research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A very short O—H⋯O hydrogen bond in the structure of clozapinium hydrogen bis­­(3,5-di­nitro­benzoate)

CROSSMARK_Color_square_no_text.svg

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru 570 006, India, bDepartment of Chemistry, Maharani's Science College for Women, Mysuru 570 001, India, cInstitute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Strasse 2, D-64287 Darmstadt, Germany, and dSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, UK
*Correspondence e-mail: yathirajan@hotmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 31 August 2020; accepted 3 September 2020; online 11 September 2020)

In the title salt {systematic name: 4-[6-chloro-2,9-di­aza­tri­cyclo­[9.4.0.03,8]penta­deca-1(15),3(8),4,6,9,11,13-heptaen-10-yl]-1-methyl­piperazin-1-ium 3,5-di­nitro­benzoate–3,5-di­nitro­benzic acid (1/1)}, C18H20ClN4+·C7H3N2O6·C7H4N2O6, there is a very short, asymmetric, O—H⋯O hydrogen bond [O⋯O = 2.453 (3) Å] within the anion. The oxygen atoms of one of the nitro groups of the anion are disordered over two sets of sites having occupancies of 0.56 (3) and 0.44 (3). The fused tricyclic portion of the cation adopts a butterfly conformation, with a dihedral angle of 45.59 (6)° between the planes of the two aryl rings. In the crystal, a combination of O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds links the component species into a three-dimensional framework. Comparisons are made with the structures of some related compounds.

1. Chemical context

Clozapine, 8-chloro-11-(4-methyl­piperazin-1-yl)-5H-dibenzo[b,e][1,4]diazepine, C18H19ClN4, is a well established medication for the treatment of schizophrenia, often preferred over other treatments because of the generally lower incidence of adverse side effects (Breier et al., 1994[Breier, A., Buchanan, R. W., Kirkpatrick, B., David, O. R., Irish, D., Summerfelt, A. & Carpenter, J. W. Jr (1994). Am. J. Psychiatry, 151, 20-26.]). The structure of the free base has been reported (Petcher & Weber, 1976[Petcher, T. J. & Weber, H.-P. (1976). J. Chem. Soc. Perkin Trans. 2, pp. 1415-1420.]; Fillers & Hawkinson, 1982[Fillers, J. P. & Hawkinson, S. W. (1982). Acta Cryst. B38, 1750-1753.]), along with those of a few salts (Fillers & Hawkinson, 1982[Fillers, J. P. & Hawkinson, S. W. (1982). Acta Cryst. B38, 1750-1753.]; Kaur et al., 2015[Kaur, M., Jasinski, J. P., Yathirajan, H. S., Kavitha, C. N. & Glidewell, C. (2015). Acta Cryst. E71, 406-413.]). Among the latter is the 1:1 salt formed by the reaction of clozapine with an equimolar qu­antity of 3,5-di­nitro­benzoic acid in methanol followed by slow crystallization from di­methyl­sulfoxide solution, when a DMSO monosolvate of the 1:1 salt was obtained (Kaur et al., 2015[Kaur, M., Jasinski, J. P., Yathirajan, H. S., Kavitha, C. N. & Glidewell, C. (2015). Acta Cryst. E71, 406-413.]).

[Scheme 1]

We have now found that repetition of this process but with the substitution of di­methyl­sulfoxide by a 1:1 mixture of chloro­form and methanol gives the solvent-free 1:2 acid salt chlozapinium hydrogen bis(3,5-di­nitro­benzoate), (I)[link], whose structure we report here along with comparisons between the structure of (I)[link] and those of both the solvated 1:1 salt, (II), (Kaur et al., 2015[Kaur, M., Jasinski, J. P., Yathirajan, H. S., Kavitha, C. N. & Glidewell, C. (2015). Acta Cryst. E71, 406-413.]) and the 1:2 acid salt, (III), formed between 3,5-di­nitro­benzoic acid and the anti­psychotic agent chlorprothixene, 3-(2-chloro-9H-thioxanthen-9-yl)-N,N-di­methyl­propan-1-amine (Shaibah et al., 2019[Shaibah, M. A. E., Yathirajan, H. S., Rathore, R. S., Furuya, T., Haraguchi, T., Akitsu, T. & Glidewell, C. (2019). Acta Cryst. E75, 292-298.]).

2. Structural commentary

Compound (I)[link] is an acid salt, i.e., the asymmetric unit contains one C18H20ClN4+ clozapinium cation and one C14H7N4O12 hydrogen bis­(3,5-dinotrobenzoate) anion (Fig. 1[link]). An alternative description is one cation, one 3,5-di­nitro­benzote anion and one neutral mol­ecule of 3,5-di­nitro­benzoic acid, i.e., C18H20ClN4+·(C7H3N2O6)·(C7H4N2O6). The –CO2H and –CO2 groups in the anion are linked by a very short O22—H22A⋯O32 hydrogen bond (Table 1[link]) (Speakman, 1972[Speakman, J. C. (1972). Struct. Bond. 12, 141-199.]; Emsley, 1980[Emsley, J. (1980). Chem. Soc. Rev. 9, 91-124.]; Gerlt et al., 1997[Gerlt, J. A., Kreevoy, M. M., Cleland, W. W. & Frey, P. A. (1997). Chem. Biol. 4, 259-267.]) but, although it is nearly linear [169 (3)°], it is not symmetric as the two independent O—H distances are significantly different [O22—H22A = 1.11 (4); H22A⋯O32 = 1.35 (4) Å]. There is a similarly short O—H⋯O hydrogen bond in the corresponding species of the chlorprothixene salt (III) (Shaibah et al., 2019[Shaibah, M. A. E., Yathirajan, H. S., Rathore, R. S., Furuya, T., Haraguchi, T., Akitsu, T. & Glidewell, C. (2019). Acta Cryst. E75, 292-298.]), where the O⋯O distance, 2.4197 (15) Å, is slightly shorter than that found here for (I)[link], while the difference between the two independent O—H distances is about 50% higher in (III) as compared to (I)[link]. For (I)[link] it is possible to select a compact asymmetric unit in which the components are linked by O—H⋯O and N—H⋯O hydrogen bonds (Table 1[link], Fig. 1[link]). Within this asymmetric unit, there are also two fairly short C—H⋯O contacts. That involving atom C4 has a small C—H⋯O angle, and so it probably not structurally significant (Wood et al., 2009[Wood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563-1571.]), while for that involving atom C13, the H⋯O distance is not significantly shorter that the sum of the van der Waals radii (Rowland & Taylor, 1996[Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391.]). These are both probably better regarded as adventitious contacts rather than as structurally significant hydrogen bonds.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5⋯O21 0.88 (3) 2.23 (3) 3.079 (3) 162 (3)
O22—H22A⋯O32 1.11 (4) 1.35 (4) 2.453 (3) 169 (3)
C4—H4⋯O21 0.93 2.48 3.280 (4) 144
C13—H13A⋯O34 0.97 2.60 3.539 (4) 164
N14—H14⋯O31i 1.00 (3) 1.70 (3) 2.689 (3) 169 (3)
C1—H1⋯O35ii 0.93 2.39 3.292 (13) 164
C7—H7⋯O36iii 0.93 2.34 3.242 (13) 163
C7—H7⋯O46iii 0.93 2.37 3.253 (14) 159
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing displacement ellipsoids drawn at the 30% probability level and hydrogen bonds (dashed lines) within the asymmetric unit.

One of the nitro groups of the anion, that attached to C35, is disordered over two sets of atomic sites, with occupancies of 0.56 (3) and 0.44 (3) for the oxygen atoms. The major and minor disorder components make dihedral angles with the adjacent aryl ring of 17.2 (8) and 19.4 (8)°, with a dihedral angle between their own planes of 36.5 (14)°, so that these components are rotated out of the plane of the aryl ring in opposite senses.

In the C18H20ClN4+ cation of (I)[link], the fused tricyclic component adopts a butterfly conformation with a dihedral angle of 45.59 (6)° between the planes of the two outer aryl rings. The piperazine ring adopts a chair conformation, as indicated by the value of the ring-puckering angle θ = 176.0 (3)°, as calculated for the atom sequence N11/C12/C13/N14/C15/C16: for an idealized chair form this angle takes a value of either zero or 180° (Boeyens, 1978[Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317-320.]). The site of protonation is the methyl­ated atom N14 where the methyl substituent occupies the equatorial site (Fig. 1[link]). The geometry at the other N atom in this ring, atom N11, is nearly planar: the sum of the C—N—C angles at N11 is 351.9°, as compared with 344.1° at N14, while the displacements of these N atoms from the planes of the adjacent three C atoms are 0.449 (3) Å for N14 and 0.236 (2) Å for N11.

3. Supra­molecular features

Aggregates of the type defining the selected asymmetric unit (Fig. 1[link]) are linked by a combination of one N—H⋯O, one O—H⋯O and two C—H⋯O hydrogen bonds (Table 1[link]) to form a three-dimensional network: since both disorder components participate in similar hydrogen bonds, it is necessary to consider only the inter­actions involving the major component. The formation of the hydrogen-bonded network is readily analysed in terms of three simple sub-structures (Ferguson et al., 1998a[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129-138.],b[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139-150.]; Gregson et al., 2000[Gregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39-57.]), in which the asymmetric unit aggregates are linked in different ways, each utilizing just one of the three inter-aggregate hydrogen bonds. The N14–H14⋯O31i (see Table 1[link] for symmetry codes) hydrogen bond links the aggregates into a C33(17) (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]; Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) chain running parallel to the [010] direction (Fig. 2[link]). In the second sub-structure, the C1—H1⋯O35ii hydrogen bond links the aggregates into another C33(17) chain, this time running parallel to the [101] direction (Fig. 3[link]). In the final sub-structure, the C7—H7⋯O36iii hydrogen bond links inversion-related pairs of aggregates into a cyclic centrosymmetric system characterized by an R66(34) motif (Fig. 4[link]). The combination of the chains along [010] and [101] generates a complex sheet lying parallel to (10[\overline{1}]), and adjacent sheets are linked by the R66(34) motif, thereby generating a three-dimensional array.

[Figure 2]
Figure 2
Part of the crystal structure of (I)[link] showing the formation of a hydrogen-bonded C33(17) chain running parallel to [010]. Hydrogen bonds are drawn as dashed lines. For the sake of clarity, the H atoms bonded to C atoms have all been omitted.
[Figure 3]
Figure 3
Part of the crystal structure of (I)[link] showing the formation of a hydrogen-bonded C33(17) chain running parallel to [101]. Hydrogen bonds are drawn as dashed lines. For the sake of clarity, the H atoms bonded to those C atoms that are not involved in the motif shown have been omitted.
[Figure 4]
Figure 4
Part of the crystal structure of (I)[link] showing the formation of a hydrogen-bonded R66(34) ring. Hydrogen bonds are drawn as dashed lines. For the sake of clarity, the H atoms bonded to those C atoms that are not involved in the motif shown have been omitted.

4. Database survey

Here we briefly compare the salient features of the structure of compound (I)[link], with those of some related structures. As noted above (Section 2), the O⋯O distances in the anion of the chloro­thixene salt (III) (Shaibah et al., 2019[Shaibah, M. A. E., Yathirajan, H. S., Rathore, R. S., Furuya, T., Haraguchi, T., Akitsu, T. & Glidewell, C. (2019). Acta Cryst. E75, 292-298.]), is slightly shorter than that found here for compound (I)[link]. Although the O⋯O distances in (I)[link] and (III) are very short, some even shorter distances have been reported, some below 2.40 Å. One of the simplest organic compounds to display such a short distance is the enol form, Me3C(OH)=C(CN)COCMe3, of the 1,3 diketone 4-cyano 2,2,6,6-tetra­methyl3,5-hepta­nedione, where the intra­molecular O—H⋯O hydrogen bond has an O⋯O distance of 2.3936 (15) Å (Belot et al., 2004[Belot, J. A., Clark, J., Cowan, J. A., Harbison, G. S., Kolesnikov, A. I., Kye, Y.-S., Schultz, A. J., Silvernail, C. & Zhao, X. (2004). J. Phys. Chem. B, 108, 6922-6926.]), while the corresponding distances in some cyclic phosphate derivatives are reported to be as low as 2.368 (4) Å (Kumara Swamy et al., 2001[Kumara Swamy, K. C., Kumaraswamy, S. & Kommana, P. (2001). J. Am. Chem. Soc. 123, 12642-12649.]).

The dihedral angles between the planes of the pendent aryl rings in the fused tricyclic portion of various clozapine derivatives show some curious variations. In the free base (Fillers & Hawkinson, 1982[Fillers, J. P. & Hawkinson, S. W. (1982). Acta Cryst. B38, 1750-1753.]) this angle is 67.3° [unfortunately, the atomic coordinates retrieved from the CSD (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) have no s.u. values] and in the monohydrate (CSD refcode DEHBUP; the publication cited in the CSD could not be traced) and the methanol solvate (Verma et al., 2018[Verma, V., Bannigan, P., Lusi, M., Crowley, C. M., Hudson, S., Hodnett, B. K. & Davern, P. (2018). CrystEngComm, 20, 4370-4382.]), the corresponding angles are 63.4 and 56.1°, respectively. In the 1:1 salt formed with 3,5-di­nitro­benzoic acid (II), this angle is 62.21 (11)° (Kaur et al., 2015[Kaur, M., Jasinski, J. P., Yathirajan, H. S., Kavitha, C. N. & Glidewell, C. (2015). Acta Cryst. E71, 406-413.]), fairly similar to the values of 60.97 (9) and 59.07 (16)° in the 1:1 salts formed with maleic and 2-hy­droxy­benzoic acids, respectively (Kaur et al., 2015[Kaur, M., Jasinski, J. P., Yathirajan, H. S., Kavitha, C. N. & Glidewell, C. (2015). Acta Cryst. E71, 406-413.]). In the di(hydro­bomide) salt, the angle is 52.3° (Fillers & Hawkinson, 1982[Fillers, J. P. & Hawkinson, S. W. (1982). Acta Cryst. B38, 1750-1753.]), while in the ethanol solvate of clozapine N-oxide, the corresponding angle is 56.2° (van der Peet et al., 2018[Peet, P. L. van der, Gunawan, C., Abdul-Rida, A., Ma, S., Scott, D. J., Gundlach, A. L., Bathgate, R. A. D., White, J. M. & Williams, S. J. (2018). MethodsX, 5, 257-267.]). There are, at present, too few data for any pattern to be discernible in the variation of this dihedral angle.

The hydrogen-bonded supra­molecular assembly of compound (I)[link] is three dimensional (Section 3, above), but in the solvated 1:1 salt (II), the hydrogen-bonded ion pairs are linked into chains by a ππ stacking inter­action (Kaur et al., 2015[Kaur, M., Jasinski, J. P., Yathirajan, H. S., Kavitha, C. N. & Glidewell, C. (2015). Acta Cryst. E71, 406-413.]). There are no hydrogen bonds in the structure of clozapine itself (Fillers & Hawkinson, 1982[Fillers, J. P. & Hawkinson, S. W. (1982). Acta Cryst. B38, 1750-1753.]), but in the monohydrate (DEHBUP), a combination of one N—H⋯O hydrogen bond and two O—H⋯N hydrogen bonds links the components into a chain of rings. In the methanol solvate of clozapine (Verma et al., 2018[Verma, V., Bannigan, P., Lusi, M., Crowley, C. M., Hudson, S., Hodnett, B. K. & Davern, P. (2018). CrystEngComm, 20, 4370-4382.]), the components are linked by an O—H⋯N hydrogen bond, but with no further aggregation. In the hydrogenmaleate and 2-hy­droxy­benzoate salts, multiple hydrogen bonds generate sheets and a three-dimensional supra­molecular network, respectively (Kaur et al., 2015[Kaur, M., Jasinski, J. P., Yathirajan, H. S., Kavitha, C. N. & Glidewell, C. (2015). Acta Cryst. E71, 406-413.]), while in the di(hydro­bromide) salt, the ions are linked into chains by N—H⋯Br hydrogen bonds (Fillers & Hawkinson, 1982[Fillers, J. P. & Hawkinson, S. W. (1982). Acta Cryst. B38, 1750-1753.]).

5. Synthesis and crystallization

Clozapine (100 mg, 0.31 mmol) and 3,5-di­nitro­benzoic acid (66 mg, 0.31mmol) were dissolved in methanol (10 ml), and this mixture was then stirred at 333 K for a few minutes. The solution was permitted to cool to room temperature and the resulting crystals were then collected by filtration and dried over P2O5. Crystals of (I)[link] suitable for single-crystal X-ray diffraction were obtained by slow evaporation, at room temperature and in the presence of air, of a solution in the mixed solvents of chloro­form and methanol (initial composition 1:1, v/v); m.p. 494–497 K.

6. Refinement

Crystal data, data collection and refinement details are summarized in Table 2[link]. All H atoms were located in difference maps. The H atoms bonded to C atoms were then treated as riding atoms in geometrically idealized positions with C—H distances of 0.93 Å (aromatic), 0.96 Å (CH3) or 0.97 Å (CH2), and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C); the CH3 group was permitted to rotate but not to tilt. For the H atoms bonded to N or O atoms, the atomic coordinates were refined with Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O). For the minor disorder component, the N—O distances and the 1,3-non-bonded O⋯O distances were restrained to be the same of the corresponding distances in the major component, subject to s.u. values of 0.01 and 0.02 Å, respectively. In addition, a similarity restraint was applied to the disordered O-atom sites and for each of the disorder components, the C—NO2 fragment was restrained to be planar. Subject to these conditions, the refined disorder occupancies are 0.56 (3) and 0.44 (3).

