research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Two 3-amino-1H-pyrazol-2-ium salts containing organic anions, and an ortho­rhom­bic polymorph of 3-amino-1H-pyrazol-2-ium nitrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570 006, India, bDepartment of Chemistry, Maharani's Science College for Women, Mysuru-570 001, India, cInstitute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Strasse 2, D-64287 Darmstadt, Germany, and dSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, UK
*Correspondence e-mail: yathirajan@hotmail.com

Edited by D. Chopra, Indian Institute of Science Education and Research Bhopal, India (Received 11 November 2020; accepted 6 December 2020; online 1 January 2021)

Co-crystallization from methanol of 3-amino-1H-pyrazole with 3,5-di­nitro­benzoic acid produces 3-amino-1H-pyrazol-2-ium 3,5-di­nitro­benzoate monohydrate, C3H6N3+·C7H3N2O6·H2O, (I), while similar co-crystallization of this pyrazole with an equimolar qu­antity of fumaric acid produces bis­(3-amino-1H-pyrazol-2-ium) fumarate–fumaric acid (1/1), 2C3H6N3+·C4H2O42−·C4H4O4, (II). The reaction of 3-amino-1H-pyrazole with a dilute solution of nitric acid in methanol yields a second, ortho­rhom­bic polymorph of 3-amino-1H-pyrazol-2-ium nitrate, C3H6N3+·NO3, (III). In each of (I)–(III), the bond distances in the cation provide evidence for extensive delocalization of the positive charge. In each of (I) and (II), an extensive series of O—H⋯O and N—H⋯O hydrogen bonds links the components into complex sheets, while in the structure of (III), the ions are linked by multiple N—H⋯O hydrogen bonds into a three-dimensional arrangement. Comparisons are made with the structures of some related compounds.

1. Chemical context

Pyrazoles exhibit a very wide range of pharmacological and other biological activities, which have recently been extensively reviewed (Ansari et al., 2017[Ansari, A., Ali, A., Asif, M. & Shamsuzzaman, S. (2017). New J. Chem. 41, 16-41.]; Karrouchi et al., 2018[Karrouchi, K., Radi, S., Ramli, Y., Taoufik, J., Mabkhot, Y. N., Al-aizari, F. A. & Ansar, M. (2018). Molecules, 23, 134-210.]). Derivatives derived from 3-amino-1H-pyrazole have been reported as tyrosine kinase inhibitors, of potential use in cancer treatment (Feng et al., 2008[Feng, Y., Guan, H., Kan, Y., Ioannidis, S., Peng, B., Su, M., Wang, B., Wang, T. & Zhang, H.-J. (2008). US Patent US20080287475A1.]) and as inhibitors of the intra­cellular phospho­rylation of the heat-shock protein hsp27 (Velcicky et al., 2010[Velcicky, J., Feifel, R., Hawtin, S., Heng, R., Huppertz, C., Koch, G., Kroemer, M., Moebitz, H., Revesz, L., Scheufler, C. & Schlapbach, A. (2010). Bioorg. Med. Chem. Lett. 20, 1293-1297.]). As part of a general study of novel pyrazole derivatives (Asma et al., 2018[Asma, Kalluraya, B., Yathirajan, H. S., Rathore, R. S. & Glidewell, C. (2018). Acta Cryst. E74, 1783-1789.]; Kiran Kumar et al., 2020[Kiran Kumar, H., Yathirajan, H. S., Asma, Manju, N., Kalluraya, B., Rathore, R. S. & Glidewell, C. (2020). Acta Cryst. E76, 683-691.]; Shaibah et al., 2020a[Shaibah, M. A. E., Yathirajan, H. S., Manju, N., Kalluraya, B., Rathore, R. S. & Glidewell, C. (2020a). Acta Cryst. E76, 48-52.],b[Shaibah, M. A. E., Yathirajan, H. S., Asma, Manju, N., Kalluraya, B., Rathore, R. S. & Glidewell, C. (2020b). Acta Cryst. E76, 360-365.]; Shreekanth et al., 2020[Shreekanth, T. K., Yathirajan, H. S., Kalluraya, B., Foro, S. & Glidewell, C. (2020). Acta Cryst. E76, 1605-1610.]), we have now synthesized two organic salts derived from 3-amino-1H-pyrazole, namely 3-amino-1-pyrazol-2-ium 3,5-di­nitro­benz­oate monohydrate (I)[link] (Fig. 1[link] and Scheme) and bis­(3-amino-1-pyrazol-2-ium) fumarate fumaric acid (II)[link] (Fig. 2[link]), whose mol­ecular and supra­molecular structures are reported here. Compounds (I)[link] and (II)[link] were readily prepared by co-crystallization of 3-amino-1H-pyrazole with an equimolar qu­antity of the appropriate organic acid. We have also isolated a second polymorph of 3-amino-1-pyrazol-2-ium nitrate (III)[link]. When crystallized from methanol, this compound forms an ortho­rhom­bic polymorph in space group Pna21; a monoclinic polymorph in space group P21/c, isolated from aqueous solution has recently been reported (Yamuna et al., 2020[Yamuna, T. S., Kavitha, C. N., Jasinski, J. P., Yathirajan, H. S. & Glidewell, C. (2020). CSD Communication (CCDC 1987349), CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc24q01y.]). Here we discuss the mol­ecular and supra­molecular structures of both polymorphs of the nitrate salt.

[Scheme 1]
[Figure 1]
Figure 1
The independent components in compound (I)[link] showing the atom-labelling scheme and the hydrogen bonds within the selected asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
The independent components in compound (II)[link] showing the atom-labelling scheme and the hydrogen bonds within the selected asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level, and the atoms marked with the suffix `a' or `b' are at the symmetry positions (1 − x, 1 − y, 1 − z) and (1 − x, −y, 1 − z), respectively.

2. Structural commentary

The salt 3-amino-1H-pyrazol-2-ium 3,5-di­nitro­benzoate crystallizes from methanol as a monohydrate, although methanol is absent from the crystal structure. The constitution of the salt (I)[link] derived from fumaric acid is more complex: the structure contains a single cation, occupying a general position, along with a fumarate dianion and a neutral fumaric acid mol­ecule, each lying across a centre of inversion, selected as those at (0.5, 0.5, 0.5) and (0.5, 0, 0.5), respectively, for the anionic and neutral components. The correct location of the H atom bonded to atom O31 (Fig. 2[link]) was confirmed not only by refinement of the atomic coordinates for this H atom and by the final difference map, but also by the C—O distances in the two fumaric acid units, thus 1.2472 (17) and 1.2525 (15) Å in the anion, and 1.2136 (17) and 1.3065 (18) Å in the neutral fumaric acid mol­ecule. Although the co-existence of equal numbers of fumarate anions and neutral fumaric acid mol­ecules, as opposed to hydrogenfumarate anions, seems at first sight unexpected or even counter-intuitive, in fact a number of structures have been reported in which this combination is present, as noted below in Section 4.

Isolation of the nitrate salt from a methanol solution produces an ortho­rhom­bic form with space group Pna21; it has recently been reported [Yamuna et al., 2020[Yamuna, T. S., Kavitha, C. N., Jasinski, J. P., Yathirajan, H. S. & Glidewell, C. (2020). CSD Communication (CCDC 1987349), CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc24q01y.]; CSD (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) refcode NUKKOW], that crystallization of the nitrate salt from an aqueous solution provides a monoclinic polymorph with space group P21/c, which it is convenient to denote here as (IIIa). There is no obvious simple relationship between either the direct or the reduced cell dimensions for these two polymorphs.

For each of (I)–(III) it is possible to selected a compact asymmetric unit in which the components are linked by N—H⋯O hydrogen bonds (Figs. 1[link]–3[link][link]). Within the asymmetric unit of (II)[link], there is a fairly short but markedly asymmetric O—H⋯O hydrogen bond (Table 2[link]) linking the anionic and neutral fumaric fragments.

Table 2
Hydrogen bond parameters (Å, °)

Compound D—H⋯A D—H H⋯A DA D—H⋯A
(I) O31—H31⋯O22i 0.88 (3) 1.87 (3) 2.746 (2) 175 (3)
  O31—H32⋯O21ii 0.75 (4) 2.36 (3) 2.989 (2) 143 (3)
  N131—H131⋯O22 0.88 (2) 2.08 (2) 2.920 (2) 159 (2)
  N131—H132⋯O25iii 0.82 (2) 2.31 (3) 3.128 (2) 171 (3)
  N11—H11⋯O31 0.89 (2) 1.83 (2) 2.707(2 169 (2)
  N12—H12⋯O21 1.00 (2) 1.60 (2) 2.5981 (19) 177.9 (18)
           
(II) O31—H31⋯O21 0.90 (2) 1.65 (2) 2.5370 (15) 169 (2)
  N11—H11⋯O22 0.910 (18) 1.796 (17) 2.6989 (16) 171.4 (17)
  N12—H12⋯O21 0.892 (17) 2.172 (17) 2.8267 (17) 129.7(14
  N12—H12⋯O32 0.892 (17) 2.133 (17) 2.8641 (16) 138.6 (15)
  N131—H131⋯O32 0.82 (2) 2.33 (3) 3.052 (2) 148 (2)
  N131—H132⋯O22iv 0.908 (19) 2.03 (2) 2.8922 (18) 159.4 (17)
           
(III) N11—H11⋯O23v 0.93 (5) 1.94 (5) 2.860 (4) 170 (3)
  N12—H12⋯O21 0.76 (4) 2.19 (4) 2.914 (3) 158 (3)
  N131—H131⋯O22 0.88 (5) 2.16 (5) 3.001 (4) 159 (4)
  N131—H132⋯O21vi 0.81 (5) 2.36 (4) 3.126 (4) 157 (4)
  N131—H132⋯O23vi 0.81 (5) 2.50 (5) 3.223 (4) 148 (4)
Symmetry codes: (i) x, 1 + y, z; (ii) −x, 2 − y, 1 − z; (iii) x, y, −1 + z; (iv) 2 − x, −[{1\over 2}] + y, [{1\over 2}] − z; (v) 1 − x, 1 − y, [{1\over 2}] + z; (vi) [{1\over 2}] − x, −[{1\over 2}] + y, −[{1\over 2}] + z.
[Figure 3]
Figure 3
The independent components in compound (III)[link] showing the atom-labelling scheme and the hydrogen bonds within the selected asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level.

The bond distances within the cations exhibit some inter­esting features. In neutral 1H-pyrazole, the bonds corresponding to N12—C13 and C14—C15 in compounds (I)–(III) (cf. Figs. 1[link]–3[link][link]) are formally double bonds, while the other ring bonds are all formally single bonds. However, as shown in Table 1[link], which also includes data for the monoclinic polymorph (IIIa) (Yamuna et al., 2020[Yamuna, T. S., Kavitha, C. N., Jasinski, J. P., Yathirajan, H. S. & Glidewell, C. (2020). CSD Communication (CCDC 1987349), CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc24q01y.]) for comparison, in none of the cations discussed here does the range of the C—N distances exceed 0.03 Å, while the difference between the two C—C distances never exceeds 0.04 Å. These observations indicate that the positive charge is delocalized over all three of the N atoms, such that all three canonical forms (A)–(C) (Fig. 4[link]) are significant contributors to the overall electronic structure of the cation.

Table 1
Selected bond distances (Å)

The data for the monoclinic polymorph (IIIa) are taken from Yamuna et al. (2020[Yamuna, T. S., Kavitha, C. N., Jasinski, J. P., Yathirajan, H. S. & Glidewell, C. (2020). CSD Communication (CCDC 1987349), CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc24q01y.]), but with the atom labels adjusted to match those used for (I)–(III).

Parameter (I) (II) (III) (IIIa)
N11—N12 1.362 (2) 1.3467 (17) 1.351 (4) 1.358 (2)
N12—C13 1.338 (2) 1.3340 (17) 1.336 (4) 1.347 (2)
C13—C14 1.402 (2) 1.391 (2) 1.393 (4) 1.403 (3)
C14—C15 1.365 (3) 1.366 (2) 1.367 (5) 1.372 (2)
C15—N11 1.331 (2) 1.3187 (19) 1.334 (4) 1.329 (3)
C13—N131 1.348 (2) 1.3480 (19) 1.338 (4) 1.338 (2)
[Figure 4]
Figure 4
The three canonical forms that contribute to the electronic structure of the cations in compounds (I)–(III).

3. Supra­molecular features

The supra­molecular assembly in compounds (I)–(III) is dominated by N—H⋯O Hydrogen bonds together with O—H⋯O hydrogen bonds in (I)[link] and (II)[link] (Table 2[link]). For the two-centre inter­actions, those having D—H⋯A angles significantly less than 140° have been discounted, as the associated inter­action energies are likely to be negligible (Wood et al., 2009[Wood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563-1571.]). Such contacts are better regarded as adventitious contacts that arise within the supra­molecular arrangements dominated by the significant hydrogen bonds.

The two ionic components in compound (I)[link] are linked by two N—H⋯O hydrogen bonds, forming an R22(8) ring (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]; Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]), and a third N—H⋯O links the water component to the ion pair, forming a three-component aggregate (Fig. 1[link]). The hydrogen-bonded supra­molecular assembly in compound (I)[link] is two-dimensional. The O—H⋯O hydrogen bond involving atom H31 (Table 2[link]) links the aggregates which are related by translation along [010] to form a C33(9)C33(9)[R22(8)] chain of rings. In addition, the N—H⋯O hydrogen bond involving atom H132 links the ion pairs that are related by translation along [001] into a C22(10)C22(12)[R22(8)] chain of rings. The combination of these two chain motifs generates a sheet lying parallel to (100) and containing R22(8) and R87(32) rings (Fig. 5[link]). Finally, the second O—H⋯O hydrogen bond involving atom H32 links pairs of such sheets, which are related by inversion, to form a complex bilayer.

[Figure 5]
Figure 5
Part of the crystal structure of compound (I)[link], showing the formation of a hydrogen-bonded sheet lying parallel to (100). Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted.

The supra­molecular assembly in compound (II)[link] is relatively straightforward. The single O—H⋯O hydrogen bonds links the fumarate ions and the fumaric acid mol­ecules into a chain running parallel to the [010] direction, in which the anions and neutral mol­ecules alternate (Fig. 6[link]). Two chains of this type, which are related to one another by the c-glide planes, pass through each unit cell and they are linked by the cations, via a combination of N—H⋯O hydrogen bonds, to form a sheet lying parallel to (102), within which rings of R21(6), R22(6), R22(7) and R54(22) types are present (Fig. 7[link]).

[Figure 6]
Figure 6
Part of the crystal structure of compound (II)[link], showing the formation of a chain of alternating fumarate ions and fumaric acid mol­ecules. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the cations and the H atoms bonded to C atoms have been omitted. The atoms marked with an asterisk (*), a hash (#), a dollar sign ($) or an ampersand (&) are at the symmetry positions (1 − x, 1 − y, 1 − z), (1 − x, −y, 1 − z), (x, 1 + y, z) and (1 − x, 2 − y, 1 − z), respectively. The atoms O21 and O31 (without symmetry symbols) are components of the reference species at (x, y, z).
[Figure 7]
Figure 7
Part of the crystal structure of compound (II)[link], showing the formation of a sheet lying parallel to (102). Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the cations and the H atoms bonded to C atoms have been omitted.

The ionic components in compound (III)[link] are linked by two N—H⋯O hydrogen bonds to form an ion pair containing an R22(8) ring (Fig. 3[link]). Ion pairs of this type are linked by one two-centre N—H⋯O hydrogen bond and one three-centre N—H⋯(O)2 system into a three-dimensional framework structure, whose formation is readily analysed in terms of three simple one-dimensional sub-structures (Ferguson et al., 1998a[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129-138.],b[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139-150.]; Gregson et al., 2000[Gregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39-57.]). The two-centre N—H⋯O hydrogen bond, acting alone, links ion pairs that are related by the 21 screw axis along [001], forming a C22(7)C22(9)[R22(8) chain of rings running parallel to [001] (Fig. 8[link]). The three-centre N—H⋯(O)2 hydrogen bond links ion pairs that are related by the n-glide plane to form a chain of alternating R12(4) and R22(8) rings running parallel to the [011] direction (Fig. 9[link]). When the two-centre and three-centre systems act alternately, they link the ion pairs into a chain of rings running parallel to the [102] direction (Fig. 10[link]). The combination of the chains along [001], [011] and [102] suffices to link all of the components into a three-dimensional framework structure.

[Figure 8]
Figure 8
Part of the crystal structure of compound (III)[link], showing the formation of a chain of rings running parallel to [001]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted.
[Figure 9]
Figure 9
Part of the crystal structure of compound (III)[link], showing the formation of a chain of rings running parallel to [011]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted.
[Figure 10]
Figure 10
Part of the crystal structure of compound (III)[link], showing the formation of a chain of rings running parallel to [102]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted.

4. Database survey

As noted above in Section 2, a monoclinic polymorph of the nitrate salt, denoted (IIIa) has recently been reported, but without any analysis or description of the supra­molecular assembly (Yamuna et al., 2020[Yamuna, T. S., Kavitha, C. N., Jasinski, J. P., Yathirajan, H. S. & Glidewell, C. (2020). CSD Communication (CCDC 1987349), CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc24q01y.]). As found in the ortho­rhom­bic polymorph (III)[link], the ions in (IIIa) are linked by two N—H⋯O hydrogen bonds to form an ion pair characterized by an R22(8) motif. Two further N—H⋯O hydrogen bonds link these ion pairs into a sheet lying parallel to (10[\overline{2}]), in which rings of R22(8), R44(14) and R86(26) types are present (Fig. 11[link]). Sheets of this type are linked by a C—H⋯O hydrogen bond to form a three-dimensional framework structure. In the picrate salt, the ions are linked into sheets by a combination of N—H⋯O and C—H⋯O hydrogen bonds (Infantes et al., 1999[Infantes, L., Foces-Foces, C., Claramunt, R. M., López, C. & Eiguero, J. (1999). J. Heterocycl. Chem. 36, 595-600.]). In the hydrogen succinate salt, a combination of O—H⋯O and N—H⋯O hydrogen bonds links the ions into sheets containing R22(8), R32(12) and R54(20) rings (Yamuna et al., 2014[Yamuna, T. S., Kaur, M., Anderson, B. J., Jasinski, J. P. & Yathirajan, H. S. (2014). Acta Cryst. E70, o221-o222.]). The structure of the tri­fluoro­acetate, which crystallizes with Z′ = 2, and with disorder in each of the independent anions, contains only N—H⋯O hydrogen bonds, which link the ions into complex sheets (Yamuna et al., 2013[Yamuna, T. S., Jasinski, J. P., Scadova, D. R., Yathirajan, H. S. & Kaur, M. (2013). Acta Cryst. E69, o1425-o1426.]). We also note that the structure of tetra­kis­(3-amino-1H-pyrazol-2-ium) bis­(μ-chloro)­octa­chloro­dibismuth, (C3H6N3)4(Bi2Cl10), has been reported (Ferjani & Boughzala, 2018[Ferjani, H. & Boughzala, H. (2018). Russ. J. Inorg. Chem. 63, 349-356.]).

[Figure 11]
Figure 11
Part of the crystal structure of the monoclinic polymorph (IIIa) of 3-amino-1H-pyrazol-2-ium nitrate showing the formation of a hydrogen-bonded sheet parallel to (10[\overline{2}]). The deposited coordinates (Yamuna et al., 2020[Yamuna, T. S., Kavitha, C. N., Jasinski, J. P., Yathirajan, H. S. & Glidewell, C. (2020). CSD Communication (CCDC 1987349), CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc24q01y.]) have been used. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted.

A number of structures have been reported in which fumarate dianions co-exist in equal numbers with neutral fumaric acid mol­ecules, as found here for compound (II)[link]. Recently reported examples include the salts formed with 2-amino-5-methyl­pyridine (Hemamalini & Fun, 2010[Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o2093-o2094.]), N,N′,N′′-triisoprop­ylguanidine (Said et al., 2012[Said, F. F., Ali, B. F., Richeson, D. & Korobkov, I. (2012). Acta Cryst. E68, o1906.]), 2-amino­pyridine (Dong et al., 2013[Dong, S., Tao, Y., Shen, X. & Pan, Z. (2013). Acta Cryst. C69, 896-900.]; Solovyov, 2016[Solovyov, L. A. (2016). Acta Cryst. B72, 738-743.]) and di-n-butyl­amine (Tang et al., 2015[Tang, Y., Sun, Z., Ji, C., Li, L., Zhang, S., Chen, T. & Luo, J. (2015). Cryst. Growth Des. 15, 457-464.]). We also note a rather earlier report on the structure of a salt formed by [tris­(phenan­thro­line)cobalt(II)] in which all three possible forms fumarate(2−), hydrogenfumarate(1−) and neutral fumaric acid are present in the molar ratio 1:2:3 (Liu et al., 2003[Liu, Y., Xu, D.-J. & Hung, C.-H. (2003). Acta Cryst. E59, m297-m299.]).

5. Synthesis and crystallization

The synthesis of compounds (I)–(III) employed commercially available 3-amino-1H-pyrazole, which was used as received. For the synthesis of compounds (I)[link] and (II)[link], a solution of 3-amino-1H-pyrazole (100 mg, 1.20 mmol) in ethanol (10 ml) was mixed with a solution of the appropriate acid, 3,5-di­nitro­benzoic acid (255 mg, 20 mmol) for (I)[link] or fumaric acid (139 mg, 1.20 mmol) for (II)[link], also in methanol (10 ml): for (III)[link], a dilute solution of nitric acid in methanol (1:3, v/v, 10 ml) was added to a solution of 3-amino-1H-pyrazole (100 mg, 1.20 mmol) in ethanol (10 ml). Each of these mixtures was stirred at ambient temperature for 15 min and then set aside to crystallize at ambient temperature and in the presence of air. After one week, the resulting crystals were collected by filtration and dried in air: m.p. (I)[link] 418–423 K, (II)[link] 383–388 K, (III)[link] 385–390 K. Crystals suitable for single-crystal X-ray diffraction were selected directly from the prepared samples.

6. Refinement

Crystal data, data collection and refinement details are summarized in Table 3[link]. For compound (I)[link], one low-angle reflection (1,0,0) that had been attenuated by the beam stop was omitted from the refinement. All H atoms were located in difference maps. The H atoms bonded to C atoms were then treated as riding atoms in geometrically idealized positions with C—H distances 0.93 Å and Uiso(H) = 1.2Ueq(C). For the H atoms bonded to N or O atoms, the atomic coordinates were refined with Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O). In the absence of significant resonant scattering, it was not possible to determine the correct orientation of the structure of (III)[link] relative to the polar axis direction, although this has no chemical significance.

Table 3
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula C7H3N2O6+·C3H6N3·H2O 2C3H6N3+·C4H2O42−·C4H4O4 C3H6N3+·NO3
Mr 313.24 398.34 146.12
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/c Orthorhombic, Pna21
Temperature (K) 296 296 296
a, b, c (Å) 6.6864 (7), 8.1857 (9), 12.649 (1) 8.5410 (4), 14.0507 (7), 7.5137 (4) 7.270 (1), 9.907 (2), 8.551 (2)
α, β, γ (°) 79.424 (9), 85.583 (9), 75.586 (9) 90, 98.827 (6), 90 90, 90, 90
V3) 658.78 (12) 891.02 (8) 615.9 (2)
Z 2 2 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.14 0.12 0.14
Crystal size (mm) 0.50 × 0.40 × 0.04 0.44 × 0.38 × 0.30 0.50 × 0.24 × 0.20
 
Data collection
Diffractometer Oxford Diffraction Xcalibur with Sapphire CCD Oxford Diffraction Xcalibur with Sapphire CCD Oxford Diffraction Xcalibur with Sapphire CCD
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.])
Tmin, Tmax 0.886, 0.995 0.897, 0.964 0.911, 0.973
No. of measured, independent and observed [I > 2σ(I)] reflections 4597, 2805, 2093 3658, 1909, 1413 2221, 942, 806
Rint 0.014 0.016 0.020
(sin θ/λ)max−1) 0.651 0.651 0.656
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.114, 1.04 0.037, 0.110, 1.07 0.036, 0.092, 1.11
No. of reflections 2805 1909 942
No. of parameters 217 143 103
No. of restraints 0 0 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.21, −0.23 0.16, −0.17 0.15, −0.15
Computer programs: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]), CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

For all structures, data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b) and PLATON (Spek, 2020).

3-Amino-1H-pyrazol-2-ium 3,5-dinitrobenzoate monohydrate (I) top
Crystal data top
C7H3N2O6+·C3H6N3·H2OZ = 2
Mr = 313.24F(000) = 324
Triclinic, P1Dx = 1.579 Mg m3
a = 6.6864 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.1857 (9) ÅCell parameters from 2812 reflections
c = 12.649 (1) Åθ = 2.6–27.8°
α = 79.424 (9)°µ = 0.14 mm1
β = 85.583 (9)°T = 296 K
γ = 75.586 (9)°Plate, yellow
V = 658.78 (12) Å30.50 × 0.40 × 0.04 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
2805 independent reflections
Radiation source: Enhance (Mo) X-ray Source2093 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
ω scansθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 88
Tmin = 0.886, Tmax = 0.995k = 510
4597 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0501P)2 + 0.2176P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2805 reflectionsΔρmax = 0.21 e Å3
217 parametersΔρmin = 0.23 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.1394 (3)0.94340 (19)0.24519 (12)0.0395 (4)
H110.113 (3)1.014 (3)0.2934 (17)0.047*
N120.1901 (2)0.77011 (18)0.27559 (11)0.0341 (3)
H120.208 (3)0.716 (2)0.3528 (16)0.041*
C130.2255 (3)0.6994 (2)0.18655 (13)0.0337 (4)
C140.1959 (3)0.8317 (2)0.09726 (14)0.0427 (4)
H140.20970.82040.02500.051*
C150.1428 (3)0.9803 (2)0.13825 (15)0.0449 (5)
H150.11361.09000.09780.054*
N1310.2838 (3)0.5283 (2)0.19133 (15)0.0499 (5)
H1310.293 (4)0.462 (3)0.255 (2)0.060*
H1320.293 (4)0.493 (3)0.134 (2)0.060*
C210.2746 (3)0.3820 (2)0.60721 (13)0.0309 (4)
C220.3285 (3)0.2041 (2)0.62773 (14)0.0344 (4)
H220.35110.14240.57130.041*
C230.3480 (3)0.1200 (2)0.73307 (14)0.0346 (4)
C240.3153 (3)0.2053 (2)0.81972 (14)0.0347 (4)
H240.33010.14710.89010.042*
C250.2594 (3)0.3818 (2)0.79622 (13)0.0335 (4)
C260.2404 (3)0.4721 (2)0.69249 (13)0.0335 (4)
H260.20520.59110.67990.040*
C270.2520 (3)0.4756 (2)0.49231 (13)0.0335 (4)
O210.2332 (2)0.63592 (15)0.47770 (10)0.0440 (3)
O220.2511 (2)0.39164 (17)0.42035 (10)0.0500 (4)
N230.4084 (3)0.0685 (2)0.75456 (14)0.0476 (4)
O230.4093 (4)0.14396 (19)0.67999 (14)0.0821 (6)
O240.4524 (3)0.13973 (19)0.84632 (13)0.0700 (5)
N250.2209 (3)0.4769 (2)0.88647 (12)0.0452 (4)
O250.2652 (3)0.3964 (2)0.97622 (12)0.0811 (6)
O260.1477 (3)0.63024 (19)0.86825 (12)0.0647 (5)
O310.0837 (3)1.1210 (2)0.41012 (14)0.0608 (5)
H310.140 (5)1.208 (4)0.409 (2)0.091*
H320.017 (5)1.144 (4)0.440 (3)0.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0506 (10)0.0299 (8)0.0369 (8)0.0063 (7)0.0022 (7)0.0071 (6)
N120.0438 (9)0.0300 (7)0.0283 (7)0.0085 (6)0.0021 (6)0.0045 (6)
C130.0346 (9)0.0390 (9)0.0286 (8)0.0084 (7)0.0026 (7)0.0088 (7)
C140.0484 (12)0.0495 (11)0.0282 (9)0.0092 (9)0.0051 (8)0.0038 (8)
C150.0502 (12)0.0409 (11)0.0384 (10)0.0082 (9)0.0069 (8)0.0049 (8)
N1310.0781 (13)0.0369 (9)0.0348 (9)0.0079 (8)0.0033 (9)0.0135 (7)
C210.0326 (9)0.0321 (9)0.0287 (8)0.0090 (7)0.0019 (7)0.0050 (6)
C220.0385 (10)0.0327 (9)0.0332 (9)0.0078 (7)0.0004 (7)0.0100 (7)
C230.0346 (10)0.0276 (8)0.0395 (9)0.0056 (7)0.0012 (7)0.0027 (7)
C240.0352 (10)0.0375 (9)0.0292 (8)0.0082 (7)0.0026 (7)0.0001 (7)
C250.0356 (10)0.0375 (9)0.0293 (8)0.0086 (7)0.0014 (7)0.0106 (7)
C260.0384 (10)0.0272 (8)0.0337 (9)0.0055 (7)0.0021 (7)0.0047 (7)
C270.0372 (10)0.0350 (9)0.0287 (8)0.0098 (7)0.0007 (7)0.0053 (7)
O210.0691 (9)0.0320 (7)0.0302 (6)0.0130 (6)0.0038 (6)0.0016 (5)
O220.0813 (11)0.0418 (7)0.0299 (7)0.0185 (7)0.0023 (6)0.0082 (6)
N230.0546 (11)0.0311 (8)0.0531 (10)0.0081 (7)0.0028 (8)0.0018 (7)
O230.1407 (18)0.0345 (8)0.0655 (11)0.0093 (9)0.0088 (11)0.0153 (8)
O240.0983 (14)0.0407 (8)0.0623 (10)0.0127 (8)0.0172 (9)0.0144 (7)
N250.0543 (11)0.0494 (10)0.0346 (8)0.0127 (8)0.0017 (7)0.0148 (7)
O250.1324 (17)0.0746 (12)0.0301 (8)0.0065 (11)0.0122 (9)0.0142 (7)
O260.0950 (13)0.0461 (9)0.0547 (9)0.0108 (8)0.0045 (8)0.0243 (7)
O310.0825 (13)0.0466 (9)0.0590 (10)0.0185 (9)0.0006 (8)0.0201 (7)
Geometric parameters (Å, º) top
N11—C151.331 (2)C22—H220.9300
N11—N121.362 (2)C23—C241.380 (2)
N11—H110.89 (2)C23—N231.473 (2)
N12—C131.338 (2)C24—C251.380 (2)
N12—H120.999 (19)C24—H240.9300
C13—N1311.348 (2)C25—C261.381 (2)
C13—C141.402 (2)C25—N251.468 (2)
C14—C151.365 (3)C26—H260.9300
C14—H140.9300C27—O221.238 (2)
C15—H150.9300C27—O211.267 (2)
N131—H1310.88 (2)N23—O231.217 (2)
N131—H1320.82 (3)N23—O241.222 (2)
C21—C261.389 (2)N25—O261.214 (2)
C21—C221.390 (2)N25—O251.221 (2)
C21—C271.513 (2)O31—H310.89 (3)
C22—C231.383 (2)O31—H320.74 (3)
C15—N11—N12108.82 (15)C21—C22—H22120.4
C15—N11—H11129.5 (13)C24—C23—C22122.72 (15)
N12—N11—H11121.7 (13)C24—C23—N23118.18 (15)
C13—N12—N11108.10 (14)C22—C23—N23119.10 (16)
C13—N12—H12130.2 (11)C23—C24—C25116.41 (15)
N11—N12—H12121.5 (11)C23—C24—H24121.8
N12—C13—N131121.65 (16)C25—C24—H24121.8
N12—C13—C14108.13 (15)C24—C25—C26123.17 (15)
N131—C13—C14130.21 (17)C24—C25—N25117.91 (15)
C15—C14—C13105.77 (16)C26—C25—N25118.91 (15)
C15—C14—H14127.1C25—C26—C21118.86 (15)
C13—C14—H14127.1C25—C26—H26120.6
N11—C15—C14109.19 (16)C21—C26—H26120.6
N11—C15—H15125.4O22—C27—O21125.03 (16)
C14—C15—H15125.4O22—C27—C21118.32 (15)
C13—N131—H131118.8 (15)O21—C27—C21116.64 (14)
C13—N131—H132116.5 (17)O23—N23—O24123.95 (17)
H131—N131—H132124 (2)O23—N23—C23117.99 (17)
C26—C21—C22119.64 (15)O24—N23—C23118.06 (17)
C26—C21—C27120.66 (15)O26—N25—O25123.56 (17)
C22—C21—C27119.70 (15)O26—N25—C25118.69 (15)
C23—C22—C21119.19 (16)O25—N25—C25117.74 (16)
C23—C22—H22120.4H31—O31—H32104 (3)
C15—N11—N12—C130.1 (2)N25—C25—C26—C21179.30 (15)
N11—N12—C13—N131178.47 (17)C22—C21—C26—C250.5 (3)
N11—N12—C13—C140.1 (2)C27—C21—C26—C25178.99 (15)
N12—C13—C14—C150.1 (2)C26—C21—C27—O22168.58 (17)
N131—C13—C14—C15178.3 (2)C22—C21—C27—O2210.9 (3)
N12—N11—C15—C140.0 (2)C26—C21—C27—O2110.7 (2)
C13—C14—C15—N110.0 (2)C22—C21—C27—O21169.82 (16)
C26—C21—C22—C230.3 (3)C24—C23—N23—O23170.02 (19)
C27—C21—C22—C23179.78 (16)C22—C23—N23—O2310.7 (3)
C21—C22—C23—C240.3 (3)C24—C23—N23—O249.2 (3)
C21—C22—C23—N23179.00 (16)C22—C23—N23—O24170.15 (18)
C22—C23—C24—C250.5 (3)C24—C25—N25—O26171.16 (18)
N23—C23—C24—C25179.83 (15)C26—C25—N25—O269.5 (3)
C23—C24—C25—C261.4 (3)C24—C25—N25—O259.0 (3)
C23—C24—C25—N25179.28 (16)C26—C25—N25—O25170.37 (19)
C24—C25—C26—C211.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O31—H31···O22i0.88 (3)1.87 (3)2.746 (2)175 (3)
O31—H32···O21ii0.75 (4)2.36 (3)2.989 (2)143 (3)
N131—H131···O220.88 (2)2.08 (2)2.920 (2)159 (2)
N131—H132···O25iii0.82 (2)2.31 (3)3.128 (2)171 (3)
N11—H11···O310.89 (2)1.83 (2)2.707 (2)169 (2)
N12—H12···O211.00 (2)1.60 (2)2.5981 (19)177.9 (18)
N12—H12···O221.00 (2)2.586 (17)3.244 (2)123.3 (13)
Symmetry codes: (i) x, y+1, z; (ii) x, y+2, z+1; (iii) x, y, z1.
Bis(3-amino-1H-pyrazol-2-ium) fumarate–fumaric acid (1/1)2C3H6N3+·C4H2O42-·C4H4O4, (II). The reaction of 3-amino-1H-pyrazole with a dilute solution of nitric acid in methanol yields an second, orthorhombic polymorph of 3-amino-1H-pyrazol-2-ium nitrate, C3H6N3+·NO3- (II) top
Crystal data top
2C3H6N3+·C4H2O42·C4H4O4F(000) = 416
Mr = 398.34Dx = 1.485 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.5410 (4) ÅCell parameters from 1910 reflections
b = 14.0507 (7) Åθ = 3.1–27.9°
c = 7.5137 (4) ŵ = 0.12 mm1
β = 98.827 (6)°T = 296 K
V = 891.02 (8) Å3Block, yellow
Z = 20.44 × 0.38 × 0.30 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
1909 independent reflections
Radiation source: Enhance (Mo) X-ray Source1413 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 108
Tmin = 0.897, Tmax = 0.964k = 187
3658 measured reflectionsl = 99
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0632P)2 + 0.0649P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.110(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.16 e Å3
1909 reflectionsΔρmin = 0.17 e Å3
143 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.011 (3)
Primary atom site location: difference Fourier map
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.99750 (15)0.35914 (9)0.31532 (18)0.0470 (3)
H110.929 (2)0.4025 (13)0.350 (2)0.056*
N120.96429 (14)0.26559 (9)0.32111 (17)0.0424 (3)
H120.874 (2)0.2459 (12)0.355 (2)0.051*
N1311.08253 (19)0.11913 (10)0.2752 (2)0.0621 (4)
H1311.000 (3)0.0955 (15)0.298 (3)0.074*
H1321.147 (2)0.0843 (14)0.215 (3)0.074*
C131.08323 (16)0.21506 (10)0.27297 (19)0.0409 (3)
C141.19608 (17)0.27973 (11)0.2328 (2)0.0488 (4)
H141.29190.26590.19430.059*
C151.13683 (18)0.36775 (11)0.2619 (2)0.0515 (4)
H151.18720.42510.24620.062*
C210.66915 (15)0.41618 (9)0.45088 (19)0.0388 (3)
O210.68480 (13)0.32808 (7)0.44357 (18)0.0628 (4)
O220.77359 (11)0.47336 (7)0.41820 (16)0.0524 (3)
C220.51841 (15)0.45462 (9)0.50057 (18)0.0384 (3)
H220.44600.41140.53450.046*
C310.63476 (16)0.10443 (10)0.4570 (2)0.0432 (4)
O310.53859 (13)0.17395 (8)0.48097 (19)0.0656 (4)
H310.580 (3)0.2323 (17)0.471 (3)0.098*
O320.76437 (13)0.11540 (7)0.41269 (17)0.0590 (3)
C320.57247 (16)0.00849 (10)0.4868 (2)0.0429 (4)
H320.64090.04300.48680.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0421 (7)0.0359 (7)0.0670 (8)0.0031 (5)0.0209 (6)0.0044 (6)
N120.0325 (6)0.0388 (7)0.0599 (8)0.0000 (5)0.0200 (5)0.0029 (5)
N1310.0584 (9)0.0416 (8)0.0929 (12)0.0036 (6)0.0326 (8)0.0120 (7)
C130.0358 (7)0.0425 (8)0.0462 (8)0.0050 (6)0.0116 (6)0.0062 (6)
C140.0350 (7)0.0561 (10)0.0596 (9)0.0010 (6)0.0208 (7)0.0072 (7)
C150.0449 (8)0.0460 (9)0.0683 (10)0.0069 (6)0.0233 (7)0.0027 (7)
C210.0351 (7)0.0283 (7)0.0561 (8)0.0010 (5)0.0175 (6)0.0006 (6)
O210.0511 (6)0.0257 (5)0.1215 (10)0.0008 (4)0.0448 (7)0.0020 (5)
O220.0398 (5)0.0306 (5)0.0944 (8)0.0007 (4)0.0350 (5)0.0023 (5)
C220.0330 (6)0.0310 (6)0.0551 (8)0.0008 (5)0.0190 (6)0.0013 (6)
C310.0381 (7)0.0369 (8)0.0576 (9)0.0018 (6)0.0174 (6)0.0022 (6)
O310.0489 (7)0.0344 (6)0.1225 (11)0.0015 (5)0.0418 (7)0.0041 (6)
O320.0444 (6)0.0429 (6)0.0973 (9)0.0043 (5)0.0352 (6)0.0035 (6)
C320.0391 (7)0.0344 (7)0.0584 (9)0.0009 (6)0.0179 (6)0.0036 (6)
Geometric parameters (Å, º) top
N11—C151.3187 (19)C21—O211.2472 (17)
N11—N121.3467 (17)C21—O221.2525 (15)
N11—H110.910 (18)C21—C221.4953 (17)
N12—C131.3340 (16)C22—C22i1.313 (3)
N12—H120.888 (17)C22—H220.9300
N131—C131.3480 (19)C31—O321.2136 (17)
N131—H1310.82 (2)C31—O311.3065 (18)
N131—H1320.90 (2)C31—C321.4789 (19)
C13—C141.391 (2)O31—H310.90 (2)
C14—C151.366 (2)C32—C32ii1.305 (3)
C14—H140.9300C32—H320.9300
C15—H150.9300
C15—N11—N12107.69 (12)N11—C15—H15125.1
C15—N11—H11132.6 (11)C14—C15—H15125.1
N12—N11—H11119.7 (11)O21—C21—O22122.93 (12)
C13—N12—N11109.74 (11)O21—C21—C22118.15 (11)
C13—N12—H12129.7 (11)O22—C21—C22118.92 (12)
N11—N12—H12120.5 (11)C22i—C22—C21124.31 (15)
C13—N131—H131114.4 (15)C22i—C22—H22117.8
C13—N131—H132122.1 (13)C21—C22—H22117.8
H131—N131—H132119 (2)O32—C31—O31124.20 (14)
N12—C13—N131121.59 (13)O32—C31—C32121.45 (13)
N12—C13—C14107.03 (13)O31—C31—C32114.34 (12)
N131—C13—C14131.33 (13)C31—O31—H31113.7 (15)
C15—C14—C13105.71 (12)C32ii—C32—C31124.14 (17)
C15—C14—H14127.1C32ii—C32—H32117.9
C13—C14—H14127.1C31—C32—H32117.9
N11—C15—C14109.82 (14)
C15—N11—N12—C130.58 (17)C13—C14—C15—N110.23 (19)
N11—N12—C13—N131177.04 (15)O21—C21—C22—C22i174.42 (18)
N11—N12—C13—C140.71 (17)O22—C21—C22—C22i5.4 (3)
N12—C13—C14—C150.57 (17)O32—C31—C32—C32ii171.39 (19)
N131—C13—C14—C15176.88 (17)O31—C31—C32—C32ii8.1 (3)
N12—N11—C15—C140.20 (19)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O31—H31···O210.90 (2)1.65 (2)2.5370 (15)169 (2)
N11—H11···O210.910 (18)2.527 (17)3.0070 (17)113.4 (13)
N11—H11···O220.910 (18)1.796 (17)2.6989 (16)171.4 (17)
N12—H12···O210.892 (17)2.172 (17)2.8267 (17)129.7 (14)
N12—H12···O320.892 (17)2.133 (17)2.8641 (16)138.6 (15)
N131—H131···O320.82 (2)2.33 (3)3.052 (2)148 (2)
N131—H132···O22iii0.908 (19)2.03 (2)2.8922 (18)159.4 (17)
Symmetry code: (iii) x+2, y1/2, z+1/2.
3-Amino-1H-pyrazol-2-ium nitrate (III) top
Crystal data top
C3H6N3+·NO3Dx = 1.576 Mg m3
Mr = 146.12Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 942 reflections
a = 7.270 (1) Åθ = 3.2–27.8°
b = 9.907 (2) ŵ = 0.14 mm1
c = 8.551 (2) ÅT = 296 K
V = 615.9 (2) Å3Needle, yellow
Z = 40.50 × 0.24 × 0.20 mm
F(000) = 304
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
942 independent reflections
Radiation source: Enhance (Mo) X-ray Source806 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 27.8°, θmin = 3.2°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 59
Tmin = 0.911, Tmax = 0.973k = 1212
2221 measured reflectionsl = 114
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.055P)2 + 0.0228P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
942 reflectionsΔρmax = 0.15 e Å3
103 parametersΔρmin = 0.15 e Å3
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.4618 (4)0.1812 (2)0.6198 (4)0.0508 (6)
H110.503 (5)0.195 (3)0.721 (6)0.061*
N120.4203 (3)0.2766 (2)0.5126 (3)0.0439 (6)
H120.431 (4)0.352 (4)0.528 (4)0.053*
C130.3503 (3)0.2185 (3)0.3849 (3)0.0397 (6)
C140.3453 (4)0.0800 (2)0.4129 (4)0.0445 (7)
H140.30250.01350.34540.053*
C150.4162 (4)0.0616 (3)0.5595 (5)0.0522 (8)
H150.43030.02120.60920.063*
N1310.2968 (4)0.2904 (3)0.2604 (4)0.0577 (7)
H1310.349 (5)0.370 (5)0.246 (5)0.069*
H1320.264 (5)0.249 (4)0.183 (6)0.069*
N210.3928 (3)0.6297 (2)0.4171 (3)0.0451 (6)
O210.3536 (3)0.56587 (19)0.5376 (3)0.0641 (7)
O220.4480 (3)0.57038 (18)0.2981 (3)0.0560 (6)
O230.3784 (4)0.75575 (19)0.4165 (3)0.0699 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0619 (14)0.0457 (13)0.0448 (15)0.0068 (10)0.0035 (13)0.0023 (12)
N120.0500 (13)0.0315 (10)0.0501 (15)0.0048 (9)0.0029 (13)0.0092 (12)
C130.0375 (11)0.0358 (12)0.0457 (18)0.0010 (10)0.0045 (11)0.0072 (13)
C140.0480 (13)0.0321 (13)0.0534 (18)0.0053 (11)0.0010 (15)0.0091 (12)
C150.0575 (16)0.0362 (13)0.063 (2)0.0052 (12)0.0044 (16)0.0008 (14)
N1310.0694 (16)0.0474 (15)0.0562 (18)0.0059 (12)0.0124 (14)0.0010 (13)
N210.0601 (13)0.0324 (11)0.0427 (13)0.0020 (9)0.0002 (12)0.0005 (12)
O210.1067 (18)0.0398 (10)0.0457 (13)0.0027 (10)0.0150 (14)0.0043 (10)
O220.0818 (14)0.0380 (10)0.0482 (13)0.0002 (9)0.0104 (12)0.0067 (10)
O230.1188 (18)0.0274 (9)0.0635 (16)0.0089 (10)0.0148 (15)0.0002 (11)
Geometric parameters (Å, º) top
N11—C151.334 (4)C14—H140.9300
N11—N121.351 (4)C15—H150.9300
N11—H110.93 (5)N131—H1310.88 (4)
N12—C131.336 (4)N131—H1320.82 (5)
N12—H120.76 (4)N21—O221.241 (4)
C13—N1311.338 (4)N21—O211.242 (3)
C13—C141.393 (4)N21—O231.253 (3)
C14—C151.367 (5)
C15—N11—N12107.7 (3)C13—C14—H14126.9
C15—N11—H11125 (2)N11—C15—C14109.3 (3)
N12—N11—H11127 (2)N11—C15—H15125.4
C13—N12—N11109.8 (2)C14—C15—H15125.4
C13—N12—H12127 (3)C13—N131—H131118 (3)
N11—N12—H12123 (3)C13—N131—H132117 (3)
N12—C13—N131122.1 (2)H131—N131—H132118 (4)
N12—C13—C14107.1 (3)O22—N21—O21120.9 (2)
N131—C13—C14130.8 (3)O22—N21—O23119.7 (3)
C15—C14—C13106.2 (3)O21—N21—O23119.4 (3)
C15—C14—H14126.9
C15—N11—N12—C130.5 (3)N131—C13—C14—C15179.6 (3)
N11—N12—C13—N131179.8 (3)N12—N11—C15—C140.1 (3)
N11—N12—C13—C140.6 (3)C13—C14—C15—N110.3 (3)
N12—C13—C14—C150.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O22i0.93 (5)2.44 (3)2.968 (3)116 (3)
N11—H11···O23i0.93 (5)1.94 (5)2.860 (4)170 (3)
N12—H12···O210.76 (4)2.19 (4)2.914 (3)158 (3)
N12—H12···O22i0.76 (4)2.59 (3)3.029 (3)119 (3)
N131—H131···O220.88 (5)2.16 (5)3.001 (4)159 (4)
N131—H132···O21ii0.81 (5)2.36 (4)3.126 (4)157 (4)
N131—H132···O23ii0.81 (5)2.50 (5)3.223 (4)148 (4)
Symmetry codes: (i) x+1, y+1, z+1/2; (ii) x+1/2, y1/2, z1/2.
Selected bond distances (Å) top
The data for the monoclinic polymorph (IIIa) are taken from Yamuna et al. (2020), but with the atom labels adjusted to match those used for (I)–(III).
Parameter(I)(II)(III)(IIIa)
N11—N121.362 (2)1.3467 (17)1.351 (4)1.358 (2)
N12—C131.338 (2)1.3340 (17)1.336 (4)1.347 (2)
C13—C141.402 (2)1.391 (2)1.393 (4)1.403 (3)
C14—C151.365 (3)1.366 (2)1.367 (5)1.372 (2)
C15—N111.331 (2)1.3187 (19)1.334 (4)1.329 (3)
C13—N1311.348 (2)1.3480 (19)1.338 (4)1.338 (2)
Hydrogen bond parameters (Å, °) top
CompoundD—H···AD—HH···AD···AD—H···A
(I)O31—H31···O22i0.88 (3)1.87 (3)2.746 (2)175 (3)
O31—H32···O21ii0.75 (4)2.36 (3)2.989 (2)143 (3)
N131—H131···O220.88 (2)2.08 (2)2.920 (2)159 (2)
N131—H132···O25iii0.82 (2)2.31 (3)3.128 (2)171 (3)
N11—H11···O310.89 (2)1.83 (2)2.707(2169 (2)
N12—H12···O211.00 (2)1.60 (2)2.5981 (19)177.9 (18)
(II)O31—H31···O210.90 (2)1.65 (2)2.5370 (15)169 (2)
N11—H11···O220.910 (18)1.796 (17)2.6989 (16)171.4 (17)
N12—H12···O210.892 (17)2.172 (17)2.8267 (17)129.7(14
N12—H12···O320.892 (17)2.133 (17)2.8641 (16)138.6 (15)
N131—H131···O320.82 (2)2.33 (3)3.052 (2)148 (2)
N131—H132···O22iv0.908 (19)2.03 (2)2.8922 (18)159.4 (17)
(III)N11—H11···O23v0.93 (5)1.94 (5)2.860 (4)170 (3)
N12—H12···O210.76 (4)2.19 (4)2.914 (3)158 (3)
N131—H131···O220.88 (5)2.16 (5)3.001 (4)159 (4)
N131—H132···O21vi0.81 (5)2.36 (4)3.126 (4)157 (4)
N131—H132···O23vi0.81 (5)2.50 (5)3.223 (4)148 (4)
Symmetry codes: (i) x, 1 + y, z; (ii) -x, 2 - y, 1 - z; (iii) x, y, -1 + z; (iv) 2 - x, -1/2 + y, 1/2 - z; (v) 1 - x, 1 - y, 1/2 + z; (vi) 1/2 - x, -1/2 + y, -1/2 + z.
 

Acknowledgements

SDA thanks the University of Mysore for research facilities.

Funding information

HSY thanks the University Grants Commission, New Delhi for the award of a BSR Faculty Fellowship for three years.

References

First citationAnsari, A., Ali, A., Asif, M. & Shamsuzzaman, S. (2017). New J. Chem. 41, 16–41.  Web of Science CrossRef CAS Google Scholar
First citationAsma, Kalluraya, B., Yathirajan, H. S., Rathore, R. S. & Glidewell, C. (2018). Acta Cryst. E74, 1783–1789.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationDong, S., Tao, Y., Shen, X. & Pan, Z. (2013). Acta Cryst. C69, 896–900.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFeng, Y., Guan, H., Kan, Y., Ioannidis, S., Peng, B., Su, M., Wang, B., Wang, T. & Zhang, H.-J. (2008). US Patent US20080287475A1.  Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129–138.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139–150.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFerjani, H. & Boughzala, H. (2018). Russ. J. Inorg. Chem. 63, 349–356.  Web of Science CSD CrossRef CAS Google Scholar
First citationGregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39–57.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o2093–o2094.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationInfantes, L., Foces-Foces, C., Claramunt, R. M., López, C. & Eiguero, J. (1999). J. Heterocycl. Chem. 36, 595–600.  CSD CrossRef CAS Google Scholar
First citationKarrouchi, K., Radi, S., Ramli, Y., Taoufik, J., Mabkhot, Y. N., Al-aizari, F. A. & Ansar, M. (2018). Molecules, 23, 134–210.  Web of Science CrossRef Google Scholar
First citationKiran Kumar, H., Yathirajan, H. S., Asma, Manju, N., Kalluraya, B., Rathore, R. S. & Glidewell, C. (2020). Acta Cryst. E76, 683–691.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, Y., Xu, D.-J. & Hung, C.-H. (2003). Acta Cryst. E59, m297–m299.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSaid, F. F., Ali, B. F., Richeson, D. & Korobkov, I. (2012). Acta Cryst. E68, o1906.  CSD CrossRef IUCr Journals Google Scholar
First citationShaibah, M. A. E., Yathirajan, H. S., Asma, Manju, N., Kalluraya, B., Rathore, R. S. & Glidewell, C. (2020b). Acta Cryst. E76, 360–365.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShaibah, M. A. E., Yathirajan, H. S., Manju, N., Kalluraya, B., Rathore, R. S. & Glidewell, C. (2020a). Acta Cryst. E76, 48–52.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShreekanth, T. K., Yathirajan, H. S., Kalluraya, B., Foro, S. & Glidewell, C. (2020). Acta Cryst. E76, 1605–1610.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSolovyov, L. A. (2016). Acta Cryst. B72, 738–743.  CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTang, Y., Sun, Z., Ji, C., Li, L., Zhang, S., Chen, T. & Luo, J. (2015). Cryst. Growth Des. 15, 457–464.  CSD CrossRef CAS Google Scholar
First citationVelcicky, J., Feifel, R., Hawtin, S., Heng, R., Huppertz, C., Koch, G., Kroemer, M., Moebitz, H., Revesz, L., Scheufler, C. & Schlapbach, A. (2010). Bioorg. Med. Chem. Lett. 20, 1293–1297.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563–1571.  Web of Science CrossRef CAS Google Scholar
First citationYamuna, T. S., Jasinski, J. P., Scadova, D. R., Yathirajan, H. S. & Kaur, M. (2013). Acta Cryst. E69, o1425–o1426.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationYamuna, T. S., Kaur, M., Anderson, B. J., Jasinski, J. P. & Yathirajan, H. S. (2014). Acta Cryst. E70, o221–o222.  CSD CrossRef IUCr Journals Google Scholar
First citationYamuna, T. S., Kavitha, C. N., Jasinski, J. P., Yathirajan, H. S. & Glidewell, C. (2020). CSD Communication (CCDC 1987349), CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc24q01y.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds