research communications
Two 3-amino-1H-pyrazol-2-ium salts containing organic anions, and an orthorhombic polymorph of 3-amino-1H-pyrazol-2-ium nitrate
aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570 006, India, bDepartment of Chemistry, Maharani's Science College for Women, Mysuru-570 001, India, cInstitute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Strasse 2, D-64287 Darmstadt, Germany, and dSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, UK
*Correspondence e-mail: yathirajan@hotmail.com
Co-crystallization from methanol of 3-amino-1H-pyrazole with 3,5-dinitrobenzoic acid produces 3-amino-1H-pyrazol-2-ium 3,5-dinitrobenzoate monohydrate, C3H6N3+·C7H3N2O6−·H2O, (I), while similar co-crystallization of this pyrazole with an equimolar quantity of fumaric acid produces bis(3-amino-1H-pyrazol-2-ium) fumarate–fumaric acid (1/1), 2C3H6N3+·C4H2O42−·C4H4O4, (II). The reaction of 3-amino-1H-pyrazole with a of nitric acid in methanol yields a second, orthorhombic polymorph of 3-amino-1H-pyrazol-2-ium nitrate, C3H6N3+·NO3−, (III). In each of (I)–(III), the bond distances in the cation provide evidence for extensive delocalization of the positive charge. In each of (I) and (II), an extensive series of O—H⋯O and N—H⋯O hydrogen bonds links the components into complex sheets, while in the structure of (III), the ions are linked by multiple N—H⋯O hydrogen bonds into a three-dimensional arrangement. Comparisons are made with the structures of some related compounds.
1. Chemical context
Pyrazoles exhibit a very wide range of pharmacological and other biological activities, which have recently been extensively reviewed (Ansari et al., 2017; Karrouchi et al., 2018). Derivatives derived from 3-amino-1H-pyrazole have been reported as tyrosine kinase inhibitors, of potential use in cancer treatment (Feng et al., 2008) and as inhibitors of the intracellular phosphorylation of the heat-shock protein hsp27 (Velcicky et al., 2010). As part of a general study of novel pyrazole derivatives (Asma et al., 2018; Kiran Kumar et al., 2020; Shaibah et al., 2020a,b; Shreekanth et al., 2020), we have now synthesized two organic salts derived from 3-amino-1H-pyrazole, namely 3-amino-1-pyrazol-2-ium 3,5-dinitrobenzoate monohydrate (I) (Fig. 1 and Scheme) and bis(3-amino-1-pyrazol-2-ium) fumarate fumaric acid (II) (Fig. 2), whose molecular and supramolecular structures are reported here. Compounds (I) and (II) were readily prepared by co-crystallization of 3-amino-1H-pyrazole with an equimolar quantity of the appropriate organic acid. We have also isolated a second polymorph of 3-amino-1-pyrazol-2-ium nitrate (III). When crystallized from methanol, this compound forms an orthorhombic polymorph in Pna21; a monoclinic polymorph in P21/c, isolated from aqueous solution has recently been reported (Yamuna et al., 2020). Here we discuss the molecular and supramolecular structures of both polymorphs of the nitrate salt.
2. Structural commentary
The salt 3-amino-1H-pyrazol-2-ium 3,5-dinitrobenzoate crystallizes from methanol as a monohydrate, although methanol is absent from the The constitution of the salt (I) derived from fumaric acid is more complex: the structure contains a single cation, occupying a general position, along with a fumarate dianion and a neutral fumaric acid molecule, each lying across a centre of inversion, selected as those at (0.5, 0.5, 0.5) and (0.5, 0, 0.5), respectively, for the anionic and neutral components. The correct location of the H atom bonded to atom O31 (Fig. 2) was confirmed not only by of the atomic coordinates for this H atom and by the final difference map, but also by the C—O distances in the two fumaric acid units, thus 1.2472 (17) and 1.2525 (15) Å in the anion, and 1.2136 (17) and 1.3065 (18) Å in the neutral fumaric acid molecule. Although the co-existence of equal numbers of fumarate anions and neutral fumaric acid molecules, as opposed to hydrogenfumarate anions, seems at first sight unexpected or even counter-intuitive, in fact a number of structures have been reported in which this combination is present, as noted below in Section 4.
Isolation of the nitrate salt from a methanol solution produces an orthorhombic form with Pna21; it has recently been reported [Yamuna et al., 2020; CSD (Groom et al., 2016) refcode NUKKOW], that crystallization of the nitrate salt from an aqueous solution provides a monoclinic polymorph with P21/c, which it is convenient to denote here as (IIIa). There is no obvious simple relationship between either the direct or the dimensions for these two polymorphs.
For each of (I)–(III) it is possible to selected a compact –3). Within the of (II), there is a fairly short but markedly asymmetric O—H⋯O hydrogen bond (Table 2) linking the anionic and neutral fumaric fragments.
in which the components are linked by N—H⋯O hydrogen bonds (Figs. 1The bond distances within the cations exhibit some interesting features. In neutral 1H-pyrazole, the bonds corresponding to N12—C13 and C14—C15 in compounds (I)–(III) (cf. Figs. 1–3) are formally double bonds, while the other ring bonds are all formally single bonds. However, as shown in Table 1, which also includes data for the monoclinic polymorph (IIIa) (Yamuna et al., 2020) for comparison, in none of the cations discussed here does the range of the C—N distances exceed 0.03 Å, while the difference between the two C—C distances never exceeds 0.04 Å. These observations indicate that the positive charge is delocalized over all three of the N atoms, such that all three canonical forms (A)–(C) (Fig. 4) are significant contributors to the overall electronic structure of the cation.
|
3. Supramolecular features
The supramolecular assembly in compounds (I)–(III) is dominated by N—H⋯O Hydrogen bonds together with O—H⋯O hydrogen bonds in (I) and (II) (Table 2). For the two-centre interactions, those having D—H⋯A angles significantly less than 140° have been discounted, as the associated interaction energies are likely to be negligible (Wood et al., 2009). Such contacts are better regarded as adventitious contacts that arise within the supramolecular arrangements dominated by the significant hydrogen bonds.