Table 2
Experimental details

Crystal data
Chemical formula C18H20ClN4+·C7H3N2O6·C7H4N2O6
Mr 751.07
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 7.4102 (6), 24.629 (2), 18.446 (1)
β (°) 98.478 (6)
V3) 3329.7 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.19
Crystal size (mm) 0.36 × 0.24 × 0.20
 
Data collection
Diffractometer Oxford Diffraction Xcalibur Sapphire CCD detector
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.])
Tmin, Tmax 0.914, 0.962
No. of measured, independent and observed [I > 2σ(I)] reflections 13700, 6870, 3811
Rint 0.036
(sin θ/λ)max−1) 0.629
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.133, 1.04
No. of reflections 6870
No. of parameters 507
No. of restraints 17
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.16, −0.20
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b) and PLATON (Spek, 2020).

4-[6-Chloro-2,9-diazatricyclo[9.4.0.03,8]pentadeca-1(15),3(8),4,6,9,11,13-heptaen-10-yl]-1-methylpiperazin-1-ium 3,5-dinitrobenzoate–3,5-dinitrobenzic acid (1/1) top
Crystal data top
C18H20ClN4+·C7H3N2O6·C7H4N2O6F(000) = 1552
Mr = 751.07Dx = 1.498 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.4102 (6) ÅCell parameters from 7183 reflections
b = 24.629 (2) Åθ = 2.8–27.9°
c = 18.446 (1) ŵ = 0.19 mm1
β = 98.478 (6)°T = 296 K
V = 3329.7 (4) Å3Needle, red
Z = 40.36 × 0.24 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire CCD detector
diffractometer
6870 independent reflections
Radiation source: Enhance (Mo) X-ray Source3811 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 26.6°, θmin = 2.8°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 98
Tmin = 0.914, Tmax = 0.962k = 1830
13700 measured reflectionsl = 2023
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: mixed
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0452P)2 + 1.0626P]
where P = (Fo2 + 2Fc2)/3
6870 reflections(Δ/σ)max < 0.001
507 parametersΔρmax = 0.16 e Å3
17 restraintsΔρmin = 0.19 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.3444 (4)0.23128 (13)0.08513 (15)0.0519 (8)
H10.34450.19440.09570.062*
C20.2571 (4)0.24929 (16)0.01823 (17)0.0659 (9)
H20.19930.22470.01570.079*
C30.2559 (4)0.30335 (16)0.00210 (16)0.0650 (9)
H30.20070.31550.04360.078*
C40.3359 (4)0.33980 (13)0.05311 (15)0.0525 (8)
H40.33260.37670.04210.063*
C4A0.4220 (3)0.32228 (11)0.12132 (13)0.0383 (6)
N50.5009 (3)0.36063 (10)0.17327 (12)0.0437 (6)
H50.492 (4)0.3941 (12)0.1564 (15)0.052*
C5A0.4443 (3)0.35994 (11)0.24375 (13)0.0374 (6)
C60.3781 (4)0.40729 (12)0.27020 (15)0.0458 (7)
H60.35630.43710.23910.055*
C70.3434 (4)0.41167 (13)0.34144 (16)0.0519 (8)
H70.30070.44400.35860.062*
C80.3733 (4)0.36715 (13)0.38635 (15)0.0487 (7)
Cl80.34891 (13)0.37265 (4)0.47895 (4)0.0768 (3)
C90.4298 (3)0.31860 (12)0.36041 (14)0.0463 (7)
H90.44350.28840.39100.056*
C9A0.4666 (3)0.31418 (11)0.28869 (14)0.0379 (6)
N100.5458 (3)0.26494 (9)0.27155 (11)0.0410 (5)
C110.5353 (3)0.24542 (11)0.20636 (14)0.0396 (6)
C11A0.4322 (3)0.26698 (11)0.13697 (13)0.0391 (6)
N110.6093 (3)0.19388 (9)0.20017 (11)0.0451 (6)
C120.6660 (4)0.16212 (12)0.26609 (15)0.0524 (8)
H12A0.64130.12410.25530.063*
H12B0.59390.17290.30350.063*
C130.8645 (4)0.16879 (12)0.29558 (15)0.0524 (8)
H13A0.88890.20620.31050.063*
H13B0.89640.14570.33820.063*
N140.9768 (3)0.15369 (10)0.23769 (13)0.0472 (6)
H140.947 (4)0.1154 (12)0.2223 (14)0.057*
C150.9216 (4)0.18776 (12)0.17106 (15)0.0508 (7)
H15A0.99130.17690.13290.061*
H15B0.94920.22550.18280.061*
C160.7201 (4)0.18191 (12)0.14324 (15)0.0471 (7)
H16A0.68680.20640.10230.057*
H16B0.69540.14510.12570.057*
C171.1766 (4)0.15711 (16)0.2639 (2)0.0800 (11)
H17A1.20740.19340.28030.120*
H17B1.24250.14800.22450.120*
H17C1.20860.13220.30370.120*
C210.2811 (4)0.54057 (11)0.01705 (14)0.0419 (7)
C220.2657 (4)0.59602 (12)0.00575 (16)0.0492 (7)
H220.32540.62010.04000.059*
C230.1607 (4)0.61492 (13)0.05705 (17)0.0535 (8)
C240.0736 (4)0.58098 (14)0.11005 (17)0.0572 (8)
H240.00460.59450.15240.069*
C250.0928 (4)0.52651 (13)0.09794 (15)0.0484 (7)
C260.1939 (4)0.50581 (12)0.03532 (15)0.0456 (7)
H260.20330.46840.02840.055*
C270.3916 (4)0.51740 (13)0.08452 (16)0.0473 (7)
O210.3873 (3)0.46873 (9)0.09583 (11)0.0678 (6)
O220.4857 (3)0.55163 (8)0.12759 (12)0.0570 (6)
H22A0.572 (5)0.5330 (14)0.1755 (19)0.085*
N230.1434 (5)0.67388 (13)0.0680 (2)0.0740 (9)
O230.2158 (4)0.70360 (11)0.0192 (2)0.1043 (10)
O240.0524 (5)0.68988 (11)0.12377 (16)0.1095 (10)
N250.0005 (4)0.48816 (15)0.15269 (16)0.0669 (8)
O250.0063 (4)0.44003 (12)0.13688 (13)0.0836 (8)
O260.0774 (3)0.50674 (12)0.21036 (14)0.0935 (9)
C310.7597 (4)0.47059 (12)0.34692 (15)0.0446 (7)
C320.8228 (4)0.42264 (12)0.32110 (15)0.0463 (7)
H320.82540.41790.27130.056*
C330.8817 (4)0.38203 (11)0.37005 (15)0.0447 (7)
C340.8818 (4)0.38730 (12)0.44445 (16)0.0496 (7)
H340.92160.35940.47690.060*
C350.8204 (4)0.43570 (12)0.46830 (15)0.0503 (7)
C360.7589 (4)0.47737 (12)0.42137 (15)0.0505 (7)
H360.71730.50960.43940.061*
C370.6800 (4)0.51417 (14)0.29415 (17)0.0507 (8)
O310.6202 (3)0.55554 (9)0.31888 (12)0.0689 (6)
O320.6772 (3)0.50299 (9)0.22654 (12)0.0653 (6)
N330.9440 (3)0.33021 (11)0.34261 (16)0.0565 (7)
O330.9549 (3)0.32681 (10)0.27753 (13)0.0774 (7)
O340.9802 (4)0.29336 (9)0.38628 (13)0.0768 (7)
N350.8168 (5)0.44262 (13)0.54739 (15)0.0740 (9)0.44 (3)
O350.830 (4)0.4023 (5)0.5865 (10)0.086 (5)0.44 (3)
O360.816 (3)0.4907 (3)0.5686 (6)0.078 (3)0.44 (3)
N450.8168 (5)0.44262 (13)0.54739 (15)0.0740 (9)0.56 (3)
O450.900 (2)0.4100 (6)0.5902 (8)0.084 (4)0.56 (3)
O460.712 (3)0.4787 (6)0.5660 (5)0.098 (4)0.56 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0503 (18)0.0489 (19)0.0549 (18)0.0007 (16)0.0026 (14)0.0084 (15)
C20.059 (2)0.076 (3)0.057 (2)0.007 (2)0.0099 (16)0.0188 (19)
C30.064 (2)0.084 (3)0.0425 (17)0.017 (2)0.0079 (15)0.0011 (18)
C40.0569 (19)0.054 (2)0.0453 (17)0.0110 (17)0.0035 (14)0.0052 (15)
C4A0.0344 (15)0.0427 (17)0.0383 (14)0.0025 (13)0.0067 (12)0.0013 (13)
N50.0507 (14)0.0357 (14)0.0448 (13)0.0013 (12)0.0074 (11)0.0039 (11)
C5A0.0299 (14)0.0396 (16)0.0412 (15)0.0018 (13)0.0000 (11)0.0033 (13)
C60.0411 (16)0.0384 (17)0.0571 (18)0.0022 (14)0.0049 (13)0.0026 (14)
C70.0440 (17)0.0478 (19)0.064 (2)0.0034 (16)0.0089 (15)0.0175 (16)
C80.0429 (17)0.060 (2)0.0429 (16)0.0014 (16)0.0059 (13)0.0100 (15)
Cl80.0832 (6)0.0991 (7)0.0497 (5)0.0122 (6)0.0154 (4)0.0144 (5)
C90.0409 (17)0.0518 (19)0.0443 (16)0.0026 (15)0.0006 (13)0.0010 (14)
C9A0.0333 (14)0.0371 (16)0.0411 (15)0.0009 (13)0.0021 (11)0.0010 (12)
N100.0389 (13)0.0390 (14)0.0441 (13)0.0087 (11)0.0027 (10)0.0006 (11)
C110.0351 (15)0.0352 (16)0.0489 (16)0.0000 (13)0.0069 (12)0.0018 (13)
C11A0.0324 (14)0.0413 (17)0.0430 (15)0.0024 (13)0.0031 (12)0.0024 (13)
N110.0502 (14)0.0387 (14)0.0478 (13)0.0101 (12)0.0113 (11)0.0044 (11)
C120.063 (2)0.0390 (17)0.0585 (18)0.0109 (16)0.0202 (15)0.0089 (14)
C130.070 (2)0.0381 (17)0.0485 (17)0.0090 (16)0.0081 (15)0.0001 (14)
N140.0435 (14)0.0375 (14)0.0601 (15)0.0027 (12)0.0058 (12)0.0006 (12)
C150.0501 (18)0.0459 (18)0.0577 (18)0.0016 (15)0.0125 (14)0.0069 (15)
C160.0513 (18)0.0410 (17)0.0497 (16)0.0081 (15)0.0095 (14)0.0012 (13)
C170.047 (2)0.085 (3)0.102 (3)0.011 (2)0.0084 (18)0.011 (2)
C210.0397 (16)0.0394 (17)0.0491 (16)0.0045 (14)0.0143 (13)0.0086 (14)
C220.0489 (18)0.0438 (18)0.0572 (18)0.0033 (15)0.0155 (14)0.0068 (15)
C230.0553 (19)0.0463 (19)0.063 (2)0.0138 (16)0.0242 (16)0.0188 (16)
C240.0485 (18)0.072 (2)0.0536 (19)0.0149 (18)0.0167 (15)0.0165 (18)
C250.0393 (16)0.061 (2)0.0470 (17)0.0030 (16)0.0125 (13)0.0008 (15)
C260.0447 (16)0.0402 (17)0.0545 (17)0.0030 (15)0.0163 (14)0.0049 (14)
C270.0453 (17)0.0438 (19)0.0538 (18)0.0053 (16)0.0106 (14)0.0073 (15)
O210.0881 (17)0.0404 (14)0.0693 (14)0.0031 (12)0.0071 (12)0.0128 (11)
O220.0648 (14)0.0430 (13)0.0590 (12)0.0008 (11)0.0045 (11)0.0028 (11)
N230.081 (2)0.055 (2)0.093 (2)0.0222 (19)0.0367 (19)0.0277 (19)
O230.105 (2)0.0486 (17)0.154 (3)0.0056 (16)0.002 (2)0.0118 (18)
O240.162 (3)0.081 (2)0.0900 (19)0.050 (2)0.0330 (19)0.0453 (16)
N250.0485 (16)0.091 (3)0.0623 (19)0.0074 (18)0.0129 (14)0.0078 (19)
O250.094 (2)0.080 (2)0.0763 (17)0.0145 (17)0.0107 (14)0.0151 (15)
O260.0714 (16)0.134 (3)0.0680 (16)0.0246 (17)0.0131 (13)0.0087 (16)
C310.0415 (16)0.0395 (18)0.0516 (17)0.0065 (14)0.0034 (13)0.0010 (14)
C320.0388 (15)0.053 (2)0.0468 (16)0.0075 (15)0.0045 (13)0.0017 (15)
C330.0401 (16)0.0412 (17)0.0525 (17)0.0044 (14)0.0055 (13)0.0082 (14)
C340.0549 (19)0.0364 (17)0.0552 (18)0.0009 (15)0.0003 (14)0.0012 (14)
C350.062 (2)0.0405 (18)0.0459 (17)0.0014 (16)0.0009 (14)0.0030 (14)
C360.0569 (19)0.0342 (17)0.0590 (19)0.0008 (15)0.0043 (15)0.0028 (14)
C370.0404 (17)0.050 (2)0.061 (2)0.0055 (16)0.0050 (14)0.0099 (16)
O310.0908 (18)0.0440 (14)0.0705 (14)0.0092 (13)0.0068 (12)0.0120 (12)
O320.0626 (14)0.0772 (17)0.0547 (13)0.0112 (13)0.0042 (11)0.0133 (12)
N330.0556 (17)0.0492 (17)0.0646 (18)0.0003 (14)0.0084 (14)0.0133 (15)
O330.0948 (18)0.0762 (17)0.0617 (15)0.0086 (14)0.0136 (13)0.0210 (13)
O340.106 (2)0.0430 (14)0.0829 (16)0.0133 (14)0.0195 (14)0.0012 (13)
N350.116 (3)0.0491 (19)0.0548 (17)0.018 (2)0.0041 (17)0.0039 (15)
O350.146 (15)0.058 (5)0.052 (5)0.019 (7)0.012 (7)0.004 (4)
O360.116 (9)0.047 (4)0.069 (4)0.013 (4)0.009 (6)0.017 (3)
N450.116 (3)0.0491 (19)0.0548 (17)0.018 (2)0.0041 (17)0.0039 (15)
O450.122 (10)0.067 (5)0.056 (4)0.025 (5)0.009 (5)0.006 (4)
O460.171 (10)0.064 (5)0.062 (3)0.038 (7)0.026 (6)0.007 (3)
Geometric parameters (Å, º) top
C1—C21.380 (4)C16—H16B0.9700
C1—C11A1.388 (4)C17—H17A0.9600
C1—H10.9300C17—H17B0.9600
C2—C31.364 (5)C17—H17C0.9600
C2—H20.9300C21—C261.378 (4)
C3—C41.371 (4)C21—C221.384 (4)
C3—H30.9300C21—C271.498 (4)
C4—C4A1.393 (4)C22—C231.378 (4)
C4—H40.9300C22—H220.9300
C4A—C11A1.392 (4)C23—C241.373 (4)
C4A—N51.410 (3)C23—N231.469 (4)
N5—C5A1.424 (3)C24—C251.364 (4)
N5—H50.88 (3)C24—H240.9300
C5A—C61.382 (4)C25—C261.379 (4)
C5A—C9A1.394 (4)C25—N251.478 (4)
C6—C71.380 (4)C26—H260.9300
C6—H60.9300C27—O211.218 (3)
C7—C81.372 (4)C27—O221.290 (3)
C7—H70.9300O22—H22A1.11 (4)
C8—C91.376 (4)N23—O241.210 (4)
C8—Cl81.749 (3)N23—O231.221 (4)
C9—C9A1.394 (4)N25—O261.220 (3)
C9—H90.9300N25—O251.220 (4)
C9A—N101.404 (3)C31—C321.380 (4)
N10—C111.287 (3)C31—C361.384 (4)
C11—N111.394 (3)C31—C371.510 (4)
C11—C11A1.489 (4)C32—C331.375 (4)
N11—C121.455 (3)C32—H320.9300
N11—C161.455 (3)C33—C341.378 (4)
C12—C131.500 (4)C33—N331.472 (4)
C12—H12A0.9700C34—C351.372 (4)
C12—H12B0.9700C34—H340.9300
C13—N141.494 (3)C35—C361.376 (4)
C13—H13A0.9700C35—N351.473 (4)
C13—H13B0.9700C36—H360.9300
N14—C171.490 (4)C37—O311.226 (4)
N14—C151.495 (3)C37—O321.274 (3)
N14—H141.00 (3)O32—H22A1.35 (4)
C15—C161.512 (4)N33—O341.217 (3)
C15—H15A0.9700N33—O331.218 (3)
C15—H15B0.9700N35—O351.224 (8)
C16—H16A0.9700N35—O361.249 (6)
C2—C1—C11A121.5 (3)H15A—C15—H15B108.0
C2—C1—H1119.2N11—C16—C15111.7 (2)
C11A—C1—H1119.2N11—C16—H16A109.3
C3—C2—C1119.8 (3)C15—C16—H16A109.3
C3—C2—H2120.1N11—C16—H16B109.3
C1—C2—H2120.1C15—C16—H16B109.3
C2—C3—C4120.1 (3)H16A—C16—H16B107.9
C2—C3—H3120.0N14—C17—H17A109.5
C4—C3—H3120.0N14—C17—H17B109.5
C3—C4—C4A120.8 (3)H17A—C17—H17B109.5
C3—C4—H4119.6N14—C17—H17C109.5
C4A—C4—H4119.6H17A—C17—H17C109.5
C11A—C4A—C4119.6 (3)H17B—C17—H17C109.5
C11A—C4A—N5120.7 (2)C26—C21—C22119.2 (3)
C4—C4A—N5119.7 (3)C26—C21—C27119.2 (3)
C4A—N5—C5A117.7 (2)C22—C21—C27121.6 (3)
C4A—N5—H5112.6 (18)C23—C22—C21118.9 (3)
C5A—N5—H5108.5 (18)C23—C22—H22120.5
C6—C5A—C9A119.3 (2)C21—C22—H22120.5
C6—C5A—N5118.7 (2)C24—C23—C22122.7 (3)
C9A—C5A—N5121.8 (2)C24—C23—N23118.8 (3)
C7—C6—C5A121.9 (3)C22—C23—N23118.5 (3)
C7—C6—H6119.1C25—C24—C23117.1 (3)
C5A—C6—H6119.1C25—C24—H24121.4
C8—C7—C6118.4 (3)C23—C24—H24121.4
C8—C7—H7120.8C24—C25—C26122.1 (3)
C6—C7—H7120.8C24—C25—N25119.3 (3)
C7—C8—C9121.0 (3)C26—C25—N25118.5 (3)
C7—C8—Cl8119.8 (2)C21—C26—C25119.9 (3)
C9—C8—Cl8119.2 (2)C21—C26—H26120.1
C8—C9—C9A120.7 (3)C25—C26—H26120.1
C8—C9—H9119.7O21—C27—O22124.3 (3)
C9A—C9—H9119.7O21—C27—C21119.5 (3)
C9—C9A—C5A118.6 (3)O22—C27—C21116.2 (3)
C9—C9A—N10115.3 (2)C27—O22—H22A114.6 (17)
C5A—C9A—N10125.5 (2)O24—N23—O23124.1 (3)
C11—N10—C9A124.3 (2)O24—N23—C23117.7 (4)
N10—C11—N11116.5 (2)O23—N23—C23118.1 (3)
N10—C11—C11A128.5 (2)O26—N25—O25124.8 (3)
N11—C11—C11A114.4 (2)O26—N25—C25117.9 (3)
C1—C11A—C4A118.1 (2)O25—N25—C25117.3 (3)
C1—C11A—C11119.7 (3)C32—C31—C36119.8 (3)
C4A—C11A—C11122.2 (2)C32—C31—C37120.4 (3)
C11—N11—C12119.3 (2)C36—C31—C37119.7 (3)
C11—N11—C16120.9 (2)C33—C32—C31119.1 (3)
C12—N11—C16111.7 (2)C33—C32—H32120.4
N11—C12—C13113.0 (2)C31—C32—H32120.4
N11—C12—H12A109.0C32—C33—C34122.6 (3)
C13—C12—H12A109.0C32—C33—N33119.4 (3)
N11—C12—H12B109.0C34—C33—N33118.0 (3)
C13—C12—H12B109.0C35—C34—C33116.7 (3)
H12A—C12—H12B107.8C35—C34—H34121.6
N14—C13—C12109.5 (2)C33—C34—H34121.6
N14—C13—H13A109.8C34—C35—C36122.8 (3)
C12—C13—H13A109.8C34—C35—N35118.3 (3)
N14—C13—H13B109.8C36—C35—N35119.0 (3)
C12—C13—H13B109.8C35—C36—C31119.0 (3)
H13A—C13—H13B108.2C35—C36—H36120.5
C17—N14—C13112.7 (2)C31—C36—H36120.5
C17—N14—C15111.9 (2)O31—C37—O32126.1 (3)
C13—N14—C15109.5 (2)O31—C37—C31118.7 (3)
C17—N14—H14108.2 (16)O32—C37—C31115.2 (3)
C13—N14—H14108.3 (16)C37—O32—H22A119.2 (14)
C15—N14—H14105.9 (15)O34—N33—O33124.1 (3)
N14—C15—C16111.3 (2)O34—N33—C33118.0 (3)
N14—C15—H15A109.4O33—N33—C33117.9 (3)
C16—C15—H15A109.4O35—N35—O36126.1 (11)
N14—C15—H15B109.4O35—N35—C35118.6 (11)
C16—C15—H15B109.4O36—N35—C35115.0 (7)
C11A—C1—C2—C30.1 (5)N14—C15—C16—N1154.9 (3)
C1—C2—C3—C42.2 (5)C26—C21—C22—C231.2 (4)
C2—C3—C4—C4A1.1 (5)C27—C21—C22—C23179.4 (2)
C3—C4—C4A—C11A2.1 (4)C21—C22—C23—C241.6 (4)
C3—C4—C4A—N5179.0 (3)C21—C22—C23—N23179.2 (2)
C11A—C4A—N5—C5A56.2 (3)C22—C23—C24—C250.8 (4)
C4—C4A—N5—C5A125.0 (3)N23—C23—C24—C25179.9 (3)
C4A—N5—C5A—C6125.3 (3)C23—C24—C25—C260.3 (4)
C4A—N5—C5A—C9A59.5 (3)C23—C24—C25—N25179.0 (2)
C9A—C5A—C6—C73.9 (4)C22—C21—C26—C250.1 (4)
N5—C5A—C6—C7171.3 (2)C27—C21—C26—C25179.6 (2)
C5A—C6—C7—C81.0 (4)C24—C25—C26—C210.7 (4)
C6—C7—C8—C92.5 (4)N25—C25—C26—C21179.4 (2)
C6—C7—C8—Cl8174.8 (2)C26—C21—C27—O217.7 (4)
C7—C8—C9—C9A3.2 (4)C22—C21—C27—O21172.9 (3)
Cl8—C8—C9—C9A174.1 (2)C26—C21—C27—O22172.8 (2)
C8—C9—C9A—C5A0.3 (4)C22—C21—C27—O226.7 (4)
C8—C9—C9A—N10172.0 (2)C24—C23—N23—O240.1 (4)
C6—C5A—C9A—C93.2 (4)C22—C23—N23—O24179.2 (3)
N5—C5A—C9A—C9171.9 (2)C24—C23—N23—O23177.3 (3)
C6—C5A—C9A—N10174.5 (2)C22—C23—N23—O233.4 (4)
N5—C5A—C9A—N100.6 (4)C24—C25—N25—O266.9 (4)
C9—C9A—N10—C11155.9 (2)C26—C25—N25—O26174.3 (3)
C5A—C9A—N10—C1132.5 (4)C24—C25—N25—O25173.5 (3)
C9A—N10—C11—N11174.9 (2)C26—C25—N25—O255.3 (4)
C9A—N10—C11—C11A4.2 (4)C36—C31—C32—C330.8 (4)
C2—C1—C11A—C4A3.3 (4)C37—C31—C32—C33175.0 (2)
C2—C1—C11A—C11175.9 (3)C31—C32—C33—C340.5 (4)
C4—C4A—C11A—C14.2 (4)C31—C32—C33—N33178.2 (2)
N5—C4A—C11A—C1176.9 (2)C32—C33—C34—C350.3 (4)
C4—C4A—C11A—C11174.9 (2)N33—C33—C34—C35179.0 (3)
N5—C4A—C11A—C113.9 (4)C33—C34—C35—C360.8 (5)
N10—C11—C11A—C1141.2 (3)C33—C34—C35—N35179.4 (3)
N11—C11—C11A—C129.6 (3)C34—C35—C36—C310.4 (5)
N10—C11—C11A—C4A39.7 (4)N35—C35—C36—C31179.1 (3)
N11—C11—C11A—C4A149.5 (2)C32—C31—C36—C350.4 (4)
N10—C11—N11—C129.7 (4)C37—C31—C36—C35175.5 (3)
C11A—C11—N11—C12162.3 (2)C32—C31—C37—O31177.8 (3)
N10—C11—N11—C16136.6 (3)C36—C31—C37—O311.9 (4)
C11A—C11—N11—C1651.4 (3)C32—C31—C37—O320.2 (4)
C11—N11—C12—C1394.0 (3)C36—C31—C37—O32176.1 (3)
C16—N11—C12—C1355.2 (3)C32—C33—N33—O34173.7 (3)
N11—C12—C13—N1457.1 (3)C34—C33—N33—O345.0 (4)
C12—C13—N14—C17177.7 (3)C32—C33—N33—O335.9 (4)
C12—C13—N14—C1557.1 (3)C34—C33—N33—O33175.4 (3)
C17—N14—C15—C16177.5 (3)C34—C35—N35—O3515.5 (15)
C13—N14—C15—C1656.8 (3)C36—C35—N35—O35163.2 (15)
C11—N11—C16—C1595.5 (3)C34—C35—N35—O36158.5 (11)
C12—N11—C16—C1553.1 (3)C36—C35—N35—O3622.8 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···O210.88 (3)2.23 (3)3.079 (3)162 (3)
O22—H22A···O321.11 (4)1.35 (4)2.453 (3)169 (3)
C4—H4···O210.932.483.280 (4)144
C13—H13A···O340.972.603.539 (4)164
N14—H14···O31i1.00 (3)1.70 (3)2.689 (3)169 (3)
C1—H1···O35ii0.932.393.292 (13)164
C7—H7···O36iii0.932.343.242 (13)163
C7—H7···O46iii0.932.373.253 (14)159
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x1/2, y+1/2, z1/2; (iii) x+1, y+1, z+1.
 

Acknowledgements

Clozapine was a gift from R L Fine Chem, Bengaluru, Karnataka, India. MAES thanks the University of Mysore for research facilities.

Funding information

HSY is grateful to the UGC, New Delhi, for the award of a BSR Faculty Fellowship for three years.

References

First citationBelot, J. A., Clark, J., Cowan, J. A., Harbison, G. S., Kolesnikov, A. I., Kye, Y.-S., Schultz, A. J., Silvernail, C. & Zhao, X. (2004). J. Phys. Chem. B, 108, 6922–6926.  Web of Science CSD CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBoeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317–320.  CrossRef Web of Science Google Scholar
First citationBreier, A., Buchanan, R. W., Kirkpatrick, B., David, O. R., Irish, D., Summerfelt, A. & Carpenter, J. W. Jr (1994). Am. J. Psychiatry, 151, 20–26.  CAS PubMed Web of Science Google Scholar
First citationEmsley, J. (1980). Chem. Soc. Rev. 9, 91–124.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129–138.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139–150.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFillers, J. P. & Hawkinson, S. W. (1982). Acta Cryst. B38, 1750–1753.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGerlt, J. A., Kreevoy, M. M., Cleland, W. W. & Frey, P. A. (1997). Chem. Biol. 4, 259–267.  CrossRef CAS PubMed Web of Science Google Scholar
First citationGregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39–57.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKaur, M., Jasinski, J. P., Yathirajan, H. S., Kavitha, C. N. & Glidewell, C. (2015). Acta Cryst. E71, 406–413.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKumara Swamy, K. C., Kumaraswamy, S. & Kommana, P. (2001). J. Am. Chem. Soc. 123, 12642–12649.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPeet, P. L. van der, Gunawan, C., Abdul-Rida, A., Ma, S., Scott, D. J., Gundlach, A. L., Bathgate, R. A. D., White, J. M. & Williams, S. J. (2018). MethodsX, 5, 257–267.  Web of Science PubMed Google Scholar
First citationPetcher, T. J. & Weber, H.-P. (1976). J. Chem. Soc. Perkin Trans. 2, pp. 1415–1420.  CSD CrossRef Web of Science Google Scholar
First citationRowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391.  CrossRef CAS Web of Science Google Scholar
First citationShaibah, M. A. E., Yathirajan, H. S., Rathore, R. S., Furuya, T., Haraguchi, T., Akitsu, T. & Glidewell, C. (2019). Acta Cryst. E75, 292–298.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpeakman, J. C. (1972). Struct. Bond. 12, 141–199.  CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVerma, V., Bannigan, P., Lusi, M., Crowley, C. M., Hudson, S., Hodnett, B. K. & Davern, P. (2018). CrystEngComm, 20, 4370–4382.  Web of Science CSD CrossRef CAS Google Scholar
First citationWood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563–1571.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds