research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

TlPO3 and its comparison with isotypic RbPO3 and CsPO3

CROSSMARK_Color_square_no_text.svg

aInstitute for Chemical Technologies and Analytics, Division of Structural Chemistry, TU Wien, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria
*Correspondence e-mail: Matthias.Weil@tuwien.ac.at

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 3 August 2020; accepted 17 August 2020; online 21 August 2020)

The crystal structure of thallium(I) catena-polyphosphate, TlPO3, contains a polyphosphate chain extending parallel to [010] with a repeating unit of two phosphate tetra­hedra. The TlI atom is located in-between the polyphosphate chains and is bonded by oxygen atoms in a distorted [6 + 1] coordination in the form of a monocapped prism, with the longest Tl—O bond to the bridging O atom of the polyphosphate chain. A qu­anti­tative structural comparison with isotypic RbPO3 and CsPO3 reveals that the usually pronounced stereoactivity of the 6s2 lone pair at the TlI atom is not apparent in the case of TlPO3.

1. Chemical context

The crystal chemistry of inorganic thallium(I) (or thallous) compounds is dominated by the presence of the 6s2 electron lone pair that, in the majority of cases, is stereochemically active (Galy et al., 1975[Galy, J., Meunier, G., Andersson, S. & Åström, A. (1975). J. Solid State Chem. 13, 142-159.]). Therefore, crystal structures comprising a TlI atom mostly have unique structures, and isotypism with analogous phases where the TlI site is replaced by a metal cation of comparable size or by ammonium is comparatively rare. One of these cases pertains to the catena-polyphosphate series MPO3 (M = Tl, Rb, Cs) for which isotypism of TlPO3 with the alkali polyphosphates was reported on basis of indexed powder X-ray diffraction data (El Horr, 1991[El Horr, N. (1991). J. Solid State Chem. 90, 386-387.]). Although single crystals were available, a refinement of the crystal structure was not performed at that time.

With the intention of obtaining detailed structure data for TlPO3 for a qu­anti­tative structural comparison with isotypic RbPO3 and CsPO3, single crystals of the thallium polyphos­phate phase were grown and the crystal structure refined using single-crystal X-ray data.

2. Structural commentary

The asymmetric unit of TlPO3 comprises one Tl, one P and three O sites, all on general positions. The crystal structure of TlPO3 is made up from a polyphosphate chain with a repeating unit of two phosphate tetra­hedra propagating along the [010] direction. Two polyphosphate chains with different orientations cross the unit cell (Fig. 1[link]). The bond-length distribution (Table 1[link]) within a PO4 tetra­hedron is characteristic of a polyphosphate chain (Durif, 1995[Durif, A. (1995). In Crystal Chemistry of Condensed Phosphates. New York: Plenum Press.]), i.e. two long bonds to the bridging atoms O1 and O1vii [mean 1.600 (8) Å; for symmetry code see Table 1[link]] and two short bonds to the terminal O2 and O3 atoms [mean 1.483 (19) Å] are observed. The TlI atoms are situated between the chains and are coordinated to seven oxygen atoms. As has been done for thallium(I) oxoarsenates (Schroffenegger et al., 2020[Schroffenegger, M., Eder, F., Weil, M., Stöger, B., Schwendtner, K. & Kolitsch, U. (2020). J. Alloys Compd, 820, 153369.]), it is useful to classify the corresponding TlI—O bonds into `short' bonds less than 3.0 Å, and `long' bonds greater than this threshold up to the maximum bond length of 3.50 Å for the first coordination sphere. The resulting [6 + 1] polyhedron can be derived from a monocapped trigonal prism where the capping O atom is that with the longest Tl—O bond (Fig. 2[link]). This atom (O1) represents the bridging oxygen atom of the polyphosphate chain. Next to the Tl and two P atoms, atom O1 has no further coordination partners. The terminal O2 and O3 atoms of the polyphosphate chain each are bonded to one P and to three Tl atoms in the form of a distorted tetra­hedron.

Table 1
Comparison of bond lengths in the isotypic MPO3 polyphosphates (M = Tl, Rb, Cs)

(a) This work; (b) a = 12.123 (2), b = 4.228 (2), c = 6.479 (2) Å, β = 96.33 (33)° (Corbridge, 1956[Corbridge, D. E. C. (1956). Acta Cryst. 9, 308-314.]); (c) a = 12.6162 (11), b = 4.2932 (4), c = 6.7575 (6) Å, β = 96.068 (5)° (Weil & Stöger, 2020[Weil, M. & Stöger, B. (2020). Monatsh. Chem. https://doi.org/10.1007/s00706-020-02675-6]).

  M = Tla M = Rbb M = Csc
M—O3i 2.867 (5) 2.920 3.1097 (18)
M—O3 2.889 (4) 2.971 3.0980 (14)
M—O3ii 2.935 (4) 2.948 3.0983 (14)
M—O2iii 2.943 (5) 2.973 3.0981 (14)
M—O2iv 2.963 (4) 2.905 3.0431 (15)
M—O2v 2.997 (4) 3.024 3.1455 (15)
M—O1vi 3.216 (4) 3.196 3.3649 (14)
P—O2 1.469 (5) 1.474 1.4793 (16)
P—O3 1.497(5 1.438 1.4919 (16)
P—O1 1.595 (4) 1.621 1.6134 (16)
P—O1vii 1.606 (4) 1.624 1.6183 (16)
       
Symmetry codes (i) −x + [{1\over 2}], y − [{1\over 2}], −z + [{3\over 2}]; (ii) x, y − 1, z; (iii) x, y, z + 1; (iv) −x, −y, −z + 1; (v) −x, −y + 1, −z + 1; (vi) x, y − 1, z + 1; (vii) −x + [{1\over 2}], y − [{1\over 2}], −z + [{1\over 2}].
[Figure 1]
Figure 1
The crystal structure of TlPO3 in a projection along [00[\overline{1}]]. Displacement ellipsoids are drawn at the 75% probability level. The symmetry code refers to Table 1[link].
[Figure 2]
Figure 2
The [TlO6 + 1] monocapped prism in the crystal structure of TlPO3, with the long Tl—O bond shown in yellow. Displacement ellipsoids are drawn at the 75% probability level. Symmetry codes refer to Table 1[link].

Bond-valence-sum (BVS) calculations (Brown, 2002[Brown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press.]) for TlPO3 were carried out with the values provided by Locock & Burns (2009[Locock, A. J. & Burns, P. C. (2009). Z. Kristallogr. 219, 259-266.]) for TlI—O bonds, and by Brown & Altermatt (1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]) for P—O bonds. The obtained BVS values (in valence units) of 0.88 for Tl1, 4.97 for P1, 2.17 for O1, 1.97 for O2 and 1.82 for O3 differ somewhat from the idealized values for atoms with a formal charge of +1, +5 and −2, respectively. In consequence, the global instability index GII (Salinas-Sanchez et al., 1992[Salinas-Sanchez, A., Garcia-Muñoz, J. L., Rodriguez-Carvajal, J., Saez-Puche, R. & Martinez, J. L. (1992). J. Solid State Chem. 100, 201-211.]) of 0.14 valence units is rather high and indicates a stable but strained structure (GII values < 0.1 valence units are typical for unstrained structures, GII values between 0.1 and 0.2 are characteristic of structures with lattice-induced strain, and GII values > 0.2 indicate unstable structures).

Apparently, the usually observed stereochemical activity of the 6s2 electron lone pair at the TlI atom is not very pronounced in the case of TlPO3, and a crystal structure isotypic with those of the room-temperature forms of RbPO3 and CsPO3 is realized (Table 1[link]). This may be due to the comparable ionic radii for monovalent Tl, Rb+ and Cs+ cations of 1.50, 1.52 and 1.67 Å, respectively, using a coordination number of six (Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]; values for a coordination number of seven were not listed for Tl and Cs).

Whereas the isotypic polyphosphates RbPO3 and CsPO3 show structural phase transitions to two (Holst et al., 1994[Holst, C., Schmahl, W. W. & Fuess, H. (1994). Z. Kristallogr. 209, 322-327.]) and to one high-temperature phases (Chudinova et al., 1989[Chudinova, N. N., Borodina, L. A., Schülke, U. & Jost, K. H. (1989). Inorg. Mater. 25, 399-404.]), a structural phase transition at higher temperatures has not been reported for TlPO3. On the contrary, the tetra­metaphosphate Tl4P4O12 converts at 690 K to the title polyphosphate (Dostál et al., 1969[Dostál, K., Kocman, V. & Ehrenbergrová, V. (1969). Z. Anorg. Allg. Chem. 367, 80-91.]) that therefore represents the high-temperature form of a phosphate with a Tl:P ratio of 1:1.

For a qu­anti­tative structural comparison of the three isotypic MPO3 (M = Tl, Rb, Cs) structures, the program compstru (de la Flor et al., 2016[Flor, G. de la, Orobengoa, D., Tasci, E., Perez-Mato, J. M. & Aroyo, M. I. (2016). J. Appl. Cryst. 49, 653-664.]) available at the Bilbao Crystallographic Server (Aroyo et al., 2006[Aroyo, M. I., Perez-Mato, J. M., Capillas, C., Kroumova, E., Ivantchev, S., Madariaga, G., Kirov, A. & Wondratschek, H. (2006). Z. Kristallogr. 221, 15-27.]) was used. Numerical details of the comparison with the TlPO3 structure as the reference are collated in Table 2[link]. The low values for the degree of lattice distortion (S), the similarity index Δ and the arithmetic mean distance of paired atoms (dav) indicate very similar structures, with the highest absolute displacement of atom O3 in each case.

Table 2
Absolute atomic displacements (Å) of isotypic RbPO3 and CsPO3 relative to TlPO3, as well as lattice distortion (S), arithmetic mean distance dav (Å) and measure of similarity (Δ)

  Rb Cs
M1 0.0656 0.0703
P1 0.0505 0.0595
O1 0.0421 0.0494
O2 0.0996 0.0735
O3 0.1332 0.1793
S 0.0099 0.0245
dav 0.0782 0.0864
Δ 0.060 0.039

3. Synthesis and crystallization

A mass of 0.50 g Tl2CO3 was immersed in 3 ml of concentrated phospho­ric acid (85%wt) in a glass carbon crucible. The mixture was heated within six hours to 573 K, kept at that temperature for ten hours and slowly cooled to room temperature over the course of twelve hours. The obtained highly viscous phosphate flux was leached with a mixture of water and methanol (v/v = 1:4). After separation of the liquid phase through suction filtration, colourless crystals of TlPO3, mostly with a platy form, were obtained.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula TlPO3
Mr 283.34
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 12.2315 (12), 4.2432 (7), 6.3039 (1)
β (°) 96.727 (7)
V3) 324.92 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 49.99
Crystal size (mm) 0.09 × 0.08 × 0.01
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Numerical (HABITUS; Herrendorf, 1997[Herrendorf, W. (1997). HABITUS. University of Giessen, Germany.])
Tmin, Tmax 0.110, 0.536
No. of measured, independent and observed [I > 2σ(I)] reflections 6570, 1189, 912
Rint 0.059
(sin θ/λ)max−1) 0.758
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.054, 0.99
No. of reflections 1189
No. of parameters 46
Δρmax, Δρmin (e Å−3) 1.85, −1.64
Structure solution: isomorphous replacement. Computer programs: APEX3 and SAINT (Bruker, 2018[Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ATOMS (Dowty, 2006[Dowty, E. (2006). ATOMS. Shape Software, Kingsport, Tennessee, USA.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

The lattice parameters determined in the current study are in good agreement with those of the previous report [a = 12.270 (7), b = 4.263 (2), c = 6.328 (4) Å, β = 96.72 (3)°, V = 328.7 Å3; El Horr, 1991[El Horr, N. (1991). J. Solid State Chem. 90, 386-387.]], however with higher precision.

For better comparison with the two isotypic structures of RbPO3 and CsPO3, the setting of the unit cell (cell choice 2 of space group No. 14), starting coordinates and atom labelling were adapted from RbPO3 (Corbridge, 1956[Corbridge, D. E. C. (1956). Acta Cryst. 9, 308-314.]). The maximum and minimum electron densities in the final difference-Fourier synthesis are located 0.65 and 0.74 Å, respectively, from the Tl1 site.

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: isomorphous replacement; program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: ATOMS (Dowty, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Thallium(I) catena-polyphosphate top
Crystal data top
TlPO3F(000) = 480
Mr = 283.34Dx = 5.792 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.2315 (12) ÅCell parameters from 2009 reflections
b = 4.2432 (7) Åθ = 3.4–29.2°
c = 6.3039 (1) ŵ = 49.99 mm1
β = 96.727 (7)°T = 296 K
V = 324.92 (6) Å3Plate, colourless
Z = 40.09 × 0.08 × 0.01 mm
Data collection top
Bruker APEXII CCD
diffractometer
912 reflections with I > 2σ(I)
Radiation source: fine-sealed tubeRint = 0.059
ω– and φ–scansθmax = 32.6°, θmin = 3.4°
Absorption correction: numerical
(HABITUS; Herrendorf, 1997)
h = 1818
Tmin = 0.110, Tmax = 0.536k = 66
6570 measured reflectionsl = 99
1189 independent reflections
Refinement top
Refinement on F246 parameters
Least-squares matrix: full0 restraints
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0219P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.054(Δ/σ)max < 0.001
S = 0.99Δρmax = 1.85 e Å3
1189 reflectionsΔρmin = 1.64 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Tl10.08906 (2)0.14776 (5)0.77279 (4)0.02917 (9)
P10.18222 (13)0.4944 (3)0.3224 (2)0.0183 (3)
O10.2184 (4)0.7447 (9)0.1551 (6)0.0202 (9)
O20.0814 (4)0.3466 (9)0.2180 (8)0.0331 (11)
O30.1858 (4)0.6404 (9)0.5393 (7)0.0316 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tl10.02974 (15)0.02897 (13)0.02893 (13)0.00135 (13)0.00402 (10)0.00170 (11)
P10.0196 (8)0.0134 (6)0.0227 (7)0.0015 (6)0.0060 (6)0.0018 (5)
O10.024 (2)0.0119 (15)0.025 (2)0.0029 (16)0.0039 (18)0.0000 (15)
O20.021 (2)0.026 (2)0.052 (3)0.004 (2)0.002 (2)0.005 (2)
O30.046 (3)0.025 (2)0.026 (2)0.001 (2)0.011 (2)0.0035 (18)
Geometric parameters (Å, º) top
Tl1—O3i2.867 (5)Tl1—O1vi3.216 (4)
Tl1—O32.889 (4)P1—O21.469 (5)
Tl1—O3ii2.935 (4)P1—O31.497 (5)
Tl1—O2iii2.943 (5)P1—O11.595 (4)
Tl1—O2iv2.963 (4)P1—O1vii1.606 (4)
Tl1—O2v2.997 (4)
O3i—Tl1—O377.73 (13)Tl1viii—O1—Tl1ix75.05 (8)
O3i—Tl1—O3ii77.00 (13)P1—O1—Tl1x129.7 (2)
O3—Tl1—O3ii93.54 (13)P1x—O1—Tl1x66.97 (15)
O3i—Tl1—O2iii75.25 (13)Tl1viii—O1—Tl1x79.47 (8)
O3—Tl1—O2iii109.83 (12)Tl1ix—O1—Tl1x73.65 (7)
O3ii—Tl1—O2iii138.47 (13)P1—O1—Tl1v69.65 (16)
O3i—Tl1—O2iv128.90 (12)P1x—O1—Tl1v130.4 (2)
O3—Tl1—O2iv148.59 (14)Tl1viii—O1—Tl1v68.02 (8)
O3ii—Tl1—O2iv79.42 (13)Tl1ix—O1—Tl1v79.10 (8)
O2iii—Tl1—O2iv94.78 (12)Tl1x—O1—Tl1v141.92 (11)
O3i—Tl1—O2v129.52 (12)P1—O1—Tl1xi61.69 (14)
O3—Tl1—O2v79.59 (13)P1x—O1—Tl1xi68.71 (14)
O3ii—Tl1—O2v149.02 (14)Tl1viii—O1—Tl1xi153.65 (12)
O2iii—Tl1—O2v71.11 (16)Tl1ix—O1—Tl1xi131.30 (10)
O2iv—Tl1—O2v90.79 (13)Tl1x—O1—Tl1xi105.89 (10)
O3i—Tl1—O1vi47.18 (11)Tl1v—O1—Tl1xi112.06 (10)
O3—Tl1—O1vi124.87 (13)P1—O2—Tl1ix115.5 (3)
O3ii—Tl1—O1vi78.11 (12)P1—O2—Tl1iv148.1 (3)
O2iii—Tl1—O1vi60.37 (11)Tl1ix—O2—Tl1iv85.22 (12)
O2iv—Tl1—O1vi83.93 (12)P1—O2—Tl1v103.6 (2)
O2v—Tl1—O1vi130.42 (13)Tl1ix—O2—Tl1v108.89 (16)
O3i—Tl1—P187.23 (9)Tl1iv—O2—Tl1v90.79 (13)
O3—Tl1—P124.76 (9)P1—O2—Tl174.9 (2)
O3ii—Tl1—P173.32 (9)Tl1ix—O2—Tl1149.54 (14)
O2iii—Tl1—P1134.59 (9)Tl1iv—O2—Tl175.68 (11)
O2iv—Tl1—P1127.54 (11)Tl1v—O2—Tl195.07 (13)
O2v—Tl1—P190.46 (10)P1—O2—Tl1viii82.93 (19)
O1vi—Tl1—P1130.72 (8)Tl1ix—O2—Tl1viii66.99 (9)
O3i—Tl1—O2108.64 (12)Tl1iv—O2—Tl1viii128.67 (15)
O3—Tl1—O245.47 (11)Tl1v—O2—Tl1viii61.83 (8)
O3ii—Tl1—O269.49 (11)Tl1—O2—Tl1viii143.17 (12)
O2iii—Tl1—O2149.54 (14)P1—O3—Tl1xi107.8 (3)
O2iv—Tl1—O2104.32 (11)P1—O3—Tl1101.3 (2)
O2v—Tl1—O284.93 (13)Tl1xi—O3—Tl1103.19 (15)
O1vi—Tl1—O2144.09 (10)P1—O3—Tl1xii142.3 (3)
P1—Tl1—O223.87 (8)Tl1xi—O3—Tl1xii102.06 (14)
O2—P1—O3121.3 (3)Tl1—O3—Tl1xii93.54 (13)
O2—P1—O1105.7 (3)P1—O3—Tl1v72.3 (2)
O3—P1—O1110.3 (2)Tl1xi—O3—Tl1v163.77 (15)
O2—P1—O1vii110.2 (2)Tl1—O3—Tl1v92.54 (13)
O3—P1—O1vii104.6 (3)Tl1xii—O3—Tl1v72.64 (11)
O1—P1—O1vii103.41 (12)
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x, y1, z; (iii) x, y, z+1; (iv) x, y, z+1; (v) x, y+1, z+1; (vi) x, y1, z+1; (vii) x+1/2, y1/2, z+1/2; (viii) x, y+1, z1; (ix) x, y, z1; (x) x+1/2, y+1/2, z+1/2; (xi) x+1/2, y+1/2, z+3/2; (xii) x, y+1, z.
Comparison of bond lengths in the isotypic MPO3 polyphosphates (M = Tl, Rb, Cs) top
(a) This work; (b) a = 12.123 (2), b = 4.228 (2), c = 6.479 (2) Å, β = 96.33 (33)° (Corbridge, 1956); (c) a = 12.6162 (11), b = 4.2932 (4), c = 6.7575 (6) Å, β = 96.068 (5)° (Weil & Stöger, 2020).
M = TlaM = RbbM = Csc
M—O3i2.867 (5)2.9203.1097 (18)
M—O32.889 (4)2.9713.0980 (14)
M—O3ii2.935 (4)2.9483.0983 (14)
M—O2iii2.943 (5)2.9733.0981 (14)
M—O2iv2.963 (4)2.9053.0431 (15)
M—O2v2.997 (4)3.0243.1455 (15)
M—O1vi3.216 (4)3.1963.3649 (14)
P—O21.469 (5)1.4741.4793 (16)
P—O31.497(51.4381.4919 (16)
P—O11.595 (4)1.6211.6134 (16)
P—O1vii1.606 (4)1.6241.6183 (16)
Symmetry codes (i) -x + 1/2, y - 1/2, -z + 3/2; (ii) x, y - 1, z; (iii) x, y, z + 1; (iv) -x, -y, -z + 1; (v) -x, -y + 1, -z + 1; (vi) x, y - 1, z + 1; (vii) -x + 1/2, y - 1/2, -z + 1/2.
Absolute atomic displacements (Å) of isotypic RbPO3 and CsPO3 relative to TlPO3, as well as lattice distortion (S), arithmetic mean distance dav (Å) and measure of similarity (Δ) top
RbCs
M10.06560.0703
P10.05050.0595
O10.04210.0494
O20.09960.0735
O30.13320.1793
S0.00990.0245
dav0.07820.0864
Δ0.0600.039
 

Acknowledgements

The X-ray centre of the TU Wien is acknowledged for financial support and for providing access to the single-crystal diffractometer.

References

First citationAroyo, M. I., Perez-Mato, J. M., Capillas, C., Kroumova, E., Ivantchev, S., Madariaga, G., Kirov, A. & Wondratschek, H. (2006). Z. Kristallogr. 221, 15–27.  Web of Science CrossRef CAS Google Scholar
First citationBrown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press.  Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChudinova, N. N., Borodina, L. A., Schülke, U. & Jost, K. H. (1989). Inorg. Mater. 25, 399–404.  Google Scholar
First citationCorbridge, D. E. C. (1956). Acta Cryst. 9, 308–314.  CrossRef ICSD IUCr Journals Google Scholar
First citationDostál, K., Kocman, V. & Ehrenbergrová, V. (1969). Z. Anorg. Allg. Chem. 367, 80–91.  Google Scholar
First citationDowty, E. (2006). ATOMS. Shape Software, Kingsport, Tennessee, USA.  Google Scholar
First citationDurif, A. (1995). In Crystal Chemistry of Condensed Phosphates. New York: Plenum Press.  Google Scholar
First citationEl Horr, N. (1991). J. Solid State Chem. 90, 386–387.  CrossRef Google Scholar
First citationFlor, G. de la, Orobengoa, D., Tasci, E., Perez-Mato, J. M. & Aroyo, M. I. (2016). J. Appl. Cryst. 49, 653–664.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGaly, J., Meunier, G., Andersson, S. & Åström, A. (1975). J. Solid State Chem. 13, 142–159.  CrossRef CAS Web of Science Google Scholar
First citationHerrendorf, W. (1997). HABITUS. University of Giessen, Germany.  Google Scholar
First citationHolst, C., Schmahl, W. W. & Fuess, H. (1994). Z. Kristallogr. 209, 322–327.  Google Scholar
First citationLocock, A. J. & Burns, P. C. (2009). Z. Kristallogr. 219, 259–266.  Google Scholar
First citationSalinas-Sanchez, A., Garcia-Muñoz, J. L., Rodriguez-Carvajal, J., Saez-Puche, R. & Martinez, J. L. (1992). J. Solid State Chem. 100, 201–211.  CAS Google Scholar
First citationSchroffenegger, M., Eder, F., Weil, M., Stöger, B., Schwendtner, K. & Kolitsch, U. (2020). J. Alloys Compd, 820, 153369.  CrossRef ICSD Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWeil, M. & Stöger, B. (2020). Monatsh. Chem. https://doi.org/10.1007/s00706-020-02675-6  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds