research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Six 1-halo­benzoyl-4-(2-meth­­oxy­phen­yl)piperazines having Z′ values of one, two or four; disorder, pseudosymmetry, twinning and supra­molecular assembly in one, two or three dimensions

CROSSMARK_Color_square_no_text.svg

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570 006, India, bDepartment of Chemistry, Maharani's Science College for Women, Mysuru-570 001, India, cInstitute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Strasse 2, D-64287 Darmstadt, Germany, and dSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, UK
*Correspondence e-mail: yathirajan@hotmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 27 November 2020; accepted 28 November 2020; online 1 January 2021)

Six 1-halobenzoyl-4-(2-meth­oxy­phen­yl)piperazines have been prepared using carbodi­imide-mediated coupling reactions between halo­benzoic acids and N-(2-meth­oxy­phen­yl)piperazine. The mol­ecules of 1-(4-fluoro­benzo­yl)-4-(2-meth­oxy­phen­yl)piperazine, C18H19FN2O2 (I), are linked into a chain of rings by a combination of C—H⋯O and C—H⋯π(arene) hydrogen bonds. 1-(4-Chloro­benzo­yl)-4-(2-meth­oxy­phen­yl)piperazine, C18H19ClN2O2 (II), crystallizes in the space group Pca21 with Z′ = 4 and it exhibits both pseudosymmetry and inversion twinning: a combination of six C—H⋯O and two C—H⋯π(arene) hydrogen bonds generate a three-dimensional assembly. In 1-(4-bromo­benzo­yl)-4-(2-meth­oxy­phen­yl)piperazine, C18H19BrN2O2 (III), which also crystallizes in space group Pca21 but with Z′ = 2, the bromo­benzoyl unit in one of the mol­ecules is disordered. Pseudosymmetry and inversion twinning are again present, and a combination of three C—H⋯O and one C—H⋯π(arene) hydrogen bonds generate a two-dimensional assembly. A single C—H⋯O hydrogen bond links the mol­ecules of 1-(4-iodo­benzo­yl)-4-(2-meth­oxy­phen­yl)piperazine, C18H19IN2O2 (IV), into simple chains but in the isomeric 3-iodo­benzoyl analogue (V), which crystallizes in space group P212121 with Z′ = 2, a two-dimensional assembly is generated by a combination of four C—H⋯O and two C—H⋯π(arene) hydrogen bonds; pseudosymmetry and inversion twinning are again present. A single C—H⋯O hydrogen bond links the mol­ecules of 1-(2-fluoro­benzo­yl)-4-(2-meth­oxy­phen­yl)piperazine, C18H19FN2O2 (VI), into simple chains. Comparisons are made with the structures of some related compounds.

1. Chemical context

N-(2-Meth­oxy­phen­yl)piperazine (2-MeOPP) has been used as a building block in the synthesis of both 5-HT1A receptor ligands (Orjales et al., 1995[Orjales, A., Alonso-Cires, L., Labeaga, L. & Corcóstegui, R. (1995). J. Med. Chem. 38, 1273-1277.]) and dopamine D2 and D3 ligands (Hackling et al., 2003[Hackling, A., Ghosh, R., Perachon, S., Mann, A., Höltje, H. D., Wermuth, C. G., Schwartz, J. C., Sippl, W., Sokoloff, P. & Stark, H. (2003). J. Med. Chem. 46, 3883-3899.]), and also as a building block for the synthesis of derivatives exhibiting anti­depressant-like activity (Waszkielewicz et al., 2015[Waszkielewicz, A. M., Pytka, K., Rapacz, A., Wełna, E., Jarzyna, M., Satała, G., Bojarski, A. J., Sapa, J., Żmudzki, P., Filipek, B. & Marona, H. (2015). Chem. Biol. Drug Des. 85, 326-335.]). We have recently reported the structures of a range of salts derived from 2-MeOPP (Harish Chinthal et al., 2020a[Harish Chinthal, C., Kavitha, C. N., Yathirajan, H. S., Foro, S., Rathore, R. S. & Glidewell, C. (2020a). Acta Cryst. E76, 1779-1793.]) and here we report the syntheses and structures of six 1-haloaroyl-4-(2-meth­oxy­phen­yl)piperazines, (I)–(VI). The work reported here represents a continuation of an earlier study on the isomeric N-(4-meth­oxy­phen­yl)piperazine (4-MeOPP) (Kiran Kumar et al., 2020[Kiran Kumar, H., Yathirajan, H. S., Harish Chinthal, C., Foro, S. & Glidewell, C. (2020). Acta Cryst. E76, 488-495.]) and a range of salts and N-aroyl derivatives derived from 4-MeOPP (Kiran Kumar, Yathirajan, Foro et al., 2019[Kiran Kumar, H., Yathirajan, H. S., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1494-1506.]; Kiran Kumar, Yathirajan, Sagar et al., 2019[Kiran Kumar, H., Yathirajan, H. S., Sagar, B. K., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1253-1260.]; Kiran Kumar et al., 2020[Kiran Kumar, H., Yathirajan, H. S., Harish Chinthal, C., Foro, S. & Glidewell, C. (2020). Acta Cryst. E76, 488-495.]). Compounds (I)–(VI) were prepared using carbodi­imide-mediated reactions between N-(2-meth­oxy­phen­yl)piperazine and a halogen-substituted benzoic acid.

[Scheme 1]

2. Structural commentary

Despite differing only in the identity of their halogen substituents, no two of compounds (I)–(IV) are isomorphous (Figs. 1[link]–6[link][link][link][link][link]). The chloro and bromo compounds (II)[link] and (III)[link] both crystallize in space group Pca21, but with Z′ values of 2 and 4, respectively; the unit-cell repeat vectors b and c for these two compounds are quite similar, but the a repeat vector for (II)[link] is roughly twice that for (III)[link]. Compound (V)[link] also crystallizes with Z′ = 2, but in space group P212121.

[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
The structures of the four independent mol­ecules in the selected asymmetric unit of compound (II)[link], viewed approximately along [001], showing the atom-labelling scheme, and the approximate spacial relationships between the mol­ecules. Displacement ellipsoids are drawn at the 30% probability level and, for the sake of clarity, the H atoms have been omitted.
[Figure 3]
Figure 3
The structures of the two independent mol­ecules in the selected asymmetric unit of compound (III)[link], viewed approximately along [001], showing the atom-labelling scheme, the disorder in one of the mol­ecules and the approximate glide relationship between the two mol­ecules. The major disorder component is drawn using full lines and the minor disorder component is drawn using broken lines: displacement ellipsoids are drawn at the 30% probability level and, for the sake of clarity, a few of the atom labels have been omitted.
[Figure 4]
Figure 4
The mol­ecular structure of compound (IV)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 5]
Figure 5
The structures of the two independent mol­ecules in the selected asymmetric unit of compound (V)[link], showing the atom-labelling scheme and the approximate inversion symmetry relating the two mol­ecules. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 6]
Figure 6
The mol­ecular structure of compound (VI)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

In none of the compounds reported here do the mol­ecules exhibit any inter­nal symmetry and hence they are conformationally chiral. The space groups for compounds (II)[link], (III)[link], (IV)[link] and (VI)[link] confirm the presence in the crystal of equal numbers of the two conformational enanti­omers. For each of (II)[link], (III)[link] and (V)[link], having Z′ > 1, there is considerable flexibility available for the choice of the asymmetric unit: in each case, the asymmetric unit was selected such that the independent mol­ecules in it were linked by C—H⋯O hydrogen bonds (Table 1[link]).

Table 1
Hydrogen bonds (Å, °)

Cg1–Cg7 represent the centroids of the rings (C41–C46), (C441–C446), (C241–C246), (C241–C246), (C141–C146), (C211–C216) and (C111–C116), respectively.

Compound D—H⋯A D—H H⋯A DA D—H⋯A
(I) C15—H15⋯O17i 0.93 2.48 3.409 (4) 173
  C13—H13⋯Cg1ii 0.93 2.82 3.559 (4) 151
           
(II) C15—H15B⋯O417iii 0.97 2.39 3.314 (9) 160
  C35—H365B⋯O217 0.97 2.41 3.333 (9) 159
  C115—H115⋯O217 0.93 2.60 3.522 (9) 174
  C215—H215⋯O117iv 0.93 2.56 3.482 (8) 170
  C315—H315⋯O417 0.93 2.56 3.486 (9) 177
  C415—H415⋯O317v 0.93 2.52 3.428 (8) 165
  C213—H213⋯Cg2vi 0.93 2.71 3.604 (8) 161
  C313—H313⋯Cg3vii 0.93 2.79 3.633 (8) 151
           
(III) C15—H15B⋯O217 0.97 2.56 3.483 (10) 159
  C25—H25B⋯O115iii 0.97 2.55 3.483 (11) 160
  C213—H213⋯O217viii 0.93 2.54 3.425 (10) 158
  C312—H312⋯N14viii 0.93 2.59 3.45 (9) 154
  C115—H115⋯Cg4ix 0.93 2.65 3.549 (9) 162
  C315—H315⋯Cg5x 0.93 2.74 3.59 (10) 151
           
(IV) C3—H3A⋯O17xi 0.97 2.50 3.422 (4) 159
           
(V) C112—H112⋯O242 0.93 2.55 3.388 (9) 150
  C116—H116⋯O217xii 0.93 2.41 3.301 (10) 159
  C212—H212⋯O142 0.93 2.55 3.363 (9) 147
  C216—H216⋯O117xiii 0.93 2.49 3.407 (11) 169
  C115—H115⋯Cg6xii 0.93 2.67 3.505 (9) 149
  C215—H215⋯Cg7xiii 0.93 2.81 3.566 (9) 140
           
(VI) C15—H15⋯O17i 0.93 2.58 3.510 (3) 177
Symmetry codes: (i) −1 + x, y, z; (ii) −[{1\over 2}] + x, [{1\over 2}] − y, −z; (iii) x, −1 + y, z; (iv) −[{1\over 2}] + x, 1 − y, z; (v) [{1\over 2}] + x, 2 − y, z; (vi) 1 − x, 1 − y, −[{1\over 2}] + z; (vii) 1 − x, 1 − y, [{1\over 2}] + z; (viii) [{1\over 2}] + x, 1 − y, z; (ix) 1 − x, 1 − y, −[{1\over 2}] + z; (x) [{3\over 2}] − x, y, [{1\over 2}] + z; (xi) 1 − x, [{1\over 2}] + y, [{1\over 2}] − z; (xii) 1 − x, −[{1\over 2}] + y, [{1\over 2}] − z; (xiii) −x, [{1\over 2}] + y, [{1\over 2}] − z.

For compound (I)[link], which crystallizes in space group P212121 with Z′ = 1, it was not possible to establish the absolute configuration of the mol­ecules in the crystal selected for data collection (see Section 6). In compound (V)[link], the two independent mol­ecules in the selected asymmetric unit have opposite conformations and they are related by an approximate, but non-crystallographic, inversion close to (0.25, 0.60, 0.25) (cf. Fig. 5[link]), and so (V)[link] may be regarded as a kryptoracemate (Fábián & Brock, 2010[Fábián, L. & Brock, C. P. (2010). Acta Cryst. B66, 94-103.]). Pseudosymmetry is also apparent in compounds (II)[link] and (III)[link]. In (III)[link], where Z′ = 2, mol­ecule 1 containing atom Br14 and the major disorder component of mol­ecule 2 containing atom Br24 are related by an approximate, but non-crystallographic b-glide plane at x = ca 0.62 (cf. Fig. III). The arrangement of the mol­ecules in compound (II)[link] is slightly more complex: mol­ecules 1 and 3, containing atoms Cl14 and Cl34, respectively, are related by an approximate, but non-crystallographic, 21 screw axis along (0.56, y, 0.68), as also are mol­ecules 2 and 4, containing atoms Cl24 and Cl44 (cf. Fig. 2[link]). In addition, mol­ecules 1 and 2 are approximately related by the translation (x − 0.25, y + 0.06, z), while mol­ecules 3 and 4 are approximately related by the translation (x + 0.25, y + 0.06, z). Compounds (II)[link], (III)[link] and (V)[link] all exhibit a measure of inversion twinning (Section 6, below) and it seems likely that this is underpinned by the pseudosymmetry in these structures.

All of the piperazine rings in compounds (I)–(VI) adopt chair type conformations, with values of the ring-puckering angle θ (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) close to zero, as calculated for the atom sequences (N1,C2,C3,N4,C5,C6) in (I)[link], (IV)[link] and (VI)[link], or (Nx1,Cx2,Cx3,Nx4,Cx5,Cx6) where x = 1 or 2 in (III)[link] and (V)[link] and x = 1, 2, 3 or 4 in (II)[link]. For an ideal chair conformation, the value of θ is zero (Boeyens, 1978[Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317-320.]). The substituents at the N atoms all occupy equatorial sites.

In each of (I)–(IV), the meth­oxy C atom is close to coplanar with the adjacent aryl ring, with displacements from the plane of the ring ranging from 0.024 (7) Å in mol­ecule 4 of (II)[link] to 0.130 (3) Å in (I)[link]: for (V)[link] and (VI)[link] the displacements are rather larger, up to 0.447 (1) Å in mol­ecule 2 of (V)[link]. However, in every mol­ecule the two exocyclic C—C—O angles differ by ca 10°, as typically found in planar, or near-planar, alk­oxy­arenes (Seip & Seip, 1973[Seip, H. M. & Seip, R. (1973). Acta Chem. Scand. 27, 4024-4027.]; Ferguson et al., 1996[Ferguson, G., Glidewell, C. & Patterson, I. L. J. (1996). Acta Cryst. C52, 420-423.]).

3. Supra­molecular features

In assessing the inter­molecular inter­actions, we have discounted hydrogen bonds having D—H⋯A angles that are significantly less than 140°, as the inter­action energies associated with such contacts are likely to be very low, so that these cannot be regarded as structurally significant (Wood et al., 2009[Wood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563-1571.]). We have also discounted short contacts involving the H atoms of the methyl groups, as such groups are likely to be undergoing rapid rotation about the adjacent C—O bonds (Riddell & Rogerson, 1996[Riddell, F. G. & Rogerson, M. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 493-504.], 1997[Riddell, F. G. & Rogerson, M. (1997). J. Chem. Soc. Perkin Trans. 2, pp. 249-256.]). The C—H⋯π(arene) contacts have been included only where the H⋯Cg distances are less than 2.85 Å. It should perhaps be conceded here that these are somewhat arbitrary judgments, made with the primary aim of avoiding over-inter­pretation of the longer contacts and over-complication of the crystal-structure descriptions. It is convenient to consider first the supra­molecular assembly in compounds (I)[link], (IV)[link] and (VI)[link] where Z′ = 1 and the aggregation is one-dimensional, followed by (III)[link] and (V)[link] where Z′ = 2 and the aggregation is two-dimensional, and finally (II)[link] where Z′ = 4 and the aggregation is three-dimensional.

The assembly in compounds (I)[link], (IV)[link] and (VI)[link] is very simple. In (I)[link], a single C—H⋯O hydrogen bond (Table 1[link]) links mol­ecules which are related by translation to form a C(6) (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]; Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) chain, which is weakly reinforced by a C—H⋯π(arene) hydrogen bond to form a chain of rings running along (x, 0.25, 0) (Fig. 7[link]). Simple C(6) chains are also formed in compounds (IV)[link] and (VI)[link], although these involve different donors. The chain in (IV)[link] is built from mol­ecules related by the 21 screw axis along (0.5, y, 0.25) (Fig. 8[link]), while that in (VI)[link] contains mol­ecules related by translation along [100] (Fig. 9[link]), analogous to that in (I)[link]. In none of (I)[link], (IV)[link] and (VI)[link] are there any direction-specific inter­actions between adjacent chains so that, in each case, the assembly is one-dimensional.

[Figure 7]
Figure 7
Part of the crystal structure of compound (I)[link], showing the formation of a hydrogen-bonded chain of rings running parallel to [100]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms not involved in the motif shown have been omitted.
[Figure 8]
Figure 8
Part of the crystal structure of compound (IV)[link], showing the formation of a hydrogen-bonded chain running parallel to [010]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to the C atoms which are not involved in the motif shown have been omitted.
[Figure 9]
Figure 9
Part of the crystal structure of compound (VI)[link], showing the formation of a hydrogen-bonded chain running parallel to [100]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms which are not involved in the motif shown have been omitted.

Because of the very low occupancy of the minor disorder component in (III)[link], it is necessary to consider only the inter­actions involving the major disorder component, where a combination of C—H⋯O and C—H⋯π(arene) hydrogen bonds links the mol­ecules into a sheet lying parallel to (100) (Fig. 10[link]). The assembly in (V)[link] is also two-dimensional, but it is rather more complex than that in (III)[link]; however, it is possible to analyse the sheet formation in (V)[link] in terms of three simpler sub-structures (Ferguson et al., 1998a[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129-138.],b[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139-150.]; Gregson et al., 2000[Gregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39-57.]). The first of these sub-structures, which can be regarded as the basic building block in the structure, consists of the two mol­ecules within the selected asymmetric unit (Fig. 5[link]), which are linked by two C—H⋯O hydrogen bonds to form a cyclic dimeric unit containing an R22(22) motif, and dimers of this type are linked to form two types of chains of rings. One of these chains contains dimers which are related by the 21 screw axis along (0.5, y, 0.25) (Fig. 11[link]) and the other is built from dimers related by the 21 screw axis along (0, y, 0.25) (Fig. 12[link]). Within these two chains, the hydrogen bonds are directed in opposite directions (Table 1[link]), and the combination of the two chains generates a complex sheet lying parallel to (001). There are no direction-specific inter­actions between adjacent sheets in either (III)[link] or (V)[link].

[Figure 10]
Figure 10
Part of the crystal structure of compound (III)[link], showing the formation of a hydrogen-bonded sheet lying parallel to (100). Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the minor disorder component and the H atoms bonded to the C atoms which are not involved in the motif shown have been omitted.
[Figure 11]
Figure 11
Part of the crystal structure of compound (V)[link], showing the formation of a hydrogen-bonded chain of rings running along (1/2, y, 1/4). Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms which are not involved in the motif shown have been omitted.
[Figure 12]
Figure 12
Part of the crystal structure of compound (V)[link], showing the formation of a hydrogen-bonded chain of rings running along (0, y, 1/4). Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms which are not involved in the motif shown have been omitted.

No fewer than six independent C—H⋯O hydrogen bonds, three of them within the selected asymmetric unit, link the mol­ecules of compound (II)[link] into a complex sheet lying parallel to (001) (Fig. 13[link]). In addition, two independent C—H⋯π(arene) hydrogen bonds link mol­ecules related by the 21 screw axis along (0.5, 0.5, z) to generate a chain running parallel to the [001] direction (Fig. 14[link]) and chains of this type link the (001) sheets to form a continuous three-dimensional network.

[Figure 13]
Figure 13
Part of the crystal structure of compound (II)[link], showing the formation of a hydrogen-bonded sheet lying parallel to (001). Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to those C atoms which are not involved in the motif shown have been omitted.
[Figure 14]
Figure 14
Part of the crystal structure of compound (II)[link], showing the formation of a hydrogen-bonded chain running parallel to [001]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to those C atoms which are not involved in the motif shown have been omitted.

4. Database survey

Here we briefly compare the structures of compounds (I)–(VI) with those of some analogous compounds. In the structure of 1-(2-fluoro­benzo­yl)-4-(4-meth­oxy­phen­yl)piperazine (VII), which is isomeric with compound (VI)[link] reported here, the mol­ecules are linked by two C—H⋯O hydrogen bonds to form a chain of centrosymmetric rings containing two distinct types of R22(10) ring (Kiran Kumar, Yathirajan, Sagar et al., 2019[Kiran Kumar, H., Yathirajan, H. S., Sagar, B. K., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1253-1260.]). The 2-chloro, 2-bromo and 2-iodo analogues of (VII), [compounds (VIII)–(X)], are isomorphous in space group Pbca, all with Z′ = 1 (Kiran Kumar, Yathirajan, Sagar et al., 2019[Kiran Kumar, H., Yathirajan, H. S., Sagar, B. K., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1253-1260.]), whereas no two of compounds (I)–(IV) reported here are isomorphous. In each of (VIII)–(X), the mol­ecules are linked into sheets by two C—H⋯π(arene) hydrogen bonds: the assembly in (VIII)–(X) thus differs markedly from that in the isomeric compounds (I)–(IV). By contrast with the assembly in (VIII)–(X), there are no significant hydrogen bonds in the structure of the unsubstituted analogue 1-benzoyl-4-(4-meth­oxy­phen­yl)piperazine (XI) (Kiran Kumar, Yathirajan, Sagar et al., 2019[Kiran Kumar, H., Yathirajan, H. S., Sagar, B. K., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1253-1260.]), just as there are none in the structure of 1-(3,5-di­nitro­benzo­yl)-4-(2-meth­oxy­phen­yl)piperazine (XII) (Harish Chinthal et al., 2020b[Harish Chinthal, C., Kavitha, C. N., Yathirajan, H. S., Foro, S. & Glidewell, C. (2020b). IUCrData, 5, x201523.]). Finally, we note that structures have been reported recently for 1-(2-iodo­benzo­yl)-4-(pyrimidin-2-yl)piperazine (Mahesha, Yathirajan et al., 2019[Mahesha, N., Yathirajan, H. S., Furuya, T., Akitsu, T. & Glidewell, C. (2019). Acta Cryst. E75, 129-133.]) and for three 1-(1,3-benzodioxol-5-yl)methyl-4-(halobenzo­yl)piperazines (Mahesha, Sagar et al., 2019[Mahesha, N., Sagar, B. K., Yathirajan, H. S., Furuya, T., Haraguchi, T., Akitsu, T. & Glidewell, C. (2019). Acta Cryst. E75, 202-207.]).

5. Synthesis and crystallization

All reagents were commercially available and all were used as received. For the synthesis of compounds (I)–(VI), 1-(3-di­methyl­amino­prop­yl)-3-ethyl­carbodi­imide (134 mg, 0.7 mmol), 1-hy­droxy­benzotriazole (68 mg, 0.5 mmol) and tri­ethyl­amine (0.5 ml, 1.5 mmol) were added to a solution of the appropriately substituted benzoic acid (0.52 mmol) in methanol (10 ml), thus 4-fluoro­benzoic acid (73 mg) for (I)[link], 4-chloro­benzoic acid (82 mg) for (II)[link], 4-bromo­benzoic acid (103 mg) for (III)[link], 4-iodo­benzoic acid (129 mg) for (IV)[link], 3-iodo­benzoic acid (129 mg) for (V)[link] and 2-fluoro­benzoic acid (73 mg) for (VI)[link]. Each mixture was stirred at 323 K for a few minutes and then set aside for two days at room temperature. A solution of N-(2-meth­oxy­phen­yl)piperazine (100 mg, 0.52 mmol) in N,N-di­methyl­formamide (5 ml) was then added to each of the mixtures prepared as above, followed by stirring that was continued overnight at room temperature. When the reactions were confirmed to be complete using thin-layer chromatography, each mixture was then quenched with water (10 ml) and extracted with ethyl acetate (20 ml). Each organic fraction was separated and washed successively with an aqueous hydro­chloric acid solution (1 M), a saturated solution of sodium hydrogencarbonate and then with brine. The organic phases were dried over anhydrous sodium sulfate and the solvent was then removed under reduced pressure. The resulting solid products were then crystallized from acetone–ethyl acetate (1:1, v/v) for (I)[link] or methanol–ethyl acetate (1:1. v/v) solvent mixtures for (II)–(VI): m.p. (I)[link] 375–377 K, (II)[link] 383–387 K, (III)[link] 377–379 K, (IV)[link] 378–381 K, (V)[link] 379–381 K and (VI)[link] 341–345 K. Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation, at ambient temperature and in the presence of air, of solutions in ethyl acetate.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. One bad outlier reflection (2,0,2) was omitted from the final refinement for compound (IV)[link], and two bad outlier reflections, (1,5,18) and (1,18,15), were omitted from the final refinement for compound (V)[link]. All H atoms, apart from those in the minor disorder component of compound (III)[link], were located in difference maps and subsequently treated as riding atoms in geometrically idealized positions, with C—H distances 0.93 Å (aromatic), 0.96 Å (CH3) and 0.97 Å (CH2), and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups, which were allowed to rotate but not to tilt, and 1.2 for all other H atoms. For the minor disorder component in (III)[link], the bonded distances and the 1,3 non-bonded distances were restrained to be the same as the corresponding distances in the major disorder component, subject to s.u. values of 0.01 and 0.02 Å, respectively. In addition, the anisotropic displacement parameters for pairs of atoms occupying essentially the same physical space were constrained to be identical. Subject to these conditions, the refined disorder occupancies were 0.939 (4) and 0.061 (4). In the absence of significant resonant scattering, it was not possible to determine the absolute configuration of the mol­ecules of (I)[link] in the crystal selected for data collection. The value of the Flack x parameter [Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), x = −0.2 (8), calculated (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) using 612 quotients of the type [(I+) − (I)]/[(I+) + (I)], means that the absolute structure is indeterminate (Flack & Bernardinelli, 2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.]), although this has no chemical significance. For each of (II)[link], (III)[link] and (V)[link], the Flack x parameter indicated the occurrence of inversion twinning (Flack & Bernardinelli, 2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.]), thus: for (II)[link], x = 0.22 (8) calculated using 1164 quotients; for (III)[link], x = 0.300 (6) calculated using 1164 quotients; and for (V)[link], x = 0.456 (12) calculated using 1728 quotients. The structure of (I)[link] contains two void spaces, each of volume 65 Å3 and centred close to (0, 0.25, 0) and (0, 0.75, 0.5); however, examination of the refined structure using SQUEEZE (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) showed that these voids contained negligible electron density. There are four small voids in the structure of (II)[link], each of volume ca 32 Å3, and all too small to accommodate even a water mol­ecule (Hofmann, 2002[Hofmann, D. W. M. (2002). Acta Cryst. B58, 489-493.]).

Table 2
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula C18H19FN2O2 C18H19ClN2O2 C18H19BrN2O2
Mr 314.35 330.80 375.26
Crystal system, space group Orthorhombic, P212121 Orthorhombic, Pca21 Orthorhombic, Pca21
Temperature (K) 296 296 293
a, b, c (Å) 7.3286 (6), 11.3388 (7), 20.304 (1) 29.769 (1), 11.3173 (4), 20.4028 (8) 15.0779 (7), 11.2868 (6), 20.5297 (9)
α, β, γ (°) 90, 90, 90 90, 90, 90 90, 90, 90
V3) 1687.21 (19) 6873.8 (4) 3493.8 (3)
Z 4 16 8
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.09 0.23 2.36
Crystal size (mm) 0.44 × 0.14 × 0.14 0.48 × 0.38 × 0.28 0.50 × 0.48 × 0.24
 
Data collection
Diffractometer Oxford Diffraction Xcalibur CCD Oxford Diffraction Xcalibur CCD Oxford Diffraction Xcalibur CCD
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.])
Tmin, Tmax 0.938, 0.988 0.874, 0.937 0.294, 0.567
No. of measured, independent and observed [I > 2σ(I)] reflections 6377, 3377, 1918 17985, 8328, 4822 13342, 5910, 3300
Rint 0.036 0.030 0.031
(sin θ/λ)max−1) 0.628 0.606 0.606
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.088, 0.92 0.055, 0.143, 0.95 0.051, 0.130, 0.93
No. of reflections 3377 8328 5910
No. of parameters 209 833 445
No. of restraints 0 1 21
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.12, −0.14 0.52, −0.19 0.85, −0.49
Absolute structure Flack x determined using 1164 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Flack x determined using 1109 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.22 (6) 0.300 (6)
  (IV) (V) (VI)
Crystal data
Chemical formula C18H19IN2O2 C18H19IN2O2 C18H19FN2O2
Mr 422.25 422.25 314.35
Crystal system, space group Monoclinic, P21/c Orthorhombic, P212121 Monoclinic, P21/n
Temperature (K) 296 296 296
a, b, c (Å) 10.9626 (5), 11.3258 (6), 14.8234 (7) 7.4528 (4), 17.1306 (9), 27.903 (1) 7.451 (1), 11.199 (3), 19.138 (5)
α, β, γ (°) 90, 104.520 (5), 90 90, 90, 90 90, 99.59 (2), 90
V3) 1781.69 (16) 3562.4 (3) 1574.6 (6)
Z 4 8 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 1.81 1.81 0.10
Crystal size (mm) 0.42 × 0.40 × 0.28 0.36 × 0.22 × 0.18 0.48 × 0.48 × 0.24
 
Data collection
Diffractometer Oxford Diffraction Xcalibur CCD Oxford Diffraction Xcalibur CCD Oxford Diffraction Xcalibur CCD
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.])
Tmin, Tmax 0.423, 0.603 0.542, 0.722 0.898, 0.955
No. of measured, independent and observed [I > 2σ(I)] reflections 7512, 3816, 2690 13774, 7653, 5048 6456, 3467, 2081
Rint 0.015 0.025 0.025
(sin θ/λ)max−1) 0.651 0.650 0.659
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.092, 1.05 0.048, 0.116, 1.04 0.049, 0.128, 1.02
No. of reflections 3816 7653 3467
No. of parameters 208 417 208
No. of restraints 0 0 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.43, −0.91 1.12, −0.69 0.17, −0.17
Absolute structure Flack x determined using 1728 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.456 (12)
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

For all structures, data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b) and PLATON (Spek, 2020).

1-(4-Fluorobenzoyl)-4-(2-methoxyphenyl)piperazine (I) top
Crystal data top
C18H19FN2O2Dx = 1.238 Mg m3
Mr = 314.35Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 3523 reflections
a = 7.3286 (6) Åθ = 3.0–27.8°
b = 11.3388 (7) ŵ = 0.09 mm1
c = 20.304 (1) ÅT = 296 K
V = 1687.21 (19) Å3Needle, yellow
Z = 40.44 × 0.14 × 0.14 mm
F(000) = 664
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
3377 independent reflections
Radiation source: Enhance (Mo) X-ray Source1918 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 26.5°, θmin = 3.0°
Absorption correction: multi-scan
(CrysalisRed; Oxford Diffraction, 2009)
h = 89
Tmin = 0.938, Tmax = 0.988k = 1014
6377 measured reflectionsl = 1625
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0379P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.92(Δ/σ)max < 0.001
3377 reflectionsΔρmax = 0.12 e Å3
209 parametersΔρmin = 0.14 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6727 (4)0.2259 (2)0.20993 (12)0.0536 (7)
C20.8380 (5)0.2651 (3)0.24390 (16)0.0595 (9)
H2A0.90600.19700.25910.071*
H2B0.80460.31180.28210.071*
C30.9566 (4)0.3381 (3)0.19839 (14)0.0538 (9)
H3A1.06120.36780.22250.065*
H3B1.00100.28900.16270.065*
N40.8517 (3)0.4376 (2)0.17130 (11)0.0465 (7)
C50.6898 (4)0.3946 (3)0.13597 (15)0.0525 (9)
H5A0.72760.34580.09920.063*
H5B0.62190.46120.11860.063*
C60.5689 (4)0.3238 (3)0.18136 (16)0.0563 (9)
H6A0.52290.37410.21630.068*
H6B0.46540.29320.15690.068*
C170.6446 (5)0.1113 (3)0.19657 (14)0.0478 (8)
O170.7472 (3)0.03302 (19)0.21678 (12)0.0737 (7)
C110.4817 (4)0.0807 (2)0.15457 (14)0.0425 (7)
C120.5086 (5)0.0571 (3)0.08810 (16)0.0624 (10)
H120.62550.06080.07040.075*
C130.3629 (6)0.0284 (4)0.04822 (17)0.0740 (11)
H130.37990.01320.00360.089*
C140.1935 (5)0.0228 (3)0.07572 (19)0.0656 (10)
F140.0480 (3)0.0036 (2)0.03598 (11)0.1066 (9)
C150.1623 (5)0.0423 (3)0.14120 (19)0.0620 (9)
H150.04550.03610.15880.074*
C160.3097 (5)0.0716 (3)0.18063 (16)0.0530 (8)
H160.29180.08520.22530.064*
C410.9543 (4)0.5233 (3)0.13506 (13)0.0445 (7)
C420.8745 (4)0.6348 (3)0.12306 (14)0.0450 (8)
C430.9689 (5)0.7194 (3)0.08778 (15)0.0568 (9)
H430.91460.79180.07910.068*
C441.1429 (6)0.6969 (3)0.06546 (16)0.0696 (11)
H441.20550.75440.04190.083*
C451.2242 (5)0.5907 (4)0.07779 (17)0.0719 (11)
H451.34250.57630.06330.086*
C461.1291 (4)0.5041 (3)0.11218 (16)0.0609 (9)
H461.18470.43170.11990.073*
O420.7039 (3)0.65179 (17)0.14915 (10)0.0576 (6)
C470.6206 (5)0.7644 (3)0.14019 (17)0.0716 (11)
H47A0.50310.76490.16110.107*
H47B0.60630.77970.09400.107*
H47C0.69620.82420.15950.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0602 (19)0.0310 (14)0.0697 (18)0.0018 (14)0.0176 (15)0.0067 (12)
C20.064 (2)0.0433 (18)0.071 (2)0.0053 (18)0.0241 (19)0.0046 (17)
C30.053 (2)0.0427 (19)0.066 (2)0.0021 (17)0.0190 (17)0.0030 (16)
N40.0440 (16)0.0376 (14)0.0580 (15)0.0012 (13)0.0101 (14)0.0038 (12)
C50.052 (2)0.0403 (17)0.065 (2)0.0001 (16)0.0163 (18)0.0060 (15)
C60.055 (2)0.0352 (18)0.079 (2)0.0003 (17)0.0104 (18)0.0036 (16)
C170.051 (2)0.0403 (19)0.0524 (19)0.0035 (18)0.0005 (16)0.0064 (14)
O170.0726 (17)0.0409 (13)0.108 (2)0.0047 (13)0.0297 (14)0.0048 (12)
C110.048 (2)0.0314 (16)0.0484 (19)0.0022 (14)0.0011 (16)0.0033 (13)
C120.061 (2)0.070 (2)0.056 (2)0.0033 (19)0.0045 (19)0.0008 (17)
C130.085 (3)0.085 (3)0.051 (2)0.010 (3)0.006 (2)0.0045 (19)
C140.072 (3)0.055 (2)0.070 (3)0.016 (2)0.029 (2)0.0045 (19)
F140.1058 (18)0.1026 (19)0.1113 (17)0.0293 (16)0.0557 (15)0.0085 (15)
C150.047 (2)0.053 (2)0.086 (3)0.0059 (18)0.000 (2)0.0089 (18)
C160.054 (2)0.051 (2)0.0537 (19)0.0048 (17)0.0025 (18)0.0015 (15)
C410.0445 (18)0.0440 (19)0.0451 (17)0.0018 (17)0.0018 (15)0.0028 (15)
C420.044 (2)0.0434 (19)0.0480 (17)0.0050 (16)0.0010 (16)0.0031 (15)
C430.059 (2)0.051 (2)0.061 (2)0.0106 (19)0.0007 (19)0.0067 (17)
C440.062 (3)0.074 (3)0.072 (2)0.015 (2)0.005 (2)0.0121 (19)
C450.046 (2)0.092 (3)0.078 (3)0.002 (2)0.013 (2)0.000 (2)
C460.051 (2)0.060 (2)0.071 (2)0.0048 (19)0.0026 (18)0.0027 (19)
O420.0617 (16)0.0372 (12)0.0739 (15)0.0044 (11)0.0126 (13)0.0058 (10)
C470.076 (3)0.045 (2)0.093 (3)0.0152 (19)0.010 (2)0.0019 (18)
Geometric parameters (Å, º) top
N1—C171.343 (4)C13—C141.363 (5)
N1—C21.463 (4)C13—H130.9300
N1—C61.466 (4)C14—C151.367 (5)
C2—C31.515 (4)C14—F141.370 (4)
C2—H2A0.9700C15—C161.385 (4)
C2—H2B0.9700C15—H150.9300
C3—N41.472 (3)C16—H160.9300
C3—H3A0.9700C41—C461.380 (4)
C3—H3B0.9700C41—C421.414 (4)
N4—C411.432 (4)C42—O421.372 (3)
N4—C51.470 (4)C42—C431.383 (4)
C5—C61.510 (4)C43—C441.377 (5)
C5—H5A0.9700C43—H430.9300
C5—H5B0.9700C44—C451.367 (5)
C6—H6A0.9700C44—H440.9300
C6—H6B0.9700C45—C461.392 (4)
C17—O171.233 (3)C45—H450.9300
C17—C111.508 (4)C46—H460.9300
C11—C161.371 (4)O42—C471.427 (4)
C11—C121.390 (4)C47—H47A0.9600
C12—C131.379 (5)C47—H47B0.9600
C12—H120.9300C47—H47C0.9600
C17—N1—C2121.1 (3)C11—C12—H12119.8
C17—N1—C6125.0 (3)C14—C13—C12118.4 (3)
C2—N1—C6112.7 (2)C14—C13—H13120.8
N1—C2—C3110.7 (3)C12—C13—H13120.8
N1—C2—H2A109.5C13—C14—C15122.9 (3)
C3—C2—H2A109.5C13—C14—F14118.5 (3)
N1—C2—H2B109.5C15—C14—F14118.6 (4)
C3—C2—H2B109.5C14—C15—C16118.1 (3)
H2A—C2—H2B108.1C14—C15—H15121.0
N4—C3—C2110.3 (3)C16—C15—H15121.0
N4—C3—H3A109.6C11—C16—C15120.8 (3)
C2—C3—H3A109.6C11—C16—H16119.6
N4—C3—H3B109.6C15—C16—H16119.6
C2—C3—H3B109.6C46—C41—C42117.8 (3)
H3A—C3—H3B108.1C46—C41—N4123.6 (3)
C41—N4—C5113.4 (2)C42—C41—N4118.6 (3)
C41—N4—C3116.0 (2)O42—C42—C43124.0 (3)
C5—N4—C3110.5 (2)O42—C42—C41115.8 (2)
N4—C5—C6110.6 (2)C43—C42—C41120.2 (3)
N4—C5—H5A109.5C44—C43—C42120.4 (3)
C6—C5—H5A109.5C44—C43—H43119.8
N4—C5—H5B109.5C42—C43—H43119.8
C6—C5—H5B109.5C45—C44—C43120.4 (3)
H5A—C5—H5B108.1C45—C44—H44119.8
N1—C6—C5109.9 (3)C43—C44—H44119.8
N1—C6—H6A109.7C44—C45—C46119.7 (3)
C5—C6—H6A109.7C44—C45—H45120.2
N1—C6—H6B109.7C46—C45—H45120.2
C5—C6—H6B109.7C41—C46—C45121.5 (3)
H6A—C6—H6B108.2C41—C46—H46119.2
O17—C17—N1122.4 (3)C45—C46—H46119.2
O17—C17—C11120.4 (3)C42—O42—C47117.8 (2)
N1—C17—C11117.3 (3)O42—C47—H47A109.5
C16—C11—C12119.4 (3)O42—C47—H47B109.5
C16—C11—C17121.8 (3)H47A—C47—H47B109.5
C12—C11—C17118.8 (3)O42—C47—H47C109.5
C13—C12—C11120.4 (3)H47A—C47—H47C109.5
C13—C12—H12119.8H47B—C47—H47C109.5
C17—N1—C2—C3112.8 (3)C13—C14—C15—C161.5 (5)
C6—N1—C2—C355.1 (3)F14—C14—C15—C16178.6 (3)
N1—C2—C3—N455.4 (3)C12—C11—C16—C151.7 (4)
C2—C3—N4—C41171.3 (2)C17—C11—C16—C15179.4 (3)
C2—C3—N4—C557.8 (3)C14—C15—C16—C110.0 (5)
C41—N4—C5—C6168.9 (2)C5—N4—C41—C46114.2 (3)
C3—N4—C5—C658.9 (3)C3—N4—C41—C4615.3 (4)
C17—N1—C6—C5111.8 (3)C5—N4—C41—C4267.2 (3)
C2—N1—C6—C555.5 (3)C3—N4—C41—C42163.3 (2)
N4—C5—C6—N156.9 (3)C46—C41—C42—O42177.2 (2)
C2—N1—C17—O176.3 (5)N4—C41—C42—O421.4 (4)
C6—N1—C17—O17172.6 (3)C46—C41—C42—C431.9 (4)
C2—N1—C17—C11173.0 (3)N4—C41—C42—C43179.5 (3)
C6—N1—C17—C116.7 (4)O42—C42—C43—C44177.4 (3)
O17—C17—C11—C1698.8 (4)C41—C42—C43—C441.6 (5)
N1—C17—C11—C1681.9 (3)C42—C43—C44—C450.2 (5)
O17—C17—C11—C1279.0 (4)C43—C44—C45—C461.1 (5)
N1—C17—C11—C12100.3 (3)C42—C41—C46—C450.7 (4)
C16—C11—C12—C132.0 (5)N4—C41—C46—C45179.3 (3)
C17—C11—C12—C13179.7 (3)C44—C45—C46—C410.8 (5)
C11—C12—C13—C140.5 (5)C43—C42—O42—C471.1 (4)
C12—C13—C14—C151.3 (6)C41—C42—O42—C47177.9 (3)
C12—C13—C14—F14178.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O17i0.932.483.409 (4)173
C13—H13···Cg1ii0.932.823.559 (4)151
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+1/2, z.
1-(4-Chlorobenzoyl)-4-(2-methoxyphenyl)piperazine (II) top
Crystal data top
C18H19ClN2O2Dx = 1.279 Mg m3
Mr = 330.80Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 9521 reflections
a = 29.769 (1) Åθ = 2.7–28.0°
b = 11.3173 (4) ŵ = 0.23 mm1
c = 20.4028 (8) ÅT = 296 K
V = 6873.8 (4) Å3Block, yellow
Z = 160.48 × 0.38 × 0.28 mm
F(000) = 2784
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
8328 independent reflections
Radiation source: Enhance (Mo) X-ray Source4822 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 25.5°, θmin = 2.7°
Absorption correction: multi-scan
(CrysalisRed; Oxford Diffraction, 2009)
h = 3616
Tmin = 0.874, Tmax = 0.937k = 1310
17985 measured reflectionsl = 2414
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.055 w = 1/[σ2(Fo2) + (0.0848P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.143(Δ/σ)max < 0.001
S = 0.95Δρmax = 0.52 e Å3
8328 reflectionsΔρmin = 0.19 e Å3
833 parametersAbsolute structure: Flack x determined using 1164 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.22 (6)
Primary atom site location: difference Fourier map
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.60851 (17)0.2852 (4)0.6321 (3)0.0554 (15)
C120.5808 (2)0.1870 (5)0.6056 (4)0.056 (2)
H12A0.56820.14170.64160.068*
H12B0.55610.21910.58020.068*
C130.6084 (2)0.1091 (6)0.5639 (3)0.0554 (19)
H13A0.59020.04280.54940.067*
H13B0.61780.15250.52520.067*
N140.64833 (16)0.0640 (4)0.5981 (3)0.0459 (14)
C150.6758 (2)0.1638 (6)0.6203 (4)0.0590 (19)
H15A0.68620.20840.58270.071*
H15B0.70190.13440.64360.071*
C160.6492 (2)0.2432 (5)0.6646 (3)0.0583 (19)
H16A0.64100.20040.70400.070*
H16B0.66750.31020.67720.070*
C1170.6019 (2)0.4008 (6)0.6206 (3)0.0529 (17)
O1170.62648 (18)0.4766 (4)0.6393 (3)0.0773 (18)
C1110.5609 (2)0.4314 (5)0.5810 (3)0.0476 (16)
C1120.5649 (2)0.4468 (7)0.5130 (4)0.069 (2)
H1120.59280.44050.49300.082*
C1130.5280 (3)0.4709 (7)0.4764 (4)0.071 (2)
H1130.53030.47650.43110.085*
C1140.4866 (2)0.4871 (6)0.5067 (4)0.0528 (19)
Cl140.44067 (7)0.5176 (2)0.45801 (12)0.0904 (7)
C1150.4828 (2)0.4822 (5)0.5729 (4)0.0481 (19)
H1150.45540.49750.59310.058*
C1160.5202 (2)0.4541 (5)0.6099 (3)0.0522 (18)
H1160.51780.45050.65530.063*
C1410.6709 (2)0.0286 (5)0.5655 (4)0.0430 (17)
C1420.6498 (2)0.1368 (6)0.5593 (4)0.0547 (19)
C1430.6705 (2)0.2321 (6)0.5287 (4)0.067 (2)
H1430.65520.30310.52320.081*
C1440.7142 (3)0.2195 (7)0.5063 (4)0.077 (2)
H1440.72910.28300.48710.092*
C1450.7351 (2)0.1137 (8)0.5128 (4)0.071 (2)
H1450.76410.10450.49650.085*
C1460.7139 (2)0.0171 (6)0.5437 (4)0.054 (2)
H1460.72910.05390.54920.065*
O1420.60683 (14)0.1474 (3)0.5834 (2)0.0616 (13)
C1470.5844 (2)0.2559 (6)0.5776 (4)0.072 (2)
H17A0.60160.31640.59900.108*
H17B0.58090.27530.53210.108*
H17C0.55540.25010.59780.108*
N210.36031 (17)0.3352 (4)0.6249 (3)0.0517 (15)
C220.3338 (2)0.2403 (5)0.5947 (3)0.0533 (19)
H22A0.31090.27410.56660.064*
H22B0.31900.19440.62860.064*
C230.3638 (2)0.1617 (5)0.5553 (3)0.0516 (18)
H23A0.34640.09750.53670.062*
H23B0.37700.20630.51960.062*
N240.39956 (17)0.1136 (4)0.5972 (3)0.0491 (14)
C250.4273 (2)0.2089 (5)0.6228 (4)0.0578 (19)
H25A0.44090.25180.58680.069*
H25B0.45110.17650.64980.069*
C260.3984 (2)0.2924 (5)0.6634 (3)0.0552 (19)
H26A0.38750.25150.70200.066*
H26B0.41650.35890.67770.066*
C2170.3525 (2)0.4513 (5)0.6176 (3)0.0495 (18)
O2170.37517 (19)0.5257 (4)0.6404 (3)0.0794 (18)
C2110.3121 (2)0.4872 (5)0.5767 (3)0.0415 (15)
C2120.3152 (2)0.5063 (6)0.5109 (4)0.0514 (19)
H2120.34250.49340.48980.062*
C2130.2792 (2)0.5440 (7)0.4754 (4)0.067 (2)
H2130.28210.55920.43080.081*
C2140.2386 (2)0.5591 (6)0.5065 (4)0.0553 (19)
Cl240.19252 (7)0.6062 (2)0.46025 (13)0.1053 (8)
C2150.2338 (2)0.5356 (6)0.5718 (4)0.058 (2)
H2150.20580.54260.59170.069*
C2160.2704 (2)0.5016 (5)0.6078 (4)0.0474 (18)
H2160.26760.48800.65260.057*
C2410.4218 (2)0.0166 (5)0.5688 (4)0.0412 (18)
C2420.3997 (2)0.0895 (5)0.5609 (4)0.0537 (19)
C2430.4200 (3)0.1866 (6)0.5307 (4)0.066 (2)
H2430.40400.25630.52470.079*
C2440.4635 (3)0.1785 (7)0.5101 (4)0.085 (3)
H2440.47720.24330.49050.102*
C2450.4873 (2)0.0742 (7)0.5184 (4)0.078 (2)
H2450.51720.06910.50540.093*
C2460.4661 (3)0.0219 (6)0.5462 (4)0.065 (2)
H2460.48180.09260.55010.078*
O2420.35673 (15)0.0912 (3)0.5854 (2)0.0653 (14)
C2470.3316 (3)0.1973 (6)0.5820 (5)0.086 (3)
H27A0.34770.25950.60370.129*
H27B0.32690.21830.53690.129*
H27C0.30300.18610.60310.129*
N310.51402 (18)0.7839 (4)0.7264 (3)0.0543 (15)
C320.5403 (2)0.6882 (5)0.7510 (4)0.0553 (19)
H32A0.56600.71900.77480.066*
H32B0.55140.64110.71470.066*
C330.51241 (19)0.6115 (5)0.7960 (3)0.0499 (18)
H33A0.53010.54440.81040.060*
H33B0.50380.65660.83450.060*
N340.47232 (17)0.5698 (4)0.7625 (3)0.0479 (14)
C350.4458 (2)0.6681 (5)0.7395 (4)0.0536 (18)
H35A0.43580.71470.77670.064*
H35B0.41940.63880.71680.064*
C360.4730 (2)0.7450 (5)0.6937 (4)0.061 (2)
H36A0.48050.70080.65450.073*
H36B0.45530.81320.68080.073*
C3170.5217 (2)0.8983 (5)0.7386 (3)0.0463 (16)
O3170.49520 (18)0.9776 (4)0.7174 (3)0.0718 (16)
C3110.5620 (2)0.9302 (5)0.7773 (3)0.0469 (16)
C3120.5590 (2)0.9389 (7)0.8444 (4)0.068 (2)
H3120.53140.92560.86460.082*
C3130.5957 (2)0.9669 (6)0.8828 (4)0.064 (2)
H3130.59290.97380.92800.077*
C3140.6350 (2)0.9836 (5)0.8536 (4)0.0483 (18)
Cl340.68265 (6)1.01261 (19)0.90174 (13)0.0937 (8)
C3150.6405 (2)0.9784 (5)0.7873 (4)0.058 (2)
H3150.66830.99280.76810.069*
C3160.6028 (2)0.9503 (6)0.7492 (4)0.0535 (19)
H3160.60570.94540.70390.064*
C3410.4485 (2)0.4783 (6)0.7950 (4)0.0440 (18)
C3420.4697 (2)0.3656 (6)0.8040 (3)0.0525 (18)
C3430.4473 (3)0.2761 (5)0.8370 (4)0.063 (2)
H3430.46070.20240.84210.076*
C3440.4048 (3)0.2968 (8)0.8623 (4)0.079 (3)
H3440.39020.23740.88540.094*
C3450.3841 (3)0.4037 (8)0.8537 (4)0.076 (2)
H3450.35520.41590.86970.091*
C3460.4063 (2)0.4928 (6)0.8216 (4)0.056 (2)
H3460.39220.56580.81750.068*
O3420.51047 (15)0.3541 (3)0.7760 (2)0.0627 (13)
C3470.5334 (2)0.2433 (5)0.7824 (4)0.073 (2)
H37A0.56160.24700.75980.109*
H37B0.51530.18150.76390.109*
H37C0.53860.22710.82800.109*
N410.76184 (16)0.8298 (4)0.7384 (3)0.0496 (14)
C420.7884 (2)0.7361 (5)0.7680 (4)0.0513 (18)
H42A0.80990.77010.79840.062*
H42B0.80500.69440.73430.062*
C430.7579 (2)0.6502 (5)0.8042 (3)0.0493 (17)
H43A0.77580.58520.82110.059*
H43B0.74420.69020.84120.059*
N440.72332 (15)0.6044 (4)0.7622 (3)0.0421 (12)
C450.69544 (19)0.6998 (5)0.7359 (3)0.0505 (17)
H45A0.68040.74050.77160.061*
H45B0.67270.66720.70720.061*
C460.7242 (2)0.7854 (5)0.6985 (3)0.0533 (17)
H46A0.73600.74680.65970.064*
H46B0.70590.85160.68430.064*
C4170.7706 (2)0.9443 (6)0.7429 (3)0.0517 (17)
O4170.74624 (19)1.0202 (4)0.7176 (3)0.0764 (18)
C4110.8114 (2)0.9795 (5)0.7815 (3)0.0437 (16)
C4120.8091 (3)1.0004 (6)0.8471 (4)0.065 (2)
H4120.78170.99110.86860.078*
C4130.8463 (3)1.0350 (7)0.8826 (4)0.074 (2)
H4130.84451.04840.92750.088*
C4140.8860 (2)1.0489 (7)0.8495 (4)0.061 (2)
Cl440.93398 (6)1.0942 (2)0.89333 (12)0.1122 (9)
C4150.8895 (2)1.0318 (6)0.7838 (4)0.059 (2)
H4150.91671.04360.76230.071*
C4160.8525 (3)0.9972 (5)0.7503 (4)0.053 (2)
H4160.85460.98490.70530.064*
C4410.7014 (2)0.5048 (5)0.7872 (4)0.0427 (18)
C4420.7250 (2)0.3989 (5)0.7907 (3)0.0452 (16)
C4430.7041 (2)0.3003 (6)0.8165 (3)0.0619 (19)
H4430.72020.23030.82060.074*
C4440.6596 (3)0.3034 (6)0.8362 (4)0.0650 (19)
H4440.64570.23600.85270.078*
C4450.6364 (2)0.4066 (7)0.8312 (4)0.069 (2)
H4450.60660.40940.84470.082*
C4460.6563 (2)0.5062 (6)0.8068 (4)0.057 (2)
H4460.63970.57550.80310.069*
O4420.76813 (15)0.4015 (3)0.7700 (3)0.0609 (13)
C4470.7927 (2)0.2936 (6)0.7641 (5)0.083 (3)
H47A0.82130.30920.74410.124*
H47B0.77610.23910.73740.124*
H57C0.79730.26000.80680.124*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.062 (3)0.037 (3)0.067 (4)0.003 (3)0.022 (3)0.003 (3)
C120.048 (4)0.045 (4)0.076 (5)0.003 (3)0.009 (4)0.012 (4)
C130.050 (4)0.054 (4)0.062 (5)0.007 (3)0.016 (4)0.001 (4)
N140.041 (3)0.045 (3)0.051 (4)0.007 (2)0.015 (3)0.007 (3)
C150.053 (4)0.057 (4)0.067 (5)0.003 (3)0.023 (4)0.017 (4)
C160.069 (5)0.048 (4)0.058 (5)0.005 (3)0.030 (4)0.005 (4)
C1170.056 (4)0.053 (4)0.049 (4)0.005 (3)0.008 (4)0.003 (4)
O1170.080 (4)0.047 (3)0.105 (5)0.020 (3)0.047 (4)0.009 (3)
C1110.051 (4)0.055 (4)0.038 (4)0.006 (3)0.008 (3)0.009 (3)
C1120.045 (4)0.119 (7)0.042 (5)0.012 (4)0.003 (4)0.012 (5)
C1130.065 (6)0.102 (6)0.045 (5)0.019 (5)0.007 (5)0.000 (5)
C1140.041 (4)0.071 (5)0.047 (5)0.000 (3)0.005 (4)0.001 (4)
Cl140.0625 (12)0.1277 (18)0.0809 (16)0.0193 (11)0.0213 (12)0.0112 (14)
C1150.039 (4)0.050 (4)0.055 (6)0.006 (3)0.001 (4)0.006 (4)
C1160.064 (5)0.057 (4)0.035 (4)0.002 (4)0.012 (4)0.002 (4)
C1410.048 (4)0.045 (4)0.036 (4)0.002 (3)0.005 (4)0.008 (3)
C1420.039 (4)0.061 (4)0.064 (5)0.010 (3)0.006 (4)0.010 (4)
C1430.073 (5)0.061 (4)0.068 (5)0.006 (4)0.004 (4)0.009 (4)
C1440.074 (5)0.080 (6)0.077 (6)0.027 (5)0.020 (5)0.007 (5)
C1450.046 (4)0.106 (6)0.061 (5)0.013 (5)0.012 (4)0.026 (5)
C1460.041 (4)0.072 (5)0.049 (5)0.000 (3)0.007 (4)0.018 (4)
O1420.054 (3)0.047 (2)0.084 (4)0.008 (2)0.011 (3)0.001 (3)
C1470.064 (5)0.056 (4)0.095 (7)0.014 (4)0.002 (5)0.001 (4)
N210.057 (3)0.038 (3)0.060 (4)0.005 (3)0.021 (3)0.010 (3)
C220.056 (4)0.039 (3)0.065 (5)0.001 (3)0.018 (4)0.003 (3)
C230.058 (4)0.040 (3)0.057 (5)0.008 (3)0.024 (4)0.009 (3)
N240.055 (3)0.040 (3)0.053 (4)0.002 (2)0.007 (3)0.006 (3)
C250.067 (5)0.045 (4)0.061 (5)0.003 (3)0.022 (4)0.001 (4)
C260.066 (4)0.043 (4)0.056 (5)0.002 (3)0.030 (4)0.005 (3)
C2170.066 (5)0.035 (4)0.047 (4)0.003 (3)0.001 (4)0.011 (3)
O2170.088 (4)0.043 (3)0.107 (5)0.005 (3)0.046 (4)0.016 (3)
C2110.048 (4)0.038 (3)0.039 (4)0.002 (3)0.011 (3)0.006 (3)
C2120.041 (4)0.074 (5)0.039 (5)0.000 (3)0.010 (4)0.003 (4)
C2130.058 (5)0.098 (6)0.046 (5)0.010 (4)0.004 (4)0.007 (5)
C2140.055 (5)0.056 (4)0.054 (5)0.003 (3)0.011 (4)0.003 (4)
Cl240.0828 (14)0.138 (2)0.0947 (17)0.0210 (14)0.0322 (13)0.0055 (17)
C2150.049 (5)0.067 (4)0.057 (6)0.004 (3)0.002 (4)0.004 (4)
C2160.052 (4)0.047 (4)0.043 (5)0.005 (3)0.004 (4)0.000 (3)
C2410.046 (4)0.040 (3)0.038 (4)0.004 (3)0.007 (3)0.008 (3)
C2420.058 (5)0.044 (4)0.060 (5)0.001 (3)0.009 (4)0.003 (4)
C2430.070 (5)0.047 (4)0.080 (6)0.010 (4)0.010 (5)0.011 (4)
C2440.097 (7)0.064 (5)0.093 (7)0.037 (5)0.005 (6)0.006 (5)
C2450.044 (4)0.092 (6)0.097 (7)0.007 (4)0.000 (4)0.004 (5)
C2460.062 (5)0.058 (4)0.075 (6)0.010 (4)0.009 (5)0.007 (4)
O2420.064 (3)0.048 (3)0.084 (4)0.015 (2)0.016 (3)0.006 (3)
C2470.086 (6)0.051 (4)0.122 (8)0.012 (4)0.005 (5)0.003 (5)
N310.057 (3)0.038 (3)0.067 (4)0.004 (3)0.018 (3)0.000 (3)
C320.059 (4)0.041 (4)0.066 (5)0.005 (3)0.010 (4)0.006 (4)
C330.047 (4)0.036 (3)0.066 (5)0.002 (3)0.016 (4)0.002 (3)
N340.051 (3)0.042 (3)0.051 (4)0.006 (3)0.009 (3)0.001 (3)
C350.051 (4)0.047 (4)0.063 (5)0.007 (3)0.019 (4)0.013 (4)
C360.074 (5)0.045 (4)0.064 (5)0.006 (4)0.018 (4)0.001 (4)
C3170.052 (4)0.043 (4)0.043 (4)0.011 (3)0.006 (3)0.000 (3)
O3170.079 (4)0.045 (3)0.091 (4)0.004 (3)0.037 (3)0.003 (3)
C3110.061 (5)0.037 (3)0.042 (4)0.004 (3)0.007 (4)0.002 (3)
C3120.048 (5)0.099 (6)0.057 (5)0.015 (4)0.009 (4)0.004 (5)
C3130.047 (4)0.110 (6)0.036 (5)0.012 (4)0.005 (4)0.008 (5)
C3140.048 (4)0.049 (4)0.048 (5)0.000 (3)0.012 (4)0.012 (3)
Cl340.0615 (12)0.1306 (19)0.0890 (18)0.0178 (11)0.0287 (11)0.0360 (15)
C3150.053 (5)0.051 (4)0.069 (6)0.002 (3)0.017 (4)0.013 (4)
C3160.061 (5)0.057 (4)0.042 (5)0.010 (4)0.006 (4)0.002 (4)
C3410.046 (4)0.051 (4)0.035 (4)0.010 (3)0.009 (3)0.015 (3)
C3420.068 (5)0.048 (4)0.042 (4)0.002 (4)0.005 (4)0.007 (3)
C3430.081 (5)0.038 (4)0.070 (5)0.011 (4)0.006 (5)0.003 (4)
C3440.063 (5)0.102 (7)0.072 (6)0.037 (5)0.004 (4)0.001 (5)
C3450.063 (5)0.090 (6)0.074 (6)0.010 (5)0.001 (5)0.020 (5)
C3460.035 (4)0.062 (5)0.072 (6)0.005 (3)0.003 (4)0.015 (4)
O3420.066 (3)0.049 (3)0.073 (3)0.011 (2)0.007 (3)0.001 (3)
C3470.069 (5)0.046 (4)0.104 (7)0.014 (4)0.011 (4)0.012 (4)
N410.049 (3)0.044 (3)0.057 (4)0.001 (2)0.020 (3)0.005 (3)
C420.051 (4)0.042 (3)0.061 (5)0.001 (3)0.017 (4)0.018 (3)
C430.058 (4)0.041 (3)0.050 (4)0.003 (3)0.006 (4)0.009 (3)
N440.041 (3)0.034 (3)0.051 (3)0.004 (2)0.011 (3)0.006 (3)
C450.048 (4)0.042 (3)0.061 (5)0.002 (3)0.013 (3)0.003 (3)
C460.062 (4)0.042 (3)0.055 (4)0.004 (3)0.016 (4)0.008 (3)
C4170.052 (4)0.045 (4)0.058 (5)0.003 (3)0.006 (4)0.002 (4)
O4170.071 (3)0.047 (3)0.112 (5)0.008 (3)0.041 (4)0.030 (3)
C4110.045 (4)0.035 (3)0.051 (5)0.006 (3)0.001 (4)0.001 (3)
C4120.045 (5)0.100 (6)0.049 (5)0.007 (4)0.002 (4)0.002 (4)
C4130.056 (5)0.131 (7)0.034 (5)0.016 (4)0.002 (4)0.010 (5)
C4140.047 (5)0.086 (5)0.050 (5)0.008 (4)0.011 (4)0.001 (4)
Cl440.0610 (13)0.205 (3)0.0701 (15)0.0411 (14)0.0115 (11)0.0034 (18)
C4150.049 (5)0.068 (4)0.060 (6)0.016 (4)0.017 (4)0.002 (4)
C4160.068 (5)0.058 (4)0.034 (4)0.008 (4)0.009 (4)0.007 (3)
C4410.041 (4)0.042 (4)0.046 (5)0.006 (3)0.002 (4)0.001 (3)
C4420.049 (4)0.037 (3)0.050 (4)0.002 (3)0.005 (3)0.004 (3)
C4430.084 (5)0.046 (4)0.056 (5)0.005 (4)0.005 (4)0.006 (4)
C4440.073 (5)0.064 (5)0.058 (5)0.020 (4)0.001 (4)0.003 (4)
C4450.052 (4)0.078 (5)0.076 (6)0.015 (4)0.015 (4)0.013 (4)
C4460.059 (5)0.046 (4)0.066 (6)0.005 (3)0.004 (5)0.001 (4)
O4420.059 (3)0.038 (2)0.086 (4)0.001 (2)0.003 (3)0.002 (3)
C4470.076 (5)0.052 (4)0.121 (7)0.026 (4)0.004 (5)0.017 (5)
Geometric parameters (Å, º) top
N11—C1171.344 (7)N31—C3171.337 (7)
N11—C161.459 (7)N31—C321.428 (7)
N11—C121.485 (7)N31—C361.461 (8)
C12—C131.476 (9)C32—C331.513 (8)
C12—H12A0.9700C32—H32A0.9700
C12—H12B0.9700C32—H32B0.9700
C13—N141.471 (7)C33—N341.455 (7)
C13—H13A0.9700C33—H33A0.9700
C13—H13B0.9700C33—H33B0.9700
N14—C1411.412 (8)N34—C3411.420 (8)
N14—C151.465 (7)N34—C351.442 (7)
C15—C161.499 (9)C35—C361.512 (9)
C15—H15A0.9700C35—H35A0.9700
C15—H15B0.9700C35—H35B0.9700
C16—H16A0.9700C36—H36A0.9700
C16—H16B0.9700C36—H36B0.9700
C117—O1171.191 (7)C317—O3171.270 (7)
C117—C1111.503 (8)C317—C3111.481 (9)
C111—C1161.371 (8)C311—C3161.363 (8)
C111—C1121.404 (9)C311—C3121.377 (9)
C112—C1131.355 (10)C312—C3131.380 (10)
C112—H1120.9300C312—H3120.9300
C113—C1141.389 (10)C313—C3141.328 (9)
C113—H1130.9300C313—H3130.9300
C114—C1151.356 (10)C314—C3151.363 (10)
C114—Cl141.726 (7)C314—Cl341.756 (7)
C115—C1161.382 (9)C315—C3161.402 (9)
C115—H1150.9300C315—H3150.9300
C116—H1160.9300C316—H3160.9300
C141—C1461.360 (9)C341—C3461.379 (9)
C141—C1421.382 (9)C341—C3421.436 (9)
C142—O1421.375 (7)C342—O3421.347 (8)
C142—C1431.390 (9)C342—C3431.388 (9)
C143—C1441.388 (9)C343—C3441.385 (9)
C143—H1430.9300C343—H3430.9300
C144—C1451.356 (10)C344—C3451.369 (10)
C144—H1440.9300C344—H3440.9300
C145—C1461.412 (10)C345—C3461.372 (10)
C145—H1450.9300C345—H3450.9300
C146—H1460.9300C346—H3460.9300
O142—C1471.403 (7)O342—C3471.433 (7)
C147—H17A0.9600C347—H37A0.9600
C147—H17B0.9600C347—H37B0.9600
C147—H17C0.9600C347—H37C0.9600
N21—C2171.342 (7)N41—C4171.326 (7)
N21—C261.462 (7)N41—C421.454 (7)
N21—C221.469 (7)N41—C461.473 (7)
C22—C231.495 (8)C42—C431.521 (8)
C22—H22A0.9700C42—H42A0.9700
C22—H22B0.9700C42—H42B0.9700
C23—N241.470 (7)C43—N441.437 (7)
C23—H23A0.9700C43—H43A0.9700
C23—H23B0.9700C43—H43B0.9700
N24—C2411.408 (8)N44—C4411.398 (7)
N24—C251.454 (7)N44—C451.464 (7)
C25—C261.522 (9)C45—C461.501 (8)
C25—H25A0.9700C45—H45A0.9700
C25—H25B0.9700C45—H45B0.9700
C26—H26A0.9700C46—H46A0.9700
C26—H26B0.9700C46—H46B0.9700
C217—O2171.175 (7)C417—O4171.236 (7)
C217—C2111.518 (9)C417—C4111.503 (8)
C211—C2121.362 (9)C411—C4121.361 (9)
C211—C2161.405 (8)C411—C4161.395 (9)
C212—C2131.362 (9)C412—C4131.381 (10)
C212—H2120.9300C412—H4120.9300
C213—C2141.377 (9)C413—C4141.371 (10)
C213—H2130.9300C413—H4130.9300
C214—C2151.366 (10)C414—C4151.359 (10)
C214—Cl241.748 (7)C414—Cl441.760 (7)
C215—C2161.369 (9)C415—C4161.354 (9)
C215—H2150.9300C415—H4150.9300
C216—H2160.9300C416—H4160.9300
C241—C2421.379 (8)C441—C4421.391 (8)
C241—C2461.395 (10)C441—C4461.402 (9)
C242—O2421.374 (8)C442—O4421.351 (7)
C242—C2431.397 (9)C442—C4431.383 (8)
C243—C2441.363 (9)C443—C4441.385 (8)
C243—H2430.9300C443—H4430.9300
C244—C2451.387 (10)C444—C4451.360 (9)
C244—H2440.9300C444—H4440.9300
C245—C2461.380 (10)C445—C4461.368 (9)
C245—H2450.9300C445—H4450.9300
C246—H2460.9300C446—H4460.9300
O242—C2471.417 (7)O442—C4471.429 (7)
C247—H27A0.9600C447—H47A0.9600
C247—H27B0.9600C447—H47B0.9600
C247—H27C0.9600C447—H57C0.9600
C117—N11—C16121.2 (5)C317—N31—C32125.2 (6)
C117—N11—C12125.7 (6)C317—N31—C36121.3 (5)
C16—N11—C12112.4 (5)C32—N31—C36113.0 (5)
C13—C12—N11110.4 (5)N31—C32—C33110.3 (5)
C13—C12—H12A109.6N31—C32—H32A109.6
N11—C12—H12A109.6C33—C32—H32A109.6
C13—C12—H12B109.6N31—C32—H32B109.6
N11—C12—H12B109.6C33—C32—H32B109.6
H12A—C12—H12B108.1H32A—C32—H32B108.1
N14—C13—C12112.5 (6)N34—C33—C32110.5 (5)
N14—C13—H13A109.1N34—C33—H33A109.5
C12—C13—H13A109.1C32—C33—H33A109.5
N14—C13—H13B109.1N34—C33—H33B109.5
C12—C13—H13B109.1C32—C33—H33B109.5
H13A—C13—H13B107.8H33A—C33—H33B108.1
C141—N14—C15116.9 (5)C341—N34—C35116.2 (5)
C141—N14—C13114.7 (5)C341—N34—C33115.2 (5)
C15—N14—C13109.3 (5)C35—N34—C33110.6 (4)
N14—C15—C16110.7 (5)N34—C35—C36110.6 (5)
N14—C15—H15A109.5N34—C35—H35A109.5
C16—C15—H15A109.5C36—C35—H35A109.5
N14—C15—H15B109.5N34—C35—H35B109.5
C16—C15—H15B109.5C36—C35—H35B109.5
H15A—C15—H15B108.1H35A—C35—H35B108.1
N11—C16—C15111.1 (5)N31—C36—C35109.8 (6)
N11—C16—H16A109.4N31—C36—H36A109.7
C15—C16—H16A109.4C35—C36—H36A109.7
N11—C16—H16B109.4N31—C36—H36B109.7
C15—C16—H16B109.4C35—C36—H36B109.7
H16A—C16—H16B108.0H36A—C36—H36B108.2
O117—C117—N11123.7 (6)O317—C317—N31121.0 (6)
O117—C117—C111120.3 (6)O317—C317—C311120.7 (6)
N11—C117—C111116.0 (6)N31—C317—C311118.3 (5)
C116—C111—C112118.4 (6)C316—C311—C312117.6 (7)
C116—C111—C117121.9 (6)C316—C311—C317122.7 (6)
C112—C111—C117119.5 (6)C312—C311—C317119.7 (7)
C113—C112—C111120.1 (7)C311—C312—C313122.0 (7)
C113—C112—H112119.9C311—C312—H312119.0
C111—C112—H112119.9C313—C312—H312119.0
C112—C113—C114119.9 (8)C314—C313—C312118.4 (8)
C112—C113—H113120.0C314—C313—H313120.8
C114—C113—H113120.0C312—C313—H313120.8
C115—C114—C113120.8 (8)C313—C314—C315123.0 (7)
C115—C114—Cl14121.0 (6)C313—C314—Cl34119.2 (6)
C113—C114—Cl14118.2 (7)C315—C314—Cl34117.8 (6)
C114—C115—C116119.0 (7)C314—C315—C316117.6 (7)
C114—C115—H115120.5C314—C315—H315121.2
C116—C115—H115120.5C316—C315—H315121.2
C111—C116—C115121.4 (7)C311—C316—C315121.2 (7)
C111—C116—H116119.3C311—C316—H316119.4
C115—C116—H116119.3C315—C316—H316119.4
C146—C141—C142118.8 (6)C346—C341—N34123.5 (6)
C146—C141—N14122.0 (6)C346—C341—C342117.2 (7)
C142—C141—N14119.0 (6)N34—C341—C342119.2 (6)
O142—C142—C141117.9 (6)O342—C342—C343124.7 (6)
O142—C142—C143120.3 (6)O342—C342—C341115.4 (6)
C141—C142—C143121.8 (7)C343—C342—C341119.9 (7)
C144—C143—C142119.0 (7)C344—C343—C342119.7 (7)
C144—C143—H143120.5C344—C343—H343120.1
C142—C143—H143120.5C342—C343—H343120.1
C145—C144—C143119.2 (7)C345—C344—C343120.9 (7)
C145—C144—H144120.4C345—C344—H344119.5
C143—C144—H144120.4C343—C344—H344119.5
C144—C145—C146121.5 (7)C344—C345—C346119.6 (8)
C144—C145—H145119.3C344—C345—H345120.2
C146—C145—H145119.3C346—C345—H345120.2
C141—C146—C145119.6 (7)C345—C346—C341122.6 (7)
C141—C146—H146120.2C345—C346—H346118.7
C145—C146—H146120.2C341—C346—H346118.7
C142—O142—C147119.3 (5)C342—O342—C347118.3 (5)
O142—C147—H17A109.5O342—C347—H37A109.5
O142—C147—H17B109.5O342—C347—H37B109.5
H17A—C147—H17B109.5H37A—C347—H37B109.5
O142—C147—H17C109.5O342—C347—H37C109.5
H17A—C147—H17C109.5H37A—C347—H37C109.5
H17B—C147—H17C109.5H37B—C347—H37C109.5
C217—N21—C26121.3 (5)C417—N41—C42125.3 (5)
C217—N21—C22125.2 (6)C417—N41—C46121.4 (5)
C26—N21—C22113.5 (5)C42—N41—C46113.3 (5)
N21—C22—C23109.9 (5)N41—C42—C43110.1 (5)
N21—C22—H22A109.7N41—C42—H42A109.7
C23—C22—H22A109.7C43—C42—H42A109.7
N21—C22—H22B109.7N41—C42—H42B109.7
C23—C22—H22B109.7C43—C42—H42B109.7
H22A—C22—H22B108.2H42A—C42—H42B108.2
N24—C23—C22109.8 (5)N44—C43—C42111.7 (5)
N24—C23—H23A109.7N44—C43—H43A109.3
C22—C23—H23A109.7C42—C43—H43A109.3
N24—C23—H23B109.7N44—C43—H43B109.3
C22—C23—H23B109.7C42—C43—H43B109.3
H23A—C23—H23B108.2H43A—C43—H43B107.9
C241—N24—C25117.3 (5)C441—N44—C43114.1 (5)
C241—N24—C23112.9 (5)C441—N44—C45117.7 (5)
C25—N24—C23110.2 (5)C43—N44—C45111.0 (4)
N24—C25—C26109.6 (5)N44—C45—C46109.8 (5)
N24—C25—H25A109.7N44—C45—H45A109.7
C26—C25—H25A109.7C46—C45—H45A109.7
N24—C25—H25B109.7N44—C45—H45B109.7
C26—C25—H25B109.7C46—C45—H45B109.7
H25A—C25—H25B108.2H45A—C45—H45B108.2
N21—C26—C25110.6 (5)N41—C46—C45111.9 (5)
N21—C26—H26A109.5N41—C46—H46A109.2
C25—C26—H26A109.5C45—C46—H46A109.2
N21—C26—H26B109.5N41—C46—H46B109.2
C25—C26—H26B109.5C45—C46—H46B109.2
H26A—C26—H26B108.1H46A—C46—H46B107.9
O217—C217—N21123.9 (7)O417—C417—N41122.4 (6)
O217—C217—C211118.7 (6)O417—C417—C411120.6 (6)
N21—C217—C211117.4 (6)N41—C417—C411117.0 (5)
C212—C211—C216119.1 (6)C412—C411—C416118.0 (7)
C212—C211—C217122.1 (6)C412—C411—C417121.3 (7)
C216—C211—C217118.8 (6)C416—C411—C417120.6 (6)
C213—C212—C211121.4 (7)C411—C412—C413121.6 (8)
C213—C212—H212119.3C411—C412—H412119.2
C211—C212—H212119.3C413—C412—H412119.2
C212—C213—C214119.1 (7)C414—C413—C412117.9 (8)
C212—C213—H213120.5C414—C413—H413121.1
C214—C213—H213120.5C412—C413—H413121.1
C215—C214—C213121.1 (7)C415—C414—C413122.4 (8)
C215—C214—Cl24120.3 (6)C415—C414—Cl44118.8 (6)
C213—C214—Cl24118.6 (6)C413—C414—Cl44118.8 (7)
C214—C215—C216119.7 (7)C416—C415—C414118.5 (7)
C214—C215—H215120.2C416—C415—H415120.7
C216—C215—H215120.2C414—C415—H415120.7
C215—C216—C211119.6 (7)C415—C416—C411121.7 (7)
C215—C216—H216120.2C415—C416—H416119.2
C211—C216—H216120.2C411—C416—H416119.2
C242—C241—C246116.8 (7)C442—C441—N44118.6 (6)
C242—C241—N24120.1 (7)C442—C441—C446118.6 (6)
C246—C241—N24123.1 (6)N44—C441—C446122.8 (6)
O242—C242—C241114.5 (6)O442—C442—C443124.4 (6)
O242—C242—C243123.5 (6)O442—C442—C441116.4 (6)
C241—C242—C243121.9 (7)C443—C442—C441119.2 (6)
C244—C243—C242119.6 (7)C442—C443—C444121.4 (6)
C244—C243—H243120.2C442—C443—H443119.3
C242—C243—H243120.2C444—C443—H443119.3
C243—C244—C245120.3 (7)C445—C444—C443119.0 (7)
C243—C244—H244119.9C445—C444—H444120.5
C245—C244—H244119.9C443—C444—H444120.5
C246—C245—C244119.1 (8)C444—C445—C446121.0 (7)
C246—C245—H245120.4C444—C445—H445119.5
C244—C245—H245120.4C446—C445—H445119.5
C245—C246—C241122.2 (7)C445—C446—C441120.7 (7)
C245—C246—H246118.9C445—C446—H446119.7
C241—C246—H246118.9C441—C446—H446119.7
C242—O242—C247119.1 (5)C442—O442—C447119.7 (5)
O242—C247—H27A109.5O442—C447—H47A109.5
O242—C247—H27B109.5O442—C447—H47B109.5
H27A—C247—H27B109.5H47A—C447—H47B109.5
O242—C247—H27C109.5O442—C447—H57C109.5
H27A—C247—H27C109.5H47A—C447—H57C109.5
H27B—C247—H27C109.5H47B—C447—H57C109.5
C117—N11—C12—C13118.3 (7)C317—N31—C32—C33116.0 (7)
C16—N11—C12—C1352.6 (8)C36—N31—C32—C3355.4 (7)
N11—C12—C13—N1455.1 (7)N31—C32—C33—N3456.0 (7)
C12—C13—N14—C141167.9 (6)C32—C33—N34—C341167.6 (5)
C12—C13—N14—C1558.5 (7)C32—C33—N34—C3558.2 (7)
C141—N14—C15—C16169.4 (5)C341—N34—C35—C36167.7 (5)
C13—N14—C15—C1658.1 (7)C33—N34—C35—C3658.5 (7)
C117—N11—C16—C15117.6 (7)C317—N31—C36—C35116.4 (7)
C12—N11—C16—C1553.7 (7)C32—N31—C36—C3555.3 (7)
N14—C15—C16—N1156.7 (7)N34—C35—C36—N3155.9 (7)
C16—N11—C117—O1174.9 (11)C32—N31—C317—O317176.4 (7)
C12—N11—C117—O117175.0 (7)C36—N31—C317—O3175.7 (10)
C16—N11—C117—C111174.2 (6)C32—N31—C317—C3113.8 (10)
C12—N11—C117—C1114.1 (10)C36—N31—C317—C311174.5 (6)
O117—C117—C111—C11690.4 (9)O317—C317—C311—C31691.3 (8)
N11—C117—C111—C11690.5 (8)N31—C317—C311—C31688.5 (8)
O117—C117—C111—C11284.4 (9)O317—C317—C311—C31289.6 (9)
N11—C117—C111—C11294.7 (8)N31—C317—C311—C31290.6 (8)
C116—C111—C112—C1137.1 (11)C316—C311—C312—C3130.0 (11)
C117—C111—C112—C113178.0 (7)C317—C311—C312—C313179.1 (6)
C111—C112—C113—C1143.7 (12)C311—C312—C313—C3141.2 (12)
C112—C113—C114—C1151.7 (11)C312—C313—C314—C3152.3 (11)
C112—C113—C114—Cl14180.0 (6)C312—C313—C314—Cl34177.1 (6)
C113—C114—C115—C1163.6 (10)C313—C314—C315—C3162.0 (10)
Cl14—C114—C115—C116178.1 (5)Cl34—C314—C315—C316177.4 (5)
C112—C111—C116—C1155.2 (10)C312—C311—C316—C3150.3 (10)
C117—C111—C116—C115180.0 (6)C317—C311—C316—C315178.8 (6)
C114—C115—C116—C1110.1 (10)C314—C315—C316—C3110.7 (10)
C15—N14—C141—C14612.9 (9)C35—N34—C341—C34619.2 (9)
C13—N14—C141—C146117.1 (7)C33—N34—C341—C346112.5 (7)
C15—N14—C141—C142162.7 (6)C35—N34—C341—C342163.9 (6)
C13—N14—C141—C14267.3 (8)C33—N34—C341—C34264.4 (8)
C146—C141—C142—O142178.2 (6)C346—C341—C342—O342178.5 (6)
N14—C141—C142—O1422.4 (10)N34—C341—C342—O3424.4 (9)
C146—C141—C142—C1433.2 (11)C346—C341—C342—C3431.4 (10)
N14—C141—C142—C143179.0 (6)N34—C341—C342—C343178.5 (6)
O142—C142—C143—C144178.5 (6)O342—C342—C343—C344178.1 (7)
C141—C142—C143—C1442.9 (11)C341—C342—C343—C3441.3 (11)
C142—C143—C144—C1452.3 (11)C342—C343—C344—C3451.7 (12)
C143—C144—C145—C1462.1 (12)C343—C344—C345—C3462.1 (12)
C142—C141—C146—C1452.9 (11)C344—C345—C346—C3412.3 (12)
N14—C141—C146—C145178.5 (6)N34—C341—C346—C345178.9 (7)
C144—C145—C146—C1412.4 (12)C342—C341—C346—C3451.9 (11)
C141—C142—O142—C147179.7 (6)C343—C342—O342—C3472.4 (10)
C143—C142—O142—C1471.1 (10)C341—C342—O342—C347179.4 (6)
C217—N21—C22—C23124.0 (7)C417—N41—C42—C43131.7 (6)
C26—N21—C22—C2353.9 (7)C46—N41—C42—C4351.3 (7)
N21—C22—C23—N2457.3 (7)N41—C42—C43—N4454.9 (7)
C22—C23—N24—C241164.5 (5)C42—C43—N44—C441165.0 (5)
C22—C23—N24—C2562.2 (7)C42—C43—N44—C4559.2 (7)
C241—N24—C25—C26168.6 (5)C441—N44—C45—C46167.6 (6)
C23—N24—C25—C2660.4 (7)C43—N44—C45—C4658.4 (7)
C217—N21—C26—C25125.3 (6)C417—N41—C46—C45130.4 (6)
C22—N21—C26—C2552.6 (7)C42—N41—C46—C4552.5 (7)
N24—C25—C26—N2155.1 (7)N44—C45—C46—N4154.3 (7)
C26—N21—C217—O2170.7 (11)C42—N41—C417—O417178.7 (7)
C22—N21—C217—O217177.0 (7)C46—N41—C417—O4174.6 (10)
C26—N21—C217—C211179.8 (6)C42—N41—C417—C4110.4 (10)
C22—N21—C217—C2112.1 (10)C46—N41—C417—C411176.4 (5)
O217—C217—C211—C21288.5 (9)O417—C417—C411—C41289.6 (9)
N21—C217—C211—C21290.6 (8)N41—C417—C411—C41289.4 (8)
O217—C217—C211—C21691.2 (8)O417—C417—C411—C41687.2 (8)
N21—C217—C211—C21689.6 (7)N41—C417—C411—C41693.7 (7)
C216—C211—C212—C2132.9 (9)C416—C411—C412—C4131.7 (10)
C217—C211—C212—C213176.9 (6)C417—C411—C412—C413178.7 (6)
C211—C212—C213—C2142.2 (11)C411—C412—C413—C4140.6 (12)
C212—C213—C214—C2150.9 (11)C412—C413—C414—C4151.1 (13)
C212—C213—C214—Cl24179.5 (5)C412—C413—C414—Cl44179.5 (6)
C213—C214—C215—C2163.0 (11)C413—C414—C415—C4161.5 (12)
Cl24—C214—C215—C216178.4 (5)Cl44—C414—C415—C416179.9 (5)
C214—C215—C216—C2112.2 (10)C414—C415—C416—C4110.3 (11)
C212—C211—C216—C2150.7 (9)C412—C411—C416—C4151.3 (10)
C217—C211—C216—C215179.1 (6)C417—C411—C416—C415178.3 (6)
C25—N24—C241—C242161.3 (7)C43—N44—C441—C44269.9 (8)
C23—N24—C241—C24268.9 (8)C45—N44—C441—C442157.4 (6)
C25—N24—C241—C24619.9 (10)C43—N44—C441—C446112.5 (8)
C23—N24—C241—C246109.8 (8)C45—N44—C441—C44620.2 (10)
C246—C241—C242—O242178.3 (6)N44—C441—C442—O4420.9 (10)
N24—C241—C242—O2422.8 (10)C446—C441—C442—O442178.7 (6)
C246—C241—C242—C2431.2 (11)N44—C441—C442—C443178.8 (6)
N24—C241—C242—C243177.6 (7)C446—C441—C442—C4433.5 (11)
O242—C242—C243—C244177.4 (7)O442—C442—C443—C444179.5 (6)
C241—C242—C243—C2442.2 (11)C441—C442—C443—C4442.9 (10)
C242—C243—C244—C2450.7 (12)C442—C443—C444—C4451.3 (11)
C243—C244—C245—C2461.6 (13)C443—C444—C445—C4460.4 (11)
C244—C245—C246—C2412.5 (13)C444—C445—C446—C4411.1 (12)
C242—C241—C246—C2451.1 (12)C442—C441—C446—C4452.6 (12)
N24—C241—C246—C245180.0 (7)N44—C441—C446—C445179.7 (7)
C241—C242—O242—C247177.7 (6)C443—C442—O442—C44710.3 (10)
C243—C242—O242—C2471.8 (10)C441—C442—O442—C447172.0 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15B···O417i0.972.393.314 (9)160
C35—H35B···O2170.972.413.333 (9)159
C115—H115···O2170.932.603.522 (9)174
C215—H215···O117ii0.932.563.482 (8)170
C315—H315···O4170.932.563.486 (9)177
C415—H415···O317iii0.932.523.428 (8)165
C213—H213···Cg2iv0.932.713.604 (8)161
C313—H313···Cg3v0.932.793.633 (8)151
Symmetry codes: (i) x, y1, z; (ii) x1/2, y+1, z; (iii) x+1/2, y+2, z; (iv) x+1, y+1, z1/2; (v) x+1, y+1, z+1/2.
1-(4-Bromobenzoyl)-4-(2-methoxyphenyl)piperazine (III) top
Crystal data top
C18H19BrN2O2Dx = 1.427 Mg m3
Mr = 375.26Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 6870 reflections
a = 15.0779 (7) Åθ = 2.7–27.8°
b = 11.2868 (6) ŵ = 2.36 mm1
c = 20.5297 (9) ÅT = 293 K
V = 3493.8 (3) Å3Plate, yellow
Z = 80.50 × 0.48 × 0.24 mm
F(000) = 1536
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
5910 independent reflections
Radiation source: Enhance (Mo) X-ray Source3300 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 25.5°, θmin = 2.7°
Absorption correction: multi-scan
(CrysalisRed; Oxford Diffraction, 2009)
h = 1518
Tmin = 0.294, Tmax = 0.567k = 613
13342 measured reflectionsl = 2324
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.051 w = 1/[σ2(Fo2) + (0.0736P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.130(Δ/σ)max < 0.001
S = 0.93Δρmax = 0.85 e Å3
5910 reflectionsΔρmin = 0.49 e Å3
445 parametersAbsolute structure: Flack x determined using 1109 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
21 restraintsAbsolute structure parameter: 0.300 (6)
Primary atom site location: difference Fourier map
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N110.4662 (4)0.8287 (6)0.4090 (3)0.0484 (17)
C120.4124 (5)0.7342 (7)0.3813 (4)0.051 (2)
H12A0.36890.76760.35170.061*
H12B0.38100.69310.41570.061*
C130.4698 (5)0.6491 (7)0.3455 (4)0.041 (2)
H13A0.43380.58400.32960.050*
H13B0.49580.68860.30810.050*
N140.5405 (4)0.6024 (5)0.3866 (3)0.0420 (16)
C150.5982 (5)0.6980 (7)0.4117 (4)0.048 (2)
H15A0.62790.73740.37580.058*
H15B0.64300.66520.44040.058*
C160.5414 (5)0.7856 (7)0.4484 (4)0.052 (2)
H16A0.51880.74820.48760.062*
H16B0.57760.85250.46150.062*
C1170.4531 (6)0.9435 (7)0.3982 (4)0.043 (2)
O1170.5025 (5)1.0208 (7)0.4197 (4)0.080 (2)
C1110.3746 (5)0.9789 (7)0.3586 (4)0.038 (2)
C1120.2909 (6)0.9914 (7)0.3872 (4)0.047 (2)
H1120.28530.97910.43180.057*
C1130.2174 (5)1.0208 (7)0.3525 (4)0.046 (2)
H1130.16201.02450.37220.056*
C1140.2277 (5)1.0449 (7)0.2872 (4)0.048 (2)
Br140.12850 (7)1.09205 (11)0.23607 (7)0.0933 (5)
C1150.3084 (6)1.0379 (8)0.2579 (4)0.062 (3)
H1150.31471.05600.21390.074*
C1160.3820 (5)1.0030 (7)0.2949 (4)0.047 (2)
H1160.43710.99660.27490.056*
C1410.5860 (6)0.5030 (8)0.3584 (4)0.042 (2)
C1420.5363 (6)0.4000 (7)0.3524 (4)0.051 (2)
C1430.5777 (8)0.2964 (8)0.3230 (5)0.075 (3)
H1430.54660.22590.31820.090*
C1440.6638 (8)0.3059 (11)0.3028 (6)0.083 (4)
H1440.68960.24210.28130.100*
C1450.7122 (8)0.4031 (12)0.3126 (5)0.079 (3)
H1450.77230.40330.30250.094*
C1460.6722 (6)0.5049 (9)0.3382 (5)0.058 (3)
H1460.70480.57460.34140.070*
O1420.4522 (4)0.3980 (5)0.3738 (3)0.0636 (17)
C1470.4020 (7)0.2964 (9)0.3674 (7)0.097 (4)
H17A0.34440.30910.38620.146*
H17B0.43080.23220.38950.146*
H17C0.39570.27720.32210.146*
N210.7612 (4)0.3202 (5)0.5239 (3)0.0449 (17)
C220.8178 (5)0.2274 (6)0.5513 (4)0.045 (2)
H22A0.86170.26260.58000.054*
H22B0.84890.18670.51650.054*
C230.7622 (5)0.1406 (7)0.5887 (4)0.0415 (19)
H23A0.79930.07680.60470.050*
H23B0.73560.17990.62600.050*
N240.6921 (4)0.0919 (5)0.5470 (3)0.0427 (16)
C250.6329 (4)0.1868 (7)0.5259 (4)0.041 (2)
H25A0.60710.22560.56360.050*
H25B0.58500.15410.49990.050*
C260.6847 (5)0.2759 (7)0.4859 (4)0.047 (2)
H26A0.70560.23880.44620.056*
H26B0.64650.34160.47410.056*
C2170.7746 (7)0.4395 (11)0.5319 (6)0.042 (2)0.939 (4)
O2170.7231 (4)0.5117 (7)0.5111 (3)0.054 (2)0.939 (4)
C2110.8552 (6)0.4745 (15)0.5681 (6)0.042 (2)0.939 (4)
C2120.9355 (6)0.4928 (7)0.5353 (4)0.038 (3)0.939 (4)
H2120.93750.48310.49040.045*0.939 (4)
C2131.0114 (5)0.5248 (8)0.5681 (4)0.044 (2)0.939 (4)
H2131.06480.53400.54600.053*0.939 (4)
C2141.0065 (5)0.5430 (9)0.6344 (4)0.046 (2)0.939 (4)
Br241.11227 (7)0.5820 (2)0.67954 (7)0.0915 (7)0.939 (4)
C2150.9303 (5)0.5269 (12)0.6674 (5)0.059 (4)0.939 (4)
H2150.92890.53930.71220.071*0.939 (4)
C2160.8535 (7)0.492 (3)0.6350 (6)0.057 (3)0.939 (4)
H2160.80120.47970.65820.068*0.939 (4)
C3170.784 (7)0.435 (14)0.527 (7)0.042 (2)0.061 (4)
O3170.752 (7)0.501 (12)0.488 (5)0.054 (2)0.061 (4)
C3110.864 (5)0.47 (2)0.565 (5)0.042 (2)0.061 (4)
C3120.949 (6)0.451 (14)0.538 (4)0.038 (3)0.061 (4)
H3120.95560.44740.49300.045*0.061 (4)
C3131.022 (5)0.439 (11)0.577 (3)0.044 (2)0.061 (4)
H3131.07490.40730.56170.053*0.061 (4)
C3141.015 (2)0.477 (12)0.641 (3)0.046 (2)0.061 (4)
Br341.1196 (11)0.486 (4)0.6922 (10)0.0915 (7)0.061 (4)
C3150.935 (2)0.49 (2)0.669 (4)0.059 (4)0.061 (4)
H3150.92990.49480.71440.071*0.061 (4)
C3160.859 (4)0.50 (4)0.631 (7)0.057 (3)0.061 (4)
H3160.80480.51800.64880.068*0.061 (4)
C2410.6512 (5)0.0094 (7)0.5745 (4)0.039 (2)
C2420.6990 (6)0.1170 (8)0.5741 (4)0.048 (2)
C2430.6623 (6)0.2178 (8)0.6005 (4)0.059 (2)
H2430.69460.28800.60060.071*
C2440.5793 (8)0.2160 (9)0.6263 (5)0.069 (3)
H2440.55540.28480.64410.083*
C2450.5290 (6)0.1107 (9)0.6265 (5)0.062 (2)
H2450.47290.10800.64510.074*
C2460.5658 (6)0.0125 (8)0.5982 (4)0.055 (2)
H2460.53140.05560.59490.066*
O2420.7811 (4)0.1095 (5)0.5471 (3)0.0621 (17)
C2470.8328 (6)0.2165 (8)0.5463 (6)0.075 (3)
H27A0.88580.20380.52140.112*
H27B0.79870.27900.52680.112*
H27C0.84830.23800.59010.112*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.050 (4)0.045 (4)0.050 (4)0.002 (4)0.019 (3)0.003 (4)
C120.040 (4)0.049 (6)0.063 (6)0.006 (4)0.012 (4)0.001 (5)
C130.042 (5)0.035 (4)0.048 (5)0.004 (4)0.012 (4)0.003 (4)
N140.050 (4)0.032 (4)0.043 (4)0.002 (3)0.004 (4)0.000 (3)
C150.040 (4)0.053 (5)0.052 (5)0.008 (4)0.006 (4)0.003 (4)
C160.057 (5)0.046 (5)0.053 (5)0.001 (4)0.007 (4)0.007 (4)
C1170.045 (5)0.035 (5)0.049 (5)0.010 (4)0.002 (4)0.002 (4)
O1170.080 (4)0.064 (5)0.097 (6)0.002 (4)0.035 (4)0.007 (4)
C1110.037 (5)0.030 (4)0.049 (5)0.006 (4)0.003 (4)0.010 (4)
C1120.058 (5)0.047 (6)0.037 (5)0.010 (5)0.014 (5)0.002 (4)
C1130.044 (5)0.044 (5)0.050 (6)0.009 (4)0.010 (4)0.002 (4)
C1140.041 (5)0.053 (5)0.049 (5)0.011 (4)0.005 (4)0.001 (5)
Br140.0623 (6)0.1423 (11)0.0755 (8)0.0258 (6)0.0143 (6)0.0010 (8)
C1150.065 (6)0.080 (7)0.039 (5)0.006 (5)0.007 (5)0.009 (5)
C1160.027 (4)0.067 (6)0.046 (6)0.007 (4)0.002 (4)0.000 (4)
C1410.048 (5)0.057 (6)0.022 (4)0.007 (5)0.007 (4)0.005 (4)
C1420.068 (6)0.036 (5)0.047 (5)0.010 (5)0.001 (5)0.009 (4)
C1430.091 (8)0.058 (6)0.076 (8)0.007 (6)0.013 (6)0.004 (5)
C1440.087 (9)0.088 (9)0.075 (8)0.051 (7)0.006 (7)0.022 (7)
C1450.067 (7)0.121 (10)0.048 (6)0.044 (7)0.004 (5)0.014 (7)
C1460.054 (6)0.062 (7)0.059 (6)0.009 (5)0.004 (5)0.010 (5)
O1420.058 (4)0.040 (4)0.093 (5)0.002 (3)0.003 (4)0.001 (3)
C1470.085 (7)0.052 (7)0.154 (12)0.006 (6)0.010 (8)0.004 (7)
N210.053 (4)0.038 (4)0.045 (4)0.000 (3)0.012 (3)0.003 (3)
C220.038 (4)0.037 (5)0.059 (5)0.002 (4)0.011 (4)0.011 (4)
C230.040 (4)0.038 (5)0.047 (5)0.001 (4)0.010 (4)0.001 (4)
N240.042 (4)0.034 (4)0.051 (4)0.004 (3)0.011 (3)0.003 (3)
C250.043 (4)0.038 (4)0.044 (5)0.001 (4)0.017 (4)0.009 (4)
C260.055 (5)0.036 (5)0.050 (5)0.003 (4)0.015 (4)0.002 (4)
C2170.044 (5)0.045 (6)0.037 (5)0.011 (5)0.007 (4)0.001 (4)
O2170.060 (4)0.031 (4)0.071 (5)0.011 (4)0.023 (4)0.004 (4)
C2110.050 (5)0.033 (5)0.044 (5)0.007 (4)0.004 (5)0.001 (4)
C2120.039 (5)0.047 (7)0.028 (4)0.002 (5)0.001 (4)0.001 (4)
C2130.050 (5)0.048 (6)0.034 (5)0.008 (5)0.009 (4)0.005 (5)
C2140.042 (5)0.056 (6)0.039 (5)0.006 (4)0.001 (4)0.008 (5)
Br240.0498 (5)0.168 (2)0.0568 (7)0.0298 (8)0.0039 (6)0.0131 (11)
C2150.040 (5)0.110 (13)0.029 (5)0.009 (5)0.002 (4)0.001 (5)
C2160.043 (5)0.090 (9)0.037 (5)0.008 (6)0.014 (5)0.002 (6)
C3170.044 (5)0.045 (6)0.037 (5)0.011 (5)0.007 (4)0.001 (4)
O3170.060 (4)0.031 (4)0.071 (5)0.011 (4)0.023 (4)0.004 (4)
C3110.050 (5)0.033 (5)0.044 (5)0.007 (4)0.004 (5)0.001 (4)
C3120.039 (5)0.047 (7)0.028 (4)0.002 (5)0.001 (4)0.001 (4)
C3130.050 (5)0.048 (6)0.034 (5)0.008 (5)0.009 (4)0.005 (5)
C3140.042 (5)0.056 (6)0.039 (5)0.006 (4)0.001 (4)0.008 (5)
Br340.0498 (5)0.168 (2)0.0568 (7)0.0298 (8)0.0039 (6)0.0131 (11)
C3150.040 (5)0.110 (13)0.029 (5)0.009 (5)0.002 (4)0.001 (5)
C3160.043 (5)0.090 (9)0.037 (5)0.008 (6)0.014 (5)0.002 (6)
C2410.038 (4)0.043 (6)0.036 (5)0.000 (5)0.007 (4)0.002 (4)
C2420.055 (5)0.045 (6)0.044 (5)0.004 (5)0.004 (4)0.008 (4)
C2430.075 (7)0.044 (6)0.058 (6)0.004 (5)0.004 (5)0.007 (5)
C2440.099 (8)0.055 (7)0.053 (6)0.032 (6)0.002 (6)0.004 (5)
C2450.059 (5)0.067 (7)0.059 (6)0.023 (5)0.001 (5)0.010 (5)
C2460.066 (6)0.043 (6)0.057 (6)0.002 (5)0.011 (5)0.008 (5)
O2420.063 (4)0.048 (4)0.075 (4)0.012 (3)0.006 (4)0.001 (3)
C2470.073 (6)0.055 (6)0.096 (8)0.019 (5)0.006 (6)0.022 (6)
Geometric parameters (Å, º) top
N11—C1171.330 (9)C23—N241.467 (9)
N11—C121.456 (9)C23—H23A0.9700
N11—C161.475 (9)C23—H23B0.9700
C12—C131.487 (10)N24—C2411.418 (9)
C12—H12A0.9700N24—C251.461 (9)
C12—H12B0.9700C25—C261.515 (10)
C13—N141.459 (9)C25—H25A0.9700
C13—H13A0.9700C25—H25B0.9700
C13—H13B0.9700C26—H26A0.9700
N14—C1411.437 (10)C26—H26B0.9700
N14—C151.478 (9)C217—O2171.203 (10)
C15—C161.510 (11)C217—C2111.479 (11)
C15—H15A0.9700C211—C2161.389 (12)
C15—H15B0.9700C211—C2121.399 (12)
C16—H16A0.9700C212—C2131.377 (11)
C16—H16B0.9700C212—H2120.9300
C117—O1171.229 (9)C213—C2141.378 (12)
C117—C1111.491 (11)C213—H2130.9300
C111—C1161.340 (12)C214—C2151.347 (11)
C111—C1121.398 (10)C214—Br241.896 (8)
C112—C1131.358 (11)C215—C2161.393 (14)
C112—H1120.9300C215—H2150.9300
C113—C1141.376 (12)C216—H2160.9300
C113—H1130.9300C317—O3171.203 (17)
C114—C1151.360 (11)C317—C3111.480 (17)
C114—Br141.904 (8)C311—C3161.390 (17)
C115—C1161.402 (11)C311—C3121.402 (17)
C115—H1150.9300C312—C3131.378 (18)
C116—H1160.9300C312—H3120.9300
C141—C1461.365 (12)C313—C3141.380 (18)
C141—C1421.389 (11)C313—H3130.9300
C142—O1421.342 (10)C314—C3151.348 (17)
C142—C1431.456 (12)C314—Br341.896 (15)
C143—C1441.367 (15)C315—C3161.39 (2)
C143—H1430.9300C315—H3150.9300
C144—C1451.332 (13)C316—H3160.9300
C144—H1440.9300C241—C2461.377 (11)
C145—C1461.399 (13)C241—C2421.412 (11)
C145—H1450.9300C242—O2421.359 (9)
C146—H1460.9300C242—C2431.377 (12)
O142—C1471.381 (10)C243—C2441.359 (13)
C147—H17A0.9600C243—H2430.9300
C147—H17B0.9600C244—C2451.409 (12)
C147—H17C0.9600C244—H2440.9300
N21—C3171.35 (15)C245—C2461.368 (11)
N21—C2171.371 (13)C245—H2450.9300
N21—C221.464 (9)C246—H2460.9300
N21—C261.479 (9)O242—C2471.437 (9)
C22—C231.502 (10)C247—H27A0.9600
C22—H22A0.9700C247—H27B0.9600
C22—H22B0.9700C247—H27C0.9600
C117—N11—C12124.5 (7)N24—C23—H23A109.6
C117—N11—C16121.8 (7)C22—C23—H23A109.6
C12—N11—C16113.6 (6)N24—C23—H23B109.6
N11—C12—C13110.0 (6)C22—C23—H23B109.6
N11—C12—H12A109.7H23A—C23—H23B108.1
C13—C12—H12A109.7C241—N24—C25116.3 (6)
N11—C12—H12B109.7C241—N24—C23112.5 (6)
C13—C12—H12B109.7C25—N24—C23109.8 (5)
H12A—C12—H12B108.2N24—C25—C26109.4 (6)
N14—C13—C12111.9 (7)N24—C25—H25A109.8
N14—C13—H13A109.2C26—C25—H25A109.8
C12—C13—H13A109.2N24—C25—H25B109.8
N14—C13—H13B109.2C26—C25—H25B109.8
C12—C13—H13B109.2H25A—C25—H25B108.3
H13A—C13—H13B107.9N21—C26—C25110.0 (6)
C141—N14—C13113.4 (6)N21—C26—H26A109.7
C141—N14—C15115.4 (6)C25—C26—H26A109.7
C13—N14—C15111.6 (6)N21—C26—H26B109.7
N14—C15—C16108.5 (6)C25—C26—H26B109.7
N14—C15—H15A110.0H26A—C26—H26B108.2
C16—C15—H15A110.0O217—C217—N21121.9 (8)
N14—C15—H15B110.0O217—C217—C211121.8 (8)
C16—C15—H15B110.0N21—C217—C211116.4 (9)
H15A—C15—H15B108.4C216—C211—C212118.1 (8)
N11—C16—C15112.2 (7)C216—C211—C217121.3 (8)
N11—C16—H16A109.2C212—C211—C217120.6 (8)
C15—C16—H16A109.2C213—C212—C211121.5 (8)
N11—C16—H16B109.2C213—C212—H212119.2
C15—C16—H16B109.2C211—C212—H212119.2
H16A—C16—H16B107.9C212—C213—C214118.5 (8)
O117—C117—N11122.8 (8)C212—C213—H213120.7
O117—C117—C111119.1 (8)C214—C213—H213120.7
N11—C117—C111118.0 (7)C215—C214—C213121.5 (8)
C116—C111—C112117.6 (8)C215—C214—Br24120.2 (7)
C116—C111—C117121.3 (7)C213—C214—Br24118.2 (6)
C112—C111—C117121.0 (8)C214—C215—C216120.5 (8)
C113—C112—C111122.7 (8)C214—C215—H215119.7
C113—C112—H112118.6C216—C215—H215119.7
C111—C112—H112118.6C211—C216—C215119.8 (10)
C112—C113—C114117.8 (8)C211—C216—H216120.1
C112—C113—H113121.1C215—C216—H216120.1
C114—C113—H113121.1O317—C317—N21117 (10)
C115—C114—C113121.4 (8)O317—C317—C311122 (3)
C115—C114—Br14118.4 (7)N21—C317—C311119 (8)
C113—C114—Br14120.2 (6)C316—C311—C312117.8 (17)
C114—C115—C116118.9 (8)C316—C311—C317121 (2)
C114—C115—H115120.5C312—C311—C317120 (3)
C116—C115—H115120.5C313—C312—C311121 (2)
C111—C116—C115121.4 (8)C313—C312—H312119.5
C111—C116—H116119.3C311—C312—H312119.5
C115—C116—H116119.3C312—C313—C314118 (2)
C146—C141—C142120.0 (9)C312—C313—H313121.2
C146—C141—N14124.4 (9)C314—C313—H313121.2
C142—C141—N14115.6 (8)C315—C314—C313121 (2)
O142—C142—C141119.6 (7)C315—C314—Br34120.3 (19)
O142—C142—C143121.8 (8)C313—C314—Br34118.3 (19)
C141—C142—C143118.5 (9)C314—C315—C316120 (3)
C144—C143—C142118.1 (10)C314—C315—H315120.1
C144—C143—H143121.0C316—C315—H315120.1
C142—C143—H143121.0C311—C316—C315120 (3)
C145—C144—C143122.5 (10)C311—C316—H316120.2
C145—C144—H144118.7C315—C316—H316120.2
C143—C144—H144118.7C246—C241—C242117.2 (8)
C144—C145—C146119.8 (10)C246—C241—N24124.6 (8)
C144—C145—H145120.1C242—C241—N24118.0 (7)
C146—C145—H145120.1O242—C242—C243125.3 (8)
C141—C146—C145120.8 (10)O242—C242—C241114.5 (8)
C141—C146—H146119.6C243—C242—C241120.2 (8)
C145—C146—H146119.6C244—C243—C242120.7 (9)
C142—O142—C147120.1 (7)C244—C243—H243119.6
O142—C147—H17A109.5C242—C243—H243119.6
O142—C147—H17B109.5C243—C244—C245120.6 (9)
H17A—C147—H17B109.5C243—C244—H244119.7
O142—C147—H17C109.5C245—C244—H244119.7
H17A—C147—H17C109.5C246—C245—C244117.7 (9)
H17B—C147—H17C109.5C246—C245—H245121.2
C317—N21—C22121 (3)C244—C245—H245121.2
C217—N21—C22124.8 (7)C245—C246—C241123.3 (9)
C317—N21—C26124 (2)C245—C246—H246118.3
C217—N21—C26120.7 (6)C241—C246—H246118.3
C22—N21—C26114.5 (6)C242—O242—C247116.5 (7)
N21—C22—C23109.7 (6)O242—C247—H27A109.5
N21—C22—H22A109.7O242—C247—H27B109.5
C23—C22—H22A109.7H27A—C247—H27B109.5
N21—C22—H22B109.7O242—C247—H27C109.5
C23—C22—H22B109.7H27A—C247—H27C109.5
H22A—C22—H22B108.2H27B—C247—H27C109.5
N24—C23—C22110.4 (6)
C117—N11—C12—C13124.5 (8)C241—N24—C25—C26168.7 (7)
C16—N11—C12—C1352.3 (9)C23—N24—C25—C2662.0 (8)
N11—C12—C13—N1455.3 (9)C317—N21—C26—C25135 (10)
C12—C13—N14—C141168.1 (7)C217—N21—C26—C25127.2 (9)
C12—C13—N14—C1559.6 (8)C22—N21—C26—C2552.3 (9)
C141—N14—C15—C16171.5 (6)N24—C25—C26—N2155.8 (8)
C13—N14—C15—C1657.1 (9)C22—N21—C217—O217176.0 (9)
C117—N11—C16—C15123.9 (8)C26—N21—C217—O2173.5 (15)
C12—N11—C16—C1553.0 (9)C22—N21—C217—C2113.3 (13)
N14—C15—C16—N1153.5 (9)C26—N21—C217—C211177.2 (7)
C12—N11—C117—O117176.2 (8)O217—C217—C211—C21687.7 (14)
C16—N11—C117—O1170.4 (12)N21—C217—C211—C21691.6 (16)
C12—N11—C117—C1114.4 (11)O217—C217—C211—C21291.5 (13)
C16—N11—C117—C111179.1 (7)N21—C217—C211—C21289.2 (15)
O117—C117—C111—C11682.5 (11)C216—C211—C212—C2131.2 (15)
N11—C117—C111—C11698.0 (9)C217—C211—C212—C213179.6 (9)
O117—C117—C111—C11295.6 (10)C211—C212—C213—C2142.3 (15)
N11—C117—C111—C11283.9 (10)C212—C213—C214—C2151.9 (16)
C116—C111—C112—C1133.4 (12)C212—C213—C214—Br24178.0 (6)
C117—C111—C112—C113178.4 (8)C213—C214—C215—C2160 (2)
C111—C112—C113—C1143.4 (13)Br24—C214—C215—C216176.4 (14)
C112—C113—C114—C1151.0 (13)C212—C211—C216—C2150 (2)
C112—C113—C114—Br14177.8 (6)C217—C211—C216—C215178.8 (17)
C113—C114—C115—C1161.3 (13)C214—C215—C216—C2111 (2)
Br14—C114—C115—C116179.9 (7)C22—N21—C317—O317157 (12)
C112—C111—C116—C1151.0 (13)C26—N21—C317—O31715 (20)
C117—C111—C116—C115179.1 (8)C22—N21—C317—C3116 (13)
C114—C115—C116—C1111.3 (14)C26—N21—C317—C311178 (4)
C13—N14—C141—C146112.4 (9)O317—C317—C311—C31285 (17)
C15—N14—C141—C14618.1 (11)N21—C317—C311—C31277 (21)
C13—N14—C141—C14267.6 (9)C317—C311—C312—C313156 (14)
C15—N14—C141—C142161.9 (7)C311—C312—C313—C31417 (18)
C146—C141—C142—O142178.5 (8)C312—C313—C314—C31520 (17)
N14—C141—C142—O1421.5 (11)C312—C313—C314—Br34170 (11)
C146—C141—C142—C1431.2 (12)C25—N24—C241—C24618.1 (11)
N14—C141—C142—C143178.8 (7)C23—N24—C241—C246109.8 (9)
O142—C142—C143—C144179.7 (9)C25—N24—C241—C242157.8 (7)
C141—C142—C143—C1440.1 (13)C23—N24—C241—C24274.2 (9)
C142—C143—C144—C1454.3 (16)C246—C241—C242—O242176.8 (7)
C143—C144—C145—C1467.1 (17)N24—C241—C242—O2420.6 (10)
C142—C141—C146—C1451.5 (13)C246—C241—C242—C2434.0 (12)
N14—C141—C146—C145178.5 (8)N24—C241—C242—C243179.8 (7)
C144—C145—C146—C1415.6 (15)O242—C242—C243—C244179.9 (8)
C141—C142—O142—C147179.3 (9)C241—C242—C243—C2440.9 (13)
C143—C142—O142—C1471.0 (13)C242—C243—C244—C2450.2 (14)
C317—N21—C22—C23135 (9)C243—C244—C245—C2461.8 (13)
C217—N21—C22—C23127.4 (9)C244—C245—C246—C2415.2 (13)
C26—N21—C22—C2352.1 (8)C242—C241—C246—C2456.2 (13)
N21—C22—C23—N2456.0 (8)N24—C241—C246—C245177.8 (8)
C22—C23—N24—C241166.1 (6)C243—C242—O242—C2470.2 (13)
C22—C23—N24—C2562.6 (8)C241—C242—O242—C247179.3 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15B···O2170.972.563.483 (10)159
C25—H25B···O117i0.972.553.483 (11)160
C213—H213···O217ii0.932.543.425 (10)158
C312—H312···N14ii0.932.593.45 (9)154
C115—H115···Cg4iii0.932.653.549 (9)162
C315—H315···Cg5iv0.932.743.59 (10)151
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y+1, z; (iii) x+1, y+1, z1/2; (iv) x+3/2, y, z+1/2.
1-(4-Iodobenzoyl)-4-(2-methoxyphenyl)piperazine (IV) top
Crystal data top
C18H19IN2O2F(000) = 840
Mr = 422.25Dx = 1.574 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.9626 (5) ÅCell parameters from 3824 reflections
b = 11.3258 (6) Åθ = 2.6–27.8°
c = 14.8234 (7) ŵ = 1.81 mm1
β = 104.520 (5)°T = 296 K
V = 1781.69 (16) Å3Block, yellow
Z = 40.42 × 0.40 × 0.28 mm
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
3816 independent reflections
Radiation source: Enhance (Mo) X-ray Source2690 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ω scansθmax = 27.6°, θmin = 2.6°
Absorption correction: multi-scan
(CrysalisRed; Oxford Diffraction, 2009)
h = 1314
Tmin = 0.423, Tmax = 0.603k = 1314
7512 measured reflectionsl = 199
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0499P)2 + 0.0876P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3816 reflectionsΔρmax = 0.43 e Å3
208 parametersΔρmin = 0.91 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3873 (2)0.4258 (2)0.37476 (16)0.0455 (6)
C20.4605 (3)0.4724 (3)0.3125 (2)0.0498 (7)
H2A0.48400.40810.27700.060*
H2B0.53720.50850.34930.060*
C30.3855 (3)0.5627 (2)0.2466 (2)0.0450 (7)
H3A0.43730.59670.20900.054*
H3B0.31330.52520.20520.054*
N40.3431 (2)0.65533 (19)0.29992 (16)0.0417 (5)
C50.2621 (3)0.6056 (2)0.3557 (2)0.0455 (7)
H5A0.18980.56730.31510.055*
H5B0.23180.66830.38900.055*
C60.3355 (3)0.5175 (2)0.4240 (2)0.0484 (7)
H6A0.40350.55730.46800.058*
H6B0.28080.48170.45860.058*
C170.3711 (3)0.3096 (3)0.3832 (2)0.0479 (7)
O170.4138 (3)0.23600 (19)0.3391 (2)0.0806 (8)
C110.2936 (3)0.2704 (2)0.4481 (2)0.0432 (6)
C120.1691 (3)0.2393 (3)0.4107 (2)0.0545 (8)
H120.13490.24480.34680.065*
C130.0952 (3)0.2003 (3)0.4677 (2)0.0558 (8)
H130.01150.18020.44210.067*
C140.1450 (3)0.1910 (3)0.5617 (2)0.0444 (7)
I140.02671 (2)0.13596 (2)0.64562 (2)0.06954 (12)
C150.2690 (3)0.2190 (2)0.6004 (2)0.0452 (7)
H150.30280.21200.66430.054*
C160.3432 (3)0.2578 (2)0.5431 (2)0.0456 (7)
H160.42760.27560.56890.055*
C410.2909 (2)0.7580 (2)0.2498 (2)0.0428 (7)
C420.2875 (3)0.8622 (2)0.3012 (2)0.0469 (7)
C430.2366 (3)0.9643 (3)0.2570 (3)0.0602 (9)
H430.23381.03240.29130.072*
C440.1895 (3)0.9651 (3)0.1611 (3)0.0685 (10)
H440.15411.03390.13140.082*
C450.1944 (3)0.8660 (3)0.1098 (3)0.0667 (10)
H450.16380.86790.04540.080*
C460.2448 (3)0.7628 (3)0.1535 (2)0.0548 (8)
H460.24800.69570.11800.066*
O420.3380 (2)0.85339 (17)0.39492 (16)0.0572 (6)
C470.3405 (3)0.9558 (3)0.4503 (3)0.0708 (10)
H47A0.37830.93710.51440.106*
H47B0.38891.01620.42990.106*
H47C0.25610.98340.44410.106*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0542 (13)0.0294 (13)0.0607 (15)0.0040 (11)0.0290 (12)0.0009 (11)
C20.0506 (16)0.0394 (17)0.0663 (18)0.0016 (13)0.0277 (14)0.0025 (15)
C30.0513 (15)0.0349 (16)0.0567 (17)0.0043 (13)0.0280 (13)0.0043 (13)
N40.0455 (13)0.0318 (13)0.0524 (14)0.0003 (10)0.0208 (11)0.0002 (10)
C50.0481 (16)0.0333 (15)0.0615 (18)0.0013 (12)0.0256 (14)0.0011 (14)
C60.0654 (18)0.0284 (15)0.0604 (17)0.0045 (13)0.0328 (15)0.0014 (14)
C170.0566 (17)0.0328 (16)0.0586 (18)0.0029 (14)0.0225 (14)0.0005 (15)
O170.120 (2)0.0344 (12)0.114 (2)0.0046 (13)0.0793 (17)0.0058 (13)
C110.0488 (16)0.0260 (14)0.0577 (17)0.0045 (12)0.0187 (13)0.0013 (13)
C120.0504 (18)0.062 (2)0.0482 (16)0.0070 (15)0.0073 (14)0.0055 (16)
C130.0400 (15)0.060 (2)0.066 (2)0.0020 (15)0.0103 (14)0.0016 (17)
C140.0450 (15)0.0344 (15)0.0560 (18)0.0027 (13)0.0167 (13)0.0037 (14)
I140.05888 (16)0.0820 (2)0.07440 (18)0.00787 (11)0.02923 (12)0.00640 (13)
C150.0475 (16)0.0401 (17)0.0455 (16)0.0031 (13)0.0068 (13)0.0017 (13)
C160.0424 (15)0.0332 (16)0.0593 (18)0.0055 (12)0.0091 (13)0.0011 (14)
C410.0382 (14)0.0327 (15)0.0612 (18)0.0036 (11)0.0192 (13)0.0059 (14)
C420.0418 (15)0.0348 (16)0.068 (2)0.0022 (12)0.0208 (14)0.0052 (15)
C430.0592 (19)0.0376 (18)0.089 (3)0.0042 (15)0.0273 (18)0.0115 (18)
C440.059 (2)0.051 (2)0.096 (3)0.0032 (17)0.0199 (19)0.030 (2)
C450.059 (2)0.072 (3)0.067 (2)0.0078 (18)0.0117 (17)0.026 (2)
C460.0558 (18)0.052 (2)0.0573 (19)0.0096 (15)0.0164 (15)0.0025 (16)
O420.0707 (14)0.0366 (12)0.0635 (14)0.0050 (10)0.0157 (11)0.0054 (10)
C470.073 (2)0.051 (2)0.088 (3)0.0028 (17)0.018 (2)0.022 (2)
Geometric parameters (Å, º) top
N1—C171.338 (4)C13—C141.366 (4)
N1—C61.464 (3)C13—H130.9300
N1—C21.464 (4)C14—C151.373 (4)
C2—C31.509 (4)C14—I142.104 (3)
C2—H2A0.9700C15—C161.386 (4)
C2—H2B0.9700C15—H150.9300
C3—N41.457 (3)C16—H160.9300
C3—H3A0.9700C41—C461.391 (4)
C3—H3B0.9700C41—C421.410 (4)
N4—C411.421 (3)C42—O421.364 (4)
N4—C51.469 (3)C42—C431.377 (4)
C5—C61.502 (4)C43—C441.385 (5)
C5—H5A0.9700C43—H430.9300
C5—H5B0.9700C44—C451.364 (5)
C6—H6A0.9700C44—H440.9300
C6—H6B0.9700C45—C461.383 (4)
C17—O171.223 (3)C45—H450.9300
C17—C111.502 (4)C46—H460.9300
C11—C121.384 (4)O42—C471.417 (4)
C11—C161.384 (4)C47—H47A0.9600
C12—C131.381 (4)C47—H47B0.9600
C12—H120.9300C47—H47C0.9600
C17—N1—C6125.0 (2)C11—C12—H12119.8
C17—N1—C2121.4 (2)C14—C13—C12120.2 (3)
C6—N1—C2113.6 (2)C14—C13—H13119.9
N1—C2—C3110.9 (2)C12—C13—H13119.9
N1—C2—H2A109.5C13—C14—C15120.6 (3)
C3—C2—H2A109.5C13—C14—I14118.5 (2)
N1—C2—H2B109.5C15—C14—I14120.9 (2)
C3—C2—H2B109.5C14—C15—C16119.2 (3)
H2A—C2—H2B108.0C14—C15—H15120.4
N4—C3—C2109.5 (2)C16—C15—H15120.4
N4—C3—H3A109.8C11—C16—C15121.0 (3)
C2—C3—H3A109.8C11—C16—H16119.5
N4—C3—H3B109.8C15—C16—H16119.5
C2—C3—H3B109.8C46—C41—C42118.1 (3)
H3A—C3—H3B108.2C46—C41—N4124.3 (3)
C41—N4—C3116.5 (2)C42—C41—N4117.6 (3)
C41—N4—C5112.8 (2)O42—C42—C43124.0 (3)
C3—N4—C5110.4 (2)O42—C42—C41115.5 (2)
N4—C5—C6109.7 (2)C43—C42—C41120.5 (3)
N4—C5—H5A109.7C42—C43—C44119.8 (3)
C6—C5—H5A109.7C42—C43—H43120.1
N4—C5—H5B109.7C44—C43—H43120.1
C6—C5—H5B109.7C45—C44—C43120.6 (3)
H5A—C5—H5B108.2C45—C44—H44119.7
N1—C6—C5110.2 (2)C43—C44—H44119.7
N1—C6—H6A109.6C44—C45—C46120.2 (3)
C5—C6—H6A109.6C44—C45—H45119.9
N1—C6—H6B109.6C46—C45—H45119.9
C5—C6—H6B109.6C45—C46—C41120.8 (3)
H6A—C6—H6B108.1C45—C46—H46119.6
O17—C17—N1122.8 (3)C41—C46—H46119.6
O17—C17—C11119.7 (3)C42—O42—C47118.3 (2)
N1—C17—C11117.4 (2)O42—C47—H47A109.5
C12—C11—C16118.6 (3)O42—C47—H47B109.5
C12—C11—C17118.6 (3)H47A—C47—H47B109.5
C16—C11—C17122.8 (3)O42—C47—H47C109.5
C13—C12—C11120.5 (3)H47A—C47—H47C109.5
C13—C12—H12119.8H47B—C47—H47C109.5
C17—N1—C2—C3126.9 (3)C13—C14—C15—C160.5 (5)
C6—N1—C2—C352.7 (3)I14—C14—C15—C16178.4 (2)
N1—C2—C3—N455.4 (3)C12—C11—C16—C152.3 (4)
C2—C3—N4—C41168.9 (2)C17—C11—C16—C15178.7 (3)
C2—C3—N4—C560.7 (3)C14—C15—C16—C111.0 (4)
C41—N4—C5—C6166.1 (2)C3—N4—C41—C4619.4 (4)
C3—N4—C5—C661.6 (3)C5—N4—C41—C46109.9 (3)
C17—N1—C6—C5126.5 (3)C3—N4—C41—C42159.7 (2)
C2—N1—C6—C553.1 (3)C5—N4—C41—C4271.1 (3)
N4—C5—C6—N156.4 (3)C46—C41—C42—O42177.7 (2)
C6—N1—C17—O17178.3 (3)N4—C41—C42—O421.4 (4)
C2—N1—C17—O171.3 (5)C46—C41—C42—C431.8 (4)
C6—N1—C17—C110.1 (4)N4—C41—C42—C43179.1 (2)
C2—N1—C17—C11179.5 (3)O42—C42—C43—C44178.8 (3)
O17—C17—C11—C1278.4 (4)C41—C42—C43—C440.7 (4)
N1—C17—C11—C1299.8 (3)C42—C43—C44—C450.8 (5)
O17—C17—C11—C1697.9 (4)C43—C44—C45—C461.1 (5)
N1—C17—C11—C1683.9 (4)C44—C45—C46—C410.1 (5)
C16—C11—C12—C132.0 (4)C42—C41—C46—C451.5 (4)
C17—C11—C12—C13178.6 (3)N4—C41—C46—C45179.4 (3)
C11—C12—C13—C140.5 (5)C43—C42—O42—C471.1 (4)
C12—C13—C14—C150.8 (5)C41—C42—O42—C47178.3 (3)
C12—C13—C14—I14178.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O17i0.972.503.422 (4)159
Symmetry code: (i) x+1, y+1/2, z+1/2.
1-(3-Iodobenzoyl)-4-(2-methoxyphenyl)piperazine (V) top
Crystal data top
C18H19IN2O2Dx = 1.575 Mg m3
Mr = 422.25Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 7668 reflections
a = 7.4528 (4) Åθ = 2.8–27.9°
b = 17.1306 (9) ŵ = 1.81 mm1
c = 27.903 (1) ÅT = 296 K
V = 3562.4 (3) Å3Block, orange
Z = 80.36 × 0.22 × 0.18 mm
F(000) = 1680
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
7653 independent reflections
Radiation source: Enhance (Mo) X-ray Source5048 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 27.5°, θmin = 2.8°
Absorption correction: multi-scan
(CrysalisRed; Oxford Diffraction, 2009)
h = 59
Tmin = 0.542, Tmax = 0.722k = 2215
13774 measured reflectionsl = 2936
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.048 w = 1/[σ2(Fo2) + (0.0552P)2 + 0.7763P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.116(Δ/σ)max = 0.001
S = 1.04Δρmax = 1.12 e Å3
7653 reflectionsΔρmin = 0.69 e Å3
417 parametersAbsolute structure: Flack x determined using 1728 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.456 (12)
Primary atom site location: difference Fourier map
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.2358 (9)0.4763 (4)0.2308 (2)0.0432 (17)
C120.4162 (11)0.5077 (5)0.2385 (3)0.046 (2)
H12A0.45460.49630.27100.055*
H12B0.41390.56400.23460.055*
C130.5480 (11)0.4728 (5)0.2034 (3)0.046 (2)
H13A0.66460.49710.20730.056*
H13B0.56080.41730.20950.056*
N140.4820 (8)0.4855 (3)0.1547 (2)0.0371 (15)
C150.3113 (11)0.4474 (5)0.1485 (3)0.047 (2)
H15A0.32330.39220.15550.057*
H15B0.27240.45290.11550.057*
C160.1750 (11)0.4825 (5)0.1809 (3)0.049 (2)
H16A0.15700.53690.17270.059*
H16B0.06140.45550.17720.059*
C1170.1183 (12)0.4600 (4)0.2664 (3)0.0401 (18)
O1170.0429 (8)0.4514 (4)0.2587 (2)0.0657 (17)
C1110.1887 (10)0.4497 (4)0.3164 (3)0.0406 (19)
C1120.1335 (10)0.4990 (4)0.3524 (3)0.0345 (17)
H1120.05890.54110.34560.041*
C1130.1897 (10)0.4853 (4)0.3985 (3)0.0386 (18)
I1130.09926 (11)0.55646 (4)0.45473 (2)0.0712 (2)
C1140.3004 (11)0.4230 (4)0.4104 (3)0.044 (2)
H1140.33720.41470.44190.053*
C1150.3544 (11)0.3733 (5)0.3732 (3)0.051 (2)
H1150.42850.33100.37990.061*
C1160.2999 (11)0.3861 (5)0.3274 (3)0.047 (2)
H1160.33650.35240.30320.056*
C1410.6137 (12)0.4734 (4)0.1186 (3)0.0407 (18)
C1420.7486 (11)0.5304 (5)0.1124 (3)0.048 (2)
C1430.8713 (13)0.5237 (6)0.0762 (3)0.064 (3)
H1430.96040.56130.07280.077*
C1440.8645 (16)0.4629 (7)0.0452 (3)0.078 (3)
H1440.94940.45900.02080.093*
C1450.7317 (15)0.4064 (7)0.0495 (4)0.072 (3)
H1450.72570.36520.02780.087*
C1460.6085 (14)0.4123 (5)0.0863 (3)0.054 (2)
H1460.52020.37420.08950.064*
O1420.7427 (8)0.5911 (3)0.1439 (2)0.0599 (17)
C1470.8367 (13)0.6603 (6)0.1330 (4)0.075 (3)
H17A0.79720.70140.15390.113*
H17B0.81400.67470.10040.113*
H17C0.96300.65190.13750.113*
N210.2574 (9)0.7192 (4)0.2625 (2)0.0410 (16)
C220.3201 (11)0.7090 (5)0.3111 (3)0.046 (2)
H22A0.43680.73350.31460.055*
H22B0.33370.65380.31780.055*
C230.1894 (12)0.7449 (5)0.3471 (3)0.050 (2)
H23A0.23060.73510.37950.059*
H23B0.18240.80090.34240.059*
N240.0133 (8)0.7098 (4)0.3400 (2)0.0370 (15)
C250.0519 (10)0.7253 (5)0.2915 (3)0.0403 (19)
H25A0.06190.78120.28670.048*
H25B0.17020.70250.28760.048*
C260.0736 (10)0.6914 (5)0.2548 (3)0.043 (2)
H26A0.07120.63490.25680.052*
H26B0.03400.70620.22300.052*
C2170.3746 (11)0.7340 (4)0.2273 (3)0.0384 (17)
O2170.5362 (8)0.7387 (4)0.2348 (2)0.0592 (17)
C2110.3042 (10)0.7458 (4)0.1784 (3)0.0360 (17)
C2120.3596 (11)0.6946 (4)0.1411 (3)0.0387 (18)
H2120.43070.65130.14760.046*
C2130.3053 (11)0.7109 (4)0.0950 (3)0.0422 (19)
I2130.38276 (10)0.63124 (4)0.04062 (2)0.0694 (2)
C2140.2027 (12)0.7747 (5)0.0834 (3)0.051 (2)
H2140.16790.78420.05200.062*
C2150.1535 (12)0.8239 (5)0.1198 (3)0.053 (2)
H2150.08570.86790.11260.063*
C2160.2007 (11)0.8103 (5)0.1664 (3)0.047 (2)
H2160.16330.84460.19020.057*
C2410.1152 (11)0.7211 (4)0.3769 (2)0.0396 (17)
C2420.2523 (11)0.6650 (5)0.3815 (3)0.046 (2)
C2430.3767 (13)0.6729 (6)0.4185 (3)0.063 (3)
H2430.46740.63600.42170.075*
C2440.3675 (14)0.7364 (6)0.4516 (3)0.067 (3)
H2440.45520.74380.47490.080*
C2450.2271 (16)0.7849 (7)0.4476 (3)0.077 (3)
H2450.21160.82350.47070.093*
C2460.1052 (14)0.7798 (5)0.4108 (3)0.053 (2)
H2460.01390.81660.40860.064*
O2420.2497 (8)0.6053 (3)0.3494 (2)0.0570 (17)
C2470.3468 (13)0.5376 (5)0.3602 (4)0.077 (3)
H27A0.31460.49690.33820.115*
H27B0.47290.54820.35770.115*
H27C0.31940.52120.39230.115*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.035 (4)0.062 (4)0.033 (4)0.011 (3)0.001 (3)0.001 (3)
C120.037 (5)0.061 (5)0.039 (4)0.013 (4)0.000 (4)0.005 (4)
C130.038 (5)0.056 (5)0.045 (5)0.005 (4)0.004 (4)0.000 (4)
N140.035 (4)0.044 (4)0.032 (3)0.005 (3)0.002 (3)0.001 (3)
C150.047 (5)0.059 (5)0.037 (4)0.005 (4)0.004 (4)0.014 (4)
C160.026 (5)0.073 (6)0.049 (5)0.010 (4)0.008 (4)0.006 (4)
C1170.035 (5)0.041 (4)0.044 (4)0.008 (4)0.001 (4)0.003 (3)
O1170.037 (4)0.100 (5)0.060 (4)0.005 (3)0.002 (3)0.011 (3)
C1110.029 (4)0.039 (4)0.054 (5)0.001 (3)0.012 (4)0.003 (4)
C1120.028 (4)0.029 (4)0.047 (4)0.002 (3)0.001 (4)0.002 (3)
C1130.031 (4)0.038 (4)0.047 (5)0.001 (3)0.004 (4)0.008 (3)
I1130.0901 (5)0.0754 (4)0.0481 (3)0.0307 (4)0.0073 (4)0.0164 (3)
C1140.040 (5)0.050 (5)0.043 (5)0.004 (4)0.003 (4)0.012 (4)
C1150.042 (5)0.046 (4)0.063 (5)0.010 (4)0.004 (5)0.003 (4)
C1160.047 (5)0.048 (5)0.046 (5)0.007 (4)0.011 (4)0.007 (4)
C1410.037 (5)0.047 (4)0.039 (4)0.008 (4)0.003 (4)0.001 (3)
C1420.035 (5)0.061 (6)0.047 (5)0.011 (4)0.000 (4)0.001 (4)
C1430.045 (6)0.077 (6)0.070 (6)0.010 (5)0.017 (6)0.015 (5)
C1440.070 (8)0.123 (9)0.040 (5)0.047 (7)0.014 (7)0.012 (6)
C1450.068 (7)0.097 (8)0.052 (6)0.037 (6)0.013 (6)0.024 (6)
C1460.056 (6)0.062 (5)0.042 (4)0.010 (5)0.005 (5)0.005 (4)
O1420.047 (4)0.057 (4)0.076 (4)0.008 (3)0.009 (3)0.003 (3)
C1470.056 (7)0.081 (8)0.089 (8)0.026 (5)0.011 (6)0.019 (6)
N210.032 (4)0.062 (4)0.029 (3)0.007 (3)0.002 (3)0.003 (3)
C220.033 (5)0.069 (5)0.037 (4)0.005 (4)0.002 (4)0.002 (4)
C230.041 (5)0.059 (6)0.048 (5)0.009 (4)0.008 (4)0.002 (4)
N240.028 (4)0.049 (4)0.034 (4)0.001 (3)0.001 (3)0.005 (3)
C250.029 (4)0.054 (5)0.037 (4)0.003 (3)0.002 (4)0.008 (4)
C260.036 (5)0.061 (5)0.033 (4)0.014 (4)0.001 (4)0.000 (3)
C2170.034 (5)0.038 (4)0.044 (4)0.007 (4)0.005 (4)0.001 (3)
O2170.033 (4)0.090 (5)0.055 (4)0.011 (3)0.003 (3)0.018 (3)
C2110.027 (4)0.040 (4)0.040 (4)0.007 (3)0.007 (4)0.003 (3)
C2120.031 (5)0.046 (5)0.039 (4)0.001 (4)0.002 (4)0.006 (3)
C2130.032 (4)0.047 (5)0.048 (5)0.002 (4)0.004 (4)0.004 (4)
I2130.0749 (5)0.0825 (4)0.0509 (4)0.0113 (4)0.0022 (4)0.0170 (3)
C2140.044 (5)0.065 (6)0.046 (5)0.002 (4)0.007 (4)0.013 (4)
C2150.052 (6)0.046 (5)0.059 (6)0.021 (4)0.006 (5)0.012 (4)
C2160.038 (5)0.048 (5)0.056 (6)0.007 (4)0.009 (4)0.006 (4)
C2410.038 (5)0.051 (4)0.030 (4)0.012 (4)0.003 (4)0.007 (3)
C2420.034 (5)0.054 (5)0.049 (5)0.003 (4)0.006 (4)0.012 (4)
C2430.040 (5)0.085 (6)0.063 (6)0.019 (5)0.011 (5)0.033 (5)
C2440.050 (6)0.106 (8)0.044 (5)0.023 (6)0.014 (6)0.022 (5)
C2450.083 (9)0.110 (9)0.039 (5)0.052 (7)0.007 (6)0.012 (5)
C2460.057 (6)0.057 (5)0.046 (4)0.018 (5)0.008 (5)0.004 (4)
O2420.049 (4)0.048 (4)0.074 (4)0.013 (3)0.004 (3)0.001 (3)
C2470.048 (6)0.055 (6)0.128 (10)0.022 (5)0.016 (6)0.024 (6)
Geometric parameters (Å, º) top
N11—C1171.352 (10)N21—C2171.339 (9)
N11—C121.464 (10)N21—C221.445 (9)
N11—C161.468 (10)N21—C261.466 (9)
C12—C131.511 (11)C22—C231.529 (12)
C12—H12A0.9700C22—H22A0.9700
C12—H12B0.9700C22—H22B0.9700
C13—N141.462 (9)C23—N241.457 (10)
C13—H13A0.9700C23—H23A0.9700
C13—H13B0.9700C23—H23B0.9700
N14—C1411.422 (9)N24—C2411.420 (9)
N14—C151.440 (10)N24—C251.461 (9)
C15—C161.487 (11)C25—C261.504 (10)
C15—H15A0.9700C25—H25A0.9700
C15—H15B0.9700C25—H25B0.9700
C16—H16A0.9700C26—H26A0.9700
C16—H16B0.9700C26—H26B0.9700
C117—O1171.229 (10)C217—O2171.225 (9)
C117—C1111.503 (11)C217—C2111.476 (10)
C111—C1121.374 (10)C211—C2161.389 (11)
C111—C1161.403 (11)C211—C2121.423 (10)
C112—C1131.373 (10)C212—C2131.375 (10)
C112—H1120.9300C212—H2120.9300
C113—C1141.389 (10)C213—C2141.372 (11)
C113—I1132.098 (7)C213—I2132.121 (8)
C114—C1151.404 (11)C214—C2151.369 (11)
C114—H1140.9300C214—H2140.9300
C115—C1161.357 (11)C215—C2161.366 (11)
C115—H1150.9300C215—H2150.9300
C116—H1160.9300C216—H2160.9300
C141—C1461.381 (10)C241—C2461.382 (10)
C141—C1421.412 (11)C241—C2421.409 (11)
C142—O1421.362 (10)C242—O2421.359 (10)
C142—C1431.368 (12)C242—C2431.395 (12)
C143—C1441.355 (13)C243—C2441.429 (13)
C143—H1430.9300C243—H2430.9300
C144—C1451.390 (15)C244—C2451.340 (14)
C144—H1440.9300C244—H2440.9300
C145—C1461.383 (13)C245—C2461.375 (12)
C145—H1450.9300C245—H2450.9300
C146—H1460.9300C246—H2460.9300
O142—C1471.410 (10)O242—C2471.400 (9)
C147—H17A0.9600C247—H27A0.9600
C147—H17B0.9600C247—H27B0.9600
C147—H17C0.9600C247—H27C0.9600
C117—N11—C12124.3 (7)C217—N21—C22120.0 (7)
C117—N11—C16120.7 (7)C217—N21—C26124.3 (7)
C12—N11—C16113.3 (6)C22—N21—C26113.6 (6)
N11—C12—C13110.9 (6)N21—C22—C23111.2 (7)
N11—C12—H12A109.5N21—C22—H22A109.4
C13—C12—H12A109.5C23—C22—H22A109.4
N11—C12—H12B109.5N21—C22—H22B109.4
C13—C12—H12B109.5C23—C22—H22B109.4
H12A—C12—H12B108.1H22A—C22—H22B108.0
N14—C13—C12109.0 (7)N24—C23—C22108.6 (7)
N14—C13—H13A109.9N24—C23—H23A110.0
C12—C13—H13A109.9C22—C23—H23A110.0
N14—C13—H13B109.9N24—C23—H23B110.0
C12—C13—H13B109.9C22—C23—H23B110.0
H13A—C13—H13B108.3H23A—C23—H23B108.3
C141—N14—C15117.3 (6)C241—N24—C23116.9 (6)
C141—N14—C13113.9 (6)C241—N24—C25115.0 (6)
C15—N14—C13110.0 (6)C23—N24—C25110.5 (6)
N14—C15—C16110.4 (6)N24—C25—C26110.7 (6)
N14—C15—H15A109.6N24—C25—H25A109.5
C16—C15—H15A109.6C26—C25—H25A109.5
N14—C15—H15B109.6N24—C25—H25B109.5
C16—C15—H15B109.6C26—C25—H25B109.5
H15A—C15—H15B108.1H25A—C25—H25B108.1
N11—C16—C15109.7 (7)N21—C26—C25110.9 (6)
N11—C16—H16A109.7N21—C26—H26A109.5
C15—C16—H16A109.7C25—C26—H26A109.5
N11—C16—H16B109.7N21—C26—H26B109.5
C15—C16—H16B109.7C25—C26—H26B109.5
H16A—C16—H16B108.2H26A—C26—H26B108.1
O117—C117—N11122.0 (7)O217—C217—N21121.9 (7)
O117—C117—C111119.2 (7)O217—C217—C211120.0 (7)
N11—C117—C111118.7 (7)N21—C217—C211118.1 (7)
C112—C111—C116119.7 (8)C216—C211—C212118.3 (7)
C112—C111—C117120.1 (7)C216—C211—C217122.0 (7)
C116—C111—C117120.0 (7)C212—C211—C217119.3 (7)
C113—C112—C111119.2 (7)C213—C212—C211118.3 (7)
C113—C112—H112120.4C213—C212—H212120.9
C111—C112—H112120.4C211—C212—H212120.9
C112—C113—C114122.5 (7)C214—C213—C212123.1 (7)
C112—C113—I113120.2 (5)C214—C213—I213119.7 (6)
C114—C113—I113117.2 (6)C212—C213—I213117.2 (6)
C113—C114—C115117.3 (8)C215—C214—C213117.7 (8)
C113—C114—H114121.3C215—C214—H214121.1
C115—C114—H114121.3C213—C214—H214121.1
C116—C115—C114120.8 (8)C216—C215—C214122.0 (8)
C116—C115—H115119.6C216—C215—H215119.0
C114—C115—H115119.6C214—C215—H215119.0
C115—C116—C111120.5 (8)C215—C216—C211120.6 (8)
C115—C116—H116119.7C215—C216—H216119.7
C111—C116—H116119.7C211—C216—H216119.7
C146—C141—C142117.7 (8)C246—C241—C242118.3 (8)
C146—C141—N14123.5 (8)C246—C241—N24124.0 (8)
C142—C141—N14118.5 (7)C242—C241—N24117.5 (7)
O142—C142—C143124.3 (8)O242—C242—C243124.8 (8)
O142—C142—C141115.2 (7)O242—C242—C241116.3 (7)
C143—C142—C141120.5 (8)C243—C242—C241118.9 (8)
C144—C143—C142120.8 (10)C242—C243—C244121.4 (9)
C144—C143—H143119.6C242—C243—H243119.3
C142—C143—H143119.6C244—C243—H243119.3
C143—C144—C145120.4 (10)C245—C244—C243117.1 (9)
C143—C144—H144119.8C245—C244—H244121.5
C145—C144—H144119.8C243—C244—H244121.5
C146—C145—C144119.1 (10)C244—C245—C246122.6 (10)
C146—C145—H145120.4C244—C245—H245118.7
C144—C145—H145120.4C246—C245—H245118.7
C141—C146—C145121.4 (10)C245—C246—C241121.5 (10)
C141—C146—H146119.3C245—C246—H246119.3
C145—C146—H146119.3C241—C246—H246119.3
C142—O142—C147119.1 (8)C242—O242—C247118.3 (8)
O142—C147—H17A109.5O242—C247—H27A109.5
O142—C147—H17B109.5O242—C247—H27B109.5
H17A—C147—H17B109.5H27A—C247—H27B109.5
O142—C147—H17C109.5O242—C247—H27C109.5
H17A—C147—H17C109.5H27A—C247—H27C109.5
H17B—C147—H17C109.5H27B—C247—H27C109.5
C117—N11—C12—C13142.6 (7)C217—N21—C22—C23142.6 (7)
C16—N11—C12—C1352.2 (9)C26—N21—C22—C2353.0 (9)
N11—C12—C13—N1455.0 (9)N21—C22—C23—N2456.7 (9)
C12—C13—N14—C141164.7 (6)C22—C23—N24—C241165.3 (6)
C12—C13—N14—C1561.2 (8)C22—C23—N24—C2560.6 (8)
C141—N14—C15—C16164.3 (6)C241—N24—C25—C26164.5 (6)
C13—N14—C15—C1663.4 (9)C23—N24—C25—C2660.4 (8)
C117—N11—C16—C15141.4 (7)C217—N21—C26—C25145.0 (7)
C12—N11—C16—C1552.8 (9)C22—N21—C26—C2551.4 (9)
N14—C15—C16—N1157.7 (9)N24—C25—C26—N2154.1 (9)
C12—N11—C117—O117162.6 (8)C22—N21—C217—O2170.6 (12)
C16—N11—C117—O1171.6 (11)C26—N21—C217—O217162.1 (7)
C12—N11—C117—C11119.3 (11)C22—N21—C217—C211178.6 (6)
C16—N11—C117—C111176.5 (7)C26—N21—C217—C21118.8 (11)
O117—C117—C111—C11263.4 (10)O217—C217—C211—C216111.5 (9)
N11—C117—C111—C112118.4 (8)N21—C217—C211—C21667.6 (10)
O117—C117—C111—C116111.6 (9)O217—C217—C211—C21261.3 (10)
N11—C117—C111—C11666.6 (10)N21—C217—C211—C212119.5 (8)
C116—C111—C112—C1130.6 (11)C216—C211—C212—C2131.1 (11)
C117—C111—C112—C113175.5 (7)C217—C211—C212—C213174.2 (7)
C111—C112—C113—C1140.3 (12)C211—C212—C213—C2141.0 (12)
C111—C112—C113—I113177.4 (5)C211—C212—C213—I213177.9 (5)
C112—C113—C114—C1150.0 (12)C212—C213—C214—C2150.1 (13)
I113—C113—C114—C115177.2 (6)I213—C213—C214—C215179.0 (6)
C113—C114—C115—C1160.0 (13)C213—C214—C215—C2161.1 (14)
C114—C115—C116—C1110.3 (13)C214—C215—C216—C2111.0 (14)
C112—C111—C116—C1150.6 (12)C212—C211—C216—C2150.2 (12)
C117—C111—C116—C115175.6 (8)C217—C211—C216—C215173.0 (8)
C15—N14—C141—C14619.2 (11)C23—N24—C241—C24620.0 (10)
C13—N14—C141—C146111.4 (8)C25—N24—C241—C246112.1 (8)
C15—N14—C141—C142155.1 (7)C23—N24—C241—C242154.4 (7)
C13—N14—C141—C14274.3 (9)C25—N24—C241—C24273.5 (8)
C146—C141—C142—O142177.3 (7)C246—C241—C242—O242175.5 (7)
N14—C141—C142—O1422.7 (10)N24—C241—C242—O2420.8 (10)
C146—C141—C142—C1431.3 (12)C246—C241—C242—C2432.9 (11)
N14—C141—C142—C143175.9 (7)N24—C241—C242—C243177.6 (7)
O142—C142—C143—C144177.7 (8)O242—C242—C243—C244178.3 (8)
C141—C142—C143—C1440.9 (14)C241—C242—C243—C2440.1 (12)
C142—C143—C144—C1450.4 (15)C242—C243—C244—C2454.7 (13)
C143—C144—C145—C1461.2 (15)C243—C244—C245—C2466.4 (14)
C142—C141—C146—C1450.5 (13)C244—C245—C246—C2413.6 (14)
N14—C141—C146—C145174.9 (7)C242—C241—C246—C2451.3 (12)
C144—C145—C146—C1410.7 (14)N24—C241—C246—C245175.7 (7)
C143—C142—O142—C14716.0 (12)C243—C242—O242—C24716.5 (12)
C141—C142—O142—C147162.5 (7)C241—C242—O242—C247161.7 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C112—H112···O2420.932.553.388 (9)150
C116—H116···O217i0.932.413.301 (10)159
C212—H212···O1420.932.553.363 (9)147
C216—H216···O117ii0.932.493.407 (11)169
C115—H115···Cg6i0.932.673.505 (9)149
C215—H215···Cg7ii0.932.813.566 (9)140
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1/2, z+1/2.
1-(2-Fluorobenzoyl)-4-(2-methoxyphenyl)piperazine (VI) top
Crystal data top
C18H19FN2O2F(000) = 664
Mr = 314.35Dx = 1.326 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.451 (1) ÅCell parameters from 3467 reflections
b = 11.199 (3) Åθ = 2.8–27.9°
c = 19.138 (5) ŵ = 0.10 mm1
β = 99.59 (2)°T = 296 K
V = 1574.6 (6) Å3Plate, yellow
Z = 40.48 × 0.48 × 0.24 mm
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
3467 independent reflections
Radiation source: Enhance (Mo) X-ray Source2081 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 27.9°, θmin = 2.8°
Absorption correction: multi-scan
(CrysalisRed; Oxford Diffraction, 2009)
h = 95
Tmin = 0.898, Tmax = 0.955k = 1411
6456 measured reflectionsl = 1625
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0558P)2 + 0.1876P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3467 reflectionsΔρmax = 0.17 e Å3
208 parametersΔρmin = 0.17 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.39928 (19)0.44822 (13)0.20339 (9)0.0579 (4)
C20.2874 (2)0.35004 (15)0.17138 (11)0.0612 (5)
H2A0.17630.38100.14360.073*
H2B0.25450.29880.20810.073*
C30.3905 (2)0.27991 (16)0.12493 (10)0.0579 (5)
H3A0.31720.21300.10450.069*
H3B0.41660.33000.08650.069*
N40.56074 (18)0.23587 (12)0.16578 (7)0.0474 (4)
C50.6732 (2)0.33501 (16)0.19588 (10)0.0563 (5)
H5A0.70480.38430.15800.068*
H5B0.78500.30470.22340.068*
C60.5738 (2)0.40891 (16)0.24239 (11)0.0594 (5)
H6A0.55430.36220.28310.071*
H6B0.64690.47790.25940.071*
C170.3616 (2)0.56321 (16)0.19222 (10)0.0542 (5)
O170.46610 (18)0.64224 (11)0.21579 (8)0.0794 (5)
C110.1807 (2)0.59256 (14)0.14910 (10)0.0501 (4)
C120.1624 (3)0.61463 (18)0.07854 (12)0.0662 (5)
F120.3121 (2)0.60631 (15)0.04794 (8)0.1099 (5)
C130.0009 (4)0.6427 (2)0.03739 (12)0.0832 (7)
H130.00830.65700.01090.100*
C140.1508 (3)0.64914 (19)0.06847 (14)0.0803 (7)
H140.26300.66690.04130.096*
C150.1387 (3)0.63003 (18)0.13860 (14)0.0716 (6)
H150.24210.63610.15970.086*
C160.0262 (3)0.60163 (16)0.17912 (11)0.0604 (5)
H160.03300.58840.22750.073*
C410.6480 (2)0.14823 (15)0.13071 (9)0.0474 (4)
C420.5643 (2)0.03737 (15)0.11612 (9)0.0485 (4)
C430.6482 (3)0.04929 (17)0.08283 (10)0.0619 (5)
H430.59010.12210.07190.074*
C440.8164 (3)0.0300 (2)0.06540 (12)0.0757 (6)
H440.87220.08970.04290.091*
C450.9016 (3)0.0750 (2)0.08078 (13)0.0803 (7)
H451.01720.08740.06990.096*
C460.8171 (3)0.16411 (19)0.11264 (11)0.0655 (5)
H460.87600.23690.12220.079*
O420.40191 (17)0.02227 (10)0.13810 (7)0.0611 (4)
C470.3216 (3)0.09241 (18)0.13149 (14)0.0790 (7)
H47A0.20800.09050.14890.119*
H47B0.30040.11580.08250.119*
H47C0.40180.14880.15850.119*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0582 (9)0.0372 (8)0.0731 (11)0.0040 (7)0.0045 (8)0.0065 (7)
C20.0549 (10)0.0353 (9)0.0878 (14)0.0019 (8)0.0046 (9)0.0050 (9)
C30.0621 (11)0.0386 (10)0.0658 (12)0.0001 (8)0.0100 (9)0.0035 (9)
N40.0506 (8)0.0354 (7)0.0535 (9)0.0012 (6)0.0005 (6)0.0030 (6)
C50.0556 (10)0.0421 (10)0.0666 (13)0.0011 (8)0.0035 (9)0.0039 (9)
C60.0627 (11)0.0443 (10)0.0646 (12)0.0044 (8)0.0089 (9)0.0067 (9)
C170.0622 (11)0.0374 (10)0.0617 (12)0.0019 (8)0.0060 (9)0.0052 (8)
O170.0789 (9)0.0420 (8)0.1078 (12)0.0044 (7)0.0123 (8)0.0074 (8)
C110.0639 (11)0.0300 (8)0.0553 (12)0.0017 (7)0.0065 (9)0.0025 (8)
C120.0794 (14)0.0551 (12)0.0662 (14)0.0059 (10)0.0182 (11)0.0026 (10)
F120.1203 (11)0.1322 (13)0.0871 (10)0.0165 (10)0.0457 (9)0.0106 (9)
C130.1147 (19)0.0718 (15)0.0559 (13)0.0156 (14)0.0068 (13)0.0054 (11)
C140.0832 (16)0.0598 (14)0.0884 (19)0.0162 (11)0.0137 (13)0.0055 (12)
C150.0657 (13)0.0527 (12)0.0955 (18)0.0073 (9)0.0108 (12)0.0055 (12)
C160.0701 (13)0.0493 (11)0.0613 (12)0.0049 (9)0.0090 (10)0.0003 (9)
C410.0557 (10)0.0419 (9)0.0439 (10)0.0034 (8)0.0065 (8)0.0021 (8)
C420.0529 (10)0.0431 (10)0.0485 (10)0.0050 (8)0.0050 (8)0.0011 (8)
C430.0756 (13)0.0482 (11)0.0609 (12)0.0059 (9)0.0089 (10)0.0102 (9)
C440.0900 (16)0.0676 (15)0.0767 (15)0.0144 (12)0.0351 (13)0.0088 (12)
C450.0776 (15)0.0797 (16)0.0935 (17)0.0048 (13)0.0429 (13)0.0002 (13)
C460.0706 (13)0.0580 (12)0.0722 (14)0.0045 (10)0.0241 (10)0.0009 (10)
O420.0608 (8)0.0385 (7)0.0858 (10)0.0039 (5)0.0179 (7)0.0074 (6)
C470.0788 (14)0.0439 (12)0.114 (2)0.0097 (10)0.0165 (13)0.0006 (12)
Geometric parameters (Å, º) top
N1—C171.328 (2)C13—C141.352 (3)
N1—C21.452 (2)C13—H130.9300
N1—C61.456 (2)C14—C151.347 (3)
C2—C31.492 (3)C14—H140.9300
C2—H2A0.9700C15—C161.376 (3)
C2—H2B0.9700C15—H150.9300
C3—N41.461 (2)C16—H160.9300
C3—H3A0.9700C41—C461.372 (2)
C3—H3B0.9700C41—C421.396 (2)
N4—C411.408 (2)C42—O421.356 (2)
N4—C51.451 (2)C42—C431.368 (2)
C5—C61.498 (2)C43—C441.367 (3)
C5—H5A0.9700C43—H430.9300
C5—H5B0.9700C44—C451.346 (3)
C6—H6A0.9700C44—H440.9300
C6—H6B0.9700C45—C461.375 (3)
C17—O171.215 (2)C45—H450.9300
C17—C111.495 (3)C46—H460.9300
C11—C121.357 (3)O42—C471.414 (2)
C11—C161.374 (2)C47—H47A0.9600
C12—F121.347 (2)C47—H47B0.9600
C12—C131.371 (3)C47—H47C0.9600
C17—N1—C2125.13 (15)C11—C12—C13123.1 (2)
C17—N1—C6121.51 (15)C14—C13—C12118.6 (2)
C2—N1—C6112.85 (14)C14—C13—H13120.7
N1—C2—C3109.49 (15)C12—C13—H13120.7
N1—C2—H2A109.8C15—C14—C13120.4 (2)
C3—C2—H2A109.8C15—C14—H14119.8
N1—C2—H2B109.8C13—C14—H14119.8
C3—C2—H2B109.8C14—C15—C16120.2 (2)
H2A—C2—H2B108.2C14—C15—H15119.9
N4—C3—C2110.25 (15)C16—C15—H15119.9
N4—C3—H3A109.6C11—C16—C15120.9 (2)
C2—C3—H3A109.6C11—C16—H16119.6
N4—C3—H3B109.6C15—C16—H16119.6
C2—C3—H3B109.6C46—C41—C42117.56 (16)
H3A—C3—H3B108.1C46—C41—N4123.10 (16)
C41—N4—C5116.16 (14)C42—C41—N4119.27 (14)
C41—N4—C3114.14 (14)O42—C42—C43123.81 (17)
C5—N4—C3110.28 (13)O42—C42—C41116.13 (14)
N4—C5—C6110.41 (14)C43—C42—C41120.04 (17)
N4—C5—H5A109.6C44—C43—C42120.68 (19)
C6—C5—H5A109.6C44—C43—H43119.7
N4—C5—H5B109.6C42—C43—H43119.7
C6—C5—H5B109.6C45—C44—C43120.19 (19)
H5A—C5—H5B108.1C45—C44—H44119.9
N1—C6—C5110.49 (15)C43—C44—H44119.9
N1—C6—H6A109.6C44—C45—C46119.8 (2)
C5—C6—H6A109.6C44—C45—H45120.1
N1—C6—H6B109.6C46—C45—H45120.1
C5—C6—H6B109.6C41—C46—C45121.7 (2)
H6A—C6—H6B108.1C41—C46—H46119.2
O17—C17—N1122.81 (17)C45—C46—H46119.2
O17—C17—C11120.51 (16)C42—O42—C47118.15 (14)
N1—C17—C11116.68 (15)O42—C47—H47A109.5
C12—C11—C16116.74 (18)O42—C47—H47B109.5
C12—C11—C17121.44 (17)H47A—C47—H47B109.5
C16—C11—C17121.80 (17)O42—C47—H47C109.5
F12—C12—C11117.80 (19)H47A—C47—H47C109.5
F12—C12—C13119.1 (2)H47B—C47—H47C109.5
C17—N1—C2—C3116.05 (19)C11—C12—C13—C140.2 (3)
C6—N1—C2—C355.8 (2)C12—C13—C14—C150.9 (3)
N1—C2—C3—N457.7 (2)C13—C14—C15—C161.1 (3)
C2—C3—N4—C41167.03 (14)C12—C11—C16—C150.9 (3)
C2—C3—N4—C560.08 (19)C17—C11—C16—C15179.28 (17)
C41—N4—C5—C6169.72 (14)C14—C15—C16—C110.2 (3)
C3—N4—C5—C658.43 (19)C5—N4—C41—C4612.8 (2)
C17—N1—C6—C5117.53 (19)C3—N4—C41—C46117.23 (19)
C2—N1—C6—C554.7 (2)C5—N4—C41—C42164.13 (15)
N4—C5—C6—N155.2 (2)C3—N4—C41—C4265.8 (2)
C2—N1—C17—O17174.09 (19)C46—C41—C42—O42176.51 (16)
C6—N1—C17—O172.9 (3)N4—C41—C42—O420.6 (2)
C2—N1—C17—C116.5 (3)C46—C41—C42—C432.1 (3)
C6—N1—C17—C11177.72 (17)N4—C41—C42—C43179.23 (16)
O17—C17—C11—C1284.1 (2)O42—C42—C43—C44176.56 (18)
N1—C17—C11—C1296.5 (2)C41—C42—C43—C442.0 (3)
O17—C17—C11—C1694.2 (2)C42—C43—C44—C450.1 (3)
N1—C17—C11—C1685.2 (2)C43—C44—C45—C461.5 (4)
C16—C11—C12—F12179.99 (17)C42—C41—C46—C450.5 (3)
C17—C11—C12—F121.7 (3)N4—C41—C46—C45177.51 (19)
C16—C11—C12—C131.2 (3)C44—C45—C46—C411.3 (4)
C17—C11—C12—C13179.50 (19)C43—C42—O42—C475.4 (3)
F12—C12—C13—C14179.1 (2)C41—C42—O42—C47173.24 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O17i0.932.583.510 (3)177
C6—H6B···Cg1ii0.972.873.565 (2)130
Symmetry codes: (i) x1, y, z; (ii) x+3/2, y+1/2, z+1/2.
Hydrogen bonds (Å, °) top
Cg1–Cg7 represent the centroids of the rings (C41–C46), (C441–C446), (C241–C246), (C241–C246), (C141–C146), (C211–C216) and (C111–C116), respectively.
CompoundD—H···AD—HH···AD···AD—H···A
(I)C15—H15···O17i0.932.483.409 (4)173
C13—H13···Cg1ii0.932.823.559 (4)151
(II)C15—H15B···O417iii0.972.393.314 (9)160
C35—H365B···O2170.972.413.333 (9)159
C115—H115···O2170.932.603.522 (9)174
C215—H215···O117iv0.932.563.482 (8)170
C315—H315···O4170.932.563.486 (9)177
C415—H415···O317v0.932.523.428 (8)165
C213—H213···Cg2vi0.932.713.604 (8)161
C313—H313···Cg3vii0.932.793.633 (8)151
(III)C15—H15B···O2170.972.563.483 (10)159
C25—H25B···O115iii0.972.553.483 (11)160
C213—H213···O217viii0.932.543.425 (10)158
C312—H312···N14viii0.932.593.45 (9)154
C115—H115···Cg4ix0.932.653.549 (9)162
C315—H315···Cg5x0.932.743.59 (10)151
(IV)C3—H3A···O17xi0.972.503.422 (4)159
(V)C112—H112···O2420.932.553.388 (9)150
C116—H116···O217xii0.932.413.301 (10)159
C212—H212···O1420.932.553.363 (9)147
C216—H216···O117xiii0.932.493.407 (11)169
C115—H115···Cg6xii0.932.673.505 (9)149
C215—H215···Cg7xiii0.932.813.566 (9)140
(VI)C15—H15···O17i0.932.583.510 (3)177
Symmetry codes: (i) -1 + x, y, z; (ii) -1/2 + x, 1/2 - y, -z; (iii) x, -1 + y, z; (iv) -1/2 + x, 1 - y, z; (v) 1/2 + x, 2 - y, z; (vi) 1 - x, 1 - y, -1/2 + z; (vii) 1 - x, 1 - y, 1/2 + z; (viii) 1/2 + x, 1 - y, z; (ix) 1 - x, 1 - y, -1/2 + z; (x) 3/2 - x, y, 1/2 + z; (xi) 1 - x, 1/2 + y, 1/2 - z; (xii) 1 - x, -1/2 + y, 1/2 - z; (xiii) -x, 1/2 + y, 1/2 - z.
 

Acknowledgements

CHC thanks the University of Mysore for research facilities.

Funding information

HSY thanks the University Grants Commission, New Delhi for the award of a BSR Faculty Fellowship for three years.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBoeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317–320.  CrossRef Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFábián, L. & Brock, C. P. (2010). Acta Cryst. B66, 94–103.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129–138.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139–150.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C. & Patterson, I. L. J. (1996). Acta Cryst. C52, 420–423.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39–57.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHackling, A., Ghosh, R., Perachon, S., Mann, A., Höltje, H. D., Wermuth, C. G., Schwartz, J. C., Sippl, W., Sokoloff, P. & Stark, H. (2003). J. Med. Chem. 46, 3883–3899.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHarish Chinthal, C., Kavitha, C. N., Yathirajan, H. S., Foro, S. & Glidewell, C. (2020b). IUCrData, 5, x201523.  Google Scholar
First citationHarish Chinthal, C., Kavitha, C. N., Yathirajan, H. S., Foro, S., Rathore, R. S. & Glidewell, C. (2020a). Acta Cryst. E76, 1779–1793.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHofmann, D. W. M. (2002). Acta Cryst. B58, 489–493.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKiran Kumar, H., Yathirajan, H. S., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1494–1506.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKiran Kumar, H., Yathirajan, H. S., Harish Chinthal, C., Foro, S. & Glidewell, C. (2020). Acta Cryst. E76, 488–495.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKiran Kumar, H., Yathirajan, H. S., Sagar, B. K., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1253–1260.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMahesha, N., Sagar, B. K., Yathirajan, H. S., Furuya, T., Haraguchi, T., Akitsu, T. & Glidewell, C. (2019). Acta Cryst. E75, 202–207.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMahesha, N., Yathirajan, H. S., Furuya, T., Akitsu, T. & Glidewell, C. (2019). Acta Cryst. E75, 129–133.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOrjales, A., Alonso-Cires, L., Labeaga, L. & Corcóstegui, R. (1995). J. Med. Chem. 38, 1273–1277.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRiddell, F. G. & Rogerson, M. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 493–504.  CrossRef Web of Science Google Scholar
First citationRiddell, F. G. & Rogerson, M. (1997). J. Chem. Soc. Perkin Trans. 2, pp. 249–256.  CrossRef Web of Science Google Scholar
First citationSeip, H. M. & Seip, R. (1973). Acta Chem. Scand. 27, 4024–4027.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWaszkielewicz, A. M., Pytka, K., Rapacz, A., Wełna, E., Jarzyna, M., Satała, G., Bojarski, A. J., Sapa, J., Żmudzki, P., Filipek, B. & Marona, H. (2015). Chem. Biol. Drug Des. 85, 326–335.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563–1571.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds