research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of the coordination polymer catena-poly[[bis­­[hy­dr­oxy(phen­yl)acetato-κ2O1,O2]zinc(II)]-μ2-1,2-bis­­(pyridin-4-yl)ethane-κ2N:N′]

CROSSMARK_Color_square_no_text.svg

aDepartment of Medical Laboratory Science Biotechnology, Yuanpei University, No. 306, Yuanpei Street, Hsinchu, Taiwan 30015, ROC, and bDepartment of Biotechnology, Yuanpei University, No. 306, Yuanpei Street, Hsinchu, Taiwan 30015, ROC
*Correspondence e-mail: lush@mail.ypu.edu.tw

Edited by A. M. Chippindale, University of Reading, England (Received 30 September 2020; accepted 28 October 2020; online 24 November 2020)

In the title polymeric ZnII compound, [Zn(C8H7O3)2(C12H12N2)]n, the Zn cation is coordinated by two N atoms from 1,2-bis­(pyridin-4-yl)ethane unit and four O atoms from two mandelate [or hy­droxy(phen­yl)acetate] anions in a slightly distorted octa­hedral coordination geometry. The 1,2-bis­(pyridin-4-yl)ethane unit bridges two ZnII cations, related by an inversion centre, to form a polymeric chain along [110]. The crystal structure features extensive O—H⋯O and weak C—H ⋯O hydrogen bonds, with C—H ⋯ π inter­actions and ππ inter­actions also being present. The centroid–centroid distance between the phenyl ring of the mandelate group and the 1,2-bis­(pyridine-4-yl)ethane moiety is 4.951 (2) Å. The 1,2-bis­(pyridin-4-yl)ethane ligand is disordered over two positions, with a refined occupancy of 0.578 (14) for the major component.

1. Chemical context

α-Hy­droxy­carb­oxy­lic acids play an important role in many biological processes and in coordination chemistry (Miyamoto et al., 1989[Miyamoto, T. K., Okude, K., Maeda, K., Ichida, H., Sasaki, Y. & Tashiro, T. (1989). Bull. Chem. Soc. Jpn, 62, 3239-3246.]). The deprotonated anion of one example, mandelic acid (2-hy­droxy-2-phenyl­acetic acid), can behave as a multifunctional ligand and can act as a bridging ligand in metal complexes by involving the oxygen atoms of the carboxyl­ate and hy­droxy groups (Zechel et al., 2019[Zechel, F., Schwendt, P., Gyepes, R., Šimunek, J., Tatiersky, J. & Krivosudský, L. (2019). New J. Chem. 43, 17696-17702.]; Smatanová et al., 2000[Smatanová, I. K., Marek, J., Švančárek, P. & Schwendt, P. (2000). Acta Cryst. C56, 154-155.]; Bromant et al., 2005[Bromant, C., Nika, W., Pantenburg, I. & Meyer, G. (2005). Z. Naturforsch. Teil B, 60, 753-757.]). We report the preparation and structural characterization of a new coordin­ation polymer in which the ZnII cations are coordin­ated to two mandelate anions, behaving as bidentate ligands, and linked together via 1,2-bis­(4-pyrid­yl)ethane mol­ecules. 1,2-Bis(4-pyrid­yl)ethane is a versatile building block for the purposes of crystal engineering as the pyridyl N atoms can connect to adjacent metals to form a chain (Lee & Kim, 2015[Lee, D. N. & Kim, Y. (2015). Acta Cryst. E71, m150-m151.]).

[Scheme 1]

1.1. Structural commentary

The asymmetric unit of the title compound comprises one ZnII cation, one mandelate anion and one half of a 1,2-bis­(4-pyridin-4-yl)ethane mol­ecule. There is an inversion centre located at the mid-point of the ethane C—C bond in the 1,2-bis­(4-pyridin-4-yl)ethane mol­ecule. Each ZnII cation is coord­inated by two N atoms from two 1,2-bis­(4-pyridin-4-yl)ethane mol­ecules in a trans arrangement and four O atoms from two mandelate anions in a slightly distorted octa­hedral coordination geometry, as shown in Table 1[link] and Fig. 1[link]. The mandelate anions are coordinated to the central Zn2+ cation form five-membered chelate rings via an oxygen atom of the OH group [Zn—O3 = 2.1013 (15) Å] and an oxygen atom of the carboxyl group [Zn—O1= 2.0290 (14) Å]. The ZnII cations are linked together via 1,2-bis­(4-pyridin-4-yl)ethane bridges, forming a polymeric chain along [110].

Table 1
Selected geometric parameters (Å, °)

Zn—O1 2.0290 (14) O2—C1 1.250 (3)
Zn—O3 2.1013 (15) O3—C2 1.424 (2)
Zn—N 2.2217 (19) N—C13 1.334 (3)
O1—C1 1.260 (2) N—C9 1.339 (3)
       
O1—Zn—O3 80.02 (6) C9—N—C13 117.3 (2)
O1—Zn—N 90.25 (7) O2—C1—C2 116.10 (17)
O1—Zn—O3i 99.98 (6) O1—C1—O2 124.67 (19)
O1—Zn—Ni 89.75 (7) O1—C1—C2 119.21 (18)
O3—Zn—N 88.73 (6) O3—C2—C3 110.90 (18)
O3—Zn—Ni 91.27 (6) O3—C2—C1 110.17 (16)
Zn—O1—C1 116.96 (13) N—C9—C10 118.8 (4)
Zn—O3—C2 113.41 (12) N—C9—C10′ 127.1 (6)
Zn—N—C13 120.03 (16) N—C13—C12′ 116.3 (4)
Zn—N—C9 122.45 (16) N—C13—C12 126.5 (3)
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].
[Figure 1]
Figure 1
View of the title compound with the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level [symmetry code: (i) −x + [{1\over 2}], −y + [{1\over 2}], −z]. The major disorder component of the pyridine unit is drawn using solid lines and the minor disorder component is drawn using dashed lines.

2. Supra­molecular features

The crystal structure features extensive O—H⋯O hydrogen bonding [O3⋯O2ii =2.572 (2) Å] (Fig. 2[link]), establishing a three-dimensional network that is consolidated by further C—H⋯O hydrogen-bonding inter­actions. The C2—H2A⋯O1ii, C8—H8A⋯O2iii and C13—H13A⋯O2ii distances are 3.193 (2), 3.378 (3), and 3.064 (3) Å, respectively (Table 2[link]). In addition, C—H ⋯π inter­actions [C9—H9ACg5iv = 3.781 (2) Å and C12′–H12BCg5ii = 3.649 (8) Å, Table 2[link]] and ππ stacking are present in the crystal structure. The distance Cg5⋯Cg3iv between the centroids of the phenyl ring (C3–C8) of the mandelate group and of the 1,2-bis­(pyridine-4-yl)ethane moiety (C9–C13) [symmetry code: (iv) −x + [{1\over 2}], y + [{1\over 2}], −z + [{3\over 2}]] is 4.951 (2) Å and the dihedral angle between the two rings is 62.6 (2)°.

Table 2
Hydrogen-bond geometry (Å, °)

Cg5 is the centroid of the C3–C8 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O2ii 0.86 (3) 1.72 (3) 2.572 (2) 177.3 (15)
C2—H2A⋯O1ii 1.00 2.46 3.193 (2) 129
C8—H8A⋯O2iii 0.95 2.44 3.378 (3) 168
C13—H13A⋯O2ii 0.96 2.43 3.064 (3) 124
C9—H9ACg5iv 0.96 2.88 3.781 (2) 157
C12′—H12BCg5ii 0.95 2.75 3.649 (8) 159
Symmetry codes: (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2]; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
The mol­ecular packing of the title compound. Hydrogen bonds are shown as dashed lines. The minor occupancy components of the disordered pyridine carbon atoms have been omitted for clarity.

3. Database survey

Other examples of complexes containing the mandelate anion and the 1,2-bis­(pyridine-4-yl)ethane moiety were found in the Cambridge Structural Database (CSD, version 5.40, update of August 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). These include catena-[[μ-oxido(phen­yl)acetato](μ-4,4′-ethane-1,2-diyldi­pyridine)­zinc(II) perchlorate monohydrate] (CSD refcode QEBFUB; Guo et al., 2015[Guo, W. Y., Li, M. L., Shi, Y. J., Song, H. H. & Yu, H. T. (2015). J. Coord. Chem. 68, 4224-4241.]), which has a ClO4 counter-ion. An Ni complex, catena-[bis­[(hy­droxy)(phen­yl)acetato]{μ-4-[2-(pyridin-4-yl)eth­yl]pyridine}­nickel(II)], isostructural with the title compound, has also been reported (QEBFAH; Guo et al., 2015[Guo, W. Y., Li, M. L., Shi, Y. J., Song, H. H. & Yu, H. T. (2015). J. Coord. Chem. 68, 4224-4241.]). A complex with the same mol­ecular formula but different coordination environment of the Zn atom, catena-[[μ2-1,2-bis­(4-pyrid­yl)ethane]­bis­(2-hy­droxy-2-phenyl­acetato)­zinc(II)] (MUBZEP; Yu et al., 2009[Yu, S. M., Shin, D. H., Kim, P.-G., Kim, C. & Kim, Y. (2009). Acta Cryst. E65, m1045-m1046.]) has also been characterized. In this case, the 1,2-bis­(pyridine-4-yl)ethane and mandelate units are cis to each other.

4. Synthesis and crystallization

Zn(NO3)2 (91.4 mg, 0.50 mmol), 1,2-bi(4-pyrid­yl)ethane (92.1 mg, 0.50 mmol) and mandelic acid (76.0 mg, 0.50 mmol) were mixed in deionized water. The mixture was placed in a 25 mL Teflon linear reactor and heated at 423 K in an autoclave for 24 h. The resulting solution was slowly cooled to room temperature. Yellow transparent single crystals of the title compound were obtained in 75% yield (based on Zn).

5. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Atoms C10, C11, C12, C14 of the pyridine ring are disordered over two sets of sites with an occupancy of 0.578 (14) for the major moiety. C-bound H atoms were included in calculated positions and treated as riding: C—H = 0.95 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms·The hy­droxy H atoms, which could not be located in a difference-Fourier map, were included in idealized calculated positions that gave the most sensible geometry.

Table 3
Experimental details

Crystal data
Chemical formula [Zn(C8H7O3)2(C12H12N2)]
Mr 551.90
Crystal system, space group Monoclinic, C2/c
Temperature (K) 150
a, b, c (Å) 25.6754 (19), 9.8838 (5), 10.6208 (7)
β (°) 108.234 (7)
V3) 2559.9 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.01
Crystal size (mm) 0.35 × 0.32 × 0.26
 
Data collection
Diffractometer Oxford Diffraction Gemini-S CCD detector
Absorption correction Multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.936, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 5016, 2270, 1970
Rint 0.027
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.082, 1.04
No. of reflections 2270
No. of parameters 210
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.43, −0.41
Computer programs: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), DIAMOND (Brandenburg & Putz, 1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: PLATON (Spek, 2020).

catena-Poly[[bis[hydroxy(phenyl)acetato-κ2O1,O2]zinc(II)]-µ2-1,2-bis(pyridin-4-yl)ethane-κ2N:N'] top
Crystal data top
[Zn(C8H7O3)2(C12H12N2)]F(000) = 1144
Mr = 551.90Dx = 1.432 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1818 reflections
a = 25.6754 (19) Åθ = 2.8–29.2°
b = 9.8838 (5) ŵ = 1.00 mm1
c = 10.6208 (7) ÅT = 150 K
β = 108.234 (7)°Parallelepiped, yellow
V = 2559.9 (3) Å30.35 × 0.32 × 0.26 mm
Z = 4
Data collection top
Oxford Diffraction Gemini-S CCD detector
diffractometer
2270 independent reflections
Radiation source: fine-focus sealed tube1970 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 25.0°, θmin = 2.8°
Absorption correction: multi-scan
(CrysAlisPro; Oxford Diffraction, 2009)
h = 2330
Tmin = 0.936, Tmax = 1.000k = 711
5016 measured reflectionsl = 1211
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.038P)2 + 2.1396P]
where P = (Fo2 + 2Fc2)/3
2270 reflections(Δ/σ)max < 0.001
210 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.40 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn0.250000.250000.500000.0138 (1)
O10.25093 (6)0.37191 (14)0.65439 (14)0.0171 (5)
O20.26248 (7)0.37664 (14)0.87065 (15)0.0229 (5)
O30.28062 (6)0.11415 (15)0.65814 (14)0.0151 (5)
N0.16575 (7)0.18198 (19)0.48454 (18)0.0189 (6)
C10.26431 (9)0.3184 (2)0.7677 (2)0.0146 (6)
C20.28282 (9)0.1695 (2)0.7835 (2)0.0154 (7)
C30.33972 (9)0.1537 (2)0.8826 (2)0.0164 (6)
C40.38568 (10)0.1438 (2)0.8401 (2)0.0249 (7)
C50.43745 (11)0.1262 (3)0.9311 (3)0.0349 (9)
C60.44387 (11)0.1178 (3)1.0644 (3)0.0352 (9)
C70.39842 (11)0.1278 (2)1.1077 (2)0.0319 (8)
C80.34670 (10)0.1461 (2)1.0174 (2)0.0235 (7)
C90.13113 (11)0.2581 (2)0.5259 (3)0.0279 (8)
C100.0768 (3)0.2104 (9)0.5048 (9)0.0261 (19)0.578 (14)
C110.0594 (2)0.0835 (5)0.4523 (9)0.026 (2)0.578 (14)
C120.0972 (3)0.0046 (6)0.4172 (10)0.0260 (18)0.578 (14)
C130.14957 (10)0.0569 (2)0.4432 (3)0.0310 (8)
C140.0017 (3)0.0308 (7)0.4359 (5)0.0341 (17)0.578 (14)
C12'0.1046 (4)0.0024 (8)0.4827 (13)0.025 (3)0.422 (14)
C14'0.0228 (4)0.0209 (9)0.5626 (7)0.028 (3)0.422 (14)
C10'0.0870 (5)0.2148 (13)0.5599 (12)0.026 (3)0.422 (14)
C11'0.0722 (3)0.0805 (6)0.5343 (12)0.021 (2)0.422 (14)
H4A0.381600.149000.748200.0300*
H7A0.402700.122101.199700.0380*
H5A0.468600.120000.901200.0420*
H6A0.479300.105101.126500.0420*
H10A0.051400.267700.527600.0320*0.578 (14)
H12A0.087700.081600.377000.0310*0.578 (14)
H13A0.177700.005000.438400.0370*
H14A0.024900.106300.409200.0410*0.578 (14)
H14B0.008300.038200.364900.0410*0.578 (14)
H8A0.315800.153601.048000.0280*
H9A0.135000.354200.518800.0330*
H2A0.256600.117800.817600.0180*
H3A0.2653 (11)0.036 (3)0.647 (3)0.039 (8)*
H10B0.067300.273900.599200.0310*0.422 (14)
H12B0.097200.091900.472200.0300*0.422 (14)
H14C0.008000.088300.611500.0340*0.422 (14)
H14D0.034500.059300.620300.0340*0.422 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.0156 (2)0.0132 (2)0.0143 (2)0.0016 (2)0.0070 (2)0.0005 (1)
O10.0242 (9)0.0122 (7)0.0164 (8)0.0026 (7)0.0086 (6)0.0012 (6)
O20.0352 (10)0.0182 (8)0.0176 (8)0.0074 (7)0.0115 (7)0.0001 (6)
O30.0222 (9)0.0085 (7)0.0157 (8)0.0012 (7)0.0075 (6)0.0007 (6)
N0.0166 (10)0.0191 (10)0.0217 (10)0.0016 (9)0.0072 (8)0.0046 (8)
C10.0134 (11)0.0133 (11)0.0193 (11)0.0012 (9)0.0084 (9)0.0006 (9)
C20.0208 (12)0.0109 (11)0.0183 (11)0.0013 (10)0.0115 (9)0.0014 (8)
C30.0214 (12)0.0088 (10)0.0196 (11)0.0000 (9)0.0074 (9)0.0015 (8)
C40.0221 (13)0.0303 (13)0.0227 (12)0.0043 (11)0.0075 (10)0.0005 (10)
C50.0222 (14)0.0431 (16)0.0388 (16)0.0047 (13)0.0089 (12)0.0005 (12)
C60.0274 (15)0.0358 (15)0.0324 (15)0.0032 (12)0.0049 (12)0.0040 (12)
C70.0412 (17)0.0305 (14)0.0187 (12)0.0026 (13)0.0016 (11)0.0041 (10)
C80.0298 (14)0.0198 (12)0.0234 (12)0.0020 (11)0.0118 (10)0.0015 (10)
C90.0229 (14)0.0229 (13)0.0414 (15)0.0022 (11)0.0151 (12)0.0065 (11)
C100.014 (3)0.038 (3)0.028 (4)0.001 (3)0.009 (3)0.005 (4)
C110.016 (2)0.032 (3)0.030 (5)0.007 (2)0.007 (3)0.005 (2)
C120.024 (3)0.020 (2)0.034 (4)0.003 (2)0.009 (3)0.001 (3)
C130.0174 (13)0.0188 (13)0.0563 (17)0.0011 (11)0.0110 (12)0.0067 (12)
C140.022 (3)0.042 (3)0.040 (3)0.006 (3)0.012 (2)0.007 (3)
C12'0.024 (4)0.016 (3)0.036 (6)0.005 (3)0.011 (4)0.002 (4)
C14'0.026 (5)0.031 (4)0.035 (4)0.008 (4)0.020 (3)0.002 (3)
C10'0.022 (5)0.029 (4)0.025 (6)0.004 (3)0.006 (5)0.011 (5)
C11'0.014 (3)0.028 (3)0.021 (6)0.005 (3)0.007 (3)0.001 (3)
Geometric parameters (Å, º) top
Zn—O12.0290 (14)C11—C121.384 (10)
Zn—O32.1013 (15)C11—C141.528 (10)
Zn—N2.2217 (19)C11'—C14'1.512 (13)
Zn—O1i2.0290 (14)C11'—C12'1.369 (14)
Zn—O3i2.1013 (15)C12—C131.385 (9)
Zn—Ni2.2217 (19)C12'—C131.450 (11)
O1—C11.260 (2)C14—C14ii1.519 (8)
O2—C11.250 (3)C14'—C14'ii1.528 (12)
O3—C21.424 (2)C2—H2A1.0000
O3—H3A0.86 (3)C4—H4A0.9500
N—C131.334 (3)C5—H5A0.9500
N—C91.339 (3)C6—H6A0.9500
C1—C21.540 (3)C7—H7A0.9500
C2—C31.518 (3)C8—H8A0.9500
C3—C81.388 (3)C9—H9A0.9600
C3—C41.393 (4)C10—H10A0.9500
C4—C51.388 (4)C10'—H10B0.9500
C5—C61.376 (4)C12—H12A0.9500
C6—C71.385 (4)C12'—H12B0.9500
C7—C81.385 (3)C13—H13A0.9600
C9—C101.422 (9)C14—H14B0.9900
C9—C10'1.361 (14)C14—H14A0.9900
C10—C111.388 (11)C14'—H14C0.9900
C10'—C11'1.384 (14)C14'—H14D0.9900
O1···O32.656 (2)C9···H4Ai2.9700
O1···N3.015 (2)C10···H14Bii3.0700
O1···C22.419 (2)C10'···H7Aiv2.9600
O1···C93.156 (3)C12'···H14Cii2.8900
O1···C13i3.123 (3)C13···H3A3.09 (3)
O1···C2iii3.193 (2)C14'···H12Bii3.0700
O1···Ni3.002 (2)H2A···O1v2.4600
O1···O3i3.164 (2)H2A···C1v3.0900
O2···C8iv3.378 (3)H2A···H8A2.4700
O2···O3iii2.572 (2)H3A···O1v2.79 (3)
O2···C2iii3.350 (2)H3A···C133.09 (3)
O2···C83.192 (3)H3A···O2v1.72 (3)
O2···C13iii3.064 (3)H3A···C1v2.54 (3)
O3···O1i3.164 (2)H4A···O32.4900
O3···N3.024 (2)H4A···Ni2.9200
O3···C12.431 (3)H4A···C9i2.9700
O3···O2v2.572 (2)H5A···H10Avi2.4000
O3···C1v3.326 (3)H6A···H6Avii2.5000
O3···O12.656 (2)H7A···C10'iv2.9600
O3···Ni3.092 (2)H7A···H10Biv2.2800
O1···H13Ai2.6800H8A···H2A2.4700
O1···H3Aiii2.79 (3)H8A···O2iv2.4400
O1···H9A2.8800H9A···C8iii2.9700
O1···H2Aiii2.4600H9A···C7iii3.0200
O2···H8Aiv2.4400H9A···O12.8800
O2···H3Aiii1.72 (3)H10A···H14A2.5300
O2···H13Aiii2.4300H10A···C5viii2.9700
O3···H4A2.4900H10A···H5Aviii2.4000
N···O13.015 (2)H10B···H14C2.4100
N···O33.024 (2)H10B···H7Aiv2.2800
N···O1i3.002 (2)H12A···H14B2.4700
N···O3i3.092 (2)H12A···C7v2.8900
N···H4Ai2.9200H12B···H14D2.6000
C1···O3iii3.326 (3)H12B···C14'ii3.0700
C2···O2v3.350 (2)H12B···C7v2.9100
C2···O1v3.193 (2)H12B···C8v2.9500
C8···O23.192 (3)H12B···H14Cii2.5700
C8···O2iv3.378 (3)H12B···C6v3.0400
C13···O2v3.064 (3)H13A···O1i2.6800
C1···H3Aiii2.54 (3)H13A···O2v2.4300
C1···H2Aiii3.0900H14A···C5viii2.8500
C5···H10Avi2.9700H14A···H10A2.5300
C5···H14Avi2.8500H14B···H12A2.4700
C6···H12Biii3.0400H14B···C10ii3.0700
C7···H12Biii2.9100H14C···H10B2.4100
C7···H12Aiii2.8900H14C···C12'ii2.8900
C7···H9Av3.0200H14C···H12Bii2.5700
C8···H12Biii2.9500H14D···H12B2.6000
C8···H9Av2.9700
O1—Zn—O380.02 (6)C10'—C11'—C14'122.1 (9)
O1—Zn—N90.25 (7)C11—C12—C13117.1 (6)
O1—Zn—O1i180.00C11'—C12'—C13123.0 (7)
O1—Zn—O3i99.98 (6)N—C13—C12'116.3 (4)
O1—Zn—Ni89.75 (7)N—C13—C12126.5 (3)
O3—Zn—N88.73 (6)C11—C14—C14ii111.1 (6)
O1i—Zn—O399.98 (6)C11'—C14'—C14'ii113.2 (7)
O3—Zn—O3i180.00O3—C2—H2A108.00
O3—Zn—Ni91.27 (6)C1—C2—H2A108.00
O1i—Zn—N89.75 (7)C3—C2—H2A108.00
O3i—Zn—N91.27 (6)C3—C4—H4A120.00
N—Zn—Ni180.00C5—C4—H4A120.00
O1i—Zn—O3i80.02 (6)C4—C5—H5A120.00
O1i—Zn—Ni90.25 (7)C6—C5—H5A120.00
O3i—Zn—Ni88.73 (6)C5—C6—H6A120.00
Zn—O1—C1116.96 (13)C7—C6—H6A120.00
Zn—O3—C2113.41 (12)C6—C7—H7A120.00
C2—O3—H3A111 (2)C8—C7—H7A120.00
Zn—O3—H3A115 (2)C3—C8—H8A120.00
Zn—N—C13120.03 (16)C7—C8—H8A120.00
Zn—N—C9122.45 (16)N—C9—H9A116.00
C9—N—C13117.3 (2)C10—C9—H9A116.00
O2—C1—C2116.10 (17)C10'—C9—H9A117.00
O1—C1—O2124.67 (19)C9—C10—H10A119.00
O1—C1—C2119.21 (18)C11—C10—H10A119.00
O3—C2—C3110.90 (18)C9—C10'—H10B122.00
O3—C2—C1110.17 (16)C11'—C10'—H10B122.00
C1—C2—C3111.79 (17)C11—C12—H12A122.00
C2—C3—C8120.4 (2)C13—C12—H12A121.00
C2—C3—C4120.78 (18)C13—C12'—H12B119.00
C4—C3—C8118.8 (2)C11'—C12'—H12B118.00
C3—C4—C5120.5 (2)N—C13—H13A116.00
C4—C5—C6120.3 (3)C12—C13—H13A117.00
C5—C6—C7119.7 (3)C12'—C13—H13A117.00
C6—C7—C8120.3 (2)C14ii—C14—H14B109.00
C3—C8—C7120.5 (2)H14A—C14—H14B108.00
N—C9—C10118.8 (4)C14ii—C14—H14A109.00
N—C9—C10'127.1 (6)C11—C14—H14A109.00
C9—C10—C11122.6 (7)C11—C14—H14B109.00
C9—C10'—C11'116.7 (10)C11'—C14'—H14C109.00
C12—C11—C14120.9 (6)C11'—C14'—H14D109.00
C10—C11—C14122.2 (6)H14C—C14'—H14D108.00
C10—C11—C12116.9 (6)C14'ii—C14'—H14C109.00
C12'—C11'—C14'120.9 (7)C14'ii—C14'—H14D109.00
C10'—C11'—C12'117.1 (9)
O3—Zn—O1—C14.48 (16)O1—C1—C2—C3122.9 (2)
N—Zn—O1—C184.19 (17)O2—C1—C2—O3177.3 (2)
O3i—Zn—O1—C1175.52 (16)O2—C1—C2—C358.9 (3)
Ni—Zn—O1—C195.81 (17)O3—C2—C3—C425.8 (3)
O1—Zn—O3—C23.79 (14)O3—C2—C3—C8152.94 (18)
N—Zn—O3—C286.69 (14)C1—C2—C3—C497.6 (2)
O1i—Zn—O3—C2176.21 (14)C1—C2—C3—C883.7 (2)
Ni—Zn—O3—C293.31 (14)C2—C3—C4—C5178.5 (2)
O1—Zn—N—C925.77 (19)C8—C3—C4—C50.2 (3)
O1—Zn—N—C13148.46 (19)C2—C3—C8—C7178.15 (18)
O3—Zn—N—C9105.78 (19)C4—C3—C8—C70.6 (3)
O3—Zn—N—C1368.45 (19)C3—C4—C5—C60.3 (4)
O1i—Zn—N—C9154.23 (19)C4—C5—C6—C70.4 (4)
O1i—Zn—N—C1331.54 (19)C5—C6—C7—C80.0 (4)
O3i—Zn—N—C974.22 (19)C6—C7—C8—C30.5 (3)
O3i—Zn—N—C13111.55 (19)N—C9—C10—C115.1 (10)
Zn—O1—C1—O2173.77 (19)C9—C10—C11—C121.7 (13)
Zn—O1—C1—C24.3 (3)C9—C10—C11—C14177.2 (6)
Zn—O3—C2—C12.7 (2)C10—C11—C12—C132.9 (12)
Zn—O3—C2—C3127.04 (14)C14—C11—C12—C13176.0 (6)
Zn—N—C9—C10176.2 (4)C10—C11—C14—C14ii83.6 (9)
C13—N—C9—C109.5 (5)C12—C11—C14—C14ii95.2 (9)
Zn—N—C13—C12173.7 (5)C11—C12—C13—N8.3 (11)
C9—N—C13—C1211.8 (6)C11—C14—C14ii—C11ii180.0 (5)
O1—C1—C2—O30.9 (3)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y, z+1; (iii) x+1/2, y+1/2, z+3/2; (iv) x+1/2, y+1/2, z+2; (v) x+1/2, y1/2, z+3/2; (vi) x+1/2, y+1/2, z+1/2; (vii) x+1, y, z+5/2; (viii) x1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
Cg5 is the centroid of the C3–C8 ring.
D—H···AD—HH···AD···AD—H···A
O3—H3A···O2v0.86 (3)1.72 (3)2.572 (2)177.3 (15)
C2—H2A···O1v1.002.463.193 (2)129
C8—H8A···O2iv0.952.443.378 (3)168
C13—H13A···O2v0.962.433.064 (3)124
C9—H9A···Cg5iii0.962.883.781 (2)157
C12—H12B···Cg5v0.952.753.649 (8)159
Symmetry codes: (iii) x+1/2, y+1/2, z+3/2; (iv) x+1/2, y+1/2, z+2; (v) x+1/2, y1/2, z+3/2.
 

Funding information

This work was supported financially by Yuanpei University, Taiwan.

References

First citationBrandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBromant, C., Nika, W., Pantenburg, I. & Meyer, G. (2005). Z. Naturforsch. Teil B, 60, 753–757.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuo, W. Y., Li, M. L., Shi, Y. J., Song, H. H. & Yu, H. T. (2015). J. Coord. Chem. 68, 4224–4241.  CSD CrossRef CAS Google Scholar
First citationLee, D. N. & Kim, Y. (2015). Acta Cryst. E71, m150–m151.  CSD CrossRef IUCr Journals Google Scholar
First citationMiyamoto, T. K., Okude, K., Maeda, K., Ichida, H., Sasaki, Y. & Tashiro, T. (1989). Bull. Chem. Soc. Jpn, 62, 3239–3246.  CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmatanová, I. K., Marek, J., Švančárek, P. & Schwendt, P. (2000). Acta Cryst. C56, 154–155.  CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYu, S. M., Shin, D. H., Kim, P.-G., Kim, C. & Kim, Y. (2009). Acta Cryst. E65, m1045–m1046.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZechel, F., Schwendt, P., Gyepes, R., Šimunek, J., Tatiersky, J. & Krivosudský, L. (2019). New J. Chem. 43, 17696–17702.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds