13)0.040 (2)0.1982 (14)
H3B0.5592061.0153070.5396140.048*0.1982 (14)
C4B0.6085 (10)1.1051 (10)0.548 (2)0.048 (3)0.1982 (14)
H4B0.5703641.1328360.5392500.057*0.1982 (14)
C5B0.6702 (10)1.1335 (10)0.567 (2)0.050 (3)0.1982 (14)
H5B0.6733531.1789500.5861790.059*0.1982 (14)
C6B0.7271 (8)1.0951 (7)0.5574 (15)0.045 (2)0.1982 (14)
H6B0.7697441.1160480.5594900.054*0.1982 (14)
C7B0.7232 (6)1.0252 (6)0.5449 (12)0.0356 (19)0.1982 (14)
O3B0.7818 (5)0.9910 (6)0.5478 (9)0.0333 (18)0.1982 (14)
O4B0.8128 (6)0.9351 (6)0.3564 (7)0.041 (2)0.1982 (14)
O5B0.7561 (6)0.8492 (6)0.2932 (9)0.048 (2)0.1982 (14)
C8B0.7903 (9)0.9028 (8)0.2876 (9)0.045 (2)0.1982 (14)
C9B0.8068 (11)0.9253 (9)0.1869 (10)0.058 (2)0.1982 (14)
C10B0.8423 (14)0.9834 (11)0.1727 (13)0.063 (3)0.1982 (14)
H10B0.8549221.0100860.2260860.075*0.1982 (14)
C11B0.8600 (16)1.0033 (12)0.0797 (13)0.072 (3)0.1982 (14)
C12B0.8321 (17)0.9692 (13)0.0022 (14)0.078 (3)0.1982 (14)
H12B0.8370710.9868180.0605840.094*0.1982 (14)
C13B0.7975 (17)0.9106 (13)0.0155 (13)0.076 (3)0.1982 (14)
H13B0.7811140.8864960.0382870.091*0.1982 (14)
C14B0.7863 (14)0.8865 (11)0.1081 (11)0.068 (3)0.1982 (14)
H14B0.7652350.8444800.1176540.081*0.1982 (14)
O6B0.8818 (16)1.0672 (11)0.072 (2)0.088 (6)0.1982 (14)
H6B10.8934031.0729200.0146490.133*0.1982 (14)
O7B0.7925 (6)0.8580 (8)0.6681 (10)0.033 (2)0.1982 (14)
H7C0.7856620.8872270.7101190.049*0.1982 (14)
H7D0.8299210.8401590.6797820.049*0.1982 (14)
O80.7267 (4)0.9190 (4)0.7513 (9)0.0471 (16)0.496 (8)
C150.7303 (5)0.9804 (4)0.7656 (7)0.071 (2)0.496 (8)
C160.7934 (6)1.0243 (8)0.7470 (11)0.069 (3)0.496 (8)
H16A0.8306060.9956020.7268440.104*0.496 (8)
H16B0.8056431.0478290.8060640.104*0.496 (8)
H16C0.7836521.0569200.6965820.104*0.496 (8)
N20.6781 (4)1.0137 (4)0.7929 (6)0.0651 (19)0.496 (8)
C170.6152 (6)0.9691 (8)0.8040 (12)0.064 (3)0.496 (8)
H17A0.5872990.9730980.7466210.096*0.496 (8)
H17B0.5896710.9835880.8602430.096*0.496 (8)
H17C0.6289590.9223800.8122950.096*0.496 (8)
C180.6987 (10)1.0894 (6)0.8151 (17)0.103 (5)0.496 (8)
H18A0.7129741.1112900.7556910.154*0.496 (8)
H18B0.7355531.0900300.8614020.154*0.496 (8)
H18C0.6601781.1133330.8418440.154*0.496 (8)
O8B0.7021 (7)0.9110 (5)0.7572 (10)0.088 (3)0.504 (8)
C15B0.6841 (5)0.9691 (4)0.7775 (6)0.069 (2)0.504 (8)
C16B0.6074 (7)0.9806 (10)0.7853 (14)0.086 (4)0.504 (8)
H16D0.5948071.0196930.7469710.129*0.504 (8)
H16E0.5953290.9882660.8524280.129*0.504 (8)
H16F0.5837320.9410320.7613450.129*0.504 (8)
N2B0.7244 (5)1.0225 (4)0.7873 (7)0.078 (2)0.504 (8)
C17B0.7972 (6)1.0092 (9)0.7693 (15)0.104 (5)0.504 (8)
H17D0.8077181.0188570.7021670.155*0.504 (8)
H17E0.8070910.9621710.7831420.155*0.504 (8)
H17F0.8242961.0379170.8109720.155*0.504 (8)
C18B0.6739 (9)1.0864 (5)0.7973 (14)0.087 (4)0.504 (8)
H18D0.6728131.1110500.7367130.131*0.504 (8)
H18E0.6898091.1159050.8485460.131*0.504 (8)
H18F0.6288231.0704130.8128220.131*0.504 (8)
O90.9251 (8)1.0845 (6)0.8857 (9)0.090 (4)0.608 (9)
C190.9589 (5)1.1335 (4)0.8605 (5)0.0737 (19)0.608 (9)
C200.9736 (9)1.1944 (8)0.9272 (10)0.096 (4)0.608 (9)
H20A1.0198351.2094080.9175130.145*0.608 (9)
H20B0.9674981.1810670.9942130.145*0.608 (9)
H20C0.9428381.2310180.9118500.145*0.608 (9)
N30.9712 (4)1.1468 (4)0.7693 (5)0.0734 (17)0.608 (9)
C210.9586 (13)1.0828 (8)0.7072 (10)0.102 (4)0.608 (9)
H21A0.9173481.0884560.6701160.153*0.608 (9)
H21B0.9541671.0437640.7493070.153*0.608 (9)
H21C0.9963101.0760290.6634560.153*0.608 (9)
C221.0080 (10)1.2133 (7)0.7482 (10)0.084 (4)0.608 (9)
H22A1.0441631.2195370.7947450.126*0.608 (9)
H22B0.9763081.2506130.7532160.126*0.608 (9)
H22C1.0267091.2119940.6833630.126*0.608 (9)
O9B0.9394 (13)1.0698 (9)0.8677 (14)0.082 (4)0.392 (9)
C19B0.9602 (7)1.1050 (6)0.8021 (8)0.075 (2)0.392 (9)
C20B0.9663 (16)1.0947 (11)0.6932 (10)0.067 (3)0.392 (9)
H20D0.9291621.1174040.6608200.100*0.392 (9)
H20E0.9647111.0467420.6786040.100*0.392 (9)
H20F1.0088301.1133310.6706870.100*0.392 (9)
N3B0.9812 (7)1.1667 (6)0.8214 (7)0.080 (2)0.392 (9)
C21B0.9905 (15)1.1761 (12)0.9321 (12)0.097 (6)0.392 (9)
H21D1.0128511.2188610.9445490.145*0.392 (9)
H21E1.0178851.1394570.9574220.145*0.392 (9)
H21F0.9466561.1757870.9634380.145*0.392 (9)
C22B0.9940 (17)1.2076 (12)0.7265 (14)0.088 (5)0.392 (9)
H22D1.0264601.1836760.6865350.131*0.392 (9)
H22E1.0116721.2519040.7426830.131*0.392 (9)
H22F0.9518551.2125510.6913630.131*0.392 (9)
Na10.7500000.7500000.61298 (18)0.0325 (5)
O100.6805 (12)1.2775 (16)0.703 (2)0.136 (6)0.275 (7)
C230.7332 (14)1.255 (2)0.7402 (15)0.123 (4)0.275 (7)
C240.7931 (15)1.226 (2)0.678 (2)0.129 (6)0.275 (7)
H24A0.8291031.2107340.7201290.194*0.275 (7)
H24B0.7769721.1879510.6394470.194*0.275 (7)
H24C0.8099891.2608280.6349710.194*0.275 (7)
N40.7436 (13)1.244 (2)0.8306 (14)0.128 (4)0.275 (7)
C250.6840 (17)1.261 (2)0.897 (2)0.138 (7)0.275 (7)
H25A0.6961271.2511650.9638470.207*0.275 (7)
H25B0.6732151.3086950.8911610.207*0.275 (7)
H25C0.6449291.2342660.8790750.207*0.275 (7)
C260.8176 (14)1.2228 (19)0.852 (2)0.123 (7)0.275 (7)
H26A0.8227561.2149840.9213830.185*0.275 (7)
H26B0.8283081.1816230.8174520.185*0.275 (7)
H26C0.8479421.2585600.8322080.185*0.275 (7)
O10B0.743 (2)1.2564 (18)0.6231 (15)0.131 (6)0.225 (7)
C23B0.7383 (13)1.2528 (11)0.7142 (16)0.123 (4)0.225 (7)
C24B0.6694 (14)1.2653 (18)0.765 (3)0.135 (6)0.225 (7)
H24D0.6750221.2605170.8348130.202*0.225 (7)
H24E0.6536211.3105390.7506890.202*0.225 (7)
H24F0.6365731.2325110.7425790.202*0.225 (7)
N4B0.7880 (11)1.2390 (11)0.7703 (16)0.121 (4)0.225 (7)
C25B0.8556 (13)1.2272 (17)0.714 (3)0.130 (8)0.225 (7)
H25D0.8913781.2170220.7598400.194*0.225 (7)
H25E0.8501281.1896700.6697090.194*0.225 (7)
H25F0.8671431.2676890.6781200.194*0.225 (7)
C26B0.7712 (18)1.237 (2)0.8796 (15)0.123 (7)0.225 (7)
H26D0.8117041.2264850.9159290.185*0.225 (7)
H26E0.7542561.2810900.8996510.185*0.225 (7)
H26F0.7370291.2030960.8916370.185*0.225 (7)
Dy10.7500000.7500000.36449 (2)0.03521 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0247 (3)0.0243 (3)0.0386 (3)0.00064 (18)0.00242 (18)0.00210 (18)
O10.0239 (10)0.0244 (10)0.0398 (12)0.0020 (9)0.0009 (9)0.0025 (9)
N10.026 (2)0.0272 (15)0.034 (2)0.0023 (14)0.003 (2)0.0011 (13)
O20.0261 (12)0.0283 (13)0.0455 (14)0.0007 (10)0.0043 (10)0.0002 (11)
C10.0283 (14)0.0273 (14)0.0345 (14)0.0006 (12)0.0043 (11)0.0007 (11)
C20.0289 (19)0.0261 (15)0.0395 (17)0.0012 (14)0.0069 (18)0.0019 (13)
C30.0361 (19)0.0270 (17)0.073 (2)0.0007 (15)0.0048 (17)0.0010 (17)
C40.047 (3)0.029 (2)0.093 (4)0.0036 (19)0.009 (2)0.008 (2)
C50.038 (2)0.0306 (18)0.076 (3)0.0080 (18)0.004 (2)0.0077 (18)
C60.0312 (17)0.0326 (17)0.052 (2)0.0057 (15)0.0076 (15)0.0068 (15)
C70.0294 (15)0.0298 (15)0.0387 (16)0.0026 (13)0.0053 (12)0.0034 (12)
O30.0286 (13)0.0276 (14)0.0572 (17)0.0015 (11)0.0010 (11)0.0065 (13)
O40.0432 (15)0.0422 (15)0.0427 (15)0.0030 (12)0.0010 (11)0.0125 (11)
O50.0502 (16)0.0479 (16)0.0451 (15)0.0028 (13)0.0089 (12)0.0067 (12)
C80.0400 (18)0.048 (2)0.0464 (19)0.0015 (15)0.0037 (15)0.0128 (16)
C90.054 (2)0.055 (2)0.0407 (19)0.0028 (18)0.0067 (17)0.0172 (17)
C100.074 (3)0.061 (3)0.045 (2)0.015 (2)0.010 (2)0.015 (2)
C110.092 (4)0.069 (3)0.048 (2)0.020 (3)0.011 (3)0.020 (2)
C120.102 (4)0.074 (3)0.044 (2)0.014 (3)0.002 (3)0.018 (2)
C130.118 (4)0.083 (4)0.048 (3)0.025 (3)0.005 (3)0.005 (2)
C140.098 (4)0.073 (3)0.048 (2)0.021 (3)0.010 (3)0.006 (2)
O60.172 (7)0.095 (4)0.056 (3)0.062 (4)0.014 (4)0.030 (3)
O70.0342 (19)0.0380 (19)0.0434 (16)0.0042 (15)0.0043 (15)0.0048 (13)
Mn1B0.0308 (11)0.0282 (11)0.0298 (10)0.0005 (8)0.0006 (7)0.0018 (7)
O1B0.027 (4)0.029 (4)0.037 (4)0.004 (3)0.001 (3)0.001 (3)
N1B0.025 (4)0.026 (4)0.036 (4)0.006 (4)0.000 (4)0.002 (4)
O2B0.027 (4)0.029 (4)0.044 (4)0.001 (4)0.004 (3)0.001 (4)
C1B0.032 (3)0.026 (3)0.039 (3)0.001 (3)0.005 (3)0.002 (3)
C2B0.030 (4)0.023 (4)0.043 (4)0.002 (4)0.006 (4)0.003 (3)
C3B0.033 (4)0.031 (4)0.056 (4)0.006 (4)0.007 (4)0.009 (4)
C4B0.040 (5)0.031 (4)0.073 (5)0.009 (4)0.003 (5)0.010 (4)
C5B0.038 (5)0.034 (5)0.076 (5)0.003 (4)0.009 (4)0.009 (4)
C6B0.039 (5)0.029 (4)0.068 (5)0.001 (4)0.005 (4)0.005 (4)
C7B0.035 (4)0.027 (4)0.045 (4)0.001 (3)0.003 (3)0.002 (3)
O3B0.029 (4)0.030 (4)0.041 (4)0.001 (3)0.000 (3)0.001 (3)
O4B0.041 (4)0.044 (4)0.036 (4)0.004 (4)0.001 (4)0.008 (4)
O5B0.053 (5)0.053 (5)0.039 (4)0.001 (4)0.002 (4)0.011 (4)
C8B0.048 (4)0.050 (4)0.038 (4)0.002 (4)0.003 (3)0.011 (3)
C9B0.068 (4)0.062 (4)0.043 (4)0.012 (4)0.003 (4)0.013 (4)
C10B0.078 (5)0.067 (5)0.043 (4)0.018 (5)0.003 (5)0.016 (4)
C11B0.095 (5)0.074 (5)0.047 (4)0.024 (5)0.002 (5)0.017 (4)
C12B0.106 (5)0.081 (5)0.048 (5)0.019 (5)0.000 (5)0.014 (5)
C13B0.103 (5)0.078 (5)0.047 (4)0.021 (5)0.000 (5)0.008 (5)
C14B0.090 (5)0.070 (5)0.044 (4)0.019 (5)0.003 (5)0.010 (4)
O6B0.115 (11)0.090 (10)0.060 (9)0.039 (9)0.001 (9)0.033 (8)
O7B0.027 (6)0.036 (6)0.036 (5)0.011 (5)0.001 (5)0.000 (4)
O80.043 (3)0.041 (3)0.057 (4)0.006 (2)0.005 (3)0.014 (2)
C150.102 (5)0.062 (4)0.050 (4)0.011 (4)0.002 (4)0.004 (3)
C160.087 (6)0.064 (7)0.056 (6)0.022 (5)0.015 (5)0.011 (4)
N20.095 (5)0.048 (3)0.052 (3)0.010 (4)0.005 (4)0.004 (3)
C170.086 (6)0.054 (6)0.052 (6)0.018 (5)0.003 (5)0.006 (5)
C180.170 (11)0.057 (6)0.081 (9)0.009 (7)0.012 (9)0.020 (5)
O8B0.149 (9)0.054 (5)0.059 (4)0.023 (6)0.008 (7)0.018 (4)
C15B0.112 (5)0.053 (4)0.042 (3)0.016 (4)0.005 (4)0.004 (3)
C16B0.128 (9)0.064 (7)0.066 (8)0.030 (6)0.034 (7)0.027 (5)
N2B0.120 (5)0.055 (4)0.059 (3)0.007 (4)0.001 (4)0.016 (3)
C17B0.140 (9)0.071 (8)0.100 (10)0.016 (7)0.047 (7)0.015 (7)
C18B0.143 (10)0.042 (5)0.075 (8)0.016 (6)0.015 (7)0.012 (4)
O90.106 (8)0.108 (7)0.057 (5)0.037 (6)0.009 (4)0.031 (5)
C190.079 (4)0.095 (5)0.048 (3)0.023 (4)0.006 (3)0.009 (3)
C200.106 (9)0.117 (9)0.067 (5)0.011 (7)0.006 (5)0.011 (6)
N30.085 (4)0.083 (4)0.052 (3)0.027 (3)0.007 (3)0.009 (3)
C210.105 (8)0.108 (9)0.094 (8)0.010 (7)0.041 (7)0.015 (7)
C220.105 (9)0.071 (5)0.077 (7)0.033 (5)0.007 (6)0.013 (5)
O9B0.091 (9)0.098 (8)0.058 (7)0.004 (6)0.008 (6)0.016 (6)
C19B0.079 (5)0.083 (5)0.063 (5)0.023 (4)0.001 (4)0.012 (4)
C20B0.083 (8)0.071 (7)0.046 (5)0.032 (6)0.023 (6)0.007 (5)
N3B0.087 (5)0.092 (5)0.061 (5)0.020 (4)0.003 (4)0.007 (4)
C21B0.099 (11)0.116 (11)0.076 (8)0.023 (9)0.000 (8)0.003 (8)
C22B0.105 (11)0.088 (8)0.070 (9)0.034 (8)0.011 (8)0.001 (7)
Na10.0267 (6)0.0267 (6)0.0442 (12)0.0000.0000.000
O100.131 (10)0.120 (9)0.158 (10)0.006 (9)0.003 (9)0.004 (9)
C230.125 (7)0.106 (6)0.138 (6)0.015 (6)0.009 (6)0.002 (6)
C240.130 (10)0.118 (9)0.140 (10)0.020 (9)0.019 (9)0.014 (9)
N40.130 (7)0.115 (6)0.141 (6)0.012 (5)0.012 (6)0.002 (6)
C250.139 (11)0.132 (11)0.143 (11)0.005 (10)0.015 (10)0.000 (10)
C260.133 (11)0.117 (11)0.119 (11)0.011 (10)0.026 (10)0.003 (10)
O10B0.121 (10)0.111 (9)0.160 (10)0.028 (8)0.011 (10)0.006 (10)
C23B0.124 (7)0.107 (6)0.137 (6)0.014 (6)0.010 (6)0.001 (6)
C24B0.137 (10)0.122 (9)0.145 (10)0.005 (9)0.004 (9)0.000 (9)
N4B0.124 (7)0.110 (6)0.130 (7)0.013 (6)0.009 (5)0.000 (6)
C25B0.125 (13)0.121 (12)0.142 (13)0.008 (12)0.009 (12)0.002 (12)
C26B0.131 (11)0.120 (10)0.119 (10)0.012 (10)0.027 (9)0.001 (9)
Dy10.03543 (12)0.03543 (12)0.03478 (15)0.0000.0000.000
Geometric parameters (Å, º) top
Mn1—O3i1.854 (3)O8—C151.245 (10)
Mn1—O11.916 (2)C15—N21.295 (10)
Mn1—O21.951 (3)C15—C161.557 (13)
Mn1—N1i1.974 (7)C16—H16A0.9800
Mn1—O42.175 (3)C16—H16B0.9800
Mn1—O72.448 (4)C16—H16C0.9800
Mn1—Na13.6274 (12)N2—C171.548 (12)
O1—N11.399 (6)N2—C181.599 (11)
O1—Dy12.417 (2)C17—H17A0.9800
O1—Na12.673 (3)C17—H17B0.9800
N1—C11.314 (7)C17—H17C0.9800
O2—C11.293 (4)C18—H18A0.9800
C1—C21.470 (5)C18—H18B0.9800
C2—C31.398 (6)C18—H18C0.9800
C2—C71.408 (5)O8B—C15B1.248 (10)
C3—C41.384 (7)C15B—N2B1.345 (10)
C3—H30.9500C15B—C16B1.554 (14)
C4—C51.396 (7)C16B—H16D0.9800
C4—H40.9500C16B—H16E0.9800
C5—C61.377 (7)C16B—H16F0.9800
C5—H50.9500N2B—C17B1.500 (13)
C6—C71.406 (5)N2B—C18B1.632 (11)
C6—H60.9500C17B—H17D0.9800
C7—O31.338 (5)C17B—H17E0.9800
O4—C81.245 (6)C17B—H17F0.9800
O5—C81.273 (5)C18B—H18D0.9800
O5—Dy12.261 (3)C18B—H18E0.9800
C8—C91.512 (6)C18B—H18F0.9800
C9—C101.354 (7)O9—C191.241 (10)
C9—C141.393 (8)C19—N31.323 (8)
C10—C111.396 (7)C19—C201.561 (12)
C10—H100.9500C20—H20A0.9800
C11—O61.348 (7)C20—H20B0.9800
C11—C121.386 (8)C20—H20C0.9800
C12—C131.373 (9)N3—C221.548 (10)
C12—H120.9500N3—C211.565 (12)
C13—C141.400 (8)C21—H21A0.9800
C13—H130.9500C21—H21B0.9800
C14—H140.9500C21—H21C0.9800
O6—H6A10.8401C22—H22A0.9800
O7—Na12.422 (4)C22—H22B0.9800
O7—H7A0.8243C22—H22C0.9800
O7—H7B0.8155O9B—C19B1.228 (13)
Mn1B—O3B1.848 (12)C19B—N3B1.331 (12)
Mn1B—O1Bi1.915 (10)C19B—C20B1.539 (14)
Mn1B—O2Bi1.970 (13)C20B—H20D0.9800
Mn1B—N1B2.00 (3)C20B—H20E0.9800
Mn1B—O4B2.171 (10)C20B—H20F0.9800
Mn1B—O7B2.471 (15)N3B—C21B1.568 (13)
Mn1B—Na13.597 (2)N3B—C22B1.576 (12)
O1B—N1B1.402 (18)C21B—H21D0.9800
O1B—Dy12.460 (9)C21B—H21E0.9800
O1B—Na12.637 (10)C21B—H21F0.9800
N1B—C1B1.316 (19)C22B—H22D0.9800
O2B—C1B1.277 (13)C22B—H22E0.9800
C1B—C2B1.480 (14)C22B—H22F0.9800
C2B—C3B1.389 (15)Na1—H7D2.5822
C2B—C7B1.412 (14)O10—C231.262 (14)
C3B—C4B1.402 (18)C23—N41.297 (14)
C3B—H3B0.9500C23—C241.590 (17)
C4B—C5B1.384 (17)C24—H24A0.9800
C4B—H4B0.9500C24—H24B0.9800
C5B—C6B1.378 (18)C24—H24C0.9800
C5B—H5B0.9500N4—C251.552 (14)
C6B—C7B1.411 (14)N4—C261.567 (14)
C6B—H6B0.9500C25—H25A0.9800
C7B—O3B1.357 (13)C25—H25B0.9800
O4B—C8B1.240 (14)C25—H25C0.9800
O5B—C8B1.272 (14)C26—H26A0.9800
O5B—Dy12.222 (11)C26—H26B0.9800
C8B—C9B1.513 (15)C26—H26C0.9800
C9B—C10B1.375 (16)O10B—C23B1.277 (15)
C9B—C14B1.407 (17)C23B—N4B1.293 (15)
C10B—C11B1.404 (17)C23B—C24B1.572 (17)
C10B—H10B0.9500C24B—H24D0.9800
C11B—O6B1.353 (17)C24B—H24E0.9800
C11B—C12B1.395 (17)C24B—H24F0.9800
C12B—C13B1.373 (18)N4B—C26B1.562 (14)
C12B—H12B0.9500N4B—C25B1.580 (14)
C13B—C14B1.397 (17)C25B—H25D0.9800
C13B—H13B0.9500C25B—H25E0.9800
C14B—H14B0.9500C25B—H25F0.9800
O6B—H6B10.8400C26B—H26D0.9800
O7B—Na12.444 (16)C26B—H26E0.9800
O7B—H7C0.8387C26B—H26F0.9800
O7B—H7D0.8449
O3i—Mn1—O1171.06 (13)O9—C19—C20123.3 (10)
O3i—Mn1—O297.51 (12)N3—C19—C20112.5 (8)
O1—Mn1—O281.64 (10)C19—C20—H20A109.5
O3i—Mn1—N1i90.50 (16)C19—C20—H20B109.5
O1—Mn1—N1i89.09 (16)H20A—C20—H20B109.5
O2—Mn1—N1i168.1 (4)C19—C20—H20C109.5
O3i—Mn1—O495.15 (13)H20A—C20—H20C109.5
O1—Mn1—O493.76 (11)H20B—C20—H20C109.5
O2—Mn1—O490.56 (12)C19—N3—C22116.3 (8)
N1i—Mn1—O497.5 (6)C19—N3—C21109.8 (7)
O3i—Mn1—O791.12 (14)C22—N3—C21132.4 (10)
O1—Mn1—O779.96 (12)N3—C21—H21A109.5
O2—Mn1—O787.86 (12)N3—C21—H21B109.5
N1i—Mn1—O783.2 (6)H21A—C21—H21B109.5
O4—Mn1—O7173.68 (12)N3—C21—H21C109.5
O3i—Mn1—Na1126.39 (11)H21A—C21—H21C109.5
O1—Mn1—Na145.84 (8)H21B—C21—H21C109.5
O2—Mn1—Na1102.65 (8)N3—C22—H22A109.5
N1i—Mn1—Na165.5 (4)N3—C22—H22B109.5
O4—Mn1—Na1133.19 (9)H22A—C22—H22B109.5
O7—Mn1—Na141.59 (10)N3—C22—H22C109.5
N1—O1—Mn1112.5 (4)H22A—C22—H22C109.5
N1—O1—Dy1121.5 (6)H22B—C22—H22C109.5
Mn1—O1—Dy1120.38 (11)O9B—C19B—N3B119.2 (14)
N1—O1—Na1105.6 (7)O9B—C19B—C20B133.4 (14)
Mn1—O1—Na1103.22 (10)N3B—C19B—C20B107.4 (10)
Dy1—O1—Na185.74 (8)C19B—C20B—H20D109.5
C1—N1—O1113.4 (6)C19B—C20B—H20E109.5
C1—N1—Mn1ii129.9 (4)H20D—C20B—H20E109.5
O1—N1—Mn1ii115.5 (3)C19B—C20B—H20F109.5
C1—O2—Mn1112.0 (2)H20D—C20B—H20F109.5
O2—C1—N1120.3 (4)H20E—C20B—H20F109.5
O2—C1—C2119.6 (3)C19B—N3B—C21B110.3 (10)
N1—C1—C2120.1 (4)C19B—N3B—C22B111.2 (10)
C3—C2—C7119.0 (4)C21B—N3B—C22B138.3 (14)
C3—C2—C1118.0 (4)N3B—C21B—H21D109.5
C7—C2—C1122.9 (3)N3B—C21B—H21E109.5
C4—C3—C2121.8 (4)H21D—C21B—H21E109.5
C4—C3—H3119.1N3B—C21B—H21F109.5
C2—C3—H3119.1H21D—C21B—H21F109.5
C3—C4—C5118.9 (5)H21E—C21B—H21F109.5
C3—C4—H4120.6N3B—C22B—H22D109.5
C5—C4—H4120.6N3B—C22B—H22E109.5
C6—C5—C4120.4 (5)H22D—C22B—H22E109.5
C6—C5—H5119.8N3B—C22B—H22F109.5
C4—C5—H5119.8H22D—C22B—H22F109.5
C5—C6—C7121.1 (4)H22E—C22B—H22F109.5
C5—C6—H6119.5O7—Na1—O7iii147.5 (2)
C7—C6—H6119.5O7—Na1—O7i85.52 (6)
O3—C7—C6117.3 (3)O7iii—Na1—O7i85.52 (6)
O3—C7—C2123.9 (3)O7—Na1—O7ii85.52 (6)
C6—C7—C2118.8 (3)O7iii—Na1—O7ii85.52 (6)
C7—O3—Mn1ii129.9 (3)O7i—Na1—O7ii147.5 (2)
C8—O4—Mn1123.4 (3)O7—Na1—O7Biii142.8 (3)
C8—O5—Dy1142.0 (3)O7iii—Na1—O7Biii13.4 (2)
O4—C8—O5124.6 (4)O7i—Na1—O7Biii72.2 (3)
O4—C8—C9119.6 (4)O7ii—Na1—O7Biii97.5 (3)
O5—C8—C9115.8 (4)O7B—Na1—O7Biii143.3 (7)
C10—C9—C14120.2 (4)O7—Na1—O7Bi72.2 (3)
C10—C9—C8120.3 (5)O7iii—Na1—O7Bi97.5 (3)
C14—C9—C8119.4 (4)O7i—Na1—O7Bi13.4 (2)
C9—C10—C11119.4 (5)O7ii—Na1—O7Bi142.8 (3)
C9—C10—H10120.3O7B—Na1—O7Bi84.3 (2)
C11—C10—H10120.3O7Biii—Na1—O7Bi84.3 (2)
O6—C11—C12121.0 (5)O7—Na1—O7Bii97.5 (3)
O6—C11—C10117.9 (6)O7iii—Na1—O7Bii72.2 (3)
C12—C11—C10121.0 (5)O7i—Na1—O7Bii142.8 (3)
C13—C12—C11119.6 (5)O7ii—Na1—O7Bii13.4 (2)
C13—C12—H12120.2O7B—Na1—O7Bii84.3 (2)
C11—C12—H12120.2O7Biii—Na1—O7Bii84.3 (2)
C12—C13—C14119.2 (6)O7Bi—Na1—O7Bii143.3 (7)
C12—C13—H13120.4O7B—Na1—O1B85.9 (4)
C14—C13—H13120.4O7Biii—Na1—O1B121.1 (4)
C9—C14—C13120.4 (6)O7Bi—Na1—O1B145.7 (4)
C9—C14—H14119.8O7Bii—Na1—O1B67.6 (4)
C13—C14—H14119.8O7—Na1—O1Bii149.5 (2)
C11—O6—H6A1109.9O7iii—Na1—O1Bii62.2 (2)
Na1—O7—Mn196.27 (14)O7i—Na1—O1Bii109.9 (2)
Na1—O7—H7A105.4O7ii—Na1—O1Bii93.2 (2)
Mn1—O7—H7A105.7O7B—Na1—O1Bii145.7 (4)
Na1—O7—H7B113.8O7Biii—Na1—O1Bii67.6 (4)
Mn1—O7—H7B121.3O7Bi—Na1—O1Bii121.1 (4)
H7A—O7—H7B112.4O7Bii—Na1—O1Bii85.9 (4)
O3B—Mn1B—O1Bi171.8 (5)O1B—Na1—O1Bii60.0 (2)
O3B—Mn1B—N1B90.3 (5)O7—Na1—O1Biii109.9 (2)
O1Bi—Mn1B—N1B89.4 (6)O7iii—Na1—O1Biii93.2 (2)
O2Bi—Mn1B—N1B169.6 (16)O7i—Na1—O1Biii62.2 (2)
O3B—Mn1B—O4B94.6 (5)O7ii—Na1—O1Biii149.5 (2)
O1Bi—Mn1B—O4B93.6 (5)O7B—Na1—O1Biii121.1 (4)
O2Bi—Mn1B—O4B91.4 (5)O7Biii—Na1—O1Biii85.9 (4)
N1B—Mn1B—O4B95 (3)O7Bi—Na1—O1Biii67.6 (4)
O3B—Mn1B—O7B92.6 (5)O7Bii—Na1—O1Biii145.7 (4)
O1Bi—Mn1B—O7B79.3 (5)O1B—Na1—O1Biii90.0 (4)
O2Bi—Mn1B—O7B86.2 (5)O1Bii—Na1—O1Biii60.0 (2)
N1B—Mn1B—O7B86 (3)O7—Na1—O1Bi62.2 (2)
O4B—Mn1B—O7B172.7 (5)O7iii—Na1—O1Bi149.5 (2)
O3B—Mn1B—Na1127.4 (4)O7i—Na1—O1Bi93.2 (2)
O1Bi—Mn1B—Na145.5 (3)O7ii—Na1—O1Bi109.9 (2)
O2Bi—Mn1B—Na1103.6 (3)O7B—Na1—O1Bi67.6 (4)
N1B—Mn1B—Na166.1 (18)O7Biii—Na1—O1Bi145.7 (4)
O4B—Mn1B—Na1131.9 (3)O7Bi—Na1—O1Bi85.9 (4)
O7B—Mn1B—Na142.7 (4)O7Bii—Na1—O1Bi121.1 (4)
N1B—O1B—Mn1Bii111.7 (12)O1B—Na1—O1Bi60.0 (2)
N1B—O1B—Dy1121 (2)O1Bii—Na1—O1Bi90.0 (4)
Mn1Bii—O1B—Dy1120.6 (5)O1Biii—Na1—O1Bi60.0 (2)
N1B—O1B—Na1107 (3)O7B—Na1—H7D19.1
Mn1Bii—O1B—Na1103.3 (4)O7Biii—Na1—H7D135.9
Dy1—O1B—Na185.7 (3)O7Bi—Na1—H7D65.3
C1B—N1B—O1B114 (2)O7Bii—Na1—H7D101.0
C1B—N1B—Mn1B130 (2)O1B—Na1—H7D100.8
O1B—N1B—Mn1B114.2 (17)O1Bii—Na1—H7D155.7
C1B—O2B—Mn1Bii111.0 (9)O1Biii—Na1—H7D108.8
O2B—C1B—N1B121.1 (15)O1Bi—Na1—H7D66.4
O2B—C1B—C2B119.0 (11)O10—C23—N4126.8 (19)
N1B—C1B—C2B119.8 (14)O10—C23—C24122.2 (19)
C3B—C2B—C7B120.0 (12)N4—C23—C24110.5 (16)
C3B—C2B—C1B118.2 (12)C23—C24—H24A109.5
C7B—C2B—C1B121.8 (11)C23—C24—H24B109.5
C2B—C3B—C4B119.8 (14)H24A—C24—H24B109.5
C2B—C3B—H3B120.1C23—C24—H24C109.5
C4B—C3B—H3B120.1H24A—C24—H24C109.5
C5B—C4B—C3B120.0 (18)H24B—C24—H24C109.5
C5B—C4B—H4B120.0C23—N4—C25115.0 (13)
C3B—C4B—H4B120.0C23—N4—C26112.7 (12)
C6B—C5B—C4B119.3 (17)C25—N4—C26131.9 (16)
C6B—C5B—H5B120.4N4—C25—H25A109.5
C4B—C5B—H5B120.4N4—C25—H25B109.5
C5B—C6B—C7B121.2 (14)H25A—C25—H25B109.5
C5B—C6B—H6B119.4N4—C25—H25C109.5
C7B—C6B—H6B119.4H25A—C25—H25C109.5
O3B—C7B—C6B116.5 (12)H25B—C25—H25C109.5
O3B—C7B—C2B125.1 (11)N4—C26—H26A109.5
C6B—C7B—C2B118.3 (11)N4—C26—H26B109.5
C7B—O3B—Mn1B129.0 (9)H26A—C26—H26B109.5
C8B—O4B—Mn1B123.7 (9)N4—C26—H26C109.5
C8B—O5B—Dy1143.9 (11)H26A—C26—H26C109.5
O4B—C8B—O5B125.8 (13)H26B—C26—H26C109.5
O4B—C8B—C9B119.0 (12)O10B—C23B—N4B124 (2)
O5B—C8B—C9B115.1 (12)O10B—C23B—C24B121 (2)
C10B—C9B—C14B120.2 (13)N4B—C23B—C24B115.5 (18)
C10B—C9B—C8B119.8 (13)C23B—C24B—H24D109.5
C14B—C9B—C8B120.0 (13)C23B—C24B—H24E109.5
C9B—C10B—C11B120.2 (16)H24D—C24B—H24E109.5
C9B—C10B—H10B119.9C23B—C24B—H24F109.5
C11B—C10B—H10B119.9H24D—C24B—H24F109.5
O6B—C11B—C12B122 (2)H24E—C24B—H24F109.5
O6B—C11B—C10B115.0 (19)C23B—N4B—C26B115.5 (12)
C12B—C11B—C10B118.5 (16)C23B—N4B—C25B112.8 (12)
C13B—C12B—C11B121.0 (17)C26B—N4B—C25B131.6 (17)
C13B—C12B—H12B119.5N4B—C25B—H25D109.5
C11B—C12B—H12B119.5N4B—C25B—H25E109.5
C12B—C13B—C14B119.9 (17)H25D—C25B—H25E109.5
C12B—C13B—H13B120.0N4B—C25B—H25F109.5
C14B—C13B—H13B120.0H25D—C25B—H25F109.5
C13B—C14B—C9B119.2 (16)H25E—C25B—H25F109.5
C13B—C14B—H14B120.4N4B—C26B—H26D109.5
C9B—C14B—H14B120.4N4B—C26B—H26E109.5
C11B—O6B—H6B1107.1H26D—C26B—H26E109.5
Na1—O7B—Mn1B94.1 (5)N4B—C26B—H26F109.5
Na1—O7B—H7C141.1H26D—C26B—H26F109.5
Mn1B—O7B—H7C112.8H26E—C26B—H26F109.5
Na1—O7B—H7D89.7O5B—Dy1—O5Biii126.8 (7)
Mn1B—O7B—H7D106.5O5B—Dy1—O5Bii78.4 (3)
H7C—O7B—H7D107.6O5Biii—Dy1—O5Bii78.4 (3)
O8—C15—N2120.5 (9)O5B—Dy1—O5iii109.5 (3)
O8—C15—C16125.1 (10)O5Biii—Dy1—O5iii41.3 (3)
N2—C15—C16114.3 (9)O5Bii—Dy1—O5iii38.3 (3)
C15—C16—H16A109.5O5Bi—Dy1—O5iii111.5 (4)
C15—C16—H16B109.5O5—Dy1—O5iii124.37 (17)
H16A—C16—H16B109.5O5—Dy1—O5i77.42 (7)
C15—C16—H16C109.5O5iii—Dy1—O5i77.42 (7)
H16A—C16—H16C109.5O5B—Dy1—O5ii38.3 (3)
H16B—C16—H16C109.5O5Biii—Dy1—O5ii111.5 (4)
C15—N2—C17112.8 (8)O5Bii—Dy1—O5ii41.3 (3)
C15—N2—C18109.6 (9)O5Bi—Dy1—O5ii109.5 (3)
C17—N2—C18137.3 (11)O5—Dy1—O5ii77.42 (7)
N2—C17—H17A109.5O5iii—Dy1—O5ii77.42 (7)
N2—C17—H17B109.5O5i—Dy1—O5ii124.37 (17)
H17A—C17—H17B109.5O5B—Dy1—O1i108.9 (3)
N2—C17—H17C109.5O5Biii—Dy1—O1i104.4 (4)
H17A—C17—H17C109.5O5Bii—Dy1—O1i166.6 (3)
H17B—C17—H17C109.5O5Bi—Dy1—O1i66.4 (3)
N2—C18—H18A109.5O5—Dy1—O1i80.22 (10)
N2—C18—H18B109.5O5iii—Dy1—O1i140.07 (10)
H18A—C18—H18B109.5O5i—Dy1—O1i78.80 (10)
N2—C18—H18C109.5O5ii—Dy1—O1i142.30 (10)
H18A—C18—H18C109.5O5B—Dy1—O1ii104.4 (3)
H18B—C18—H18C109.5O5Biii—Dy1—O1ii108.9 (3)
O8B—C15B—N2B126.1 (10)O5Bii—Dy1—O1ii66.4 (3)
O8B—C15B—C16B116.0 (11)O5Bi—Dy1—O1ii166.6 (3)
N2B—C15B—C16B117.8 (10)O5—Dy1—O1ii140.07 (10)
C15B—C16B—H16D109.5O5iii—Dy1—O1ii80.22 (10)
C15B—C16B—H16E109.5O5i—Dy1—O1ii142.30 (10)
H16D—C16B—H16E109.5O5ii—Dy1—O1ii78.80 (10)
C15B—C16B—H16F109.5O1i—Dy1—O1ii100.46 (12)
H16D—C16B—H16F109.5O5B—Dy1—O1iii166.6 (3)
H16E—C16B—H16F109.5O5Biii—Dy1—O1iii66.4 (3)
C15B—N2B—C17B115.0 (9)O5Bii—Dy1—O1iii104.4 (3)
C15B—N2B—C18B105.0 (8)O5Bi—Dy1—O1iii108.9 (3)
C17B—N2B—C18B138.8 (11)O5—Dy1—O1iii142.30 (10)
N2B—C17B—H17D109.5O5iii—Dy1—O1iii78.80 (10)
N2B—C17B—H17E109.5O5i—Dy1—O1iii80.22 (10)
H17D—C17B—H17E109.5O5ii—Dy1—O1iii140.07 (10)
N2B—C17B—H17F109.5O1i—Dy1—O1iii65.84 (6)
H17D—C17B—H17F109.5O1ii—Dy1—O1iii65.84 (6)
H17E—C17B—H17F109.5O5—Dy1—O178.80 (10)
N2B—C18B—H18D109.5O5iii—Dy1—O1142.30 (10)
N2B—C18B—H18E109.5O5i—Dy1—O1140.07 (10)
H18D—C18B—H18E109.5O5ii—Dy1—O180.22 (10)
N2B—C18B—H18F109.5O1i—Dy1—O165.84 (6)
H18D—C18B—H18F109.5O1ii—Dy1—O165.84 (6)
H18E—C18B—H18F109.5O1iii—Dy1—O1100.46 (12)
O9—C19—N3122.1 (9)
Mn1—O1—N1—C13.0 (17)N1B—C1B—C2B—C7B15 (5)
Dy1—O1—N1—C1150.5 (9)C7B—C2B—C3B—C4B5 (4)
Na1—O1—N1—C1114.9 (12)C1B—C2B—C3B—C4B175 (2)
Mn1—O1—N1—Mn1ii165.5 (7)C2B—C3B—C4B—C5B12 (4)
Dy1—O1—N1—Mn1ii41.0 (15)C3B—C4B—C5B—C6B15 (5)
Na1—O1—N1—Mn1ii53.6 (12)C4B—C5B—C6B—C7B11 (4)
Mn1—O2—C1—N12.9 (11)C5B—C6B—C7B—O3B172 (2)
Mn1—O2—C1—C2177.9 (3)C5B—C6B—C7B—C2B4 (3)
O1—N1—C1—O20.0 (18)C3B—C2B—C7B—O3B175.2 (18)
Mn1ii—N1—C1—O2166.4 (10)C1B—C2B—C7B—O3B5 (3)
O1—N1—C1—C2179.1 (8)C3B—C2B—C7B—C6B1 (3)
Mn1ii—N1—C1—C214 (2)C1B—C2B—C7B—C6B178.5 (19)
O2—C1—C2—C314.2 (6)C6B—C7B—O3B—Mn1B162.8 (13)
N1—C1—C2—C3165.0 (11)C2B—C7B—O3B—Mn1B21 (3)
O2—C1—C2—C7167.8 (4)O2Bi—Mn1B—O3B—C7B173.3 (13)
N1—C1—C2—C713.0 (12)N1B—Mn1B—O3B—C7B14 (3)
C7—C2—C3—C40.5 (8)O4B—Mn1B—O3B—C7B81.3 (13)
C1—C2—C3—C4177.6 (5)O7B—Mn1B—O3B—C7B100.2 (13)
C2—C3—C4—C52.9 (10)Na1—Mn1B—O3B—C7B73.4 (13)
C3—C4—C5—C63.2 (11)Mn1B—O4B—C8B—O5B1 (3)
C4—C5—C6—C71.1 (10)Mn1B—O4B—C8B—C9B175.2 (14)
C5—C6—C7—O3179.8 (5)Dy1—O5B—C8B—O4B46 (3)
C5—C6—C7—C21.3 (7)Dy1—O5B—C8B—C9B131.2 (18)
C3—C2—C7—O3180.0 (4)O4B—C8B—C9B—C10B4 (3)
C1—C2—C7—O32.0 (7)O5B—C8B—C9B—C10B179 (2)
C3—C2—C7—C61.6 (7)O4B—C8B—C9B—C14B175 (2)
C1—C2—C7—C6179.6 (4)O5B—C8B—C9B—C14B2 (3)
C6—C7—O3—Mn1ii165.2 (3)C14B—C9B—C10B—C11B2 (4)
C2—C7—O3—Mn1ii16.3 (6)C8B—C9B—C10B—C11B178 (3)
Mn1—O4—C8—O55.4 (6)C9B—C10B—C11B—O6B166 (3)
Mn1—O4—C8—C9176.3 (3)C9B—C10B—C11B—C12B10 (5)
Dy1—O5—C8—O450.8 (7)O6B—C11B—C12B—C13B166 (3)
Dy1—O5—C8—C9130.8 (4)C10B—C11B—C12B—C13B11 (5)
O4—C8—C9—C100.2 (7)C11B—C12B—C13B—C14B4 (6)
O5—C8—C9—C10178.3 (5)C12B—C13B—C14B—C9B4 (5)
O4—C8—C9—C14178.6 (5)C10B—C9B—C14B—C13B6 (4)
O5—C8—C9—C143.0 (7)C8B—C9B—C14B—C13B175 (3)
C14—C9—C10—C112.1 (10)O8—C15—N2—C170.2 (15)
C8—C9—C10—C11179.2 (6)C16—C15—N2—C17176.2 (10)
C9—C10—C11—O6179.5 (7)O8—C15—N2—C18174.7 (13)
C9—C10—C11—C123.2 (11)C16—C15—N2—C189.0 (15)
O6—C11—C12—C13178.4 (9)O8B—C15B—N2B—C17B1.5 (18)
C10—C11—C12—C131.2 (13)C16B—C15B—N2B—C17B174.2 (13)
C11—C12—C13—C141.8 (14)O8B—C15B—N2B—C18B171.6 (13)
C10—C9—C14—C130.9 (11)C16B—C15B—N2B—C18B4.1 (14)
C8—C9—C14—C13177.8 (7)O9—C19—N3—C22174.0 (15)
C12—C13—C14—C92.9 (13)C20—C19—N3—C229.9 (16)
Mn1Bii—O1B—N1B—C1B1 (7)O9—C19—N3—C2118.4 (19)
Dy1—O1B—N1B—C1B151 (4)C20—C19—N3—C21177.4 (14)
Na1—O1B—N1B—C1B113 (6)O9B—C19B—N3B—C21B14 (3)
Mn1Bii—O1B—N1B—Mn1B164 (3)C20B—C19B—N3B—C21B168 (2)
Dy1—O1B—N1B—Mn1B44 (6)O9B—C19B—N3B—C22B170 (2)
Na1—O1B—N1B—Mn1B51 (5)C20B—C19B—N3B—C22B8 (3)
Mn1Bii—O2B—C1B—N1B6 (5)O10—C23—N4—C250 (7)
Mn1Bii—O2B—C1B—C2B178.8 (14)C24—C23—N4—C25172 (3)
O1B—N1B—C1B—O2B3 (8)O10—C23—N4—C26174 (4)
Mn1B—N1B—C1B—O2B165 (4)C24—C23—N4—C2615 (5)
O1B—N1B—C1B—C2B179 (4)O10B—C23B—N4B—C26B179.9 (3)
Mn1B—N1B—C1B—C2B20 (9)C24B—C23B—N4B—C26B0.2 (6)
O2B—C1B—C2B—C3B10 (3)O10B—C23B—N4B—C25B0.2 (6)
N1B—C1B—C2B—C3B165 (5)C24B—C23B—N4B—C25B179.9 (3)
O2B—C1B—C2B—C7B170.1 (18)
Symmetry codes: (i) y, x+3/2, z; (ii) y+3/2, x, z; (iii) x+3/2, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A1···O9iv0.841.822.542 (13)143
O7—H7A···O80.821.852.653 (9)165
O7—H7B···O8i0.822.052.785 (9)151
C17—H17B···O6v0.982.533.348 (19)141
Symmetry codes: (i) y, x+3/2, z; (iv) x, y, z1; (v) y1/2, x+2, z+1.
Average bond length (Å) and bond-valence-sum (BVS) values (v.u.) used to support assigned oxidation states of the dysprosium and manganese ions of 1 and 2 top
Avg. Bond LengthBVS ValueAssigned Oxidation State
1
Dy12.3393.323+
Mn12.0533.023+
2
Dy12.3573.173+
Mn12.0383.133+
Mn22.033.113+
Mn32.0313.223+
Mn42.0553.053+
Continuous Shapes Measures (CShM) values for the geometry about the six-coordinate ring MnIII ions in 1 and 2 top
ShapeHexagon (D6h)Pentagonal pyramid (C5v)Octahedron (Oh)Trigonal prism (D3h)Johnson pentagonal pyramid (J2; C5v)
1
Mn130.22627.8321.14717.09030.691
2
Mn130.17827.3241.12616.53930.302
Mn229.62527.2651.11516.23229.492
Mn330.36628.0151.14516.30030.249
Mn429.51726.9901.43415.61529.813
Continuous Shapes Measures (CShM) values for the geometry about the eight-coordinate central DyIII and Na+ ions in 1 and 2 top
Shape12
DyIIINa+DyIIINa+
Octagon (D8h)31.41630.41832.70929.627
Heptagonal pyramid (C7v)23.70425.84223.08425.952
Hexagonal bipyramid (D6h)17.23913.94616.43114.078
Cube (Oh)9.6556.0649.4776.784
Square antiprism (D4d)0.5503.0630.8183.657
Triangular dodecahedron (D2d)2.7083.7972.5174.233
Johnson – gyrobifastigium (J26; D2d)17.56716.82116.67016.504
Johnson – elongated triangular bipyramid (J14; D3h)30.14529.43829.90729.093
Johnson – biaugmented trigonal prism (J50; C2v)2.9274.7003.1285.084
Biaugmented trigonal prism (C2v)1.9953.0022.1603.196
Johnson – snub disphenoid (J84; D2d)5.8237.6685.5807.860
Triakis tetrahedron (Td)10.5166.95910.2667.625
Elongated trigonal bipyramid (D3h)25.54225.07125.29424.594
Structural Comparison of 1 and 2 with other DyIIINa(X)4[12-MCMn(III)N(shi)-4] complexes (Å) top
CompoundDyIII crystal radiusMC crystal radiusAvg. cross cavity MnIII···MnIII distanceAvg. cross cavity Oox···Oox distanceDyIII—OoxMP distanceDyIII—OcarMP distanceAvg. distance of Mn to equatorial atom MP
11.040.566.533.721.551.060.14
21.060.546.493.691.591.080.14
31.060.556.523.711.591.030.17
41.050.546.513.691.581.050.14
51.030.546.473.681.511.150.06
61.060.566.513.731.581.050.17
 

Funding information

Funding for this research was provided by: Faculty Professional Development Council, Pennsylvania State System of Higher Education (award to C. M. Zaleski); National Science Foundation (grant No. CHE 1625543 to M. Zeller).

References

First citationAnthanasopoulou, A. A., Gamer, C., Völker, L. & Rentschler, E. (2018). Novel Magnetic Nanostructures, edited by N. Domracheva, M. Caporali, & E. Rentschler, pp. 51–96. Amsterdam: Elsevier.  Google Scholar
First citationAzar, M. R., Boron, T. T. III, Lutter, J. C., Daly, C. I., Zegalia, K. A., Nimthong, R., Ferrence, G. M., Zeller, M., Kampf, J. W., Pecoraro, V. L. & Zaleski, C. M. (2014). Inorg. Chem. 53, 1729–1742.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBoron, T. T. III, Lutter, J. C., Daly, C. I., Chow, C. Y., Davis, A. H., Nimthong-Roldán, A., Zeller, M., Kampf, J. W., Zaleski, C. M. & Pecoraro, V. L. (2016). Inorg. Chem. 55, 10597–10607.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, F., Wei, R.-M., Li, J., Yang, L., Han, Y., Song, Y. & Dou, J.-M. (2016). Inorg. Chem. 55, 5914–5923.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationCasanova, D., Llunell, M., Alemany, P. & Alvarez, S. (2005). Chem. Eur. J. 11, 1479–1494.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCirera, J., Ruiz, E. & Alvarez, S. (2005). Organometallics, 24, 1556–1562.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLiu, W. & Thorp, H. H. (1993). Inorg. Chem. 32, 4102–4105.  CrossRef CAS Web of Science Google Scholar
First citationLlunell, M., Casanova, D., Cirera, J., Alemany, P. & Alvarez, S. (2013). SHAPE (version 2.1). Barcelona, Spain.  Google Scholar
First citationLutter, J. C., Eliseeva, S. V., Collet, G., Martinić, I., Kampf, J. W., Schneider, B. L., Carichner, A., Sobilo, J., Lerondel, S., Petoud, S. & Pecoraro, V. L. (2020). Chem. Eur. J. 26, 1274–1277.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLutter, J. C., Zaleski, C. M. & Pecoraro, V. L. (2018). Advances in Inorganic Chemistry, edited by R. van Eldik & R. Puchta, pp. 177–246. Amsterdam: Elsevier.  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMezei, G., Zaleski, C. M. & Pecoraro, V. L. (2007). Chem. Rev. 107, 4933–5003.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNguyen, T. N. & Pecoraro, V. L. (2017). Comprehensive Supramol­ecular Chemistry II, edited by J. L. Atwood, pp. 195–212. Amsterdam: Elsevier.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPinsky, M. & Avnir, D. (1998). Inorg. Chem. 37, 5575–5582.  Web of Science CrossRef PubMed CAS Google Scholar
First citationQin, Y., Gao, Q., Chen, Y., Liu, W., Lin, F., Zhang, X., Dong, Y. & Li, Y. (2017). J. Clust. Sci 28, 891–903.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008a). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008b). CELL_NOW. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2012). TWINABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTravis, J. R., Zeller, M. & Zaleski, C. M. (2015). Acta Cryst. E71, 1300–1306.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTravis, J. R., Zeller, M. & Zaleski, C. M. (2016). Polyhedron, 114, 29–36.  Web of Science CSD CrossRef CAS Google Scholar
First citationTrzesowska, A., Kruszynski, R. & Bartczak, T. J. (2004). Acta Cryst. B60, 174–178.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds