research communications
N,N′-Bis[2,6-bis(1-methylethyl)phenyl]pyridine-4-carboximidamide toluene hemisolvate
aDépartement de Chimie, Biochimie et Physique et l'Institut de Recherche sur l'Hydrogène (IRH), Université du Québec à Trois-Rivières (UQTR), 3351, Boul. des Forges, C.P. 500, Trois-Rivières, QC, G9A 5H7, Canada, and bDépartement de Chimie, Université de Montréal, campus MIL, 1375 Avenue, Thérèse-Lavoie-Roux, Montréal, QC, H2V 0B3, Canada
*Correspondence e-mail: mihaela.cibian@uqtr.ca
The title compound, C30H39N3·0.5C7H8, is a symmetrically N,N′-disubstituted arylamidine containing a 4-pyridyl substituent on the carbon atom of the N–C–N linkage and bulky 2,6-diisopropylphenyl groups on the nitrogen atoms. It crystallizes in the Z-anti configuration and its amidine C—N bonds present amine [1.368 (1) Å] and imine [1.286 (1) Å] features. Intramolecular hydrogen bonds are present in the structure together with intermolecular N—H⋯N and C—H⋯N interactions linking the molecules in chains along the a- and c-axis directions.
Keywords: crystal structure; bulky arylamidine; hydrogen bonding.
CCDC reference: 2054114
1. Chemical context
Amidine compounds are well developed in organic chemistry (Patai & Rappoport, 1991). Their derivatives are also good chelators for transition metals and their complexes have found widespread use in catalysis, polymerization reactions, as functional materials, and in supramolecular chemisty (Bambirra et al., 2004; Kazeminejad et al., 2019; Qian et al., 2010; Loh et al., 2014; Boeré et al., 1998; Chartrand & Hanan, 2008).
Herein, we report the synthesis and the solid state structure of N,N'-[2,6-bis(1-methylethyl)phenyl]-4-pyridinecarboximidamide [N,N′-bis(2,6-diisopropylphenyl)-4-pyridylamidine], which has been prepared as a potential ligand in coordination and supramolecular chemistry and as precursor for the corresponding amidine-N-oxide derivative (Cibian et al., 2011). For the specific example of the bulky N,N′-bis(2,6-diisopropylphenyl)arylamidines, although crystallographic evidence of various of these compounds exists (Loh et al., 2014; Boeré et al., 1998), this is the first report of the 4-pyridyl-substituted compound (1) (Fig. 1).
2. Structural commentary
The molecular structure of the title compound is illustrated in Fig. 1. A disordered toluene solvent (population of 0.5) is also present in the The amidine crystallizes completely in the Z-anti structure, the same as for N,N′-bis(2,6-diisopropylphenyl)benzamidine (Loh et al., 2014) and for N,N′-bis(2,6-diisopropylphenyl)-4-anisylamidine (Boeré et al., 1998), but differently from N,N′-bis(2,6-diisopropylphenyl)-4-tBu-benzamidine (Jones et al., 2011) and N,N'-bis(2,6-diisopropylphenyl)-4-toluamidine (Boeré et al., 1998) (which are disordered mixtures of Z-anti and E-syn tautomeric forms), as well as from N,N′-bis(2,6-diisopropylphenyl)-acetamidine (entirely E-anti) (Boeré et al., 1998).
The amidine C—N bonds in 1 present distinct amine [1.368 (1) Å] and imine [1.286 (1) Å] features, which is similar to what has been found in other bulky bis(2,6-diisopropylphenyl)benzamidines that crystallized in only one isomeric/tautomeric form (Loh et al., 2014; Boeré et al., 1998).
The parameter ΔCN = d(C—N) − d(C=N) for the central N–C–N amidine linkage (Häfelinger & Kuske, 1991) is generally used to assess the degree of delocalization in the N–C–N skeleton. In the title compound this difference is 0.082 (2) Å, whereas it is 0.081 (6) Å in N,N′-bis(2,6-diisopropylphenyl)benzamidine (Loh et al., 2014) and 0.057 (2) Å in N,N′-bis(2,6-diisopropylphenyl)-4-anisylamidine (Boeré et al., 1998). For non-substituted N,N′-diphenylbenzamidine, the same value of 0.057 Å (Alcock et al., 1988) is found. As these are all compounds that crystallized in the Z-anti configuration only, the ΔCN comparison indicates that although the substituents on the phenyl rings influence the degree of delocalization in the N–C–N amidine backbone, other factors also play an important role (e.g., intra- and intermolecular interactions and packing factors). It is important to note that for the compounds crystallized in mixtures of Z-anti and E-syn tautomeric forms, the value of ΔCN is, as expected, significantly lower [e.g., 0.019 (3) Å in N,N′-bis(2,6-diisopropylphenyl)-4-tBu-benzamidine (Jones et al., 2011); 0.027 (4) Å in N,N'-bis(2,6-diisopropylphenyl)-4-toluamidine (Boeré et al., 1998)].
In the title compound, the pyridyl ring is tilted with respect to the central N–C–N bridge at an angle of 35.9 (1)°, while the bulky substituted aryl rings 1 and 2 (see scheme) are tilted by 65.2 (1) and 53.1 (1)°, respectively.
The intramolecular hydrogen-bonding pattern in 1 (Table 1 and Fig. 2) reveals weak C—H⋯N hydrogen bonds (Desiraju & Steiner, 2001) between the (CH3)2CH– protons of each isopropyl substituent and the N atoms of the amidine bridge.
3. Supramolecular features
In the 1, two different types of conventional intermolecular hydogen bonds (Table 1 and Fig. 3) (Desiraju & Steiner, 2001) can be identified, linking the discrete molecules in infinite chains along the a and c axes. A relatively strong N—H ⋯N interaction exists between the amidine H1 proton and the N3 pyridyl ring atom of an adjacent molecule [angle N1—H1⋯N3 is 141 (1)°; distances H1⋯N3 and N1⋯N3 are 2.38 (1) and 3.118 (1) Å, respectively]. The second type of intermolecular hydrogen bond is a much weaker Csp2—H ⋯N interaction between the para proton H10 of aryl ring 1 and the N2 amidine bridge atom of an adjacent molecule [angle C10—H10 ⋯N2 is 139°; distances H10⋯N2 and C10⋯N3 are 2.74 Å and 3.515 (2) Å, respectively].
ofIn the crystal packing, the chains of main amidine moieties (along the a axis) alternate with layers of co-crystallized toluene molecules, but no real attractive interactions were identified between the main amidine and the toluene.
Furthermore, the packing analysis in 1 reveals two other intermolecular short contacts of Csp2—H ⋯π type [C4—H4 ⋯π (ring 2: C19–C24 aryl ring)] and Csp3—H ⋯π type [C15—H15 ⋯π (pyridyl ring)] (Table 2), but no π–π type interactions. The formation of the latter is most probably hindered by the presence of the bulky 2,6-diisopropyl substituents.
4. Database survey
Table 3 presents the results of the Cambridge Structural Database survey with respect to other reported molecular structures of bulky N,N′-bis(2,6-diisopropylphenyl)arylamidines (CSD version 5.41, update of May 2020; Groom et al., 2016). All compounds reported in Table 3 are free bases non-coordinated to metals. Molecular structures of coordination complexes of these ligands (as free base and deprotonated forms) also exist [e.g., with molibdenum (GOBNAM; Boeré et al., 1998); with lead (BAZVIJ; Jones et al., 2011); with lithium, potassium, calcium (GIWGOK, GIWHAX, GIWHIF; Loh et al., 2014); with magnesium (GIWLEF; Moxey et al., 2014); with lanthanides (NAHDUW, NAHFEI, NAHFIM, NAHFUY; Bambirra et al., 2004)]. In the case of N,N′-bis(2,6-di-isopropylphenyl)-2,4,6-trimethylbenzamidine (Table 3, entry 6), the free-base ligand is co-crystallized with its coordination complex (IKETAV; Green et al., 2016). The compounds in Table 3 entries 1 to 6, are mono-amidines, while the compound in entry 7 is a phenyl-C-bridged bis-amidine (Li et al., 2013). The solid-state structures of zirconium complexes with the 3,5-di-t-butyl-N,N′-bis(2,6-di-isopropylphenyl)-2-oxybenzamidinato ligand also exist (CETCAH, CETCIP, CETCOV, CETDEM; Kirillov et al., 2012), but the molecular structure for the free-base non-coordinated form of this amidine has not yet been reported.
5. Synthesis and crystallization
N,N′-bis[2,6-bis(1-methylethyl)phenyl]-4-pyridinecarboximidamide (1)
Compound 1 was obtained from N-[2,6-bis(1-methylethyl)phenyl]-4-pyridinecarboxamide (Laramée et al., 2012) and 2,6-diisopropylaniline via the corresponding imidoyl chloride (Boeré et al., 1998). N-[2,6-Bis(1-methylethyl)phenyl]-4-pyridinecarboxamide (7.2 g, 25 mmol, 1 eq.), SOCl2 (30 mL, excess), dry Et3N (10 mL, 75 mmol, 3 eq.), 2,6-diipropylaniline (5.3 mL, 28 mmol, 1.1 eq.), and dry toluene (50 mL) were combined following the general procedure for benzamidine synthesis reported in the above-mentioned reference. A beige precipitate was obtained directly from the reaction mixture, which was recrystallized in hot EtOH, to yield the desired product as a beige solid. X-ray quality crystals (colourless blocks) were obtained in EtOH/water (1:1) at 263 K. Yield 7.5 g, 66%. 1H NMR (DMSO-d6, 400 MHz) δ, ppm: 8.58–8.49 (m, 2H, H-py), 8.45 (s, 1H, NH), 7.57–7.49 (m, 1H, H-py), 7.41–7.33 (m, 1H, H-py), 7.33–7.25 (m, 1H, p-H-Ph), 7.23 (d, J = 8 Hz, 2H, m-H-Ph), 6.87 (d, J = 8 Hz, 2H, m-H-Ph), 6.83–6.76 (m, 1H, p-H-Ph), 3.43 [sept, J = 7 Hz, 2H, –CH–(CH3)2], 2.99 [sept, J = 7 Hz, 2H, –CH–(CH3)2], 1.30 [d, J = 7 Hz, 6H, –CH–(CH3)2), 1.24 (d, J = 7 Hz, 6H, –CH–(CH3)2), 0.91 (d, J = 7 Hz 6H, –CH–(CH3)2], 0.80 [d, J = 7 Hz, 6H, –CH–(CH3)2].
6. Refinement
Crystal data, data collection and structure . H atoms were included in calculated positions and treated as riding atoms: aromatic C—H 0.95 Å, methyl C—H 0.98 Å, with Uiso(H) = k × Ueq(parent C-atom), where k = 1.2 for the aromatic H atoms and 1.5 for the methyl H atoms. The NH proton (H1) was located in the difference-Fourier map and refined freely.
details are summarized in Table 4
|
Co-crystallized disordered solvent (toluene, which was the reaction solvent) present on a symmetry position was modelled as two component disorder using PART −1 and PART −2 instructions. The occupancy factor was fixed at 0.25. The following constraints and restraints were also used: DFIX, FLAT and SADI (on position), ISOR and SIMU (on thermal factors). The model was refined anisotropically.
Supporting information
CCDC reference: 2054114
https://doi.org/10.1107/S2056989021000141/dj2016sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021000141/dj2016Isup2.hkl
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009), ORTEP-3 for Windows (Farrugia, 2012), pubCIF (Westrip, 2010), POV-RAY (Povray, 2013), PLATON (Spek, 2020), Mercury (Macrae et al., 2020).2C30H39N3·C7H8 | F(000) = 1060 |
Mr = 975.41 | Dx = 1.112 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54178 Å |
a = 9.7537 (2) Å | Cell parameters from 9920 reflections |
b = 20.8030 (5) Å | θ = 3.7–71.8° |
c = 14.7561 (4) Å | µ = 0.49 mm−1 |
β = 103.422 (1)° | T = 200 K |
V = 2912.33 (12) Å3 | Block, colourless |
Z = 2 | 0.32 × 0.12 × 0.12 mm |
Bruker APEXII CCD diffractometer | 5649 independent reflections |
Radiation source: rotating-anode with a mirror focussing unit | 4950 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.035 |
φ and ω scans | θmax = 72.4°, θmin = 3.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2014/4) | h = −11→11 |
Tmin = 0.629, Tmax = 0.754 | k = −25→25 |
36670 measured reflections | l = −15→17 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.043 | w = 1/[σ2(Fo2) + (0.0682P)2 + 0.4597P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.120 | (Δ/σ)max < 0.001 |
S = 1.05 | Δρmax = 0.26 e Å−3 |
5649 reflections | Δρmin = −0.20 e Å−3 |
424 parameters | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
433 restraints | Extinction coefficient: 0.0058 (3) |
Primary atom site location: dual |
Experimental. X-ray crystallographic data for I were collected from a single-crystal sample, which was mounted on a loop fiber. Data were collected using a Bruker Platform diffractometer, equipped with a Bruker SMART 4 K Charged-Coupled Device (CCD) Area Detector using the program APEX2 and a Nonius FR591 rotating anode equiped with a Montel 200 optics. The crystal-to-detector distance was 5.0 cm, and the data collection was carried out in 512 x 512 pixel mode. The initial unit-cell parameters were determined by a least-squares fit of the angular settings of strong reflections, collected by a 10.0 degree scan in 33 frames over four different parts of the reciprocal space (132 frames total). One complete sphere of data was collected, to better than 0.80Å resolution. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
N1 | 0.53487 (9) | 0.28098 (4) | 0.39210 (6) | 0.0314 (2) | |
N2 | 0.76154 (9) | 0.28020 (4) | 0.36187 (6) | 0.0303 (2) | |
N3 | 0.51539 (11) | 0.15891 (5) | 0.08225 (7) | 0.0432 (3) | |
C1 | 0.63027 (10) | 0.26479 (5) | 0.34104 (7) | 0.0278 (2) | |
C2 | 0.58249 (11) | 0.22664 (5) | 0.25252 (7) | 0.0293 (2) | |
C3 | 0.67636 (11) | 0.18300 (5) | 0.22828 (8) | 0.0347 (2) | |
H3 | 0.7655 | 0.1754 | 0.2693 | 0.042* | |
C4 | 0.63893 (13) | 0.15082 (6) | 0.14405 (8) | 0.0403 (3) | |
H4 | 0.7046 | 0.1212 | 0.1291 | 0.048* | |
C5 | 0.42520 (13) | 0.20012 (6) | 0.10671 (8) | 0.0412 (3) | |
H5 | 0.3364 | 0.2063 | 0.0646 | 0.049* | |
C6 | 0.45284 (11) | 0.23457 (6) | 0.18962 (7) | 0.0353 (2) | |
H6 | 0.3843 | 0.2631 | 0.2033 | 0.042* | |
C7 | 0.38815 (11) | 0.26451 (5) | 0.37550 (7) | 0.0325 (2) | |
C8 | 0.34635 (12) | 0.20029 (6) | 0.38124 (8) | 0.0380 (3) | |
C9 | 0.20106 (14) | 0.18795 (7) | 0.36374 (9) | 0.0500 (3) | |
H9 | 0.1695 | 0.1448 | 0.3649 | 0.060* | |
C10 | 0.10303 (13) | 0.23682 (8) | 0.34497 (10) | 0.0542 (4) | |
H10 | 0.0053 | 0.2271 | 0.3332 | 0.065* | |
C11 | 0.14653 (13) | 0.29971 (7) | 0.34320 (9) | 0.0478 (3) | |
H11 | 0.0783 | 0.3331 | 0.3321 | 0.057* | |
C12 | 0.28919 (12) | 0.31517 (6) | 0.35745 (7) | 0.0379 (3) | |
C13 | 0.44931 (14) | 0.14485 (6) | 0.40914 (9) | 0.0433 (3) | |
H13 | 0.5466 | 0.1617 | 0.4131 | 0.052* | |
C14 | 0.44272 (17) | 0.11946 (7) | 0.50602 (10) | 0.0567 (4) | |
H14A | 0.4637 | 0.1545 | 0.5515 | 0.085* | |
H14B | 0.5122 | 0.0850 | 0.5244 | 0.085* | |
H14C | 0.3481 | 0.1027 | 0.5038 | 0.085* | |
C15 | 0.42194 (18) | 0.09041 (7) | 0.33691 (12) | 0.0610 (4) | |
H15A | 0.3273 | 0.0728 | 0.3322 | 0.092* | |
H15B | 0.4921 | 0.0564 | 0.3563 | 0.092* | |
H15C | 0.4290 | 0.1073 | 0.2761 | 0.092* | |
C16 | 0.33464 (13) | 0.38487 (6) | 0.35151 (9) | 0.0440 (3) | |
H16 | 0.4341 | 0.3883 | 0.3886 | 0.053* | |
C17 | 0.2473 (2) | 0.43221 (10) | 0.39327 (18) | 0.0935 (7) | |
H17A | 0.1518 | 0.4346 | 0.3535 | 0.140* | |
H17B | 0.2912 | 0.4748 | 0.3975 | 0.140* | |
H17C | 0.2426 | 0.4177 | 0.4557 | 0.140* | |
C18 | 0.3345 (2) | 0.40341 (8) | 0.25163 (11) | 0.0725 (5) | |
H18A | 0.3964 | 0.3742 | 0.2274 | 0.109* | |
H18B | 0.3685 | 0.4476 | 0.2503 | 0.109* | |
H18C | 0.2384 | 0.4003 | 0.2129 | 0.109* | |
C19 | 0.82379 (10) | 0.31763 (5) | 0.44194 (7) | 0.0299 (2) | |
C20 | 0.90785 (11) | 0.28642 (5) | 0.52053 (8) | 0.0340 (2) | |
C21 | 0.98604 (13) | 0.32403 (6) | 0.59266 (8) | 0.0423 (3) | |
H21 | 1.0435 | 0.3036 | 0.6457 | 0.051* | |
C22 | 0.98145 (13) | 0.39049 (6) | 0.58836 (9) | 0.0457 (3) | |
H22 | 1.0365 | 0.4153 | 0.6376 | 0.055* | |
C23 | 0.89641 (13) | 0.42074 (6) | 0.51204 (9) | 0.0416 (3) | |
H23 | 0.8926 | 0.4664 | 0.5101 | 0.050* | |
C24 | 0.81617 (11) | 0.38542 (5) | 0.43795 (8) | 0.0346 (3) | |
C25 | 0.90836 (13) | 0.21355 (6) | 0.52829 (8) | 0.0398 (3) | |
H25 | 0.8783 | 0.1956 | 0.4638 | 0.048* | |
C26 | 0.79988 (16) | 0.19247 (6) | 0.58252 (11) | 0.0531 (3) | |
H26A | 0.8285 | 0.2082 | 0.6467 | 0.080* | |
H26B | 0.7944 | 0.1454 | 0.5828 | 0.080* | |
H26C | 0.7074 | 0.2103 | 0.5527 | 0.080* | |
C27 | 1.05315 (15) | 0.18549 (7) | 0.57291 (10) | 0.0542 (4) | |
H27A | 1.1228 | 0.2017 | 0.5402 | 0.081* | |
H27B | 1.0490 | 0.1385 | 0.5686 | 0.081* | |
H27C | 1.0804 | 0.1983 | 0.6385 | 0.081* | |
C28 | 0.72676 (13) | 0.41935 (6) | 0.35301 (9) | 0.0411 (3) | |
H28 | 0.6473 | 0.3899 | 0.3247 | 0.049* | |
C29 | 0.66220 (16) | 0.48254 (6) | 0.37642 (11) | 0.0559 (4) | |
H29A | 0.6139 | 0.4752 | 0.4268 | 0.084* | |
H29B | 0.5944 | 0.4983 | 0.3211 | 0.084* | |
H29C | 0.7370 | 0.5145 | 0.3963 | 0.084* | |
C30 | 0.81250 (17) | 0.43109 (7) | 0.27984 (10) | 0.0579 (4) | |
H30A | 0.8904 | 0.4606 | 0.3051 | 0.087* | |
H30B | 0.7516 | 0.4500 | 0.2240 | 0.087* | |
H30C | 0.8504 | 0.3902 | 0.2636 | 0.087* | |
C37B | 1.0818 (16) | −0.0445 (6) | 0.6520 (6) | 0.112 (4) | 0.25 |
H37A | 1.0328 | −0.0847 | 0.6587 | 0.168* | 0.25 |
H37B | 1.0700 | −0.0142 | 0.7004 | 0.168* | 0.25 |
H37C | 1.1823 | −0.0532 | 0.6583 | 0.168* | 0.25 |
C31B | 1.0211 (9) | −0.0160 (4) | 0.5579 (5) | 0.080 (3) | 0.25 |
C32B | 0.8827 (9) | 0.0063 (6) | 0.5345 (6) | 0.079 (4) | 0.25 |
H32B | 0.8254 | 0.0024 | 0.5782 | 0.095* | 0.25 |
C33B | 0.8272 (9) | 0.0339 (6) | 0.4482 (7) | 0.084 (4) | 0.25 |
H33B | 0.7326 | 0.0490 | 0.4334 | 0.101* | 0.25 |
C34B | 0.9093 (13) | 0.0397 (4) | 0.3836 (5) | 0.088 (4) | 0.25 |
H34B | 0.8715 | 0.0587 | 0.3245 | 0.105* | 0.25 |
C35B | 1.0473 (13) | 0.0176 (4) | 0.4059 (6) | 0.093 (4) | 0.25 |
H35B | 1.1043 | 0.0215 | 0.3620 | 0.111* | 0.25 |
C36B | 1.1022 (8) | −0.0100 (4) | 0.4922 (7) | 0.090 (4) | 0.25 |
H36B | 1.1966 | −0.0251 | 0.5067 | 0.109* | 0.25 |
C31A | 1.0600 (10) | −0.0150 (4) | 0.5303 (7) | 0.065 (2) | 0.25 |
C32A | 0.9297 (14) | −0.0029 (7) | 0.5489 (10) | 0.070 (4) | 0.25 |
H32A | 0.9145 | −0.0139 | 0.6083 | 0.084* | 0.25 |
C33A | 0.8199 (12) | 0.0251 (6) | 0.4829 (10) | 0.080 (3) | 0.25 |
H33A | 0.7296 | 0.0310 | 0.4957 | 0.096* | 0.25 |
C34A | 0.8457 (13) | 0.0441 (11) | 0.3983 (11) | 0.073 (3) | 0.25 |
H34A | 0.7763 | 0.0675 | 0.3549 | 0.088* | 0.25 |
C35A | 0.9736 (11) | 0.0288 (6) | 0.3772 (8) | 0.074 (3) | 0.25 |
H35A | 0.9873 | 0.0379 | 0.3168 | 0.089* | 0.25 |
C36A | 1.0805 (13) | 0.0008 (8) | 0.4423 (9) | 0.060 (3) | 0.25 |
H36A | 1.1685 | −0.0078 | 0.4276 | 0.072* | 0.25 |
C37A | 1.1873 (16) | −0.0441 (10) | 0.5950 (11) | 0.082 (4) | 0.25 |
H37D | 1.1802 | −0.0383 | 0.6596 | 0.122* | 0.25 |
H37E | 1.2727 | −0.0228 | 0.5858 | 0.122* | 0.25 |
H37F | 1.1918 | −0.0901 | 0.5816 | 0.122* | 0.25 |
H1 | 0.5679 (14) | 0.3064 (6) | 0.4406 (10) | 0.039 (3)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0291 (5) | 0.0388 (5) | 0.0266 (5) | −0.0033 (4) | 0.0069 (3) | −0.0071 (4) |
N2 | 0.0285 (4) | 0.0331 (4) | 0.0289 (5) | −0.0007 (3) | 0.0057 (3) | −0.0012 (3) |
N3 | 0.0457 (6) | 0.0542 (6) | 0.0296 (5) | 0.0007 (5) | 0.0082 (4) | −0.0078 (4) |
C1 | 0.0294 (5) | 0.0285 (5) | 0.0252 (5) | 0.0016 (4) | 0.0059 (4) | 0.0027 (4) |
C2 | 0.0317 (5) | 0.0325 (5) | 0.0245 (5) | −0.0026 (4) | 0.0080 (4) | 0.0004 (4) |
C3 | 0.0322 (5) | 0.0388 (6) | 0.0326 (6) | 0.0013 (4) | 0.0065 (4) | −0.0017 (4) |
C4 | 0.0422 (6) | 0.0438 (6) | 0.0363 (6) | 0.0041 (5) | 0.0115 (5) | −0.0060 (5) |
C5 | 0.0383 (6) | 0.0571 (7) | 0.0265 (6) | 0.0023 (5) | 0.0037 (4) | −0.0034 (5) |
C6 | 0.0336 (6) | 0.0451 (6) | 0.0271 (5) | 0.0037 (4) | 0.0072 (4) | −0.0010 (4) |
C7 | 0.0296 (5) | 0.0462 (6) | 0.0229 (5) | −0.0028 (4) | 0.0082 (4) | −0.0051 (4) |
C8 | 0.0370 (6) | 0.0496 (6) | 0.0292 (5) | −0.0080 (5) | 0.0114 (4) | −0.0053 (5) |
C9 | 0.0429 (7) | 0.0655 (8) | 0.0437 (7) | −0.0177 (6) | 0.0142 (5) | −0.0037 (6) |
C10 | 0.0312 (6) | 0.0890 (11) | 0.0433 (7) | −0.0083 (6) | 0.0106 (5) | 0.0000 (7) |
C11 | 0.0331 (6) | 0.0740 (9) | 0.0369 (6) | 0.0069 (6) | 0.0091 (5) | −0.0010 (6) |
C12 | 0.0345 (6) | 0.0552 (7) | 0.0241 (5) | 0.0042 (5) | 0.0071 (4) | −0.0044 (5) |
C13 | 0.0475 (7) | 0.0395 (6) | 0.0456 (7) | −0.0094 (5) | 0.0160 (5) | −0.0042 (5) |
C14 | 0.0642 (9) | 0.0534 (8) | 0.0544 (8) | −0.0059 (7) | 0.0180 (7) | 0.0078 (6) |
C15 | 0.0736 (10) | 0.0466 (7) | 0.0666 (10) | −0.0133 (7) | 0.0239 (8) | −0.0155 (7) |
C16 | 0.0413 (6) | 0.0484 (7) | 0.0390 (6) | 0.0090 (5) | 0.0023 (5) | −0.0063 (5) |
C17 | 0.0892 (14) | 0.0726 (12) | 0.1265 (18) | 0.0115 (10) | 0.0410 (13) | −0.0375 (12) |
C18 | 0.1071 (14) | 0.0545 (9) | 0.0468 (8) | −0.0115 (9) | −0.0007 (8) | 0.0049 (7) |
C19 | 0.0257 (5) | 0.0352 (5) | 0.0295 (5) | −0.0031 (4) | 0.0076 (4) | −0.0018 (4) |
C20 | 0.0319 (5) | 0.0389 (6) | 0.0309 (6) | −0.0016 (4) | 0.0065 (4) | −0.0009 (4) |
C21 | 0.0399 (6) | 0.0505 (7) | 0.0328 (6) | −0.0050 (5) | 0.0010 (5) | −0.0018 (5) |
C22 | 0.0445 (7) | 0.0504 (7) | 0.0400 (7) | −0.0155 (5) | 0.0049 (5) | −0.0109 (5) |
C23 | 0.0441 (6) | 0.0363 (6) | 0.0461 (7) | −0.0107 (5) | 0.0138 (5) | −0.0054 (5) |
C24 | 0.0332 (5) | 0.0355 (6) | 0.0365 (6) | −0.0047 (4) | 0.0110 (4) | −0.0007 (4) |
C25 | 0.0465 (7) | 0.0383 (6) | 0.0304 (6) | 0.0029 (5) | 0.0008 (5) | 0.0006 (4) |
C26 | 0.0625 (8) | 0.0405 (7) | 0.0567 (8) | −0.0030 (6) | 0.0148 (7) | 0.0080 (6) |
C27 | 0.0578 (8) | 0.0549 (8) | 0.0446 (7) | 0.0164 (6) | 0.0010 (6) | −0.0003 (6) |
C28 | 0.0449 (6) | 0.0337 (6) | 0.0433 (7) | −0.0008 (5) | 0.0073 (5) | 0.0031 (5) |
C29 | 0.0612 (9) | 0.0417 (7) | 0.0640 (9) | 0.0081 (6) | 0.0128 (7) | 0.0031 (6) |
C30 | 0.0705 (9) | 0.0582 (8) | 0.0474 (8) | 0.0082 (7) | 0.0183 (7) | 0.0119 (6) |
C37B | 0.105 (10) | 0.081 (8) | 0.134 (9) | −0.015 (7) | −0.003 (7) | −0.007 (6) |
C31B | 0.071 (6) | 0.049 (4) | 0.120 (8) | −0.020 (5) | 0.020 (5) | −0.014 (6) |
C32B | 0.077 (7) | 0.071 (8) | 0.091 (7) | −0.012 (5) | 0.023 (5) | −0.017 (5) |
C33B | 0.090 (7) | 0.084 (8) | 0.081 (7) | −0.010 (6) | 0.026 (5) | −0.010 (6) |
C34B | 0.103 (9) | 0.083 (8) | 0.083 (6) | −0.017 (7) | 0.034 (6) | −0.022 (5) |
C35B | 0.097 (8) | 0.061 (7) | 0.131 (10) | −0.011 (6) | 0.048 (6) | −0.013 (6) |
C36B | 0.087 (7) | 0.057 (7) | 0.135 (10) | −0.013 (6) | 0.042 (6) | −0.013 (7) |
C31A | 0.079 (5) | 0.034 (3) | 0.089 (5) | −0.013 (4) | 0.036 (3) | −0.016 (3) |
C32A | 0.072 (6) | 0.055 (9) | 0.094 (7) | −0.002 (5) | 0.042 (5) | −0.006 (6) |
C33A | 0.078 (5) | 0.049 (5) | 0.112 (7) | −0.006 (4) | 0.023 (5) | −0.007 (5) |
C34A | 0.049 (5) | 0.064 (6) | 0.106 (8) | 0.004 (5) | 0.016 (4) | −0.011 (5) |
C35A | 0.067 (6) | 0.061 (6) | 0.095 (6) | −0.013 (5) | 0.017 (5) | −0.013 (4) |
C36A | 0.056 (5) | 0.048 (8) | 0.081 (6) | −0.005 (5) | 0.029 (4) | −0.013 (5) |
C37A | 0.094 (8) | 0.061 (7) | 0.092 (8) | −0.002 (7) | 0.025 (6) | −0.014 (6) |
N1—C1 | 1.3682 (13) | C22—C23 | 1.3851 (18) |
N1—C7 | 1.4362 (13) | C23—H23 | 0.9500 |
N1—H1 | 0.888 (14) | C23—C24 | 1.3966 (16) |
N2—C1 | 1.2861 (13) | C24—C28 | 1.5239 (16) |
N2—C19 | 1.4275 (13) | C25—H25 | 1.0000 |
N3—C4 | 1.3423 (16) | C25—C26 | 1.5314 (19) |
N3—C5 | 1.3367 (16) | C25—C27 | 1.5286 (17) |
C1—C2 | 1.5069 (14) | C26—H26A | 0.9800 |
C2—C3 | 1.3938 (15) | C26—H26B | 0.9800 |
C2—C6 | 1.3939 (15) | C26—H26C | 0.9800 |
C3—H3 | 0.9500 | C27—H27A | 0.9800 |
C3—C4 | 1.3841 (16) | C27—H27B | 0.9800 |
C4—H4 | 0.9500 | C27—H27C | 0.9800 |
C5—H5 | 0.9500 | C28—H28 | 1.0000 |
C5—C6 | 1.3891 (16) | C28—C29 | 1.5312 (18) |
C6—H6 | 0.9500 | C28—C30 | 1.5311 (19) |
C7—C8 | 1.4051 (16) | C29—H29A | 0.9800 |
C7—C12 | 1.4120 (16) | C29—H29B | 0.9800 |
C8—C9 | 1.4039 (17) | C29—H29C | 0.9800 |
C8—C13 | 1.5218 (18) | C30—H30A | 0.9800 |
C9—H9 | 0.9500 | C30—H30B | 0.9800 |
C9—C10 | 1.379 (2) | C30—H30C | 0.9800 |
C10—H10 | 0.9500 | C37B—H37A | 0.9800 |
C10—C11 | 1.377 (2) | C37B—H37B | 0.9800 |
C11—H11 | 0.9500 | C37B—H37C | 0.9800 |
C11—C12 | 1.3957 (17) | C37B—C31B | 1.4987 |
C12—C16 | 1.5249 (18) | C31B—C32B | 1.3924 |
C13—H13 | 1.0000 | C31B—C36B | 1.3918 |
C13—C14 | 1.5394 (19) | C32B—H32B | 0.9500 |
C13—C15 | 1.5356 (18) | C32B—C33B | 1.3872 |
C14—H14A | 0.9800 | C33B—H33B | 0.9500 |
C14—H14B | 0.9800 | C33B—C34B | 1.3864 |
C14—H14C | 0.9800 | C34B—H34B | 0.9500 |
C15—H15A | 0.9800 | C34B—C35B | 1.3871 |
C15—H15B | 0.9800 | C35B—H35B | 0.9500 |
C15—H15C | 0.9800 | C35B—C36B | 1.3872 |
C16—H16 | 1.0000 | C36B—H36B | 0.9500 |
C16—C17 | 1.523 (2) | C31A—C32A | 1.384 (10) |
C16—C18 | 1.523 (2) | C31A—C36A | 1.398 (10) |
C17—H17A | 0.9800 | C31A—C37A | 1.506 (11) |
C17—H17B | 0.9800 | C32A—H32A | 0.9500 |
C17—H17C | 0.9800 | C32A—C33A | 1.397 (10) |
C18—H18A | 0.9800 | C33A—H33A | 0.9500 |
C18—H18B | 0.9800 | C33A—C34A | 1.388 (10) |
C18—H18C | 0.9800 | C34A—H34A | 0.9500 |
C19—C20 | 1.4133 (15) | C34A—C35A | 1.391 (10) |
C19—C24 | 1.4127 (15) | C35A—H35A | 0.9500 |
C20—C21 | 1.3963 (16) | C35A—C36A | 1.373 (10) |
C20—C25 | 1.5203 (16) | C36A—H36A | 0.9500 |
C21—H21 | 0.9500 | C37A—H37D | 0.9800 |
C21—C22 | 1.3843 (19) | C37A—H37E | 0.9800 |
C22—H22 | 0.9500 | C37A—H37F | 0.9800 |
C1—N1—C7 | 128.72 (9) | C22—C23—C24 | 121.23 (11) |
C1—N1—H1 | 115.1 (9) | C24—C23—H23 | 119.4 |
C7—N1—H1 | 116.1 (9) | C19—C24—C28 | 120.75 (10) |
C1—N2—C19 | 122.84 (9) | C23—C24—C19 | 118.56 (10) |
C5—N3—C4 | 116.11 (10) | C23—C24—C28 | 120.66 (10) |
N1—C1—C2 | 119.60 (9) | C20—C25—H25 | 107.7 |
N2—C1—N1 | 125.01 (9) | C20—C25—C26 | 109.53 (10) |
N2—C1—C2 | 115.39 (9) | C20—C25—C27 | 113.56 (10) |
C3—C2—C1 | 118.44 (9) | C26—C25—H25 | 107.7 |
C3—C2—C6 | 117.04 (10) | C27—C25—H25 | 107.7 |
C6—C2—C1 | 124.41 (9) | C27—C25—C26 | 110.30 (11) |
C2—C3—H3 | 120.2 | C25—C26—H26A | 109.5 |
C4—C3—C2 | 119.57 (10) | C25—C26—H26B | 109.5 |
C4—C3—H3 | 120.2 | C25—C26—H26C | 109.5 |
N3—C4—C3 | 123.89 (11) | H26A—C26—H26B | 109.5 |
N3—C4—H4 | 118.1 | H26A—C26—H26C | 109.5 |
C3—C4—H4 | 118.1 | H26B—C26—H26C | 109.5 |
N3—C5—H5 | 117.9 | C25—C27—H27A | 109.5 |
N3—C5—C6 | 124.29 (11) | C25—C27—H27B | 109.5 |
C6—C5—H5 | 117.9 | C25—C27—H27C | 109.5 |
C2—C6—H6 | 120.5 | H27A—C27—H27B | 109.5 |
C5—C6—C2 | 119.08 (10) | H27A—C27—H27C | 109.5 |
C5—C6—H6 | 120.5 | H27B—C27—H27C | 109.5 |
C8—C7—N1 | 120.54 (10) | C24—C28—H28 | 107.5 |
C8—C7—C12 | 121.72 (10) | C24—C28—C29 | 113.51 (11) |
C12—C7—N1 | 117.69 (10) | C24—C28—C30 | 110.60 (10) |
C7—C8—C13 | 123.67 (10) | C29—C28—H28 | 107.5 |
C9—C8—C7 | 117.22 (12) | C30—C28—H28 | 107.5 |
C9—C8—C13 | 119.06 (11) | C30—C28—C29 | 110.05 (11) |
C8—C9—H9 | 119.2 | C28—C29—H29A | 109.5 |
C10—C9—C8 | 121.69 (13) | C28—C29—H29B | 109.5 |
C10—C9—H9 | 119.2 | C28—C29—H29C | 109.5 |
C9—C10—H10 | 119.9 | H29A—C29—H29B | 109.5 |
C11—C10—C9 | 120.12 (12) | H29A—C29—H29C | 109.5 |
C11—C10—H10 | 119.9 | H29B—C29—H29C | 109.5 |
C10—C11—H11 | 119.4 | C28—C30—H30A | 109.5 |
C10—C11—C12 | 121.11 (13) | C28—C30—H30B | 109.5 |
C12—C11—H11 | 119.4 | C28—C30—H30C | 109.5 |
C7—C12—C16 | 121.70 (10) | H30A—C30—H30B | 109.5 |
C11—C12—C7 | 118.06 (12) | H30A—C30—H30C | 109.5 |
C11—C12—C16 | 120.23 (11) | H30B—C30—H30C | 109.5 |
C8—C13—H13 | 108.0 | H37A—C37B—H37B | 109.5 |
C8—C13—C14 | 110.13 (11) | H37A—C37B—H37C | 109.5 |
C8—C13—C15 | 111.95 (11) | H37B—C37B—H37C | 109.5 |
C14—C13—H13 | 108.0 | C31B—C37B—H37A | 109.5 |
C15—C13—H13 | 108.0 | C31B—C37B—H37B | 109.5 |
C15—C13—C14 | 110.70 (11) | C31B—C37B—H37C | 109.5 |
C13—C14—H14A | 109.5 | C32B—C31B—C37B | 120.9 |
C13—C14—H14B | 109.5 | C36B—C31B—C37B | 120.9 |
C13—C14—H14C | 109.5 | C36B—C31B—C32B | 118.1 |
H14A—C14—H14B | 109.5 | C31B—C32B—H32B | 119.5 |
H14A—C14—H14C | 109.5 | C33B—C32B—C31B | 121.1 |
H14B—C14—H14C | 109.5 | C33B—C32B—H32B | 119.5 |
C13—C15—H15A | 109.5 | C32B—C33B—H33B | 119.9 |
C13—C15—H15B | 109.5 | C34B—C33B—C32B | 120.1 |
C13—C15—H15C | 109.5 | C34B—C33B—H33B | 119.9 |
H15A—C15—H15B | 109.5 | C33B—C34B—H34B | 120.3 |
H15A—C15—H15C | 109.5 | C33B—C34B—C35B | 119.5 |
H15B—C15—H15C | 109.5 | C35B—C34B—H34B | 120.3 |
C12—C16—H16 | 107.1 | C34B—C35B—H35B | 119.9 |
C17—C16—C12 | 113.21 (13) | C34B—C35B—C36B | 120.1 |
C17—C16—H16 | 107.1 | C36B—C35B—H35B | 119.9 |
C18—C16—C12 | 111.19 (10) | C31B—C36B—H36B | 119.5 |
C18—C16—H16 | 107.1 | C35B—C36B—C31B | 121.1 |
C18—C16—C17 | 110.66 (15) | C35B—C36B—H36B | 119.5 |
C16—C17—H17A | 109.5 | C32A—C31A—C36A | 118.5 (9) |
C16—C17—H17B | 109.5 | C32A—C31A—C37A | 127.4 (9) |
C16—C17—H17C | 109.5 | C36A—C31A—C37A | 114.1 (8) |
H17A—C17—H17B | 109.5 | C31A—C32A—H32A | 119.1 |
H17A—C17—H17C | 109.5 | C31A—C32A—C33A | 121.9 (10) |
H17B—C17—H17C | 109.5 | C33A—C32A—H32A | 119.1 |
C16—C18—H18A | 109.5 | C32A—C33A—H33A | 120.8 |
C16—C18—H18B | 109.5 | C34A—C33A—C32A | 118.4 (10) |
C16—C18—H18C | 109.5 | C34A—C33A—H33A | 120.8 |
H18A—C18—H18B | 109.5 | C33A—C34A—H34A | 120.1 |
H18A—C18—H18C | 109.5 | C33A—C34A—C35A | 119.7 (10) |
H18B—C18—H18C | 109.5 | C35A—C34A—H34A | 120.1 |
C20—C19—N2 | 118.87 (9) | C34A—C35A—H35A | 119.5 |
C24—C19—N2 | 120.13 (9) | C36A—C35A—C34A | 121.0 (10) |
C24—C19—C20 | 120.51 (10) | C36A—C35A—H35A | 119.5 |
C19—C20—C25 | 120.74 (9) | C31A—C36A—H36A | 120.0 |
C21—C20—C19 | 118.57 (11) | C35A—C36A—C31A | 120.0 (10) |
C21—C20—C25 | 120.64 (10) | C35A—C36A—H36A | 120.0 |
C20—C21—H21 | 119.4 | C31A—C37A—H37D | 109.5 |
C22—C21—C20 | 121.24 (11) | C31A—C37A—H37E | 109.5 |
C22—C21—H21 | 119.4 | C31A—C37A—H37F | 109.5 |
C21—C22—H22 | 120.1 | H37D—C37A—H37E | 109.5 |
C21—C22—C23 | 119.86 (11) | H37D—C37A—H37F | 109.5 |
C23—C22—H22 | 120.1 | H37E—C37A—H37F | 109.5 |
C22—C23—H23 | 119.4 | ||
N1—C1—C2—C3 | −146.50 (10) | C11—C12—C16—C18 | −86.69 (15) |
N1—C1—C2—C6 | 37.47 (15) | C12—C7—C8—C9 | 3.05 (16) |
N1—C7—C8—C9 | −179.75 (10) | C12—C7—C8—C13 | −174.24 (10) |
N1—C7—C8—C13 | 2.96 (16) | C13—C8—C9—C10 | 175.13 (12) |
N1—C7—C12—C11 | −178.67 (10) | C19—N2—C1—N1 | −0.92 (16) |
N1—C7—C12—C16 | 2.54 (15) | C19—N2—C1—C2 | 178.39 (9) |
N2—C1—C2—C3 | 34.15 (13) | C19—C20—C21—C22 | 0.43 (18) |
N2—C1—C2—C6 | −141.88 (11) | C19—C20—C25—C26 | −93.53 (13) |
N2—C19—C20—C21 | 170.13 (10) | C19—C20—C25—C27 | 142.67 (11) |
N2—C19—C20—C25 | −12.43 (15) | C19—C24—C28—C29 | 147.41 (11) |
N2—C19—C24—C23 | −170.09 (10) | C19—C24—C28—C30 | −88.34 (13) |
N2—C19—C24—C28 | 7.60 (15) | C20—C19—C24—C23 | 1.76 (16) |
N3—C5—C6—C2 | 0.18 (19) | C20—C19—C24—C28 | 179.45 (10) |
C1—N1—C7—C8 | 65.88 (15) | C20—C21—C22—C23 | 0.99 (19) |
C1—N1—C7—C12 | −116.81 (12) | C21—C20—C25—C26 | 83.85 (14) |
C1—N2—C19—C20 | 103.81 (12) | C21—C20—C25—C27 | −39.94 (16) |
C1—N2—C19—C24 | −84.22 (13) | C21—C22—C23—C24 | −1.05 (19) |
C1—C2—C3—C4 | −175.29 (10) | C22—C23—C24—C19 | −0.32 (17) |
C1—C2—C6—C5 | 174.92 (10) | C22—C23—C24—C28 | −178.01 (11) |
C2—C3—C4—N3 | 0.11 (19) | C23—C24—C28—C29 | −34.95 (16) |
C3—C2—C6—C5 | −1.16 (16) | C23—C24—C28—C30 | 89.31 (14) |
C4—N3—C5—C6 | 0.93 (19) | C24—C19—C20—C21 | −1.81 (16) |
C5—N3—C4—C3 | −1.08 (19) | C24—C19—C20—C25 | 175.62 (10) |
C6—C2—C3—C4 | 1.03 (16) | C25—C20—C21—C22 | −177.01 (12) |
C7—N1—C1—N2 | −178.19 (10) | C37B—C31B—C32B—C33B | 178.5 |
C7—N1—C1—C2 | 2.53 (16) | C37B—C31B—C36B—C35B | −178.5 |
C7—C8—C9—C10 | −2.29 (18) | C31B—C32B—C33B—C34B | 0.2 |
C7—C8—C13—C14 | 109.96 (13) | C32B—C31B—C36B—C35B | 0.4 |
C7—C8—C13—C15 | −126.43 (12) | C32B—C33B—C34B—C35B | 0.0 |
C7—C12—C16—C17 | −142.62 (14) | C33B—C34B—C35B—C36B | 0.0 |
C7—C12—C16—C18 | 92.07 (14) | C34B—C35B—C36B—C31B | −0.2 |
C8—C7—C12—C11 | −1.39 (16) | C36B—C31B—C32B—C33B | −0.3 |
C8—C7—C12—C16 | 179.82 (10) | C31A—C32A—C33A—C34A | −3.4 (17) |
C8—C9—C10—C11 | −0.1 (2) | C32A—C31A—C36A—C35A | 1 (2) |
C9—C8—C13—C14 | −67.28 (14) | C32A—C33A—C34A—C35A | 7 (2) |
C9—C8—C13—C15 | 56.33 (15) | C33A—C34A—C35A—C36A | −7 (3) |
C9—C10—C11—C12 | 1.9 (2) | C34A—C35A—C36A—C31A | 2 (2) |
C10—C11—C12—C7 | −1.16 (18) | C36A—C31A—C32A—C33A | −0.7 (18) |
C10—C11—C12—C16 | 177.65 (11) | C37A—C31A—C32A—C33A | 179.2 (14) |
C11—C12—C16—C17 | 38.62 (18) | C37A—C31A—C36A—C35A | −178.7 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···N3i | 0.89 (1) | 2.38 (1) | 3.118 (1) | 141 (1) |
C10—H10···N2ii | 0.95 | 2.74 | 3.515 (2) | 139 |
C13—H13···N1 | 1.00 | 2.50 | 2.9794 (15) | 109 |
C16—H16···N1 | 1.00 | 2.44 | 2.8811 (15) | 106 |
C25—H25···N2 | 1.00 | 2.42 | 2.8933 (15) | 108 |
C28—H28···N2 | 1.00 | 2.54 | 2.9140 (15) | 102 |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x−1, y, z. |
Cg (py) is the centroid of the pyridyl ring. Cg (ring 2) is the centroid of the C19–C24 aryl ring. |
X—H···Cg (π-ring) | H···Cg | X···Cg | X—H···Cg |
C4—H4···Cg (ring 2)iii | 2.88 | 3.53 (1) | 127 |
C15—H15···Cg (py)iv | 2.82 | 3.71 (1) | 151 |
Symmetry codes: (iii) x, 1/2 - y, -1/2 + z; (iv) x, y, z. |
No. | Aryl substituent | CSD refcode | Reference |
1 | Ph | GIWGEA | Loh et al. (2014) |
2 | 4-MePh | GOBNIU | Boeré et al. (1998) |
3 | 4-OMePh | GOBMOZ | Boeré et al. (1998) |
4 | 4-t-BuPh | BAZTUT | Jones et al. (2011) |
5 | 3,5-diMePh | GIWLEF | Moxey et al. (2014) |
6 | 2,4,6-triMePh | IKETAV | Green et al. (2016) |
7 | Ph (C-bridged) | DIFCIG | Li et al. (2013) |
Acknowledgements
The authors thank Dr Michel Simard and the personnel at the X-ray laboratory of UdeM for access and training.
Funding information
The authors acknowledge the Natural Sciences and Engineering Research Council of Canada (NSERC), les Fonds de recherche du Québec – Nature et technologies (FRQNT), l'Université du Québec à Trois-Rivières (UQTR) and l'Institute de Recherche sur l'Hydrogène, as well as l'Université de Montréal (UdeM) for financial support.
References
Alcock, N. W., Barker, J. & Kilner, M. (1988). Acta Cryst. C44, 712–715. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Bambirra, S., Bouwkamp, M. W., Meetsma, A. & Hessen, B. (2004). J. Am. Chem. Soc. 126, 9182–9183. Web of Science CSD CrossRef PubMed CAS Google Scholar
Boeré, R. T., Klassen, V. & Wolmershauser, G. (1998). J. Chem. Soc. Dalton Trans. 4147–4154. Google Scholar
Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chartrand, D. & Hanan, G. (2008). Chem. Commun. pp. 727–729. Web of Science CSD CrossRef Google Scholar
Cibian, M., Langis-Barsetti, S. & Hanan, G. S. (2011). Synlett, 3, 405–409. Google Scholar
Desiraju, G. R. & Steiner, T. (2001). The Weak Hydrogen Bond in Structural Chemistry and Biology, pp. 1–28. Oxford University Press. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Green, R., Walker, A. C., Blake, M. P. & Mountford, P. (2016). Polyhedron, 116, 64–75. Web of Science CSD CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Häfelinger, G. & Kuske, K. H. (1991). In The Chemistry of the Amidines and Imidates, edited by S. Patai & Z. Rappoport, Vol. 2, ch. 1, pp. 1–100. Chichester: Wiley. Google Scholar
Jones, C., Bonyhady, S. J., Holzmann, N., Frenking, G. & Stasch, A. (2011). Inorg. Chem. 50, 12315–12325. Web of Science CSD CrossRef CAS PubMed Google Scholar
Kazeminejad, N., Münzfeld, L., Gamer, M. T. & Roesky, P. W. (2019). Dalton Trans. 48, 8153–8160. Web of Science CSD CrossRef CAS PubMed Google Scholar
Kirillov, E., Roisnel, T. & Carpentier, J.-F. (2012). Organometallics, 31, 3228–3240. Web of Science CSD CrossRef CAS Google Scholar
Laramée, B., Cibian, M. & Hanan, G. S. (2012). Acta Cryst. E68, o2975–o2976. CSD CrossRef IUCr Journals Google Scholar
Li, M., Hong, J., Chen, Z., Zhou, X. & Zhang, L. (2013). Dalton Trans. 42, 8288–8297. Web of Science CSD CrossRef CAS PubMed Google Scholar
Loh, C., Seupel, S., Goerls, H., Krieck, S. & Westerhausen, M. (2014). Eur. J. Inorg. Chem. pp. 1312–1321. Web of Science CSD CrossRef Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Moxey, G. J., Ortu, F., Goldney Sidley, L., Strandberg, H. N., Blake, A. J., Lewis, W. & Kays, D. L. (2014). Dalton Trans. 43, 4838–4846. Web of Science CSD CrossRef CAS PubMed Google Scholar
Patai, S. & Rappoport, Z. (1991). Editors. The Chemistry of the Amidines and Imidates. Chichester: Wiley. Google Scholar
Povray (2013). POV-RAY 3.7.0, Persistence of Vision Pty. Ltd., Persistence of Vision Raytracer, retrieved from https://www.povray.org/download/. Google Scholar
Qian, F., Liu, K. & Ma, H. (2010). Dalton Trans. 39, 8071–8083. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.