The two ionic components in compound (I) are linked by two N—H⋯O hydrogen bonds, forming an R22(8) ring (Etter, 1990; Etter et al., 1990; Bernstein et al., 1995), and a third N—H⋯O links the water component to the forming a three-component aggregate (Fig. 1). The hydrogen-bonded supramolecular assembly in compound (I) is two-dimensional. The O—H⋯O hydrogen bond involving atom H31 (Table 2) links the aggregates which are related by translation along [010] to form a C33(9)C33(9)[R22(8)] chain of rings. In addition, the N—H⋯O hydrogen bond involving atom H132 links the ion pairs that are related by translation along [001] into a C22(10)C22(12)[R22(8)] chain of rings. The combination of these two chain motifs generates a sheet lying parallel to (100) and containing R22(8) and R87(32) rings (Fig. 5). Finally, the second O—H⋯O hydrogen bond involving atom H32 links pairs of such sheets, which are related by inversion, to form a complex bilayer.
The supramolecular assembly in compound (II) is relatively straightforward. The single O—H⋯O hydrogen bonds links the fumarate ions and the fumaric acid molecules into a chain running parallel to the [010] direction, in which the anions and neutral molecules alternate (Fig. 6). Two chains of this type, which are related to one another by the c-glide planes, pass through each and they are linked by the cations, via a combination of N—H⋯O hydrogen bonds, to form a sheet lying parallel to (102), within which rings of R21(6), R22(6), R22(7) and R54(22) types are present (Fig. 7).
The ionic components in compound (III) are linked by two N—H⋯O hydrogen bonds to form an containing an R22(8) ring (Fig. 3). Ion pairs of this type are linked by one two-centre N—H⋯O hydrogen bond and one three-centre N—H⋯(O)2 system into a three-dimensional framework structure, whose formation is readily analysed in terms of three simple one-dimensional sub-structures (Ferguson et al., 1998a,b; Gregson et al., 2000). The two-centre N—H⋯O hydrogen bond, acting alone, links ion pairs that are related by the 21 screw axis along [001], forming a C22(7)C22(9)[R22(8) chain of rings running parallel to [001] (Fig. 8). The three-centre N—H⋯(O)2 hydrogen bond links ion pairs that are related by the n-glide plane to form a chain of alternating R12(4) and R22(8) rings running parallel to the [011] direction (Fig. 9). When the two-centre and three-centre systems act alternately, they link the ion pairs into a chain of rings running parallel to the [102] direction (Fig. 10). The combination of the chains along [001], [011] and [102] suffices to link all of the components into a three-dimensional framework structure.
4. Database survey
As noted above in Section 2, a monoclinic polymorph of the nitrate salt, denoted (IIIa) has recently been reported, but without any analysis or description of the supramolecular assembly (Yamuna et al., 2020). As found in the orthorhombic polymorph (III), the ions in (IIIa) are linked by two N—H⋯O hydrogen bonds to form an characterized by an R22(8) motif. Two further N—H⋯O hydrogen bonds link these ion pairs into a sheet lying parallel to (10), in which rings of R22(8), R44(14) and R86(26) types are present (Fig. 11). Sheets of this type are linked by a C—H⋯O hydrogen bond to form a three-dimensional framework structure. In the picrate salt, the ions are linked into sheets by a combination of N—H⋯O and C—H⋯O hydrogen bonds (Infantes et al., 1999). In the hydrogen succinate salt, a combination of O—H⋯O and N—H⋯O hydrogen bonds links the ions into sheets containing R22(8), R32(12) and R54(20) rings (Yamuna et al., 2014). The structure of the trifluoroacetate, which crystallizes with Z′ = 2, and with disorder in each of the independent anions, contains only N—H⋯O hydrogen bonds, which link the ions into complex sheets (Yamuna et al., 2013). We also note that the structure of tetrakis(3-amino-1H-pyrazol-2-ium) bis(μ-chloro)octachlorodibismuth, (C3H6N3)4(Bi2Cl10), has been reported (Ferjani & Boughzala, 2018).
A number of structures have been reported in which fumarate dianions co-exist in equal numbers with neutral fumaric acid molecules, as found here for compound (II). Recently reported examples include the salts formed with 2-amino-5-methylpyridine (Hemamalini & Fun, 2010), N,N′,N′′-triisopropylguanidine (Said et al., 2012), 2-aminopyridine (Dong et al., 2013; Solovyov, 2016) and di-n-butylamine (Tang et al., 2015). We also note a rather earlier report on the structure of a salt formed by [tris(phenanthroline)cobalt(II)] in which all three possible forms fumarate(2−), hydrogenfumarate(1−) and neutral fumaric acid are present in the molar ratio 1:2:3 (Liu et al., 2003).
5. Synthesis and crystallization
The synthesis of compounds (I)–(III) employed commercially available 3-amino-1H-pyrazole, which was used as received. For the synthesis of compounds (I) and (II), a solution of 3-amino-1H-pyrazole (100 mg, 1.20 mmol) in ethanol (10 ml) was mixed with a solution of the appropriate acid, 3,5-dinitrobenzoic acid (255 mg, 20 mmol) for (I) or fumaric acid (139 mg, 1.20 mmol) for (II), also in methanol (10 ml): for (III), a of nitric acid in methanol (1:3, v/v, 10 ml) was added to a solution of 3-amino-1H-pyrazole (100 mg, 1.20 mmol) in ethanol (10 ml). Each of these mixtures was stirred at ambient temperature for 15 min and then set aside to crystallize at ambient temperature and in the presence of air. After one week, the resulting crystals were collected by filtration and dried in air: m.p. (I) 418–423 K, (II) 383–388 K, (III) 385–390 K. Crystals suitable for single-crystal X-ray diffraction were selected directly from the prepared samples.
6. Refinement
Crystal data, data collection and . For compound (I), one low-angle reflection (1,0,0) that had been attenuated by the beam stop was omitted from the All H atoms were located in difference maps. The H atoms bonded to C atoms were then treated as riding atoms in geometrically idealized positions with C—H distances 0.93 Å and Uiso(H) = 1.2Ueq(C). For the H atoms bonded to N or O atoms, the atomic coordinates were refined with Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O). In the absence of significant it was not possible to determine the correct orientation of the structure of (III) relative to the polar axis direction, although this has no chemical significance.
details are summarized in Table 3
|
Supporting information
https://doi.org/10.1107/S2056989020015959/dx2033sup1.cif
contains datablocks global, I, II, III. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020015959/dx2033Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989020015959/dx2033IIsup3.hkl
Structure factors: contains datablock III. DOI: https://doi.org/10.1107/S2056989020015959/dx2033IIIsup4.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989020015959/dx2033Isup5.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989020015959/dx2033IIIsup6.cml
For all structures, data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell
CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b) and PLATON (Spek, 2020).C7H3N2O6+·C3H6N3−·H2O | Z = 2 |
Mr = 313.24 | F(000) = 324 |
Triclinic, P1 | Dx = 1.579 Mg m−3 |
a = 6.6864 (7) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.1857 (9) Å | Cell parameters from 2812 reflections |
c = 12.649 (1) Å | θ = 2.6–27.8° |
α = 79.424 (9)° | µ = 0.14 mm−1 |
β = 85.583 (9)° | T = 296 K |
γ = 75.586 (9)° | Plate, yellow |
V = 658.78 (12) Å3 | 0.50 × 0.40 × 0.04 mm |
Oxford Diffraction Xcalibur with Sapphire CCD diffractometer | 2805 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 2093 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.014 |
ω scans | θmax = 27.5°, θmin = 2.6° |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) | h = −8→8 |
Tmin = 0.886, Tmax = 0.995 | k = −5→10 |
4597 measured reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.044 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.114 | w = 1/[σ2(Fo2) + (0.0501P)2 + 0.2176P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
2805 reflections | Δρmax = 0.21 e Å−3 |
217 parameters | Δρmin = −0.23 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N11 | 0.1394 (3) | 0.94340 (19) | 0.24519 (12) | 0.0395 (4) | |
H11 | 0.113 (3) | 1.014 (3) | 0.2934 (17) | 0.047* | |
N12 | 0.1901 (2) | 0.77011 (18) | 0.27559 (11) | 0.0341 (3) | |
H12 | 0.208 (3) | 0.716 (2) | 0.3528 (16) | 0.041* | |
C13 | 0.2255 (3) | 0.6994 (2) | 0.18655 (13) | 0.0337 (4) | |
C14 | 0.1959 (3) | 0.8317 (2) | 0.09726 (14) | 0.0427 (4) | |
H14 | 0.2097 | 0.8204 | 0.0250 | 0.051* | |
C15 | 0.1428 (3) | 0.9803 (2) | 0.13825 (15) | 0.0449 (5) | |
H15 | 0.1136 | 1.0900 | 0.0978 | 0.054* | |
N131 | 0.2838 (3) | 0.5283 (2) | 0.19133 (15) | 0.0499 (5) | |
H131 | 0.293 (4) | 0.462 (3) | 0.255 (2) | 0.060* | |
H132 | 0.293 (4) | 0.493 (3) | 0.134 (2) | 0.060* | |
C21 | 0.2746 (3) | 0.3820 (2) | 0.60721 (13) | 0.0309 (4) | |
C22 | 0.3285 (3) | 0.2041 (2) | 0.62773 (14) | 0.0344 (4) | |
H22 | 0.3511 | 0.1424 | 0.5713 | 0.041* | |
C23 | 0.3480 (3) | 0.1200 (2) | 0.73307 (14) | 0.0346 (4) | |
C24 | 0.3153 (3) | 0.2053 (2) | 0.81972 (14) | 0.0347 (4) | |
H24 | 0.3301 | 0.1471 | 0.8901 | 0.042* | |
C25 | 0.2594 (3) | 0.3818 (2) | 0.79622 (13) | 0.0335 (4) | |
C26 | 0.2404 (3) | 0.4721 (2) | 0.69249 (13) | 0.0335 (4) | |
H26 | 0.2052 | 0.5911 | 0.6799 | 0.040* | |
C27 | 0.2520 (3) | 0.4756 (2) | 0.49231 (13) | 0.0335 (4) | |
O21 | 0.2332 (2) | 0.63592 (15) | 0.47770 (10) | 0.0440 (3) | |
O22 | 0.2511 (2) | 0.39164 (17) | 0.42035 (10) | 0.0500 (4) | |
N23 | 0.4084 (3) | −0.0685 (2) | 0.75456 (14) | 0.0476 (4) | |
O23 | 0.4093 (4) | −0.14396 (19) | 0.67999 (14) | 0.0821 (6) | |
O24 | 0.4524 (3) | −0.13973 (19) | 0.84632 (13) | 0.0700 (5) | |
N25 | 0.2209 (3) | 0.4769 (2) | 0.88647 (12) | 0.0452 (4) | |
O25 | 0.2652 (3) | 0.3964 (2) | 0.97622 (12) | 0.0811 (6) | |
O26 | 0.1477 (3) | 0.63024 (19) | 0.86825 (12) | 0.0647 (5) | |
O31 | 0.0837 (3) | 1.1210 (2) | 0.41012 (14) | 0.0608 (5) | |
H31 | 0.140 (5) | 1.208 (4) | 0.409 (2) | 0.091* | |
H32 | −0.017 (5) | 1.144 (4) | 0.440 (3) | 0.091* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N11 | 0.0506 (10) | 0.0299 (8) | 0.0369 (8) | −0.0063 (7) | −0.0022 (7) | −0.0071 (6) |
N12 | 0.0438 (9) | 0.0300 (7) | 0.0283 (7) | −0.0085 (6) | −0.0021 (6) | −0.0045 (6) |
C13 | 0.0346 (9) | 0.0390 (9) | 0.0286 (8) | −0.0084 (7) | −0.0026 (7) | −0.0088 (7) |
C14 | 0.0484 (12) | 0.0495 (11) | 0.0282 (9) | −0.0092 (9) | −0.0051 (8) | −0.0038 (8) |
C15 | 0.0502 (12) | 0.0409 (11) | 0.0384 (10) | −0.0082 (9) | −0.0069 (8) | 0.0049 (8) |
N131 | 0.0781 (13) | 0.0369 (9) | 0.0348 (9) | −0.0079 (8) | −0.0033 (9) | −0.0135 (7) |
C21 | 0.0326 (9) | 0.0321 (9) | 0.0287 (8) | −0.0090 (7) | −0.0019 (7) | −0.0050 (6) |
C22 | 0.0385 (10) | 0.0327 (9) | 0.0332 (9) | −0.0078 (7) | −0.0004 (7) | −0.0100 (7) |
C23 | 0.0346 (10) | 0.0276 (8) | 0.0395 (9) | −0.0056 (7) | −0.0012 (7) | −0.0027 (7) |
C24 | 0.0352 (10) | 0.0375 (9) | 0.0292 (8) | −0.0082 (7) | −0.0026 (7) | 0.0001 (7) |
C25 | 0.0356 (10) | 0.0375 (9) | 0.0293 (8) | −0.0086 (7) | −0.0014 (7) | −0.0106 (7) |
C26 | 0.0384 (10) | 0.0272 (8) | 0.0337 (9) | −0.0055 (7) | −0.0021 (7) | −0.0047 (7) |
C27 | 0.0372 (10) | 0.0350 (9) | 0.0287 (8) | −0.0098 (7) | −0.0007 (7) | −0.0053 (7) |
O21 | 0.0691 (9) | 0.0320 (7) | 0.0302 (6) | −0.0130 (6) | −0.0038 (6) | −0.0016 (5) |
O22 | 0.0813 (11) | 0.0418 (7) | 0.0299 (7) | −0.0185 (7) | −0.0023 (6) | −0.0082 (6) |
N23 | 0.0546 (11) | 0.0311 (8) | 0.0531 (10) | −0.0081 (7) | 0.0028 (8) | −0.0018 (7) |
O23 | 0.1407 (18) | 0.0345 (8) | 0.0655 (11) | −0.0093 (9) | 0.0088 (11) | −0.0153 (8) |
O24 | 0.0983 (14) | 0.0407 (8) | 0.0623 (10) | −0.0127 (8) | −0.0172 (9) | 0.0144 (7) |
N25 | 0.0543 (11) | 0.0494 (10) | 0.0346 (8) | −0.0127 (8) | 0.0017 (7) | −0.0148 (7) |
O25 | 0.1324 (17) | 0.0746 (12) | 0.0301 (8) | −0.0065 (11) | −0.0122 (9) | −0.0142 (7) |
O26 | 0.0950 (13) | 0.0461 (9) | 0.0547 (9) | −0.0108 (8) | 0.0045 (8) | −0.0243 (7) |
O31 | 0.0825 (13) | 0.0466 (9) | 0.0590 (10) | −0.0185 (9) | −0.0006 (8) | −0.0201 (7) |
N11—C15 | 1.331 (2) | C22—H22 | 0.9300 |
N11—N12 | 1.362 (2) | C23—C24 | 1.380 (2) |
N11—H11 | 0.89 (2) | C23—N23 | 1.473 (2) |
N12—C13 | 1.338 (2) | C24—C25 | 1.380 (2) |
N12—H12 | 0.999 (19) | C24—H24 | 0.9300 |
C13—N131 | 1.348 (2) | C25—C26 | 1.381 (2) |
C13—C14 | 1.402 (2) | C25—N25 | 1.468 (2) |
C14—C15 | 1.365 (3) | C26—H26 | 0.9300 |
C14—H14 | 0.9300 | C27—O22 | 1.238 (2) |
C15—H15 | 0.9300 | C27—O21 | 1.267 (2) |
N131—H131 | 0.88 (2) | N23—O23 | 1.217 (2) |
N131—H132 | 0.82 (3) | N23—O24 | 1.222 (2) |
C21—C26 | 1.389 (2) | N25—O26 | 1.214 (2) |
C21—C22 | 1.390 (2) | N25—O25 | 1.221 (2) |
C21—C27 | 1.513 (2) | O31—H31 | 0.89 (3) |
C22—C23 | 1.383 (2) | O31—H32 | 0.74 (3) |
C15—N11—N12 | 108.82 (15) | C21—C22—H22 | 120.4 |
C15—N11—H11 | 129.5 (13) | C24—C23—C22 | 122.72 (15) |
N12—N11—H11 | 121.7 (13) | C24—C23—N23 | 118.18 (15) |
C13—N12—N11 | 108.10 (14) | C22—C23—N23 | 119.10 (16) |
C13—N12—H12 | 130.2 (11) | C23—C24—C25 | 116.41 (15) |
N11—N12—H12 | 121.5 (11) | C23—C24—H24 | 121.8 |
N12—C13—N131 | 121.65 (16) | C25—C24—H24 | 121.8 |
N12—C13—C14 | 108.13 (15) | C24—C25—C26 | 123.17 (15) |
N131—C13—C14 | 130.21 (17) | C24—C25—N25 | 117.91 (15) |
C15—C14—C13 | 105.77 (16) | C26—C25—N25 | 118.91 (15) |
C15—C14—H14 | 127.1 | C25—C26—C21 | 118.86 (15) |
C13—C14—H14 | 127.1 | C25—C26—H26 | 120.6 |
N11—C15—C14 | 109.19 (16) | C21—C26—H26 | 120.6 |
N11—C15—H15 | 125.4 | O22—C27—O21 | 125.03 (16) |
C14—C15—H15 | 125.4 | O22—C27—C21 | 118.32 (15) |
C13—N131—H131 | 118.8 (15) | O21—C27—C21 | 116.64 (14) |
C13—N131—H132 | 116.5 (17) | O23—N23—O24 | 123.95 (17) |
H131—N131—H132 | 124 (2) | O23—N23—C23 | 117.99 (17) |
C26—C21—C22 | 119.64 (15) | O24—N23—C23 | 118.06 (17) |
C26—C21—C27 | 120.66 (15) | O26—N25—O25 | 123.56 (17) |
C22—C21—C27 | 119.70 (15) | O26—N25—C25 | 118.69 (15) |
C23—C22—C21 | 119.19 (16) | O25—N25—C25 | 117.74 (16) |
C23—C22—H22 | 120.4 | H31—O31—H32 | 104 (3) |
C15—N11—N12—C13 | 0.1 (2) | N25—C25—C26—C21 | −179.30 (15) |
N11—N12—C13—N131 | 178.47 (17) | C22—C21—C26—C25 | −0.5 (3) |
N11—N12—C13—C14 | −0.1 (2) | C27—C21—C26—C25 | 178.99 (15) |
N12—C13—C14—C15 | 0.1 (2) | C26—C21—C27—O22 | −168.58 (17) |
N131—C13—C14—C15 | −178.3 (2) | C22—C21—C27—O22 | 10.9 (3) |
N12—N11—C15—C14 | 0.0 (2) | C26—C21—C27—O21 | 10.7 (2) |
C13—C14—C15—N11 | 0.0 (2) | C22—C21—C27—O21 | −169.82 (16) |
C26—C21—C22—C23 | −0.3 (3) | C24—C23—N23—O23 | 170.02 (19) |
C27—C21—C22—C23 | −179.78 (16) | C22—C23—N23—O23 | −10.7 (3) |
C21—C22—C23—C24 | 0.3 (3) | C24—C23—N23—O24 | −9.2 (3) |
C21—C22—C23—N23 | −179.00 (16) | C22—C23—N23—O24 | 170.15 (18) |
C22—C23—C24—C25 | 0.5 (3) | C24—C25—N25—O26 | −171.16 (18) |
N23—C23—C24—C25 | 179.83 (15) | C26—C25—N25—O26 | 9.5 (3) |
C23—C24—C25—C26 | −1.4 (3) | C24—C25—N25—O25 | 9.0 (3) |
C23—C24—C25—N25 | 179.28 (16) | C26—C25—N25—O25 | −170.37 (19) |
C24—C25—C26—C21 | 1.4 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O31—H31···O22i | 0.88 (3) | 1.87 (3) | 2.746 (2) | 175 (3) |
O31—H32···O21ii | 0.75 (4) | 2.36 (3) | 2.989 (2) | 143 (3) |
N131—H131···O22 | 0.88 (2) | 2.08 (2) | 2.920 (2) | 159 (2) |
N131—H132···O25iii | 0.82 (2) | 2.31 (3) | 3.128 (2) | 171 (3) |
N11—H11···O31 | 0.89 (2) | 1.83 (2) | 2.707 (2) | 169 (2) |
N12—H12···O21 | 1.00 (2) | 1.60 (2) | 2.5981 (19) | 177.9 (18) |
N12—H12···O22 | 1.00 (2) | 2.586 (17) | 3.244 (2) | 123.3 (13) |
Symmetry codes: (i) x, y+1, z; (ii) −x, −y+2, −z+1; (iii) x, y, z−1. |
2C3H6N3+·C4H2O42−·C4H4O4 | F(000) = 416 |
Mr = 398.34 | Dx = 1.485 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 8.5410 (4) Å | Cell parameters from 1910 reflections |
b = 14.0507 (7) Å | θ = 3.1–27.9° |
c = 7.5137 (4) Å | µ = 0.12 mm−1 |
β = 98.827 (6)° | T = 296 K |
V = 891.02 (8) Å3 | Block, yellow |
Z = 2 | 0.44 × 0.38 × 0.30 mm |
Oxford Diffraction Xcalibur with Sapphire CCD diffractometer | 1909 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 1413 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.016 |
ω scans | θmax = 27.5°, θmin = 3.1° |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) | h = −10→8 |
Tmin = 0.897, Tmax = 0.964 | k = −18→7 |
3658 measured reflections | l = −9→9 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.037 | w = 1/[σ2(Fo2) + (0.0632P)2 + 0.0649P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.110 | (Δ/σ)max < 0.001 |
S = 1.07 | Δρmax = 0.16 e Å−3 |
1909 reflections | Δρmin = −0.17 e Å−3 |
143 parameters | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.011 (3) |
Primary atom site location: difference Fourier map |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N11 | 0.99750 (15) | 0.35914 (9) | 0.31532 (18) | 0.0470 (3) | |
H11 | 0.929 (2) | 0.4025 (13) | 0.350 (2) | 0.056* | |
N12 | 0.96429 (14) | 0.26559 (9) | 0.32111 (17) | 0.0424 (3) | |
H12 | 0.874 (2) | 0.2459 (12) | 0.355 (2) | 0.051* | |
N131 | 1.08253 (19) | 0.11913 (10) | 0.2752 (2) | 0.0621 (4) | |
H131 | 1.000 (3) | 0.0955 (15) | 0.298 (3) | 0.074* | |
H132 | 1.147 (2) | 0.0843 (14) | 0.215 (3) | 0.074* | |
C13 | 1.08323 (16) | 0.21506 (10) | 0.27297 (19) | 0.0409 (3) | |
C14 | 1.19608 (17) | 0.27973 (11) | 0.2328 (2) | 0.0488 (4) | |
H14 | 1.2919 | 0.2659 | 0.1943 | 0.059* | |
C15 | 1.13683 (18) | 0.36775 (11) | 0.2619 (2) | 0.0515 (4) | |
H15 | 1.1872 | 0.4251 | 0.2462 | 0.062* | |
C21 | 0.66915 (15) | 0.41618 (9) | 0.45088 (19) | 0.0388 (3) | |
O21 | 0.68480 (13) | 0.32808 (7) | 0.44357 (18) | 0.0628 (4) | |
O22 | 0.77359 (11) | 0.47336 (7) | 0.41820 (16) | 0.0524 (3) | |
C22 | 0.51841 (15) | 0.45462 (9) | 0.50057 (18) | 0.0384 (3) | |
H22 | 0.4460 | 0.4114 | 0.5345 | 0.046* | |
C31 | 0.63476 (16) | 0.10443 (10) | 0.4570 (2) | 0.0432 (4) | |
O31 | 0.53859 (13) | 0.17395 (8) | 0.48097 (19) | 0.0656 (4) | |
H31 | 0.580 (3) | 0.2323 (17) | 0.471 (3) | 0.098* | |
O32 | 0.76437 (13) | 0.11540 (7) | 0.41269 (17) | 0.0590 (3) | |
C32 | 0.57247 (16) | 0.00849 (10) | 0.4868 (2) | 0.0429 (4) | |
H32 | 0.6409 | −0.0430 | 0.4868 | 0.051* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N11 | 0.0421 (7) | 0.0359 (7) | 0.0670 (8) | 0.0031 (5) | 0.0209 (6) | −0.0044 (6) |
N12 | 0.0325 (6) | 0.0388 (7) | 0.0599 (8) | 0.0000 (5) | 0.0200 (5) | −0.0029 (5) |
N131 | 0.0584 (9) | 0.0416 (8) | 0.0929 (12) | 0.0036 (6) | 0.0326 (8) | −0.0120 (7) |
C13 | 0.0358 (7) | 0.0425 (8) | 0.0462 (8) | 0.0050 (6) | 0.0116 (6) | −0.0062 (6) |
C14 | 0.0350 (7) | 0.0561 (10) | 0.0596 (9) | 0.0010 (6) | 0.0208 (7) | −0.0072 (7) |
C15 | 0.0449 (8) | 0.0460 (9) | 0.0683 (10) | −0.0069 (6) | 0.0233 (7) | −0.0027 (7) |
C21 | 0.0351 (7) | 0.0283 (7) | 0.0561 (8) | 0.0010 (5) | 0.0175 (6) | 0.0006 (6) |
O21 | 0.0511 (6) | 0.0257 (5) | 0.1215 (10) | 0.0008 (4) | 0.0448 (7) | −0.0020 (5) |
O22 | 0.0398 (5) | 0.0306 (5) | 0.0944 (8) | −0.0007 (4) | 0.0350 (5) | 0.0023 (5) |
C22 | 0.0330 (6) | 0.0310 (6) | 0.0551 (8) | −0.0008 (5) | 0.0190 (6) | 0.0013 (6) |
C31 | 0.0381 (7) | 0.0369 (8) | 0.0576 (9) | −0.0018 (6) | 0.0174 (6) | 0.0022 (6) |
O31 | 0.0489 (7) | 0.0344 (6) | 0.1225 (11) | −0.0015 (5) | 0.0418 (7) | 0.0041 (6) |
O32 | 0.0444 (6) | 0.0429 (6) | 0.0973 (9) | −0.0043 (5) | 0.0352 (6) | 0.0035 (6) |
C32 | 0.0391 (7) | 0.0344 (7) | 0.0584 (9) | 0.0009 (6) | 0.0179 (6) | 0.0036 (6) |
N11—C15 | 1.3187 (19) | C21—O21 | 1.2472 (17) |
N11—N12 | 1.3467 (17) | C21—O22 | 1.2525 (15) |
N11—H11 | 0.910 (18) | C21—C22 | 1.4953 (17) |
N12—C13 | 1.3340 (16) | C22—C22i | 1.313 (3) |
N12—H12 | 0.888 (17) | C22—H22 | 0.9300 |
N131—C13 | 1.3480 (19) | C31—O32 | 1.2136 (17) |
N131—H131 | 0.82 (2) | C31—O31 | 1.3065 (18) |
N131—H132 | 0.90 (2) | C31—C32 | 1.4789 (19) |
C13—C14 | 1.391 (2) | O31—H31 | 0.90 (2) |
C14—C15 | 1.366 (2) | C32—C32ii | 1.305 (3) |
C14—H14 | 0.9300 | C32—H32 | 0.9300 |
C15—H15 | 0.9300 | ||
C15—N11—N12 | 107.69 (12) | N11—C15—H15 | 125.1 |
C15—N11—H11 | 132.6 (11) | C14—C15—H15 | 125.1 |
N12—N11—H11 | 119.7 (11) | O21—C21—O22 | 122.93 (12) |
C13—N12—N11 | 109.74 (11) | O21—C21—C22 | 118.15 (11) |
C13—N12—H12 | 129.7 (11) | O22—C21—C22 | 118.92 (12) |
N11—N12—H12 | 120.5 (11) | C22i—C22—C21 | 124.31 (15) |
C13—N131—H131 | 114.4 (15) | C22i—C22—H22 | 117.8 |
C13—N131—H132 | 122.1 (13) | C21—C22—H22 | 117.8 |
H131—N131—H132 | 119 (2) | O32—C31—O31 | 124.20 (14) |
N12—C13—N131 | 121.59 (13) | O32—C31—C32 | 121.45 (13) |
N12—C13—C14 | 107.03 (13) | O31—C31—C32 | 114.34 (12) |
N131—C13—C14 | 131.33 (13) | C31—O31—H31 | 113.7 (15) |
C15—C14—C13 | 105.71 (12) | C32ii—C32—C31 | 124.14 (17) |
C15—C14—H14 | 127.1 | C32ii—C32—H32 | 117.9 |
C13—C14—H14 | 127.1 | C31—C32—H32 | 117.9 |
N11—C15—C14 | 109.82 (14) | ||
C15—N11—N12—C13 | 0.58 (17) | C13—C14—C15—N11 | −0.23 (19) |
N11—N12—C13—N131 | 177.04 (15) | O21—C21—C22—C22i | −174.42 (18) |
N11—N12—C13—C14 | −0.71 (17) | O22—C21—C22—C22i | 5.4 (3) |
N12—C13—C14—C15 | 0.57 (17) | O32—C31—C32—C32ii | −171.39 (19) |
N131—C13—C14—C15 | −176.88 (17) | O31—C31—C32—C32ii | 8.1 (3) |
N12—N11—C15—C14 | −0.20 (19) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O31—H31···O21 | 0.90 (2) | 1.65 (2) | 2.5370 (15) | 169 (2) |
N11—H11···O21 | 0.910 (18) | 2.527 (17) | 3.0070 (17) | 113.4 (13) |
N11—H11···O22 | 0.910 (18) | 1.796 (17) | 2.6989 (16) | 171.4 (17) |
N12—H12···O21 | 0.892 (17) | 2.172 (17) | 2.8267 (17) | 129.7 (14) |
N12—H12···O32 | 0.892 (17) | 2.133 (17) | 2.8641 (16) | 138.6 (15) |
N131—H131···O32 | 0.82 (2) | 2.33 (3) | 3.052 (2) | 148 (2) |
N131—H132···O22iii | 0.908 (19) | 2.03 (2) | 2.8922 (18) | 159.4 (17) |
Symmetry code: (iii) −x+2, y−1/2, −z+1/2. |
C3H6N3+·NO3− | Dx = 1.576 Mg m−3 |
Mr = 146.12 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pna21 | Cell parameters from 942 reflections |
a = 7.270 (1) Å | θ = 3.2–27.8° |
b = 9.907 (2) Å | µ = 0.14 mm−1 |
c = 8.551 (2) Å | T = 296 K |
V = 615.9 (2) Å3 | Needle, yellow |
Z = 4 | 0.50 × 0.24 × 0.20 mm |
F(000) = 304 |
Oxford Diffraction Xcalibur with Sapphire CCD diffractometer | 942 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 806 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.020 |
ω scans | θmax = 27.8°, θmin = 3.2° |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) | h = −5→9 |
Tmin = 0.911, Tmax = 0.973 | k = −12→12 |
2221 measured reflections | l = −11→4 |
Refinement on F2 | Primary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.036 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.092 | w = 1/[σ2(Fo2) + (0.055P)2 + 0.0228P] where P = (Fo2 + 2Fc2)/3 |
S = 1.11 | (Δ/σ)max < 0.001 |
942 reflections | Δρmax = 0.15 e Å−3 |
103 parameters | Δρmin = −0.15 e Å−3 |
1 restraint |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N11 | 0.4618 (4) | 0.1812 (2) | 0.6198 (4) | 0.0508 (6) | |
H11 | 0.503 (5) | 0.195 (3) | 0.721 (6) | 0.061* | |
N12 | 0.4203 (3) | 0.2766 (2) | 0.5126 (3) | 0.0439 (6) | |
H12 | 0.431 (4) | 0.352 (4) | 0.528 (4) | 0.053* | |
C13 | 0.3503 (3) | 0.2185 (3) | 0.3849 (3) | 0.0397 (6) | |
C14 | 0.3453 (4) | 0.0800 (2) | 0.4129 (4) | 0.0445 (7) | |
H14 | 0.3025 | 0.0135 | 0.3454 | 0.053* | |
C15 | 0.4162 (4) | 0.0616 (3) | 0.5595 (5) | 0.0522 (8) | |
H15 | 0.4303 | −0.0212 | 0.6092 | 0.063* | |
N131 | 0.2968 (4) | 0.2904 (3) | 0.2604 (4) | 0.0577 (7) | |
H131 | 0.349 (5) | 0.370 (5) | 0.246 (5) | 0.069* | |
H132 | 0.264 (5) | 0.249 (4) | 0.183 (6) | 0.069* | |
N21 | 0.3928 (3) | 0.6297 (2) | 0.4171 (3) | 0.0451 (6) | |
O21 | 0.3536 (3) | 0.56587 (19) | 0.5376 (3) | 0.0641 (7) | |
O22 | 0.4480 (3) | 0.57038 (18) | 0.2981 (3) | 0.0560 (6) | |
O23 | 0.3784 (4) | 0.75575 (19) | 0.4165 (3) | 0.0699 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N11 | 0.0619 (14) | 0.0457 (13) | 0.0448 (15) | −0.0068 (10) | −0.0035 (13) | −0.0023 (12) |
N12 | 0.0500 (13) | 0.0315 (10) | 0.0501 (15) | −0.0048 (9) | 0.0029 (13) | −0.0092 (12) |
C13 | 0.0375 (11) | 0.0358 (12) | 0.0457 (18) | −0.0010 (10) | 0.0045 (11) | −0.0072 (13) |
C14 | 0.0480 (13) | 0.0321 (13) | 0.0534 (18) | −0.0053 (11) | 0.0010 (15) | −0.0091 (12) |
C15 | 0.0575 (16) | 0.0362 (13) | 0.063 (2) | −0.0052 (12) | 0.0044 (16) | 0.0008 (14) |
N131 | 0.0694 (16) | 0.0474 (15) | 0.0562 (18) | −0.0059 (12) | −0.0124 (14) | −0.0010 (13) |
N21 | 0.0601 (13) | 0.0324 (11) | 0.0427 (13) | 0.0020 (9) | −0.0002 (12) | 0.0005 (12) |
O21 | 0.1067 (18) | 0.0398 (10) | 0.0457 (13) | 0.0027 (10) | 0.0150 (14) | 0.0043 (10) |
O22 | 0.0818 (14) | 0.0380 (10) | 0.0482 (13) | −0.0002 (9) | 0.0104 (12) | −0.0067 (10) |
O23 | 0.1188 (18) | 0.0274 (9) | 0.0635 (16) | 0.0089 (10) | 0.0148 (15) | −0.0002 (11) |
N11—C15 | 1.334 (4) | C14—H14 | 0.9300 |
N11—N12 | 1.351 (4) | C15—H15 | 0.9300 |
N11—H11 | 0.93 (5) | N131—H131 | 0.88 (4) |
N12—C13 | 1.336 (4) | N131—H132 | 0.82 (5) |
N12—H12 | 0.76 (4) | N21—O22 | 1.241 (4) |
C13—N131 | 1.338 (4) | N21—O21 | 1.242 (3) |
C13—C14 | 1.393 (4) | N21—O23 | 1.253 (3) |
C14—C15 | 1.367 (5) | ||
C15—N11—N12 | 107.7 (3) | C13—C14—H14 | 126.9 |
C15—N11—H11 | 125 (2) | N11—C15—C14 | 109.3 (3) |
N12—N11—H11 | 127 (2) | N11—C15—H15 | 125.4 |
C13—N12—N11 | 109.8 (2) | C14—C15—H15 | 125.4 |
C13—N12—H12 | 127 (3) | C13—N131—H131 | 118 (3) |
N11—N12—H12 | 123 (3) | C13—N131—H132 | 117 (3) |
N12—C13—N131 | 122.1 (2) | H131—N131—H132 | 118 (4) |
N12—C13—C14 | 107.1 (3) | O22—N21—O21 | 120.9 (2) |
N131—C13—C14 | 130.8 (3) | O22—N21—O23 | 119.7 (3) |
C15—C14—C13 | 106.2 (3) | O21—N21—O23 | 119.4 (3) |
C15—C14—H14 | 126.9 | ||
C15—N11—N12—C13 | −0.5 (3) | N131—C13—C14—C15 | −179.6 (3) |
N11—N12—C13—N131 | 179.8 (3) | N12—N11—C15—C14 | 0.1 (3) |
N11—N12—C13—C14 | 0.6 (3) | C13—C14—C15—N11 | 0.3 (3) |
N12—C13—C14—C15 | −0.6 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N11—H11···O22i | 0.93 (5) | 2.44 (3) | 2.968 (3) | 116 (3) |
N11—H11···O23i | 0.93 (5) | 1.94 (5) | 2.860 (4) | 170 (3) |
N12—H12···O21 | 0.76 (4) | 2.19 (4) | 2.914 (3) | 158 (3) |
N12—H12···O22i | 0.76 (4) | 2.59 (3) | 3.029 (3) | 119 (3) |
N131—H131···O22 | 0.88 (5) | 2.16 (5) | 3.001 (4) | 159 (4) |
N131—H132···O21ii | 0.81 (5) | 2.36 (4) | 3.126 (4) | 157 (4) |
N131—H132···O23ii | 0.81 (5) | 2.50 (5) | 3.223 (4) | 148 (4) |
Symmetry codes: (i) −x+1, −y+1, z+1/2; (ii) −x+1/2, y−1/2, z−1/2. |
The data for the monoclinic polymorph (IIIa) are taken from Yamuna et al. (2020), but with the atom labels adjusted to match those used for (I)–(III). |
Parameter | (I) | (II) | (III) | (IIIa) |
N11—N12 | 1.362 (2) | 1.3467 (17) | 1.351 (4) | 1.358 (2) |
N12—C13 | 1.338 (2) | 1.3340 (17) | 1.336 (4) | 1.347 (2) |
C13—C14 | 1.402 (2) | 1.391 (2) | 1.393 (4) | 1.403 (3) |
C14—C15 | 1.365 (3) | 1.366 (2) | 1.367 (5) | 1.372 (2) |
C15—N11 | 1.331 (2) | 1.3187 (19) | 1.334 (4) | 1.329 (3) |
C13—N131 | 1.348 (2) | 1.3480 (19) | 1.338 (4) | 1.338 (2) |
Compound | D—H···A | D—H | H···A | D···A | D—H···A |
(I) | O31—H31···O22i | 0.88 (3) | 1.87 (3) | 2.746 (2) | 175 (3) |
O31—H32···O21ii | 0.75 (4) | 2.36 (3) | 2.989 (2) | 143 (3) | |
N131—H131···O22 | 0.88 (2) | 2.08 (2) | 2.920 (2) | 159 (2) | |
N131—H132···O25iii | 0.82 (2) | 2.31 (3) | 3.128 (2) | 171 (3) | |
N11—H11···O31 | 0.89 (2) | 1.83 (2) | 2.707(2 | 169 (2) | |
N12—H12···O21 | 1.00 (2) | 1.60 (2) | 2.5981 (19) | 177.9 (18) | |
(II) | O31—H31···O21 | 0.90 (2) | 1.65 (2) | 2.5370 (15) | 169 (2) |
N11—H11···O22 | 0.910 (18) | 1.796 (17) | 2.6989 (16) | 171.4 (17) | |
N12—H12···O21 | 0.892 (17) | 2.172 (17) | 2.8267 (17) | 129.7(14 | |
N12—H12···O32 | 0.892 (17) | 2.133 (17) | 2.8641 (16) | 138.6 (15) | |
N131—H131···O32 | 0.82 (2) | 2.33 (3) | 3.052 (2) | 148 (2) | |
N131—H132···O22iv | 0.908 (19) | 2.03 (2) | 2.8922 (18) | 159.4 (17) | |
(III) | N11—H11···O23v | 0.93 (5) | 1.94 (5) | 2.860 (4) | 170 (3) |
N12—H12···O21 | 0.76 (4) | 2.19 (4) | 2.914 (3) | 158 (3) | |
N131—H131···O22 | 0.88 (5) | 2.16 (5) | 3.001 (4) | 159 (4) | |
N131—H132···O21vi | 0.81 (5) | 2.36 (4) | 3.126 (4) | 157 (4) | |
N131—H132···O23vi | 0.81 (5) | 2.50 (5) | 3.223 (4) | 148 (4) |
Symmetry codes: (i) x, 1 + y, z; (ii) -x, 2 - y, 1 - z; (iii) x, y, -1 + z; (iv) 2 - x, -1/2 + y, 1/2 - z; (v) 1 - x, 1 - y, 1/2 + z; (vi) 1/2 - x, -1/2 + y, -1/2 + z. |
Acknowledgements
SDA thanks the University of Mysore for research facilities.
Funding information
HSY thanks the University Grants Commission, New Delhi for the award of a BSR Faculty Fellowship for three years.
References
Ansari, A., Ali, A., Asif, M. & Shamsuzzaman, S. (2017). New J. Chem. 41, 16–41. Web of Science CrossRef CAS Google Scholar
Asma, Kalluraya, B., Yathirajan, H. S., Rathore, R. S. & Glidewell, C. (2018). Acta Cryst. E74, 1783–1789. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Dong, S., Tao, Y., Shen, X. & Pan, Z. (2013). Acta Cryst. C69, 896–900. Web of Science CSD CrossRef IUCr Journals Google Scholar
Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Feng, Y., Guan, H., Kan, Y., Ioannidis, S., Peng, B., Su, M., Wang, B., Wang, T. & Zhang, H.-J. (2008). US Patent US20080287475A1. Google Scholar
Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129–138. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139–150. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ferjani, H. & Boughzala, H. (2018). Russ. J. Inorg. Chem. 63, 349–356. Web of Science CSD CrossRef CAS Google Scholar
Gregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39–57. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o2093–o2094. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Infantes, L., Foces-Foces, C., Claramunt, R. M., López, C. & Eiguero, J. (1999). J. Heterocycl. Chem. 36, 595–600. CSD CrossRef CAS Google Scholar
Karrouchi, K., Radi, S., Ramli, Y., Taoufik, J., Mabkhot, Y. N., Al-aizari, F. A. & Ansar, M. (2018). Molecules, 23, 134–210. Web of Science CrossRef Google Scholar
Kiran Kumar, H., Yathirajan, H. S., Asma, Manju, N., Kalluraya, B., Rathore, R. S. & Glidewell, C. (2020). Acta Cryst. E76, 683–691. Web of Science CSD CrossRef IUCr Journals Google Scholar
Liu, Y., Xu, D.-J. & Hung, C.-H. (2003). Acta Cryst. E59, m297–m299. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Said, F. F., Ali, B. F., Richeson, D. & Korobkov, I. (2012). Acta Cryst. E68, o1906. CSD CrossRef IUCr Journals Google Scholar
Shaibah, M. A. E., Yathirajan, H. S., Asma, Manju, N., Kalluraya, B., Rathore, R. S. & Glidewell, C. (2020b). Acta Cryst. E76, 360–365. Web of Science CSD CrossRef IUCr Journals Google Scholar
Shaibah, M. A. E., Yathirajan, H. S., Manju, N., Kalluraya, B., Rathore, R. S. & Glidewell, C. (2020a). Acta Cryst. E76, 48–52. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shreekanth, T. K., Yathirajan, H. S., Kalluraya, B., Foro, S. & Glidewell, C. (2020). Acta Cryst. E76, 1605–1610. Web of Science CSD CrossRef IUCr Journals Google Scholar
Solovyov, L. A. (2016). Acta Cryst. B72, 738–743. CSD CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Tang, Y., Sun, Z., Ji, C., Li, L., Zhang, S., Chen, T. & Luo, J. (2015). Cryst. Growth Des. 15, 457–464. CSD CrossRef CAS Google Scholar
Velcicky, J., Feifel, R., Hawtin, S., Heng, R., Huppertz, C., Koch, G., Kroemer, M., Moebitz, H., Revesz, L., Scheufler, C. & Schlapbach, A. (2010). Bioorg. Med. Chem. Lett. 20, 1293–1297. Web of Science CrossRef CAS PubMed Google Scholar
Wood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563–1571. Web of Science CrossRef CAS Google Scholar
Yamuna, T. S., Jasinski, J. P., Scadova, D. R., Yathirajan, H. S. & Kaur, M. (2013). Acta Cryst. E69, o1425–o1426. CSD CrossRef CAS IUCr Journals Google Scholar
Yamuna, T. S., Kaur, M., Anderson, B. J., Jasinski, J. P. & Yathirajan, H. S. (2014). Acta Cryst. E70, o221–o222. CSD CrossRef IUCr Journals Google Scholar
Yamuna, T. S., Kavitha, C. N., Jasinski, J. P., Yathirajan, H. S. & Glidewell, C. (2020). CSD Communication (CCDC 1987349), CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc24q01y. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.