research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Bis[2,6-bis­­(1-methyl­eth­yl)phen­yl]pyridine-4-carboximidamide toluene hemisolvate

CROSSMARK_Color_square_no_text.svg

aDépartement de Chimie, Biochimie et Physique et l'Institut de Recherche sur l'Hydrogène (IRH), Université du Québec à Trois-Rivières (UQTR), 3351, Boul. des Forges, C.P. 500, Trois-Rivières, QC, G9A 5H7, Canada, and bDépartement de Chimie, Université de Montréal, campus MIL, 1375 Avenue, Thérèse-Lavoie-Roux, Montréal, QC, H2V 0B3, Canada
*Correspondence e-mail: mihaela.cibian@uqtr.ca

Edited by G. Diaz de Delgado, Universidad de Los Andes, Venezuela (Received 7 October 2020; accepted 5 January 2021; online 12 January 2021)

The title compound, C30H39N3·0.5C7H8, is a symmetrically N,N′-disubstituted aryl­amidine containing a 4-pyridyl substituent on the carbon atom of the N–C–N linkage and bulky 2,6-diiso­propyl­phenyl groups on the nitro­gen atoms. It crystallizes in the Z-anti configuration and its amidine C—N bonds present amine [1.368 (1) Å] and imine [1.286 (1) Å] features. Intra­molecular hydrogen bonds are present in the structure together with inter­molecular N—H⋯N and C—H⋯N inter­actions linking the mol­ecules in chains along the a- and c-axis directions.

1. Chemical context

Amidine compounds are well developed in organic chemistry (Patai & Rappoport, 1991[Patai, S. & Rappoport, Z. (1991). Editors. The Chemistry of the Amidines and Imidates. Chichester: Wiley.]). Their derivatives are also good chelators for transition metals and their complexes have found widespread use in catalysis, polymerization reactions, as functional materials, and in supra­molecular chemisty (Bambirra et al., 2004[Bambirra, S., Bouwkamp, M. W., Meetsma, A. & Hessen, B. (2004). J. Am. Chem. Soc. 126, 9182-9183.]; Kazeminejad et al., 2019[Kazeminejad, N., Münzfeld, L., Gamer, M. T. & Roesky, P. W. (2019). Dalton Trans. 48, 8153-8160.]; Qian et al., 2010[Qian, F., Liu, K. & Ma, H. (2010). Dalton Trans. 39, 8071-8083.]; Loh et al., 2014[Loh, C., Seupel, S., Goerls, H., Krieck, S. & Westerhausen, M. (2014). Eur. J. Inorg. Chem. pp. 1312-1321.]; Boeré et al., 1998[Boeré, R. T., Klassen, V. & Wolmershauser, G. (1998). J. Chem. Soc. Dalton Trans. 4147-4154.]; Chartrand & Hanan, 2008[Chartrand, D. & Hanan, G. (2008). Chem. Commun. pp. 727-729.]).

[Scheme 1]

Herein, we report the synthesis and the solid state structure of N,N'-[2,6-bis­(1-methyl­eth­yl)phen­yl]-4-pyridine­carb­oxim­id­amide [N,N′-bis­(2,6-diiso­propyl­phen­yl)-4-pyridyl­amidine], which has been prepared as a potential ligand in coordination and supra­molecular chemistry and as precursor for the corresponding amidine-N-oxide derivative (Cibian et al., 2011[Cibian, M., Langis-Barsetti, S. & Hanan, G. S. (2011). Synlett, 3, 405-409.]). For the specific example of the bulky N,N′-bis­(2,6-diiso­propyl­phen­yl)aryl­amidines, although crystallographic evidence of various of these compounds exists (Loh et al., 2014[Loh, C., Seupel, S., Goerls, H., Krieck, S. & Westerhausen, M. (2014). Eur. J. Inorg. Chem. pp. 1312-1321.]; Boeré et al., 1998[Boeré, R. T., Klassen, V. & Wolmershauser, G. (1998). J. Chem. Soc. Dalton Trans. 4147-4154.]), this is the first report of the 4-pyridyl-substituted compound (1) (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of 1, with displacement ellipsoids drawn at 50% probability level: main amidine moiety and co-crystallized toluene solvent (H atoms removed for clarity).

2. Structural commentary

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. A disordered toluene solvent (population of 0.5) is also present in the crystal structure. The amidine crystallizes completely in the Z-anti structure, the same as for N,N′-bis­(2,6-diiso­propyl­phen­yl)benzamidine (Loh et al., 2014[Loh, C., Seupel, S., Goerls, H., Krieck, S. & Westerhausen, M. (2014). Eur. J. Inorg. Chem. pp. 1312-1321.]) and for N,N′-bis­(2,6-diiso­propyl­phen­yl)-4-anisyl­amidine (Boeré et al., 1998[Boeré, R. T., Klassen, V. & Wolmershauser, G. (1998). J. Chem. Soc. Dalton Trans. 4147-4154.]), but differently from N,N′-bis­(2,6-diiso­propyl­phen­yl)-4-tBu-benz­amidine (Jones et al., 2011[Jones, C., Bonyhady, S. J., Holzmann, N., Frenking, G. & Stasch, A. (2011). Inorg. Chem. 50, 12315-12325.]) and N,N'-bis­(2,6-diiso­propyl­phen­yl)-4-tolu­amidine (Boeré et al., 1998[Boeré, R. T., Klassen, V. & Wolmershauser, G. (1998). J. Chem. Soc. Dalton Trans. 4147-4154.]) (which are disordered mixtures of Z-anti and E-syn tautomeric forms), as well as from N,N′-bis­(2,6-diiso­propyl­phen­yl)-acetamidine (entirely E-anti) (Boeré et al., 1998[Boeré, R. T., Klassen, V. & Wolmershauser, G. (1998). J. Chem. Soc. Dalton Trans. 4147-4154.]).

The amidine C—N bonds in 1 present distinct amine [1.368 (1) Å] and imine [1.286 (1) Å] features, which is similar to what has been found in other bulky bis­(2,6-diiso­propyl­phen­yl)benzamidines that crystallized in only one isomeric/tautomeric form (Loh et al., 2014[Loh, C., Seupel, S., Goerls, H., Krieck, S. & Westerhausen, M. (2014). Eur. J. Inorg. Chem. pp. 1312-1321.]; Boeré et al., 1998[Boeré, R. T., Klassen, V. & Wolmershauser, G. (1998). J. Chem. Soc. Dalton Trans. 4147-4154.]).

The parameter ΔCN = d(C—N) − d(C=N) for the central N–C–N amidine linkage (Häfelinger & Kuske, 1991[Häfelinger, G. & Kuske, K. H. (1991). In The Chemistry of the Amidines and Imidates, edited by S. Patai & Z. Rappoport, Vol. 2, ch. 1, pp. 1-100. Chichester: Wiley.]) is generally used to assess the degree of delocalization in the N–C–N skeleton. In the title compound this difference is 0.082 (2) Å, whereas it is 0.081 (6) Å in N,N′-bis­(2,6-diiso­propyl­phen­yl)benzamidine (Loh et al., 2014[Loh, C., Seupel, S., Goerls, H., Krieck, S. & Westerhausen, M. (2014). Eur. J. Inorg. Chem. pp. 1312-1321.]) and 0.057 (2) Å in N,N′-bis­(2,6-diiso­propyl­phen­yl)-4-anisyl­amidine (Boeré et al., 1998[Boeré, R. T., Klassen, V. & Wolmershauser, G. (1998). J. Chem. Soc. Dalton Trans. 4147-4154.]). For non-substituted N,N′-di­phenyl­benzamidine, the same value of 0.057 Å (Alcock et al., 1988[Alcock, N. W., Barker, J. & Kilner, M. (1988). Acta Cryst. C44, 712-715.]) is found. As these are all compounds that crystallized in the Z-anti configuration only, the ΔCN comparison indicates that although the substituents on the phenyl rings influence the degree of delocalization in the N–C–N amidine backbone, other factors also play an important role (e.g., intra- and inter­molecular inter­actions and packing factors). It is important to note that for the compounds crystallized in mixtures of Z-anti and E-syn tautomeric forms, the value of ΔCN is, as expected, significantly lower [e.g., 0.019 (3) Å in N,N′-bis­(2,6-diiso­propyl­phen­yl)-4-tBu-benzamidine (Jones et al., 2011[Jones, C., Bonyhady, S. J., Holzmann, N., Frenking, G. & Stasch, A. (2011). Inorg. Chem. 50, 12315-12325.]); 0.027 (4) Å in N,N'-bis­(2,6-diiso­propyl­phen­yl)-4-tolu­amidine (Boeré et al., 1998[Boeré, R. T., Klassen, V. & Wolmershauser, G. (1998). J. Chem. Soc. Dalton Trans. 4147-4154.])].

In the title compound, the pyridyl ring is tilted with respect to the central N–C–N bridge at an angle of 35.9 (1)°, while the bulky substituted aryl rings 1 and 2 (see scheme) are tilted by 65.2 (1) and 53.1 (1)°, respectively.

The intra­molecular hydrogen-bonding pattern in 1 (Table 1[link] and Fig. 2[link]) reveals weak C—H⋯N hydrogen bonds (Desiraju & Steiner, 2001[Desiraju, G. R. & Steiner, T. (2001). The Weak Hydrogen Bond in Structural Chemistry and Biology, pp. 1-28. Oxford University Press.]) between the (CH3)2CH– protons of each isopropyl substituent and the N atoms of the amidine bridge.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N3i 0.89 (1) 2.38 (1) 3.118 (1) 141 (1)
C10—H10⋯N2ii 0.95 2.74 3.515 (2) 139
C13—H13⋯N1 1.00 2.50 2.9794 (15) 109
C16—H16⋯N1 1.00 2.44 2.8811 (15) 106
C25—H25⋯N2 1.00 2.42 2.8933 (15) 108
C28—H28⋯N2 1.00 2.54 2.9140 (15) 102
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x-1, y, z].
[Figure 2]
Figure 2
Intra­molecular hydrogen-bonding pattern in 1. Co-crystallized solvent is omitted for clarity.

3. Supra­molecular features

In the crystal structure of 1, two different types of conventional inter­molecular hydogen bonds (Table 1[link] and Fig. 3[link]) (Desiraju & Steiner, 2001[Desiraju, G. R. & Steiner, T. (2001). The Weak Hydrogen Bond in Structural Chemistry and Biology, pp. 1-28. Oxford University Press.]) can be identified, linking the discrete mol­ecules in infinite chains along the a and c axes. A relatively strong N—H ⋯N inter­action exists between the amidine H1 proton and the N3 pyridyl ring atom of an adjacent mol­ecule [angle N1—H1⋯N3 is 141 (1)°; distances H1⋯N3 and N1⋯N3 are 2.38 (1) and 3.118 (1) Å, respectively]. The second type of inter­molecular hydrogen bond is a much weaker Csp2—H ⋯N inter­action between the para proton H10 of aryl ring 1 and the N2 amidine bridge atom of an adjacent mol­ecule [angle C10—H10 ⋯N2 is 139°; distances H10⋯N2 and C10⋯N3 are 2.74 Å and 3.515 (2) Å, respectively].

[Figure 3]
Figure 3
Inter­molecular hydrogen-bonding pattern in 1. The mol­ecules are connected by N—H ⋯N and C—H⋯N inter­actions, forming infinite chains along the a- and c-axis directions.

In the crystal packing, the chains of main amidine moieties (along the a axis) alternate with layers of co-crystallized toluene mol­ecules, but no real attractive inter­actions were identified between the main amidine and the toluene.

Furthermore, the packing analysis in 1 reveals two other inter­molecular short contacts of Csp2—H ⋯π type [C4—H4 ⋯π (ring 2: C19–C24 aryl ring)] and Csp3—H ⋯π type [C15—H15 ⋯π (pyridyl ring)] (Table 2[link]), but no ππ type inter­actions. The formation of the latter is most probably hindered by the presence of the bulky 2,6-diisopropyl subs­tituents.

Table 2
Inter­molecular short contacts in 1 (Å, °)

Cg (py) is the centroid of the pyridyl ring. Cg (ring 2) is the centroid of the C19–C24 aryl ring.

X—H⋯Cg (π-ring) H⋯Cg XCg X—H⋯Cg
C4—H4⋯Cg (ring 2)iii 2.88 3.53 (1) 127
C15—H15⋯Cg (py)iv 2.82 3.71 (1) 151
Symmetry codes: (iii) x, [{1\over 2}] − y, −[{1\over 2}] + z; (iv) x, y, z.

4. Database survey

Table 3[link] presents the results of the Cambridge Structural Database survey with respect to other reported mol­ecular structures of bulky N,N′-bis­(2,6-diiso­propyl­phen­yl)aryl­amidines (CSD version 5.41, update of May 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). All compounds reported in Table 3[link] are free bases non-coordinated to metals. Mol­ecular structures of coordination complexes of these ligands (as free base and depro­ton­ated forms) also exist [e.g., with molibdenum (GOBNAM; Boeré et al., 1998[Boeré, R. T., Klassen, V. & Wolmershauser, G. (1998). J. Chem. Soc. Dalton Trans. 4147-4154.]); with lead (BAZVIJ; Jones et al., 2011[Jones, C., Bonyhady, S. J., Holzmann, N., Frenking, G. & Stasch, A. (2011). Inorg. Chem. 50, 12315-12325.]); with lithium, potassium, calcium (GIWGOK, GIWHAX, GIWHIF; Loh et al., 2014[Loh, C., Seupel, S., Goerls, H., Krieck, S. & Westerhausen, M. (2014). Eur. J. Inorg. Chem. pp. 1312-1321.]); with magnesium (GIWLEF; Moxey et al., 2014[Moxey, G. J., Ortu, F., Goldney Sidley, L., Strandberg, H. N., Blake, A. J., Lewis, W. & Kays, D. L. (2014). Dalton Trans. 43, 4838-4846.]); with lanthanides (NAHDUW, NAHFEI, NAHFIM, NAHFUY; Bambirra et al., 2004[Bambirra, S., Bouwkamp, M. W., Meetsma, A. & Hessen, B. (2004). J. Am. Chem. Soc. 126, 9182-9183.])]. In the case of N,N′-bis­(2,6-di-iso­propyl­phen­yl)-2,4,6-tri­methyl­benzamidine (Table 3[link], entry 6), the free-base ligand is co-crystallized with its coordin­ation complex (IKETAV; Green et al., 2016[Green, R., Walker, A. C., Blake, M. P. & Mountford, P. (2016). Polyhedron, 116, 64-75.]). The compounds in Table 3[link] entries 1 to 6, are mono-amidines, while the compound in entry 7 is a phenyl-C-bridged bis-amidine (Li et al., 2013[Li, M., Hong, J., Chen, Z., Zhou, X. & Zhang, L. (2013). Dalton Trans. 42, 8288-8297.]). The solid-state structures of zirconium complexes with the 3,5-di-t-butyl-N,N′-bis­(2,6-di-iso­propyl­phen­yl)-2-oxybenzamidinato ligand also exist (CETCAH, CETCIP, CETCOV, CETDEM; Kirillov et al., 2012[Kirillov, E., Roisnel, T. & Carpentier, J.-F. (2012). Organometallics, 31, 3228-3240.]), but the mol­ecular structure for the free-base non-coordinated form of this amidine has not yet been reported.

Table 3
CSD reported mol­ecular structures of bulky N,N′-bis­(2,6-diiso­propyl­phen­yl)ar­ylamidines (free-base non-coordinated forms)

No. Aryl substituent CSD refcode Reference
1 Ph GIWGEA Loh et al. (2014[Loh, C., Seupel, S., Goerls, H., Krieck, S. & Westerhausen, M. (2014). Eur. J. Inorg. Chem. pp. 1312-1321.])
2 4-MePh GOBNIU Boeré et al. (1998[Boeré, R. T., Klassen, V. & Wolmershauser, G. (1998). J. Chem. Soc. Dalton Trans. 4147-4154.])
3 4-OMePh GOBMOZ Boeré et al. (1998[Boeré, R. T., Klassen, V. & Wolmershauser, G. (1998). J. Chem. Soc. Dalton Trans. 4147-4154.])
4 4 − t-BuPh BAZTUT Jones et al. (2011[Jones, C., Bonyhady, S. J., Holzmann, N., Frenking, G. & Stasch, A. (2011). Inorg. Chem. 50, 12315-12325.])
5 3,5-diMePh GIWLEF Moxey et al. (2014[Moxey, G. J., Ortu, F., Goldney Sidley, L., Strandberg, H. N., Blake, A. J., Lewis, W. & Kays, D. L. (2014). Dalton Trans. 43, 4838-4846.])
6 2,4,6-triMePh IKETAV Green et al. (2016[Green, R., Walker, A. C., Blake, M. P. & Mountford, P. (2016). Polyhedron, 116, 64-75.])
7 Ph (C-bridged) DIFCIG Li et al. (2013[Li, M., Hong, J., Chen, Z., Zhou, X. & Zhang, L. (2013). Dalton Trans. 42, 8288-8297.])

5. Synthesis and crystallization

N,N-bis­[2,6-bis­(1-methyl­eth­yl)phen­yl]-4-pyridine­carb­ox­im­id­amide (1)

Compound 1 was obtained from N-[2,6-bis­(1-methyl­eth­yl)phen­yl]-4-pyridine­carboxamide (Laramée et al., 2012[Laramée, B., Cibian, M. & Hanan, G. S. (2012). Acta Cryst. E68, o2975-o2976.]) and 2,6-diiso­propyl­aniline via the corresponding imidoyl chloride (Boeré et al., 1998[Boeré, R. T., Klassen, V. & Wolmershauser, G. (1998). J. Chem. Soc. Dalton Trans. 4147-4154.]). N-[2,6-Bis(1-methyl­eth­yl)phen­yl]-4-pyridine­carboxamide (7.2 g, 25 mmol, 1 eq.), SOCl2 (30 mL, excess), dry Et3N (10 mL, 75 mmol, 3 eq.), 2,6-dii­propyl­aniline (5.3 mL, 28 mmol, 1.1 eq.), and dry toluene (50 mL) were combined following the general procedure for benzamidine synthesis reported in the above-mentioned reference. A beige precipitate was obtained directly from the reaction mixture, which was recrystallized in hot EtOH, to yield the desired product as a beige solid. X-ray quality crystals (colourless blocks) were obtained in EtOH/water (1:1) at 263 K. Yield 7.5 g, 66%. 1H NMR (DMSO-d6, 400 MHz) δ, ppm: 8.58–8.49 (m, 2H, H-py), 8.45 (s, 1H, NH), 7.57–7.49 (m, 1H, H-py), 7.41–7.33 (m, 1H, H-py), 7.33–7.25 (m, 1H, p-H-Ph), 7.23 (d, J = 8 Hz, 2H, m-H-Ph), 6.87 (d, J = 8 Hz, 2H, m-H-Ph), 6.83–6.76 (m, 1H, p-H-Ph), 3.43 [sept, J = 7 Hz, 2H, –CH–(CH3)2], 2.99 [sept, J = 7 Hz, 2H, –CH–(CH3)2], 1.30 [d, J = 7 Hz, 6H, –CH–(CH3)2), 1.24 (d, J = 7 Hz, 6H, –CH–(CH3)2), 0.91 (d, J = 7 Hz 6H, –CH–(CH3)2], 0.80 [d, J = 7 Hz, 6H, –CH–(CH3)2].

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. H atoms were included in calculated positions and treated as riding atoms: aromatic C—H 0.95 Å, methyl C—H 0.98 Å, with Uiso(H) = k × Ueq(parent C-atom), where k = 1.2 for the aromatic H atoms and 1.5 for the methyl H atoms. The NH proton (H1) was located in the difference-Fourier map and refined freely.

Table 4
Experimental details

Crystal data
Chemical formula 2C30H39N3·C7H8
Mr 975.41
Crystal system, space group Monoclinic, P21/c
Temperature (K) 200
a, b, c (Å) 9.7537 (2), 20.8030 (5), 14.7561 (4)
β (°) 103.422 (1)
V3) 2912.33 (12)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.49
Crystal size (mm) 0.32 × 0.12 × 0.12
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]/4)
Tmin, Tmax 0.629, 0.754
No. of measured, independent and observed [I > 2σ(I)] reflections 36670, 5649, 4950
Rint 0.035
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.120, 1.05
No. of reflections 5649
No. of parameters 424
No. of restraints 433
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.26, −0.20
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), pubCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]), POV-RAY (Povray, 2013[Povray (2013). POV-RAY 3.7.0, Persistence of Vision Pty. Ltd., Persistence of Vision Raytracer, retrieved from https://www.povray.org/download/.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Co-crystallized disordered solvent (toluene, which was the reaction solvent) present on a symmetry position was modelled as two component disorder using PART −1 and PART −2 instructions. The occupancy factor was fixed at 0.25. The following constraints and restraints were also used: DFIX, FLAT and SADI (on position), ISOR and SIMU (on thermal factors). The model was refined anisotropically.

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009), ORTEP-3 for Windows (Farrugia, 2012), pubCIF (Westrip, 2010), POV-RAY (Povray, 2013), PLATON (Spek, 2020), Mercury (Macrae et al., 2020).

N,N'-Bis[2,6-bis(1-methylethyl)phenyl]pyridine-4-carboximidamide toluene hemisolvate top
Crystal data top
2C30H39N3·C7H8F(000) = 1060
Mr = 975.41Dx = 1.112 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 9.7537 (2) ÅCell parameters from 9920 reflections
b = 20.8030 (5) Åθ = 3.7–71.8°
c = 14.7561 (4) ŵ = 0.49 mm1
β = 103.422 (1)°T = 200 K
V = 2912.33 (12) Å3Block, colourless
Z = 20.32 × 0.12 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
5649 independent reflections
Radiation source: rotating-anode with a mirror focussing unit4950 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
φ and ω scansθmax = 72.4°, θmin = 3.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2014/4)
h = 1111
Tmin = 0.629, Tmax = 0.754k = 2525
36670 measured reflectionsl = 1517
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0682P)2 + 0.4597P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.120(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.26 e Å3
5649 reflectionsΔρmin = 0.20 e Å3
424 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
433 restraintsExtinction coefficient: 0.0058 (3)
Primary atom site location: dual
Special details top

Experimental. X-ray crystallographic data for I were collected from a single-crystal sample, which was mounted on a loop fiber. Data were collected using a Bruker Platform diffractometer, equipped with a Bruker SMART 4 K Charged-Coupled Device (CCD) Area Detector using the program APEX2 and a Nonius FR591 rotating anode equiped with a Montel 200 optics. The crystal-to-detector distance was 5.0 cm, and the data collection was carried out in 512 x 512 pixel mode. The initial unit-cell parameters were determined by a least-squares fit of the angular settings of strong reflections, collected by a 10.0 degree scan in 33 frames over four different parts of the reciprocal space (132 frames total). One complete sphere of data was collected, to better than 0.80Å resolution.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.53487 (9)0.28098 (4)0.39210 (6)0.0314 (2)
N20.76154 (9)0.28020 (4)0.36187 (6)0.0303 (2)
N30.51539 (11)0.15891 (5)0.08225 (7)0.0432 (3)
C10.63027 (10)0.26479 (5)0.34104 (7)0.0278 (2)
C20.58249 (11)0.22664 (5)0.25252 (7)0.0293 (2)
C30.67636 (11)0.18300 (5)0.22828 (8)0.0347 (2)
H30.76550.17540.26930.042*
C40.63893 (13)0.15082 (6)0.14405 (8)0.0403 (3)
H40.70460.12120.12910.048*
C50.42520 (13)0.20012 (6)0.10671 (8)0.0412 (3)
H50.33640.20630.06460.049*
C60.45284 (11)0.23457 (6)0.18962 (7)0.0353 (2)
H60.38430.26310.20330.042*
C70.38815 (11)0.26451 (5)0.37550 (7)0.0325 (2)
C80.34635 (12)0.20029 (6)0.38124 (8)0.0380 (3)
C90.20106 (14)0.18795 (7)0.36374 (9)0.0500 (3)
H90.16950.14480.36490.060*
C100.10303 (13)0.23682 (8)0.34497 (10)0.0542 (4)
H100.00530.22710.33320.065*
C110.14653 (13)0.29971 (7)0.34320 (9)0.0478 (3)
H110.07830.33310.33210.057*
C120.28919 (12)0.31517 (6)0.35745 (7)0.0379 (3)
C130.44931 (14)0.14485 (6)0.40914 (9)0.0433 (3)
H130.54660.16170.41310.052*
C140.44272 (17)0.11946 (7)0.50602 (10)0.0567 (4)
H14A0.46370.15450.55150.085*
H14B0.51220.08500.52440.085*
H14C0.34810.10270.50380.085*
C150.42194 (18)0.09041 (7)0.33691 (12)0.0610 (4)
H15A0.32730.07280.33220.092*
H15B0.49210.05640.35630.092*
H15C0.42900.10730.27610.092*
C160.33464 (13)0.38487 (6)0.35151 (9)0.0440 (3)
H160.43410.38830.38860.053*
C170.2473 (2)0.43221 (10)0.39327 (18)0.0935 (7)
H17A0.15180.43460.35350.140*
H17B0.29120.47480.39750.140*
H17C0.24260.41770.45570.140*
C180.3345 (2)0.40341 (8)0.25163 (11)0.0725 (5)
H18A0.39640.37420.22740.109*
H18B0.36850.44760.25030.109*
H18C0.23840.40030.21290.109*
C190.82379 (10)0.31763 (5)0.44194 (7)0.0299 (2)
C200.90785 (11)0.28642 (5)0.52053 (8)0.0340 (2)
C210.98604 (13)0.32403 (6)0.59266 (8)0.0423 (3)
H211.04350.30360.64570.051*
C220.98145 (13)0.39049 (6)0.58836 (9)0.0457 (3)
H221.03650.41530.63760.055*
C230.89641 (13)0.42074 (6)0.51204 (9)0.0416 (3)
H230.89260.46640.51010.050*
C240.81617 (11)0.38542 (5)0.43795 (8)0.0346 (3)
C250.90836 (13)0.21355 (6)0.52829 (8)0.0398 (3)
H250.87830.19560.46380.048*
C260.79988 (16)0.19247 (6)0.58252 (11)0.0531 (3)
H26A0.82850.20820.64670.080*
H26B0.79440.14540.58280.080*
H26C0.70740.21030.55270.080*
C271.05315 (15)0.18549 (7)0.57291 (10)0.0542 (4)
H27A1.12280.20170.54020.081*
H27B1.04900.13850.56860.081*
H27C1.08040.19830.63850.081*
C280.72676 (13)0.41935 (6)0.35301 (9)0.0411 (3)
H280.64730.38990.32470.049*
C290.66220 (16)0.48254 (6)0.37642 (11)0.0559 (4)
H29A0.61390.47520.42680.084*
H29B0.59440.49830.32110.084*
H29C0.73700.51450.39630.084*
C300.81250 (17)0.43109 (7)0.27984 (10)0.0579 (4)
H30A0.89040.46060.30510.087*
H30B0.75160.45000.22400.087*
H30C0.85040.39020.26360.087*
C37B1.0818 (16)0.0445 (6)0.6520 (6)0.112 (4)0.25
H37A1.03280.08470.65870.168*0.25
H37B1.07000.01420.70040.168*0.25
H37C1.18230.05320.65830.168*0.25
C31B1.0211 (9)0.0160 (4)0.5579 (5)0.080 (3)0.25
C32B0.8827 (9)0.0063 (6)0.5345 (6)0.079 (4)0.25
H32B0.82540.00240.57820.095*0.25
C33B0.8272 (9)0.0339 (6)0.4482 (7)0.084 (4)0.25
H33B0.73260.04900.43340.101*0.25
C34B0.9093 (13)0.0397 (4)0.3836 (5)0.088 (4)0.25
H34B0.87150.05870.32450.105*0.25
C35B1.0473 (13)0.0176 (4)0.4059 (6)0.093 (4)0.25
H35B1.10430.02150.36200.111*0.25
C36B1.1022 (8)0.0100 (4)0.4922 (7)0.090 (4)0.25
H36B1.19660.02510.50670.109*0.25
C31A1.0600 (10)0.0150 (4)0.5303 (7)0.065 (2)0.25
C32A0.9297 (14)0.0029 (7)0.5489 (10)0.070 (4)0.25
H32A0.91450.01390.60830.084*0.25
C33A0.8199 (12)0.0251 (6)0.4829 (10)0.080 (3)0.25
H33A0.72960.03100.49570.096*0.25
C34A0.8457 (13)0.0441 (11)0.3983 (11)0.073 (3)0.25
H34A0.77630.06750.35490.088*0.25
C35A0.9736 (11)0.0288 (6)0.3772 (8)0.074 (3)0.25
H35A0.98730.03790.31680.089*0.25
C36A1.0805 (13)0.0008 (8)0.4423 (9)0.060 (3)0.25
H36A1.16850.00780.42760.072*0.25
C37A1.1873 (16)0.0441 (10)0.5950 (11)0.082 (4)0.25
H37D1.18020.03830.65960.122*0.25
H37E1.27270.02280.58580.122*0.25
H37F1.19180.09010.58160.122*0.25
H10.5679 (14)0.3064 (6)0.4406 (10)0.039 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0291 (5)0.0388 (5)0.0266 (5)0.0033 (4)0.0069 (3)0.0071 (4)
N20.0285 (4)0.0331 (4)0.0289 (5)0.0007 (3)0.0057 (3)0.0012 (3)
N30.0457 (6)0.0542 (6)0.0296 (5)0.0007 (5)0.0082 (4)0.0078 (4)
C10.0294 (5)0.0285 (5)0.0252 (5)0.0016 (4)0.0059 (4)0.0027 (4)
C20.0317 (5)0.0325 (5)0.0245 (5)0.0026 (4)0.0080 (4)0.0004 (4)
C30.0322 (5)0.0388 (6)0.0326 (6)0.0013 (4)0.0065 (4)0.0017 (4)
C40.0422 (6)0.0438 (6)0.0363 (6)0.0041 (5)0.0115 (5)0.0060 (5)
C50.0383 (6)0.0571 (7)0.0265 (6)0.0023 (5)0.0037 (4)0.0034 (5)
C60.0336 (6)0.0451 (6)0.0271 (5)0.0037 (4)0.0072 (4)0.0010 (4)
C70.0296 (5)0.0462 (6)0.0229 (5)0.0028 (4)0.0082 (4)0.0051 (4)
C80.0370 (6)0.0496 (6)0.0292 (5)0.0080 (5)0.0114 (4)0.0053 (5)
C90.0429 (7)0.0655 (8)0.0437 (7)0.0177 (6)0.0142 (5)0.0037 (6)
C100.0312 (6)0.0890 (11)0.0433 (7)0.0083 (6)0.0106 (5)0.0000 (7)
C110.0331 (6)0.0740 (9)0.0369 (6)0.0069 (6)0.0091 (5)0.0010 (6)
C120.0345 (6)0.0552 (7)0.0241 (5)0.0042 (5)0.0071 (4)0.0044 (5)
C130.0475 (7)0.0395 (6)0.0456 (7)0.0094 (5)0.0160 (5)0.0042 (5)
C140.0642 (9)0.0534 (8)0.0544 (8)0.0059 (7)0.0180 (7)0.0078 (6)
C150.0736 (10)0.0466 (7)0.0666 (10)0.0133 (7)0.0239 (8)0.0155 (7)
C160.0413 (6)0.0484 (7)0.0390 (6)0.0090 (5)0.0023 (5)0.0063 (5)
C170.0892 (14)0.0726 (12)0.1265 (18)0.0115 (10)0.0410 (13)0.0375 (12)
C180.1071 (14)0.0545 (9)0.0468 (8)0.0115 (9)0.0007 (8)0.0049 (7)
C190.0257 (5)0.0352 (5)0.0295 (5)0.0031 (4)0.0076 (4)0.0018 (4)
C200.0319 (5)0.0389 (6)0.0309 (6)0.0016 (4)0.0065 (4)0.0009 (4)
C210.0399 (6)0.0505 (7)0.0328 (6)0.0050 (5)0.0010 (5)0.0018 (5)
C220.0445 (7)0.0504 (7)0.0400 (7)0.0155 (5)0.0049 (5)0.0109 (5)
C230.0441 (6)0.0363 (6)0.0461 (7)0.0107 (5)0.0138 (5)0.0054 (5)
C240.0332 (5)0.0355 (6)0.0365 (6)0.0047 (4)0.0110 (4)0.0007 (4)
C250.0465 (7)0.0383 (6)0.0304 (6)0.0029 (5)0.0008 (5)0.0006 (4)
C260.0625 (8)0.0405 (7)0.0567 (8)0.0030 (6)0.0148 (7)0.0080 (6)
C270.0578 (8)0.0549 (8)0.0446 (7)0.0164 (6)0.0010 (6)0.0003 (6)
C280.0449 (6)0.0337 (6)0.0433 (7)0.0008 (5)0.0073 (5)0.0031 (5)
C290.0612 (9)0.0417 (7)0.0640 (9)0.0081 (6)0.0128 (7)0.0031 (6)
C300.0705 (9)0.0582 (8)0.0474 (8)0.0082 (7)0.0183 (7)0.0119 (6)
C37B0.105 (10)0.081 (8)0.134 (9)0.015 (7)0.003 (7)0.007 (6)
C31B0.071 (6)0.049 (4)0.120 (8)0.020 (5)0.020 (5)0.014 (6)
C32B0.077 (7)0.071 (8)0.091 (7)0.012 (5)0.023 (5)0.017 (5)
C33B0.090 (7)0.084 (8)0.081 (7)0.010 (6)0.026 (5)0.010 (6)
C34B0.103 (9)0.083 (8)0.083 (6)0.017 (7)0.034 (6)0.022 (5)
C35B0.097 (8)0.061 (7)0.131 (10)0.011 (6)0.048 (6)0.013 (6)
C36B0.087 (7)0.057 (7)0.135 (10)0.013 (6)0.042 (6)0.013 (7)
C31A0.079 (5)0.034 (3)0.089 (5)0.013 (4)0.036 (3)0.016 (3)
C32A0.072 (6)0.055 (9)0.094 (7)0.002 (5)0.042 (5)0.006 (6)
C33A0.078 (5)0.049 (5)0.112 (7)0.006 (4)0.023 (5)0.007 (5)
C34A0.049 (5)0.064 (6)0.106 (8)0.004 (5)0.016 (4)0.011 (5)
C35A0.067 (6)0.061 (6)0.095 (6)0.013 (5)0.017 (5)0.013 (4)
C36A0.056 (5)0.048 (8)0.081 (6)0.005 (5)0.029 (4)0.013 (5)
C37A0.094 (8)0.061 (7)0.092 (8)0.002 (7)0.025 (6)0.014 (6)
Geometric parameters (Å, º) top
N1—C11.3682 (13)C22—C231.3851 (18)
N1—C71.4362 (13)C23—H230.9500
N1—H10.888 (14)C23—C241.3966 (16)
N2—C11.2861 (13)C24—C281.5239 (16)
N2—C191.4275 (13)C25—H251.0000
N3—C41.3423 (16)C25—C261.5314 (19)
N3—C51.3367 (16)C25—C271.5286 (17)
C1—C21.5069 (14)C26—H26A0.9800
C2—C31.3938 (15)C26—H26B0.9800
C2—C61.3939 (15)C26—H26C0.9800
C3—H30.9500C27—H27A0.9800
C3—C41.3841 (16)C27—H27B0.9800
C4—H40.9500C27—H27C0.9800
C5—H50.9500C28—H281.0000
C5—C61.3891 (16)C28—C291.5312 (18)
C6—H60.9500C28—C301.5311 (19)
C7—C81.4051 (16)C29—H29A0.9800
C7—C121.4120 (16)C29—H29B0.9800
C8—C91.4039 (17)C29—H29C0.9800
C8—C131.5218 (18)C30—H30A0.9800
C9—H90.9500C30—H30B0.9800
C9—C101.379 (2)C30—H30C0.9800
C10—H100.9500C37B—H37A0.9800
C10—C111.377 (2)C37B—H37B0.9800
C11—H110.9500C37B—H37C0.9800
C11—C121.3957 (17)C37B—C31B1.4987
C12—C161.5249 (18)C31B—C32B1.3924
C13—H131.0000C31B—C36B1.3918
C13—C141.5394 (19)C32B—H32B0.9500
C13—C151.5356 (18)C32B—C33B1.3872
C14—H14A0.9800C33B—H33B0.9500
C14—H14B0.9800C33B—C34B1.3864
C14—H14C0.9800C34B—H34B0.9500
C15—H15A0.9800C34B—C35B1.3871
C15—H15B0.9800C35B—H35B0.9500
C15—H15C0.9800C35B—C36B1.3872
C16—H161.0000C36B—H36B0.9500
C16—C171.523 (2)C31A—C32A1.384 (10)
C16—C181.523 (2)C31A—C36A1.398 (10)
C17—H17A0.9800C31A—C37A1.506 (11)
C17—H17B0.9800C32A—H32A0.9500
C17—H17C0.9800C32A—C33A1.397 (10)
C18—H18A0.9800C33A—H33A0.9500
C18—H18B0.9800C33A—C34A1.388 (10)
C18—H18C0.9800C34A—H34A0.9500
C19—C201.4133 (15)C34A—C35A1.391 (10)
C19—C241.4127 (15)C35A—H35A0.9500
C20—C211.3963 (16)C35A—C36A1.373 (10)
C20—C251.5203 (16)C36A—H36A0.9500
C21—H210.9500C37A—H37D0.9800
C21—C221.3843 (19)C37A—H37E0.9800
C22—H220.9500C37A—H37F0.9800
C1—N1—C7128.72 (9)C22—C23—C24121.23 (11)
C1—N1—H1115.1 (9)C24—C23—H23119.4
C7—N1—H1116.1 (9)C19—C24—C28120.75 (10)
C1—N2—C19122.84 (9)C23—C24—C19118.56 (10)
C5—N3—C4116.11 (10)C23—C24—C28120.66 (10)
N1—C1—C2119.60 (9)C20—C25—H25107.7
N2—C1—N1125.01 (9)C20—C25—C26109.53 (10)
N2—C1—C2115.39 (9)C20—C25—C27113.56 (10)
C3—C2—C1118.44 (9)C26—C25—H25107.7
C3—C2—C6117.04 (10)C27—C25—H25107.7
C6—C2—C1124.41 (9)C27—C25—C26110.30 (11)
C2—C3—H3120.2C25—C26—H26A109.5
C4—C3—C2119.57 (10)C25—C26—H26B109.5
C4—C3—H3120.2C25—C26—H26C109.5
N3—C4—C3123.89 (11)H26A—C26—H26B109.5
N3—C4—H4118.1H26A—C26—H26C109.5
C3—C4—H4118.1H26B—C26—H26C109.5
N3—C5—H5117.9C25—C27—H27A109.5
N3—C5—C6124.29 (11)C25—C27—H27B109.5
C6—C5—H5117.9C25—C27—H27C109.5
C2—C6—H6120.5H27A—C27—H27B109.5
C5—C6—C2119.08 (10)H27A—C27—H27C109.5
C5—C6—H6120.5H27B—C27—H27C109.5
C8—C7—N1120.54 (10)C24—C28—H28107.5
C8—C7—C12121.72 (10)C24—C28—C29113.51 (11)
C12—C7—N1117.69 (10)C24—C28—C30110.60 (10)
C7—C8—C13123.67 (10)C29—C28—H28107.5
C9—C8—C7117.22 (12)C30—C28—H28107.5
C9—C8—C13119.06 (11)C30—C28—C29110.05 (11)
C8—C9—H9119.2C28—C29—H29A109.5
C10—C9—C8121.69 (13)C28—C29—H29B109.5
C10—C9—H9119.2C28—C29—H29C109.5
C9—C10—H10119.9H29A—C29—H29B109.5
C11—C10—C9120.12 (12)H29A—C29—H29C109.5
C11—C10—H10119.9H29B—C29—H29C109.5
C10—C11—H11119.4C28—C30—H30A109.5
C10—C11—C12121.11 (13)C28—C30—H30B109.5
C12—C11—H11119.4C28—C30—H30C109.5
C7—C12—C16121.70 (10)H30A—C30—H30B109.5
C11—C12—C7118.06 (12)H30A—C30—H30C109.5
C11—C12—C16120.23 (11)H30B—C30—H30C109.5
C8—C13—H13108.0H37A—C37B—H37B109.5
C8—C13—C14110.13 (11)H37A—C37B—H37C109.5
C8—C13—C15111.95 (11)H37B—C37B—H37C109.5
C14—C13—H13108.0C31B—C37B—H37A109.5
C15—C13—H13108.0C31B—C37B—H37B109.5
C15—C13—C14110.70 (11)C31B—C37B—H37C109.5
C13—C14—H14A109.5C32B—C31B—C37B120.9
C13—C14—H14B109.5C36B—C31B—C37B120.9
C13—C14—H14C109.5C36B—C31B—C32B118.1
H14A—C14—H14B109.5C31B—C32B—H32B119.5
H14A—C14—H14C109.5C33B—C32B—C31B121.1
H14B—C14—H14C109.5C33B—C32B—H32B119.5
C13—C15—H15A109.5C32B—C33B—H33B119.9
C13—C15—H15B109.5C34B—C33B—C32B120.1
C13—C15—H15C109.5C34B—C33B—H33B119.9
H15A—C15—H15B109.5C33B—C34B—H34B120.3
H15A—C15—H15C109.5C33B—C34B—C35B119.5
H15B—C15—H15C109.5C35B—C34B—H34B120.3
C12—C16—H16107.1C34B—C35B—H35B119.9
C17—C16—C12113.21 (13)C34B—C35B—C36B120.1
C17—C16—H16107.1C36B—C35B—H35B119.9
C18—C16—C12111.19 (10)C31B—C36B—H36B119.5
C18—C16—H16107.1C35B—C36B—C31B121.1
C18—C16—C17110.66 (15)C35B—C36B—H36B119.5
C16—C17—H17A109.5C32A—C31A—C36A118.5 (9)
C16—C17—H17B109.5C32A—C31A—C37A127.4 (9)
C16—C17—H17C109.5C36A—C31A—C37A114.1 (8)
H17A—C17—H17B109.5C31A—C32A—H32A119.1
H17A—C17—H17C109.5C31A—C32A—C33A121.9 (10)
H17B—C17—H17C109.5C33A—C32A—H32A119.1
C16—C18—H18A109.5C32A—C33A—H33A120.8
C16—C18—H18B109.5C34A—C33A—C32A118.4 (10)
C16—C18—H18C109.5C34A—C33A—H33A120.8
H18A—C18—H18B109.5C33A—C34A—H34A120.1
H18A—C18—H18C109.5C33A—C34A—C35A119.7 (10)
H18B—C18—H18C109.5C35A—C34A—H34A120.1
C20—C19—N2118.87 (9)C34A—C35A—H35A119.5
C24—C19—N2120.13 (9)C36A—C35A—C34A121.0 (10)
C24—C19—C20120.51 (10)C36A—C35A—H35A119.5
C19—C20—C25120.74 (9)C31A—C36A—H36A120.0
C21—C20—C19118.57 (11)C35A—C36A—C31A120.0 (10)
C21—C20—C25120.64 (10)C35A—C36A—H36A120.0
C20—C21—H21119.4C31A—C37A—H37D109.5
C22—C21—C20121.24 (11)C31A—C37A—H37E109.5
C22—C21—H21119.4C31A—C37A—H37F109.5
C21—C22—H22120.1H37D—C37A—H37E109.5
C21—C22—C23119.86 (11)H37D—C37A—H37F109.5
C23—C22—H22120.1H37E—C37A—H37F109.5
C22—C23—H23119.4
N1—C1—C2—C3146.50 (10)C11—C12—C16—C1886.69 (15)
N1—C1—C2—C637.47 (15)C12—C7—C8—C93.05 (16)
N1—C7—C8—C9179.75 (10)C12—C7—C8—C13174.24 (10)
N1—C7—C8—C132.96 (16)C13—C8—C9—C10175.13 (12)
N1—C7—C12—C11178.67 (10)C19—N2—C1—N10.92 (16)
N1—C7—C12—C162.54 (15)C19—N2—C1—C2178.39 (9)
N2—C1—C2—C334.15 (13)C19—C20—C21—C220.43 (18)
N2—C1—C2—C6141.88 (11)C19—C20—C25—C2693.53 (13)
N2—C19—C20—C21170.13 (10)C19—C20—C25—C27142.67 (11)
N2—C19—C20—C2512.43 (15)C19—C24—C28—C29147.41 (11)
N2—C19—C24—C23170.09 (10)C19—C24—C28—C3088.34 (13)
N2—C19—C24—C287.60 (15)C20—C19—C24—C231.76 (16)
N3—C5—C6—C20.18 (19)C20—C19—C24—C28179.45 (10)
C1—N1—C7—C865.88 (15)C20—C21—C22—C230.99 (19)
C1—N1—C7—C12116.81 (12)C21—C20—C25—C2683.85 (14)
C1—N2—C19—C20103.81 (12)C21—C20—C25—C2739.94 (16)
C1—N2—C19—C2484.22 (13)C21—C22—C23—C241.05 (19)
C1—C2—C3—C4175.29 (10)C22—C23—C24—C190.32 (17)
C1—C2—C6—C5174.92 (10)C22—C23—C24—C28178.01 (11)
C2—C3—C4—N30.11 (19)C23—C24—C28—C2934.95 (16)
C3—C2—C6—C51.16 (16)C23—C24—C28—C3089.31 (14)
C4—N3—C5—C60.93 (19)C24—C19—C20—C211.81 (16)
C5—N3—C4—C31.08 (19)C24—C19—C20—C25175.62 (10)
C6—C2—C3—C41.03 (16)C25—C20—C21—C22177.01 (12)
C7—N1—C1—N2178.19 (10)C37B—C31B—C32B—C33B178.5
C7—N1—C1—C22.53 (16)C37B—C31B—C36B—C35B178.5
C7—C8—C9—C102.29 (18)C31B—C32B—C33B—C34B0.2
C7—C8—C13—C14109.96 (13)C32B—C31B—C36B—C35B0.4
C7—C8—C13—C15126.43 (12)C32B—C33B—C34B—C35B0.0
C7—C12—C16—C17142.62 (14)C33B—C34B—C35B—C36B0.0
C7—C12—C16—C1892.07 (14)C34B—C35B—C36B—C31B0.2
C8—C7—C12—C111.39 (16)C36B—C31B—C32B—C33B0.3
C8—C7—C12—C16179.82 (10)C31A—C32A—C33A—C34A3.4 (17)
C8—C9—C10—C110.1 (2)C32A—C31A—C36A—C35A1 (2)
C9—C8—C13—C1467.28 (14)C32A—C33A—C34A—C35A7 (2)
C9—C8—C13—C1556.33 (15)C33A—C34A—C35A—C36A7 (3)
C9—C10—C11—C121.9 (2)C34A—C35A—C36A—C31A2 (2)
C10—C11—C12—C71.16 (18)C36A—C31A—C32A—C33A0.7 (18)
C10—C11—C12—C16177.65 (11)C37A—C31A—C32A—C33A179.2 (14)
C11—C12—C16—C1738.62 (18)C37A—C31A—C36A—C35A178.7 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N3i0.89 (1)2.38 (1)3.118 (1)141 (1)
C10—H10···N2ii0.952.743.515 (2)139
C13—H13···N11.002.502.9794 (15)109
C16—H16···N11.002.442.8811 (15)106
C25—H25···N21.002.422.8933 (15)108
C28—H28···N21.002.542.9140 (15)102
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x1, y, z.
Intermolecular short contacts in 1 (Å, °) top
Cg (py) is the centroid of the pyridyl ring. Cg (ring 2) is the centroid of the C19–C24 aryl ring.
X—H···Cg (π-ring)H···CgX···CgX—H···Cg
C4—H4···Cg (ring 2)iii2.883.53 (1)127
C15—H15···Cg (py)iv2.823.71 (1)151
Symmetry codes: (iii) x, 1/2 - y, -1/2 + z; (iv) x, y, z.
CSD reported molecular structures of bulky N,N'-bis(2,6-diisopropylphenyl)arylamidines (free-base non-coordinated forms) top
No.Aryl substituentCSD refcodeReference
1PhGIWGEALoh et al. (2014)
24-MePhGOBNIUBoeré et al. (1998)
34-OMePhGOBMOZBoeré et al. (1998)
44-t-BuPhBAZTUTJones et al. (2011)
53,5-diMePhGIWLEFMoxey et al. (2014)
62,4,6-triMePhIKETAVGreen et al. (2016)
7Ph (C-bridged)DIFCIGLi et al. (2013)
 

Acknowledgements

The authors thank Dr Michel Simard and the personnel at the X-ray laboratory of UdeM for access and training.

Funding information

The authors acknowledge the Natural Sciences and Engineering Research Council of Canada (NSERC), les Fonds de recherche du Québec – Nature et technologies (FRQNT), l'Université du Québec à Trois-Rivières (UQTR) and l'Institute de Recherche sur l'Hydrogène, as well as l'Université de Montréal (UdeM) for financial support.

References

First citationAlcock, N. W., Barker, J. & Kilner, M. (1988). Acta Cryst. C44, 712–715.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBambirra, S., Bouwkamp, M. W., Meetsma, A. & Hessen, B. (2004). J. Am. Chem. Soc. 126, 9182–9183.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBoeré, R. T., Klassen, V. & Wolmershauser, G. (1998). J. Chem. Soc. Dalton Trans. 4147–4154.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChartrand, D. & Hanan, G. (2008). Chem. Commun. pp. 727–729.  Web of Science CSD CrossRef Google Scholar
First citationCibian, M., Langis-Barsetti, S. & Hanan, G. S. (2011). Synlett, 3, 405–409.  Google Scholar
First citationDesiraju, G. R. & Steiner, T. (2001). The Weak Hydrogen Bond in Structural Chemistry and Biology, pp. 1–28. Oxford University Press.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGreen, R., Walker, A. C., Blake, M. P. & Mountford, P. (2016). Polyhedron, 116, 64–75.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHäfelinger, G. & Kuske, K. H. (1991). In The Chemistry of the Amidines and Imidates, edited by S. Patai & Z. Rappoport, Vol. 2, ch. 1, pp. 1–100. Chichester: Wiley.  Google Scholar
First citationJones, C., Bonyhady, S. J., Holzmann, N., Frenking, G. & Stasch, A. (2011). Inorg. Chem. 50, 12315–12325.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKazeminejad, N., Münzfeld, L., Gamer, M. T. & Roesky, P. W. (2019). Dalton Trans. 48, 8153–8160.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKirillov, E., Roisnel, T. & Carpentier, J.-F. (2012). Organometallics, 31, 3228–3240.  Web of Science CSD CrossRef CAS Google Scholar
First citationLaramée, B., Cibian, M. & Hanan, G. S. (2012). Acta Cryst. E68, o2975–o2976.  CSD CrossRef IUCr Journals Google Scholar
First citationLi, M., Hong, J., Chen, Z., Zhou, X. & Zhang, L. (2013). Dalton Trans. 42, 8288–8297.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLoh, C., Seupel, S., Goerls, H., Krieck, S. & Westerhausen, M. (2014). Eur. J. Inorg. Chem. pp. 1312–1321.  Web of Science CSD CrossRef Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMoxey, G. J., Ortu, F., Goldney Sidley, L., Strandberg, H. N., Blake, A. J., Lewis, W. & Kays, D. L. (2014). Dalton Trans. 43, 4838–4846.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPatai, S. & Rappoport, Z. (1991). Editors. The Chemistry of the Amidines and Imidates. Chichester: Wiley.  Google Scholar
First citationPovray (2013). POV-RAY 3.7.0, Persistence of Vision Pty. Ltd., Persistence of Vision Raytracer, retrieved from https://www.povray.org/download/Google Scholar
First citationQian, F., Liu, K. & Ma, H. (2010). Dalton Trans. 39, 8071–8083.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds