research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and structure of (E)-N-(4-meth­­oxy­phen­yl)-2-[4-(3-oxo-3-phenyl­prop-1-en-1-yl)phen­­oxy]acetamide

CROSSMARK_Color_square_no_text.svg

aFaculty of Chemistry, Ho Chi Minh City University of Education, 280 An Duong Vuong Street, Ho Chi Minh City, 72711, Vietnam, bFaculty of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, 11310, Vietnam, cSchool of Natural Sciences Education, Vinh University, 182 Le Duan Street, Vinh City, 43000, Vietnam, and dDepartment of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium
*Correspondence e-mail: congnt@hcmue.edu.vn, luc.vanmeervelt@kuleuven.be

Edited by D. Gray, University of Illinois Urbana-Champaign, USA (Received 9 December 2020; accepted 25 January 2021; online 29 January 2021)

The title compound N-(4-meth­oxy­phen­yl)-2-[4-(3-oxo-3-phenyl­prop-1-en-1-yl)phen­oxy]acetamide, C24H21NO4, was prepared from reaction of N-(4-meth­oxy­phen­yl)-2-chloro­acetamide and (E)-3-(4-hy­droxy­phen­yl)-1-phenyl­prop-2-en-1-one, which was obtained from the reaction of 4-hy­droxy­benzaldehyde and aceto­phenone. The structure of the title compound was determined by IR, 1H-NMR, 13C-NMR and HR–MS spectroscopic data and further characterized by single-crystal X-ray diffraction. The asymmetric unit contains four mol­ecules, each displaying an E-configuration of the C=C bond. The dihedral angle between the phenyl rings in each mol­ecule varies between 14.9 (2) and 45.8 (2)°. In the crystal, C—H⋯O hydrogen-bonding inter­actions link the mol­ecules into chains running along the [001] direction. In addition, C—H⋯π inter­actions further stabilize the crystal packing. A Hirshfeld analysis indicates that the most important contributions to the surface contacts are from H⋯H (43.6%), C⋯H/H⋯C (32.1%) and O⋯H/H⋯O (18.1%) inter­actions.

1. Chemical context

Chalcones are not only important inter­mediates in the biosynthesis of flavonoids, but are also valuable starting materials for the synthesis of biologically important heterocycles such as pyrazolines, isoxazolines, benzodiazepines and benzo­thia­zepines (Zhuang et al., 2017[Zhuang, C., Zhang, W., Sheng, C., Zhang, W., Xing, C. & Miao, Z. (2017). Chem. Rev. 117, 7762-7810.]; Ovonramwen et al., 2019[Ovonramwen, O. B., Owolabi, B. J. & Oviawe, A. P. (2019). Asian J. Chem. Sci. 6, 1-16.]). Chalcones and their derivatives have been reported to possess a number of inter­esting biological properties such as anti-inflammatory (Nurkenov et al., 2019[Nurkenov, O. A., Ibraev, M. K., Schepetkin, I. A., Khlebnikov, A. I., Seilkhanov, T. M., Arinova, A. E. & Isabaeva, M. B. (2019). Russ. J. Gen. Chem. 89, 1360-1367.]; Vásquez-Martínez et al., 2019[Vásquez-Martínez, Y. A., Osorio, M. E., San Martín, D. A., Carvajal, M. A., Vergara, A. P., Sanchez, E., Raimondi, M., Zacchino, S. A., Mascayano, C., Torrent, C., Cabezas, F., Mejias, S., Montoya, M. & Martín, M. C. S. (2019). J. Braz. Chem. Soc. 30, 286-304.]; Hsieh et al., 2000[Hsieh, H. K., Tsao, L. T., Wang, J. P. & Lin, C. N. (2000). J. Pharm. Pharmacol. 52, 163-171.]), anti­cancer (Dimmock et al., 1998[Dimmock, J. R., Kandepu, N. M., Hetherington, M., Quail, J. W., Pugazhenthi, U., Sudom, A. M., Chamankhah, M., Rose, P., Pass, E., Allen, T. M., Halleran, S., Szydlowski, J., Mutus, B., Tannous, M., Manavathu, E. K., Myers, T. G., De Clercq, E. & Balzarini, J. (1998). J. Med. Chem. 41, 1014-1026.]; Bonakdar et al., 2017[Bonakdar, A. P. S., Vafaei, F., Farokhpour, M., Esfahani, M. H. N. & Massah, A. R. (2017). Iran. J. Pharm. Res. 16, 565-568.]; Lim et al., 2020[Lim, Y. H., Oo, C. W., Koh, R. Y., Voon, G. L., Yew, M. Y., Yam, M. F. & Loh, Y. C. (2020). Drug Dev. Res. 1-10 https://doi. org/10.1002/ddr. 21715]; Shaik et al., 2020[Shaik, A., Bhandare, R. R., Palleapati, K., Nissankararao, S., Kancharlapalli, V. & Shaik, S. (2020). Molecules, 25 ID 1047. https://doi.org/10.3390/molecules25051047]), anti­oxidant (Ohkatsu & Satoh et al., 2008[Ohkatsu, Y. & Satoh, T. (2008). J. Jpn. Petrol. Inst. 51, 298-308.]; Venkatachalam et al., 2012[Venkatachalam, H., Nayak, Y. & Jayashree, B. S. (2012). APCBEE Procedia 3, 209-213.]; Vásquez-Martínez et al., 2019[Vásquez-Martínez, Y. A., Osorio, M. E., San Martín, D. A., Carvajal, M. A., Vergara, A. P., Sanchez, E., Raimondi, M., Zacchino, S. A., Mascayano, C., Torrent, C., Cabezas, F., Mejias, S., Montoya, M. & Martín, M. C. S. (2019). J. Braz. Chem. Soc. 30, 286-304.]; Shaik et al., 2020[Shaik, A., Bhandare, R. R., Palleapati, K., Nissankararao, S., Kancharlapalli, V. & Shaik, S. (2020). Molecules, 25 ID 1047. https://doi.org/10.3390/molecules25051047]), anti­microbial (Fang et al., 2014[Fang, X., Yang, B., Cheng, Z., Zhang, P. & Yang, M. (2014). Res. Chem. Intermed. 40, 1715-1725.]; Vásquez-Martínez et al., 2019[Vásquez-Martínez, Y. A., Osorio, M. E., San Martín, D. A., Carvajal, M. A., Vergara, A. P., Sanchez, E., Raimondi, M., Zacchino, S. A., Mascayano, C., Torrent, C., Cabezas, F., Mejias, S., Montoya, M. & Martín, M. C. S. (2019). J. Braz. Chem. Soc. 30, 286-304.]; Shaik et al., 2020[Shaik, A., Bhandare, R. R., Palleapati, K., Nissankararao, S., Kancharlapalli, V. & Shaik, S. (2020). Molecules, 25 ID 1047. https://doi.org/10.3390/molecules25051047]) and anti-diabetic activities (Hsieh et al., 2012[Hsieh, C. T., Hsieh, T. J., El-Shazly, M., Chuang, D. W., Tsai, Y. H., Yen, C. T., Wu, S. F., Wu, Y. C. & Chang, F. R. (2012). Bioorg. Med. Chem. Lett. 22, 3912-3915.]; Rammohan et al., 2020[Rammohan, A., Bhaskar, B. V., Venkateswarlu, N., Gu, W. & Zyryanov, G. V. (2020). Bioorg. Chem. 95, 103527.]; Konidala et al., 2020[Konidala, S. K., Kotra, V., Danduga, R. C. S. R. & Kola, P. K. (2020). Bioorg. Chem. 104, 104207.]). Besides that, compounds with a phen­oxy-N-aryl­acetamide scaffold have demonstrated a variety of biological activities such as anti­microbial (Berest et al., 2011[Berest, G. G., Voskoboynik, O. Y., Kovalenko, S. I., Antypenko, O. M., Nosulenko, I. S., Katsev, A. M. & Shandrovskaya, O. S. (2011). Eur. J. Med. Chem. 46, 6066-6074.]; Patel et al., 2013[Patel, V. G., Shukla, M. B., Bhatt, A. R. & Prajapati, S. N. (2013). Int. J. Res. Pharm. Biomed. Sci. 4, 270-278.]; Williams et al., 2015[Williams, J. D., Torhan, M. C., Neelagiri, V. R., Brown, C., Bowlin, N. O., Di, M., McCarthy, C. T., Aiello, D., Peet, N. P., Bowlin, T. L. & Moir, D. T. (2015). Bioorg. Med. Chem. 23, 1027-1043.]), anti­viral (Paramonova et al., 2017[Paramonova, M. P., Khandazhinskaya, A. L., Seley-Radtke, K. L. & Novikov, M. S. (2017). Mendeleev Commun. 27, 85-87.]), anti-diabetic (Li et al., 2015[Li, Z., Wang, X., Xu, X., Yang, J., Qiu, Q., Qiang, H., Huang, W. & Qian, H. (2015). Bioorg. Med. Chem. 23, 6666-6672.]), anti-inflammatory (Rani et al., 2014[Rani, P., Pal, D., Hegde, R. R. & Hashim, S. R. (2014). BioMed Research International Article ID 386473, 9 pages. https://doi. org/10.1155/2014/386473]), analgesic (Rani et al., 2014[Rani, P., Pal, D., Hegde, R. R. & Hashim, S. R. (2014). BioMed Research International Article ID 386473, 9 pages. https://doi. org/10.1155/2014/386473]) and anti­cancer (Berest et al., 2011[Berest, G. G., Voskoboynik, O. Y., Kovalenko, S. I., Antypenko, O. M., Nosulenko, I. S., Katsev, A. M. & Shandrovskaya, O. S. (2011). Eur. J. Med. Chem. 46, 6066-6074.]; Rani et al., 2014[Rani, P., Pal, D., Hegde, R. R. & Hashim, S. R. (2014). BioMed Research International Article ID 386473, 9 pages. https://doi. org/10.1155/2014/386473]) activities.

[Scheme 1]

The synthesis of some chalcones containing the phen­oxy-N-aryl­acetamide moiety was reported in our previous works and their structures were determined by IR, 1H-NMR, 13C-NMR and HR-MS spectroscopy (Nguyen et al., 2018[Nguyen, T. C., Bui, M. H. & Nguyen, H. M. D. (2018). Acta Chemica Iasi 26, 13-20.]; Bui et al., 2020[Bui, T. T. L., Nguyen, T. C. & Huynh, T. X. T. (2020). J. Sci. 17, 1536-1546.]). In this work, the synthesis and the mol­ecular and crystal structures of (E)-N-(4-meth­oxy­phen­yl)-2-[4-(3-oxo-3-phenyl­prop-1-en-1-yl)phen­oxy]acetamide are described in detail.

2. Structural commentary

The title compound crystallizes in the monoclinic space group Cc. The asymmetric unit contains four mol­ecules and is illustrated in Fig. 1[link]. In the following discussion, mol­ecule A includes atoms C1–C29, mol­ecule B atoms C30–C58, mol­ecule C atoms C59–C87 and mol­ecule D atoms C85–C116. All four mol­ecules exist in the (E)-configuration and display intra­molecular N—H⋯O hydrogen bonds and C—H⋯O inter­actions (Table 1[link]). With the presence of the N—H⋯O hydrogen bond, one would assume the central and the meth­oxy-substituted phenyl rings to be almost coplanar. This is not the case, with dihedral angles between the least-squares planes through the two rings being 17.27 (19), 45.8 (2), 38.91 (19) and 14.9 (2)° for mol­ecules AD, respectively. A similar trend is observed for the two phenyl rings linked by the propenone unit, with dihedral angles of 42.8 (2), 29.0 (2), 26.3 (2) and 43.2 (2)° for mol­ecules AD, respectively.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg4, Cg5, Cg7, Cg8 and Cg10 are the centroids of the C1–C6, C30–C35, C45–C50, C59–C64, C74–C79 and C88–C93 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N15—H15⋯O11 0.84 (5) 2.14 (5) 2.602 (4) 115 (4)
N44—H44⋯O40 0.83 (3) 2.11 (3) 2.605 (4) 118 (3)
N73—H73⋯O69 0.86 (4) 2.12 (4) 2.579 (4) 113 (3)
N102—H102⋯O98 0.86 (4) 2.09 (4) 2.603 (4) 118 (3)
C7—H7⋯O10 0.93 2.47 2.807 (5) 101
C21—H21⋯O14 0.93 2.32 2.925 (5) 122
C36—H36⋯O39 0.93 2.47 2.811 (6) 102
C46—H46⋯O43 0.93 2.47 2.964 (5) 113
C65—H65⋯O68 0.93 2.46 2.803 (6) 102
C79—H79⋯O72 0.93 2.48 2.992 (5) 115
C94—H94⋯O97 0.93 2.46 2.804 (6) 102
C108—H108⋯O101 0.93 2.33 2.934 (5) 122
C31—H31⋯O14 0.93 2.57 3.494 (5) 175
C56—H56⋯O109i 0.93 2.57 3.487 (6) 167
C75—H75⋯O97ii 0.93 2.57 3.409 (6) 151
C114—H114⋯O51iii 0.93 2.56 3.444 (7) 159
C12—H12ACg7iv 0.97 2.81 3.522 (4) 131
C23—H23ACg8iv 0.96 2.72 3.669 (5) 168
C41—H41BCg10v 0.97 2.84 3.592 (4) 135
C70—H70ACg1 0.97 2.92 3.667 (5) 135
C99—H99BCg4vi 0.97 2.80 3.517 (4) 131
C110—H11CCg5vi 0.96 2.64 3.569 (5) 162
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x, y-1, z]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) x, y+1, z; (v) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (vi) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].
[Figure 1]
Figure 1
The mol­ecular structure for the four mol­ecules present in the asymmetric unit of the title compound, showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Fig. 2[link] shows an overlay diagram of the four mol­ecules AD [r.m.s. deviations between 0.0887 Å for the fit of A and D, and 0.6695 Å for the fit of C and D as calculated using Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.])]. The largest differences are observed for the terminal groups. At one end, the phenyl rings of mol­ecules A and D, and of B and C have a similar orientation. At the other side, the terminal methyl group is oriented differently for mol­ecule C.

[Figure 2]
Figure 2
Overlay diagram of the four independent mol­ecules A (green), B (blue), C (red) and D (yellow) comprising the asymmetric unit. H atoms are hidden for clarity.

3. Supra­molecular features and Hirshfeld surface analysis

Four C—H⋯O hydrogen bonds are observed between the mol­ecules in the asymmetric unit (Fig. 3[link], Table 1[link]), of which two are involved in a chain formation in the [001] direction through Carom—H⋯Ometh­oxy inter­actions [graph-set C(21)]. In addition, mol­ecules A and B, and C and D inter­act through Carom—H⋯Oamide inter­actions.

[Figure 3]
Figure 3
Partial crystal packing of the title compound showing the C—H⋯O inter­actions and chain formation along the [001] direction.

Despite the presence of many phenyl rings, the crystal packing of the title compound does not show any ππ inter­actions [the shortest inter­centroid distance is 4.754 (2) Å between rings C16–C21 and C74–C79]. However, the crystal packing is mainly characterized by C—H⋯π inter­actions (Fig. 4[link], Table 1[link]). Furthermore, a C=O⋯π inter­action is present in the crystal packing [O43⋯Cg9iv = 3.897 (4) Å; Cg9 is the centroid of ring C82–C87; symmetry code: (iv) x, y + 1, z]. The packing shows no solvent-accessible voids larger than 15 Å3.

[Figure 4]
Figure 4
View of the C—H⋯π inter­actions in the crystal packing of the title compound. Colour codes used: cyan for ring C1–C6; orange for ring C30–C35; green for ring C45–C50; magenta for ring C59–C64; yellow for ring C74–C79; brown for ring C88–C93. See Table 1[link] for further details.

A Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814-3816.]) were performed in order to further investigate the supra­molecular network. The Hirshfeld surface calculated using CrystalExplorer (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net]) and mapped over dnorm is for each mol­ecule in the asymmetric unit given in Fig. 5[link]. These surfaces show the expected bright-red spots near atoms O14, O51, O97, O109, H31, H56, H75 and H114 involved in the C—H⋯O hydrogen-bonding inter­actions described above. In addition, faint-red spots reveal some additional short H⋯H, C⋯C and H⋯O contacts, as indicated in Fig. 5[link]. The fingerprint plots indicate that the largest contributions to the Hirshfeld surface come from H⋯H contacts (43.6%) and C⋯H/H⋯C contacts (32.1%), followed by a significant contribution of O⋯H/H⋯O contacts (18.1%). Minor contributions are noted from C⋯O/O⋯C (2.5%), N⋯H/H⋯N (1.5%), C⋯C (1.4%), N⋯C/C⋯N (0.1%) and O⋯N/N⋯O (0.1%) contacts.

[Figure 5]
Figure 5
The Hirshfeld surface mapped over dnorm for the four mol­ecules in the asymmetric unit of the title compound. (a) mol­ecule A in the range −0.1404 to 1.3398 a.u.; (b) mol­ecule B in the range −0.1403 to 1.5687 a.u.; (c) mol­ecule C in the range −0.1240 to 1.8315 a.u.; (d) mol­ecule D in the range −0.1369 to 1.6590 a.u.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.41, update of May 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for chalcones (1,3-di­phenyl­prop-2-en-1-one) gave 1168 hits of which 804 have no extra substituents on the prop-2-en-1-one double bond. The histogram of the dihedral angle between the two phenyl rings shows two maxima at ∼15 and ∼55° (Fig. 6[link]a).

[Figure 6]
Figure 6
(a) Histogram of the dihedral angle between both phenyl rings in chalcones present in the CSD, (b) 3-(4-oxyphen­yl)prop-2-en-1-one core of the title compound with numbering used for torsion angles, (c) polar histogram of torsion angle 1–2-3–4, (d) polar histogram of torsion angle 2–3-4–5.

For the 3-(4-oxyphen­yl)prop-2-en-1-one core of the title compound (Fig. 6[link]b) 159 hits were found. The configuration about the double bond is always E with C—C=C—C torsion angles between −168.9 and 169.8° (Fig. 6[link]c). For the C=C—C=O torsion angle, the majority display an s-cis conformation (141 hits or 88.7%), in contrast to an s-trans conformation (18 hits, 11.3%) (Fig. 6[link]d).

In order to verify the frequency of having four mol­ecules in the asymmetric unit, a search in the CSD resulted in only 0.52% of the entries having Z′ = 4 (0.62% for Z′ ≥ 4).

5. Synthesis and crystallization

The synthetic pathway to synthesize the target compound, N-(4-meth­oxy­phen­yl)-2-[4-(3-oxo-3-phenyl­prop-1-en-1-yl)phen­oxy]acetamide, 4, is given in Fig. 7[link] (numbering on chemical formulae is only used for NMR spectroscopic analysis).

[Figure 7]
Figure 7
Reaction scheme for the synthesis of the title compound (4).

The reaction of 4-hy­droxy­benzaldehyde, 1, and aceto­phenone, 2, to obtain chalcone 3 was carried out according to the procedure described in the literature (Dimmock et al., 1998[Dimmock, J. R., Kandepu, N. M., Hetherington, M., Quail, J. W., Pugazhenthi, U., Sudom, A. M., Chamankhah, M., Rose, P., Pass, E., Allen, T. M., Halleran, S., Szydlowski, J., Mutus, B., Tannous, M., Manavathu, E. K., Myers, T. G., De Clercq, E. & Balzarini, J. (1998). J. Med. Chem. 41, 1014-1026.]; Bui et al., 2020[Bui, T. T. L., Nguyen, T. C. & Huynh, T. X. T. (2020). J. Sci. 17, 1536-1546.]). Physical properties and IR and 1H-NMR spectroscopic data of chalcone 3 are in agreement with data in the literature (Dimmock et al., 1998[Dimmock, J. R., Kandepu, N. M., Hetherington, M., Quail, J. W., Pugazhenthi, U., Sudom, A. M., Chamankhah, M., Rose, P., Pass, E., Allen, T. M., Halleran, S., Szydlowski, J., Mutus, B., Tannous, M., Manavathu, E. K., Myers, T. G., De Clercq, E. & Balzarini, J. (1998). J. Med. Chem. 41, 1014-1026.]; Ohkatsu et al., 2008[Ohkatsu, Y. & Satoh, T. (2008). J. Jpn. Petrol. Inst. 51, 298-308.]; Bui et al., 2020[Bui, T. T. L., Nguyen, T. C. & Huynh, T. X. T. (2020). J. Sci. 17, 1536-1546.]). The existence of chalcone 3 in the (E)-configuration is not only clear from the IR spectrum but also the 1H-NMR spectrum. While the IR spectrum of 3 shows absorptions at 972 cm−1 corresponding to bending vibrations of a trans-alkene, its 1H-NMR spectrum shows two doublet signals (δ 7.73 and 7.75) with a spin–spin coupling constant of 17.0 Hz in accordance with a trans position.

N-(4-meth­oxy­phen­yl)-2-[4-(3-oxo-3-phenyl­prop-1-en-1-yl)phen­oxy]acetamide, 4, was prepared by stirring a mixture of chalcone 3 and N-(4-meth­oxy­phen­yl)-2-chloro­acetamide in acetone containing potassium carbonate. The structure of the product was determined by IR, 1H-NMR, 13C-NMR and HR–MS spectroscopy.

The mass spectra of 4 showed pseudo-mol­ecular peaks in agreement with the mol­ecular formula of C24H22NO4 (M+H)+. The IR, 1H-NMR and 13C-NMR spectra of the product match with the proposed structure. Notably, in the IR spectrum of 4 two new absorption bands appear, one at 3381 (NH) and the other at 1680 cm−1 (C=O amide). In comparison to the 1H-NMR spectrum of 3, the spectrum of 4 contains some extra signals in the aromatic area. Moreover, the signal of the CH2 group (singlet with integration of 2H) is observed at δ 4.77. The trans configuration of 4 was also confirmed by the coupling constant Jab ≃ 17.0 Hz of the vinylic protons.

Synthesis of (E)-3-(4-hy­droxy­phen­yl)-1-phenyl­prop-2-en-1-one (3):

To a solution of potassium hydroxide (6 mmol) in 10 mL ethanol, aceto­phenone (2 mmol) was slowly added while stirring for 20 minutes. Then, 4-hy­droxy­benzaldehyde (2 mmol) was continuously added dropwise to the reaction. The mixture was stirred for 3 h at room temperature and kept in a refrigerator overnight. After pouring into ice-cold water, the reaction mixture was acidified with dilute HCl. The solid that separated was filtered, washed thoroughly with water and dried. The crude product was recrystallized from ethanol to afford chalcone 3 (yield 77%) in the form of yellow crystals (m.p. 465–467 K). IR (Shimadzu FTIR-8400S, KBr, cm−1): 972 (C=C), 1600 (C=C), 1651 (C=O), 3017 (C—H), 3225 (broad, OH); 1H NMR [Bruker XL-500, 500 MHz, d6-DMSO, (ppm), J (Hz)]: 6.86 (2H, d, J = 8.5 Hz, H2 and H6), 7.57 (2H, dd, J =7.5 Hz, J = 7.0 Hz, H12 and H14), 7.66 (1H, dd, J = 6.0 Hz, J = 7.0 Hz, H13), 7.73 (1H, d, J = 16.5 Hz, H8), 7.74 (1H, d, J = 17.0 Hz, H7), 7.76 (2H, d, J = 8.0 Hz, H3,5), 8.13 (2H, d, J = 8.0 Hz, H11 and H15), 10.12 (1H, s, OH). 13C NMR [Bruker XL-500, 125 MHz, d6-DMSO, (ppm)]: 115.8 (C2 and C6), 118.5 (C8), 125.8, 128.3, 128.7, 131.1, 132.8, 137.9, 144.5 (C7), 160.2 (C1), 189.0 (C9).

Synthesis of (E)-N-(4-meth­oxy­phen­yl)-2-(4-(3-oxo-3-phenyl­prop-1-en-1-yl)phen­oxy)acetamide (4):

To a solution containing chalcone 3 (1 mmol) dissolved in 10 mL dry acetone potassium carbonate (1.2 mmol) was added. After stirring 20 minutes, a solution of 2-chloro-N-(4-meth­oxy­phen­yl)acetamide (1 mmol) in acetone (10 mL) was added dropwise. The reaction mixture was refluxed for 6 h and then cooled to room temperature. After pouring in ice-cold water, the solid separated was filtered and recrystallized from ethanol to obtain 4 (yield 61%) in the form of colourless needle-shaped crystals (m.p. 430-431 K). IR (Shimadzu FTIR-8400S, KBr, cm−1): 986 (C=C), 1242, 1064 (C—O—C), 1589, 1543, 1435 (C=C), 1680, 1656 (C=O), 2908 (Csp3—H), 3039 (Csp2—H), 3381 (N—H); 1H NMR [Bruker XL-500, 500 MHz, d6-DMSO, (ppm), J (Hz)]: 3.74 (3H, s, H25), 4.77 (2H, s, H16), 6.91 (2H, d, J = 9.0, H21 and H23), 7.10 (2H, d, J = 9.0, H2 and H6), 7.56 (2H, d, J = 8.0, H20 and H24), 7.58 (2H, dd, J = 7.0, H12 and H14), 7.67 (1H, dd, J = 7.0, H13), 7.74 (1H, d, J = 15.5, H8), 7.83 (1H, d, J = 15.5, H7), 7.89 (2H, d, J = 9.0, H3 and H5), 8.15 (2H, d, J = 7.5, H11 and H15), 10.00 (1H, s, H18). 13C NMR [Bruker XL-500, 125 MHz, d6-DMSO, (ppm)]: 55.7 (C25), 67.6 (C16), 114.3 (C2 and C6), 115.6 (C21 and C23), 120.4 (C20 and C24), 121.8, 128.4, 128.9, 129.2, 131.2, 131.9, 133.4, 138.3, 144.3, 156.1 (C22), 160.4 (C1), 166.2 (C17), 189.5 (C9). Calculation for C24H22NO4 (M+H): 388.1549; found: 388.1542 (M+H)+.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atoms H15, H44, H73 and H102 were located from difference electron-density maps and refined freely [for H44, an N44—H44 distance restraint of 0.87 (2) Å was used]. The other H atoms were placed in idealized positions and included as riding contributions with Uiso(H) values of 1.2Ueq or 1.5Ueq of the parent atoms, with C—H distances of 0.93 (aromatic), 0.97 (CH2) and 0.96 Å (CH3). In the final cycles of refinement, 26 outliers were omitted. Refinement of the Flack parameter [0.1 (3)] did not allow the unambiguous determination of the chirality of the spatial mol­ecular arrangement in space group Cc.

Table 2
Experimental details

Crystal data
Chemical formula C24H21NO4
Mr 387.42
Crystal system, space group Monoclinic, Cc
Temperature (K) 293
a, b, c (Å) 20.3693 (9), 10.0956 (4), 39.1991 (16)
β (°) 98.443 (4)
V3) 7973.5 (6)
Z 16
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.5 × 0.3 × 0.1
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, Single source at offset/far, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, UK.])
Tmin, Tmax 0.726, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 25709, 13137, 10463
Rint 0.015
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.127, 1.01
No. of reflections 13137
No. of parameters 1065
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.14, −0.14
Absolute structure Flack x determined using 3066 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.1 (3)
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, UK.]), SHELXT2014/5 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.][Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), SHELXL2016/4 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.][Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015); program(s) used to refine structure: SHELXL2016/4 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(E)-N-(4-Methoxyphenyl)-2[4-(3-oxo-3-phenylprop-1-en-1-yl)phenoxy]acetamide top
Crystal data top
C24H21NO4F(000) = 3264
Mr = 387.42Dx = 1.291 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 20.3693 (9) ÅCell parameters from 10524 reflections
b = 10.0956 (4) Åθ = 2.6–26.3°
c = 39.1991 (16) ŵ = 0.09 mm1
β = 98.443 (4)°T = 293 K
V = 7973.5 (6) Å3Plate, colourless
Z = 160.5 × 0.3 × 0.1 mm
Data collection top
Rigaku Oxford Diffraction SuperNova, Single source at offset/far, Eos
diffractometer
13137 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source10463 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.015
Detector resolution: 15.9631 pixels mm-1θmax = 26.4°, θmin = 2.4°
ω scansh = 2525
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
k = 1212
Tmin = 0.726, Tmax = 1.000l = 4839
25709 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.045 w = 1/[σ2(Fo2) + (0.0536P)2 + 3.8381P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.127(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.14 e Å3
13137 reflectionsΔρmin = 0.14 e Å3
1065 parametersAbsolute structure: Flack x determined using 3066 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
3 restraintsAbsolute structure parameter: 0.1 (3)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.52538 (18)0.3310 (4)0.51031 (10)0.0526 (9)
C20.54903 (19)0.3342 (4)0.47879 (11)0.0575 (10)
H20.5826010.2758060.4751290.069*
C30.52457 (19)0.4208 (4)0.45271 (11)0.0573 (10)
H30.5423490.4218580.4321720.069*
C40.47359 (18)0.5058 (4)0.45736 (10)0.0502 (9)
C50.4473 (2)0.5021 (4)0.48813 (11)0.0594 (10)
H50.4119840.5572160.4911470.071*
C60.47331 (19)0.4169 (4)0.51426 (11)0.0573 (10)
H60.4558020.4167580.5348730.069*
C70.5573 (2)0.2467 (4)0.53826 (12)0.0587 (10)
H70.5911310.1927740.5326460.070*
C80.5452 (2)0.2361 (4)0.57022 (12)0.0599 (10)
H80.5088420.2804610.5766150.072*
C90.5873 (2)0.1562 (4)0.59613 (12)0.0620 (11)
O100.64060 (17)0.1112 (4)0.59019 (9)0.0906 (11)
O110.45280 (14)0.5899 (3)0.43058 (7)0.0605 (7)
C120.39867 (19)0.6763 (4)0.43359 (11)0.0557 (10)
H12A0.4072760.7240610.4552580.067*
H12B0.3585000.6247320.4335970.067*
C130.3889 (2)0.7738 (4)0.40405 (11)0.0533 (9)
O140.34232 (14)0.8522 (3)0.40251 (8)0.0680 (8)
N150.43297 (19)0.7680 (3)0.38221 (9)0.0578 (9)
H150.465 (2)0.713 (5)0.3875 (14)0.090 (18)*
C160.44092 (19)0.8534 (4)0.35437 (10)0.0500 (9)
C170.4945 (2)0.8326 (4)0.33725 (12)0.0629 (11)
H170.5242000.7648480.3444510.076*
C180.5046 (2)0.9100 (5)0.30983 (13)0.0727 (13)
H180.5411500.8941210.2986880.087*
C190.4613 (2)1.0113 (4)0.29851 (11)0.0558 (10)
C200.4082 (2)1.0352 (4)0.31552 (11)0.0593 (10)
H200.3793051.1045140.3085080.071*
C210.3976 (2)0.9561 (4)0.34316 (11)0.0586 (10)
H210.3611630.9720900.3543120.070*
O220.47526 (17)1.0813 (3)0.27015 (9)0.0785 (9)
C230.4348 (3)1.1920 (5)0.25957 (13)0.0838 (15)
H23A0.4374031.2546650.2781380.126*
H23B0.3896201.1635020.2533990.126*
H23C0.4497951.2328710.2400030.126*
C240.5659 (2)0.1334 (4)0.63042 (11)0.0569 (10)
C250.4990 (2)0.1271 (5)0.63412 (13)0.0710 (12)
H250.4664910.1452260.6154640.085*
C260.4814 (3)0.0938 (5)0.66570 (16)0.0843 (15)
H260.4366510.0861640.6677410.101*
C270.5276 (3)0.0719 (5)0.69399 (15)0.0863 (15)
H270.5144320.0502050.7150270.104*
C280.5939 (3)0.0821 (6)0.69107 (13)0.0891 (15)
H280.6259080.0690400.7102850.107*
C290.6130 (2)0.1121 (5)0.65942 (12)0.0722 (12)
H290.6578750.1179320.6575410.087*
C880.71540 (18)0.9620 (4)0.47620 (10)0.0510 (9)
C890.7682 (2)0.8784 (4)0.47261 (11)0.0578 (10)
H890.7866850.8800660.4522810.069*
C900.7937 (2)0.7927 (4)0.49876 (11)0.0610 (11)
H900.8292960.7383070.4959280.073*
C910.76653 (19)0.7872 (4)0.52917 (10)0.0520 (9)
C920.71456 (19)0.8711 (4)0.53360 (11)0.0573 (10)
H920.6962220.8691850.5539640.069*
C930.69038 (19)0.9573 (4)0.50755 (11)0.0615 (11)
H930.6561471.0145760.5109270.074*
C940.6835 (2)1.0468 (4)0.44841 (12)0.0611 (11)
H940.6498971.1014360.4540690.073*
C950.6959 (2)1.0566 (4)0.41620 (11)0.0582 (10)
H950.7323441.0128560.4097880.070*
C960.6526 (2)1.1356 (4)0.39051 (12)0.0640 (11)
O970.60033 (18)1.1850 (4)0.39709 (9)0.0937 (11)
O980.78686 (14)0.7032 (3)0.55599 (7)0.0620 (7)
C990.8402 (2)0.6152 (4)0.55292 (11)0.0594 (10)
H99A0.8809410.6653890.5535480.071*
H99B0.8317050.5695560.5309480.071*
C1000.8481 (2)0.5145 (4)0.58202 (11)0.0545 (9)
O1010.89334 (14)0.4346 (3)0.58359 (8)0.0686 (8)
N1020.80389 (19)0.5237 (3)0.60418 (9)0.0611 (9)
H1020.774 (2)0.583 (4)0.5981 (11)0.059 (12)*
C1030.7953 (2)0.4403 (4)0.63206 (10)0.0543 (9)
C1040.7429 (2)0.4676 (5)0.64987 (13)0.0754 (13)
H1040.7146960.5379500.6427960.090*
C1050.7317 (3)0.3927 (5)0.67778 (14)0.0834 (15)
H1050.6965750.4133960.6895640.100*
C1060.7729 (2)0.2864 (4)0.68831 (11)0.0619 (10)
C1070.8236 (2)0.2568 (4)0.67065 (11)0.0642 (11)
H1070.8508960.1846720.6774010.077*
C1080.8353 (2)0.3330 (4)0.64263 (12)0.0688 (12)
H1080.8703130.3116380.6308730.083*
O1090.75760 (18)0.2193 (3)0.71677 (9)0.0859 (10)
C1100.7891 (3)0.0976 (5)0.72520 (14)0.0794 (14)
H11A0.7713500.0584450.7442250.119*
H11B0.8358780.1116990.7315080.119*
H11C0.7814750.0394590.7056480.119*
C1110.6718 (2)1.1522 (4)0.35509 (12)0.0570 (10)
C1120.7367 (2)1.1578 (5)0.34995 (14)0.0754 (13)
H1120.7702631.1453800.3684830.090*
C1130.7530 (3)1.1818 (5)0.31752 (17)0.0925 (17)
H1130.7972701.1890230.3144710.111*
C1140.7033 (3)1.1950 (5)0.28952 (16)0.0919 (17)
H1140.7139931.2108410.2676220.110*
C1150.6381 (3)1.1846 (5)0.29442 (14)0.0869 (15)
H1150.6046061.1901010.2756230.104*
C1160.6221 (2)1.1661 (5)0.32712 (13)0.0715 (12)
H1160.5778311.1628450.3303870.086*
C300.21747 (18)0.9533 (4)0.48202 (10)0.0496 (9)
C310.2688 (2)0.8659 (4)0.47755 (11)0.0558 (10)
H310.2862390.8664890.4569160.067*
C320.2939 (2)0.7789 (4)0.50326 (11)0.0564 (10)
H320.3286450.7228340.4999820.068*
C330.26782 (18)0.7743 (4)0.53404 (10)0.0501 (9)
C340.21765 (19)0.8619 (4)0.53938 (10)0.0546 (9)
H340.2002940.8607380.5600320.066*
C350.19397 (19)0.9501 (4)0.51382 (11)0.0564 (10)
H350.1611721.0098840.5177890.068*
C360.1881 (2)1.0426 (4)0.45481 (11)0.0599 (10)
H360.1570971.1023650.4609220.072*
C370.1998 (2)1.0500 (4)0.42242 (11)0.0586 (10)
H370.2304200.9925540.4149030.070*
C380.1654 (2)1.1472 (4)0.39823 (11)0.0648 (11)
O390.1217 (2)1.2194 (4)0.40610 (9)0.1044 (14)
O400.28783 (13)0.6884 (3)0.56044 (7)0.0577 (7)
C410.3425 (2)0.6041 (4)0.55772 (11)0.0571 (10)
H41A0.3827000.6565150.5589580.069*
H41B0.3355740.5591140.5356190.069*
C420.3503 (2)0.5029 (4)0.58653 (11)0.0557 (10)
O430.39865 (15)0.4300 (3)0.58989 (8)0.0778 (9)
N440.30178 (18)0.5002 (3)0.60640 (9)0.0562 (8)
H440.2711 (16)0.550 (3)0.5984 (10)0.058 (12)*
C450.2971 (2)0.4147 (4)0.63466 (10)0.0532 (9)
C460.3525 (2)0.3725 (5)0.65661 (12)0.0683 (11)
H460.3945920.3953250.6520040.082*
C470.3462 (2)0.2969 (5)0.68534 (12)0.0732 (12)
H470.3838610.2696830.6999750.088*
C480.2845 (2)0.2617 (4)0.69238 (11)0.0659 (12)
C490.2284 (2)0.3034 (5)0.67035 (13)0.0680 (12)
H490.1864710.2802070.6750230.082*
C500.2345 (2)0.3792 (4)0.64155 (11)0.0597 (10)
H500.1968500.4061610.6268670.072*
O510.27261 (19)0.1882 (4)0.72034 (9)0.0913 (11)
C520.3286 (3)0.1255 (6)0.74011 (15)0.116 (2)
H52C0.3509100.0715500.7252380.174*
H52A0.3138710.0709940.7575820.174*
H52B0.3585260.1918490.7508030.174*
C530.18558 (18)1.1576 (4)0.36303 (10)0.0537 (9)
C540.2096 (2)1.0521 (4)0.34642 (12)0.0666 (12)
H540.2149110.9703490.3574390.080*
C550.2258 (3)1.0657 (5)0.31364 (14)0.0847 (15)
H550.2410930.9929800.3025150.102*
C560.2194 (3)1.1880 (6)0.29730 (15)0.0879 (16)
H560.2311691.1983260.2754020.105*
C570.1955 (3)1.2938 (5)0.31388 (14)0.0806 (14)
H570.1912201.3761290.3031360.097*
C580.1778 (2)1.2789 (4)0.34613 (12)0.0692 (12)
H580.1605031.3505350.3567760.083*
C590.51946 (19)0.1497 (4)0.50151 (11)0.0551 (9)
C600.5433 (2)0.1457 (4)0.47008 (11)0.0595 (10)
H600.5768150.2040880.4662730.071*
C610.51886 (19)0.0577 (4)0.44428 (10)0.0551 (9)
H610.5367050.0549120.4237710.066*
C620.46741 (18)0.0262 (4)0.44940 (10)0.0498 (9)
C630.4409 (2)0.0206 (4)0.48009 (12)0.0614 (11)
H630.4053580.0748870.4832380.074*
C640.4670 (2)0.0653 (4)0.50581 (11)0.0576 (10)
H640.4494560.0671370.5264050.069*
C650.5502 (2)0.2382 (4)0.52870 (12)0.0611 (11)
H650.5822850.2954010.5225060.073*
C660.5388 (2)0.2481 (4)0.56086 (11)0.0626 (11)
H660.5069920.1935470.5683590.075*
C670.5750 (2)0.3434 (4)0.58526 (12)0.0677 (12)
O680.6213 (2)0.4079 (4)0.57737 (10)0.1051 (14)
O690.44651 (14)0.1113 (3)0.42267 (7)0.0626 (7)
C700.3923 (2)0.1975 (4)0.42533 (12)0.0601 (10)
H70A0.3988170.2408820.4476540.072*
H70B0.3514600.1468150.4233530.072*
C710.3872 (2)0.3005 (4)0.39695 (11)0.0579 (10)
O720.33986 (15)0.3769 (3)0.39345 (9)0.0806 (9)
N730.43728 (18)0.3014 (3)0.37827 (9)0.0602 (9)
H730.469 (2)0.247 (5)0.3849 (12)0.071 (14)*
C740.4471 (2)0.3866 (4)0.35075 (10)0.0539 (9)
C750.5107 (2)0.4094 (5)0.34443 (11)0.0656 (11)
H750.5459960.3747610.3595560.079*
C760.5241 (2)0.4822 (5)0.31633 (12)0.0701 (12)
H760.5676230.4946690.3124590.084*
C770.4723 (2)0.5358 (4)0.29421 (11)0.0624 (11)
C780.4079 (2)0.5185 (4)0.30088 (12)0.0654 (11)
H780.3729370.5571520.2863390.078*
C790.3947 (2)0.4444 (4)0.32889 (11)0.0620 (11)
H790.3512910.4333650.3330570.074*
O800.47978 (19)0.6065 (4)0.26502 (9)0.0856 (10)
C810.5450 (3)0.6318 (5)0.25895 (15)0.1006 (17)
H81A0.5682570.6807990.2779650.151*
H81B0.5437440.6825080.2381410.151*
H81C0.5673770.5494160.2565850.151*
C820.5543 (2)0.3619 (4)0.61985 (11)0.0583 (10)
C830.5653 (2)0.4838 (4)0.63590 (13)0.0722 (13)
H830.5859340.5505900.6250610.087*
C840.5461 (3)0.5082 (5)0.66765 (15)0.0887 (16)
H840.5530080.5911330.6778630.106*
C850.5166 (3)0.4089 (6)0.68410 (14)0.0920 (17)
H850.5035520.4244510.7055100.110*
C860.5064 (3)0.2870 (5)0.66883 (14)0.0911 (17)
H860.4876630.2194440.6803310.109*
C870.5238 (2)0.2630 (5)0.63633 (13)0.0749 (13)
H870.5149990.1810810.6257730.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.051 (2)0.052 (2)0.055 (2)0.0038 (17)0.0080 (18)0.0024 (18)
C20.056 (2)0.063 (2)0.054 (2)0.0137 (19)0.0099 (18)0.005 (2)
C30.058 (2)0.066 (2)0.049 (2)0.0032 (19)0.0127 (18)0.0037 (19)
C40.051 (2)0.052 (2)0.048 (2)0.0030 (17)0.0084 (17)0.0011 (17)
C50.065 (2)0.055 (2)0.062 (3)0.0143 (19)0.022 (2)0.012 (2)
C60.061 (2)0.057 (2)0.058 (3)0.0093 (18)0.0196 (19)0.0072 (19)
C70.061 (2)0.052 (2)0.065 (3)0.0111 (18)0.012 (2)0.001 (2)
C80.056 (2)0.057 (2)0.066 (3)0.0110 (19)0.010 (2)0.007 (2)
C90.062 (3)0.058 (2)0.065 (3)0.0145 (19)0.006 (2)0.007 (2)
O100.081 (2)0.115 (3)0.079 (2)0.047 (2)0.0240 (18)0.027 (2)
O110.0723 (18)0.0597 (16)0.0514 (17)0.0099 (14)0.0157 (14)0.0087 (14)
C120.055 (2)0.056 (2)0.056 (2)0.0014 (18)0.0105 (18)0.0037 (19)
C130.057 (2)0.055 (2)0.047 (2)0.0007 (18)0.0048 (18)0.0007 (18)
O140.0633 (17)0.0785 (19)0.064 (2)0.0156 (15)0.0160 (14)0.0136 (16)
N150.069 (2)0.056 (2)0.050 (2)0.0109 (17)0.0123 (18)0.0059 (16)
C160.063 (2)0.0473 (19)0.039 (2)0.0047 (17)0.0069 (17)0.0008 (16)
C170.068 (3)0.059 (2)0.064 (3)0.017 (2)0.016 (2)0.008 (2)
C180.080 (3)0.068 (3)0.076 (3)0.023 (2)0.035 (3)0.013 (3)
C190.070 (2)0.052 (2)0.045 (2)0.0002 (19)0.0103 (19)0.0001 (18)
C200.064 (2)0.060 (2)0.052 (2)0.0108 (19)0.0044 (19)0.0057 (19)
C210.060 (2)0.067 (3)0.050 (2)0.0162 (19)0.0145 (18)0.008 (2)
O220.101 (2)0.076 (2)0.064 (2)0.0140 (18)0.0300 (18)0.0195 (18)
C230.123 (4)0.062 (3)0.066 (3)0.008 (3)0.014 (3)0.014 (2)
C240.065 (3)0.047 (2)0.057 (3)0.0096 (18)0.005 (2)0.0014 (18)
C250.070 (3)0.071 (3)0.072 (3)0.000 (2)0.010 (2)0.008 (2)
C260.087 (3)0.077 (3)0.093 (4)0.004 (3)0.029 (3)0.003 (3)
C270.118 (5)0.078 (3)0.067 (3)0.010 (3)0.029 (3)0.003 (3)
C280.105 (4)0.103 (4)0.057 (3)0.021 (3)0.003 (3)0.003 (3)
C290.071 (3)0.079 (3)0.065 (3)0.016 (2)0.007 (2)0.002 (2)
C880.052 (2)0.0456 (19)0.055 (2)0.0039 (16)0.0072 (18)0.0022 (17)
C890.062 (2)0.059 (2)0.056 (2)0.0101 (19)0.0210 (19)0.0101 (19)
C900.063 (2)0.059 (2)0.064 (3)0.0171 (19)0.020 (2)0.010 (2)
C910.056 (2)0.049 (2)0.051 (2)0.0007 (17)0.0073 (18)0.0009 (17)
C920.059 (2)0.065 (2)0.049 (2)0.0057 (19)0.0100 (18)0.0013 (19)
C930.056 (2)0.068 (3)0.062 (3)0.0160 (19)0.010 (2)0.007 (2)
C940.059 (2)0.056 (2)0.066 (3)0.0123 (19)0.006 (2)0.001 (2)
C950.058 (2)0.055 (2)0.059 (3)0.0116 (18)0.003 (2)0.002 (2)
C960.068 (3)0.056 (2)0.067 (3)0.015 (2)0.006 (2)0.007 (2)
O970.092 (2)0.114 (3)0.078 (2)0.051 (2)0.0194 (19)0.026 (2)
O980.0754 (18)0.0605 (16)0.0518 (17)0.0133 (14)0.0152 (14)0.0099 (14)
C990.060 (2)0.061 (2)0.058 (3)0.0073 (19)0.0086 (19)0.009 (2)
C1000.063 (2)0.053 (2)0.047 (2)0.0003 (18)0.0053 (19)0.0008 (18)
O1010.0686 (18)0.0690 (18)0.068 (2)0.0168 (15)0.0101 (15)0.0155 (15)
N1020.075 (2)0.0547 (19)0.054 (2)0.0148 (18)0.0113 (18)0.0093 (17)
C1030.069 (2)0.052 (2)0.042 (2)0.0030 (18)0.0049 (18)0.0005 (17)
C1040.088 (3)0.064 (3)0.076 (3)0.024 (2)0.020 (3)0.012 (2)
C1050.102 (4)0.079 (3)0.077 (3)0.025 (3)0.038 (3)0.016 (3)
C1060.082 (3)0.058 (2)0.046 (2)0.004 (2)0.009 (2)0.0041 (19)
C1070.078 (3)0.058 (2)0.056 (3)0.018 (2)0.007 (2)0.009 (2)
C1080.078 (3)0.065 (3)0.065 (3)0.018 (2)0.018 (2)0.009 (2)
O1090.119 (3)0.080 (2)0.064 (2)0.020 (2)0.033 (2)0.0176 (18)
C1100.100 (4)0.066 (3)0.070 (3)0.002 (3)0.008 (3)0.018 (2)
C1110.063 (2)0.047 (2)0.061 (3)0.0086 (18)0.009 (2)0.0050 (19)
C1120.068 (3)0.076 (3)0.081 (4)0.004 (2)0.007 (2)0.015 (3)
C1130.087 (4)0.086 (4)0.111 (5)0.010 (3)0.034 (4)0.022 (3)
C1140.120 (5)0.081 (3)0.081 (4)0.015 (3)0.037 (4)0.021 (3)
C1150.098 (4)0.096 (4)0.065 (3)0.018 (3)0.008 (3)0.005 (3)
C1160.069 (3)0.076 (3)0.068 (3)0.012 (2)0.004 (2)0.004 (2)
C300.052 (2)0.051 (2)0.046 (2)0.0023 (16)0.0106 (17)0.0015 (17)
C310.062 (2)0.061 (2)0.049 (2)0.0089 (18)0.0214 (18)0.0063 (19)
C320.063 (2)0.055 (2)0.054 (2)0.0127 (18)0.0212 (19)0.0092 (19)
C330.055 (2)0.049 (2)0.047 (2)0.0025 (17)0.0110 (17)0.0022 (17)
C340.059 (2)0.060 (2)0.048 (2)0.0015 (18)0.0180 (18)0.0007 (18)
C350.054 (2)0.061 (2)0.057 (2)0.0114 (18)0.0149 (19)0.001 (2)
C360.058 (2)0.062 (2)0.060 (3)0.0105 (19)0.011 (2)0.005 (2)
C370.064 (2)0.056 (2)0.056 (3)0.0149 (19)0.0090 (19)0.0046 (19)
C380.078 (3)0.061 (2)0.056 (3)0.021 (2)0.011 (2)0.005 (2)
O390.130 (3)0.118 (3)0.070 (2)0.074 (3)0.032 (2)0.021 (2)
O400.0697 (17)0.0574 (15)0.0491 (16)0.0109 (13)0.0186 (13)0.0101 (13)
C410.061 (2)0.061 (2)0.052 (2)0.0056 (19)0.0161 (19)0.0111 (19)
C420.062 (2)0.058 (2)0.049 (2)0.0061 (19)0.0125 (19)0.0025 (19)
O430.0728 (19)0.095 (2)0.069 (2)0.0304 (18)0.0229 (16)0.0248 (18)
N440.066 (2)0.0576 (19)0.046 (2)0.0138 (17)0.0113 (17)0.0105 (16)
C450.065 (2)0.051 (2)0.044 (2)0.0126 (18)0.0098 (18)0.0024 (18)
C460.064 (2)0.083 (3)0.058 (3)0.014 (2)0.011 (2)0.015 (2)
C470.073 (3)0.089 (3)0.057 (3)0.027 (2)0.009 (2)0.023 (2)
C480.088 (3)0.064 (2)0.047 (2)0.024 (2)0.017 (2)0.015 (2)
C490.073 (3)0.068 (3)0.067 (3)0.013 (2)0.022 (2)0.011 (2)
C500.064 (2)0.061 (2)0.054 (2)0.015 (2)0.0065 (19)0.007 (2)
O510.114 (3)0.099 (2)0.067 (2)0.033 (2)0.035 (2)0.038 (2)
C520.143 (5)0.127 (5)0.082 (4)0.055 (4)0.030 (4)0.060 (4)
C530.053 (2)0.055 (2)0.052 (2)0.0075 (17)0.0038 (17)0.0031 (18)
C540.076 (3)0.060 (2)0.067 (3)0.019 (2)0.019 (2)0.007 (2)
C550.100 (4)0.091 (3)0.068 (3)0.031 (3)0.026 (3)0.003 (3)
C560.086 (3)0.112 (4)0.070 (3)0.016 (3)0.026 (3)0.021 (3)
C570.089 (3)0.074 (3)0.078 (3)0.002 (3)0.010 (3)0.022 (3)
C580.084 (3)0.056 (2)0.065 (3)0.005 (2)0.005 (2)0.007 (2)
C590.057 (2)0.053 (2)0.056 (2)0.0001 (17)0.0122 (19)0.0021 (19)
C600.054 (2)0.067 (3)0.059 (3)0.0094 (19)0.0129 (19)0.004 (2)
C610.057 (2)0.062 (2)0.049 (2)0.0030 (18)0.0180 (18)0.0036 (19)
C620.057 (2)0.0445 (19)0.048 (2)0.0007 (16)0.0082 (18)0.0013 (17)
C630.068 (2)0.056 (2)0.064 (3)0.0151 (19)0.021 (2)0.004 (2)
C640.065 (2)0.055 (2)0.056 (3)0.0050 (18)0.020 (2)0.0077 (19)
C650.061 (2)0.058 (2)0.066 (3)0.0106 (19)0.015 (2)0.001 (2)
C660.065 (2)0.067 (3)0.057 (3)0.011 (2)0.015 (2)0.005 (2)
C670.072 (3)0.070 (3)0.063 (3)0.021 (2)0.014 (2)0.005 (2)
O680.118 (3)0.124 (3)0.082 (3)0.072 (3)0.041 (2)0.028 (2)
O690.0748 (18)0.0579 (16)0.0579 (17)0.0116 (14)0.0196 (14)0.0082 (13)
C700.061 (2)0.056 (2)0.065 (3)0.0062 (19)0.015 (2)0.005 (2)
C710.060 (2)0.054 (2)0.058 (3)0.0060 (19)0.004 (2)0.0012 (19)
O720.0680 (19)0.090 (2)0.085 (2)0.0241 (17)0.0156 (17)0.0182 (19)
N730.068 (2)0.0568 (19)0.056 (2)0.0148 (17)0.0104 (18)0.0085 (17)
C740.063 (2)0.050 (2)0.047 (2)0.0104 (18)0.0020 (18)0.0008 (17)
C750.065 (3)0.077 (3)0.053 (2)0.014 (2)0.004 (2)0.010 (2)
C760.070 (3)0.081 (3)0.058 (3)0.001 (2)0.007 (2)0.006 (2)
C770.083 (3)0.055 (2)0.047 (2)0.001 (2)0.002 (2)0.0060 (19)
C780.070 (3)0.063 (2)0.057 (3)0.010 (2)0.011 (2)0.005 (2)
C790.061 (2)0.064 (2)0.058 (3)0.0044 (19)0.002 (2)0.002 (2)
O800.108 (3)0.085 (2)0.062 (2)0.0071 (19)0.0049 (19)0.0176 (18)
C810.136 (5)0.092 (4)0.080 (4)0.013 (4)0.037 (4)0.010 (3)
C820.062 (2)0.057 (2)0.056 (2)0.0113 (18)0.0075 (19)0.0008 (19)
C830.094 (3)0.054 (2)0.069 (3)0.022 (2)0.015 (3)0.003 (2)
C840.118 (4)0.068 (3)0.086 (4)0.024 (3)0.030 (3)0.019 (3)
C850.118 (4)0.096 (4)0.068 (3)0.032 (3)0.034 (3)0.022 (3)
C860.130 (5)0.079 (3)0.069 (3)0.042 (3)0.032 (3)0.005 (3)
C870.096 (3)0.065 (3)0.066 (3)0.020 (2)0.018 (3)0.009 (2)
Geometric parameters (Å, º) top
C1—C21.391 (6)C30—C311.399 (5)
C1—C61.396 (5)C30—C351.400 (5)
C1—C71.462 (6)C30—C361.456 (5)
C2—H20.9300C31—H310.9300
C2—C31.381 (6)C31—C321.377 (5)
C3—H30.9300C32—H320.9300
C3—C41.379 (5)C32—C331.389 (5)
C4—C51.391 (5)C33—C341.390 (5)
C4—O111.368 (4)C33—O401.366 (4)
C5—H50.9300C34—H340.9300
C5—C61.382 (6)C34—C351.374 (5)
C6—H60.9300C35—H350.9300
C7—H70.9300C36—H360.9300
C7—C81.316 (6)C36—C371.328 (6)
C8—H80.9300C37—H370.9300
C8—C91.471 (6)C37—C381.470 (6)
C9—O101.230 (5)C38—O391.223 (5)
C9—C241.491 (6)C38—C531.501 (6)
O11—C121.425 (4)O40—C411.418 (5)
C12—H12A0.9700C41—H41A0.9700
C12—H12B0.9700C41—H41B0.9700
C12—C131.510 (5)C41—C421.514 (5)
C13—O141.230 (5)C42—O431.221 (5)
C13—N151.330 (5)C42—N441.345 (5)
N15—H150.85 (5)N44—H440.83 (2)
N15—C161.419 (5)N44—C451.419 (5)
C16—C171.378 (5)C45—C461.383 (6)
C16—C211.390 (5)C45—C501.388 (6)
C17—H170.9300C46—H460.9300
C17—C181.369 (6)C46—C471.382 (6)
C18—H180.9300C47—H470.9300
C18—C191.381 (6)C47—C481.372 (7)
C19—C201.372 (6)C48—C491.391 (6)
C19—O221.382 (5)C48—O511.375 (5)
C20—H200.9300C49—H490.9300
C20—C211.388 (6)C49—C501.384 (6)
C21—H210.9300C50—H500.9300
O22—C231.414 (5)O51—C521.429 (6)
C23—H23A0.9600C52—H52C0.9600
C23—H23B0.9600C52—H52A0.9600
C23—H23C0.9600C52—H52B0.9600
C24—C251.393 (6)C53—C541.375 (6)
C24—C291.392 (6)C53—C581.390 (6)
C25—H250.9300C54—H540.9300
C25—C261.380 (7)C54—C551.380 (6)
C26—H260.9300C55—H550.9300
C26—C271.363 (8)C55—C561.389 (7)
C27—H270.9300C56—H560.9300
C27—C281.377 (8)C56—C571.376 (7)
C28—H280.9300C57—H570.9300
C28—C291.386 (7)C57—C581.373 (7)
C29—H290.9300C58—H580.9300
C88—C891.391 (5)C59—C601.390 (6)
C88—C931.399 (6)C59—C641.396 (5)
C88—C941.461 (5)C59—C651.460 (6)
C89—H890.9300C60—H600.9300
C89—C901.382 (5)C60—C611.383 (6)
C90—H900.9300C61—H610.9300
C90—C911.387 (5)C61—C621.385 (5)
C91—C921.386 (5)C62—C631.391 (6)
C91—O981.367 (4)C62—O691.374 (5)
C92—H920.9300C63—H630.9300
C92—C931.376 (6)C63—C641.376 (6)
C93—H930.9300C64—H640.9300
C94—H940.9300C65—H650.9300
C94—C951.327 (6)C65—C661.319 (6)
C95—H950.9300C66—H660.9300
C95—C961.471 (6)C66—C671.475 (6)
C96—O971.238 (5)C67—O681.223 (5)
C96—C1111.506 (6)C67—C821.490 (6)
O98—C991.421 (5)O69—C701.422 (5)
C99—H99A0.9700C70—H70A0.9700
C99—H99B0.9700C70—H70B0.9700
C99—C1001.519 (5)C70—C711.516 (6)
C100—O1011.219 (5)C71—O721.226 (5)
C100—N1021.343 (5)C71—N731.340 (5)
N102—H1020.86 (4)N73—H730.86 (4)
N102—C1031.411 (5)N73—C741.417 (5)
C103—C1041.385 (6)C74—C751.375 (6)
C103—C1081.382 (6)C74—C791.394 (5)
C104—H1040.9300C75—H750.9300
C104—C1051.376 (6)C75—C761.384 (6)
C105—H1050.9300C76—H760.9300
C105—C1061.387 (6)C76—C771.375 (6)
C106—C1071.360 (6)C77—C781.386 (6)
C106—O1091.379 (5)C77—O801.376 (5)
C107—H1070.9300C78—H780.9300
C107—C1081.390 (6)C78—C791.387 (6)
C108—H1080.9300C79—H790.9300
O109—C1101.403 (5)O80—C811.406 (6)
C110—H11A0.9600C81—H81A0.9600
C110—H11B0.9600C81—H81B0.9600
C110—H11C0.9600C81—H81C0.9600
C111—C1121.367 (6)C82—C831.385 (6)
C111—C1161.386 (6)C82—C871.386 (6)
C112—H1120.9300C83—H830.9300
C112—C1131.381 (7)C83—C841.380 (7)
C113—H1130.9300C84—H840.9300
C113—C1141.386 (8)C84—C851.377 (7)
C114—H1140.9300C85—H850.9300
C114—C1151.373 (7)C85—C861.370 (7)
C115—H1150.9300C86—H860.9300
C115—C1161.381 (7)C86—C871.393 (7)
C116—H1160.9300C87—H870.9300
C2—C1—C6116.9 (4)C31—C30—C35117.2 (3)
C2—C1—C7120.4 (3)C31—C30—C36122.2 (4)
C6—C1—C7122.7 (4)C35—C30—C36120.6 (3)
C1—C2—H2118.7C30—C31—H31119.5
C3—C2—C1122.5 (4)C32—C31—C30121.0 (4)
C3—C2—H2118.7C32—C31—H31119.5
C2—C3—H3120.3C31—C32—H32119.7
C4—C3—C2119.5 (4)C31—C32—C33120.6 (4)
C4—C3—H3120.3C33—C32—H32119.7
C3—C4—C5119.5 (4)C32—C33—C34119.5 (4)
O11—C4—C3116.0 (3)O40—C33—C32124.8 (3)
O11—C4—C5124.5 (3)O40—C33—C34115.7 (3)
C4—C5—H5119.9C33—C34—H34120.3
C6—C5—C4120.3 (4)C35—C34—C33119.3 (4)
C6—C5—H5119.9C35—C34—H34120.3
C1—C6—H6119.3C30—C35—H35118.8
C5—C6—C1121.3 (4)C34—C35—C30122.3 (4)
C5—C6—H6119.3C34—C35—H35118.8
C1—C7—H7115.3C30—C36—H36115.7
C8—C7—C1129.5 (4)C37—C36—C30128.5 (4)
C8—C7—H7115.3C37—C36—H36115.7
C7—C8—H8119.0C36—C37—H37119.4
C7—C8—C9122.0 (4)C36—C37—C38121.2 (4)
C9—C8—H8119.0C38—C37—H37119.4
C8—C9—C24119.3 (4)C37—C38—C53118.0 (4)
O10—C9—C8120.9 (4)O39—C38—C37122.1 (4)
O10—C9—C24119.8 (4)O39—C38—C53119.9 (4)
C4—O11—C12118.2 (3)C33—O40—C41118.3 (3)
O11—C12—H12A109.5O40—C41—H41A109.6
O11—C12—H12B109.5O40—C41—H41B109.6
O11—C12—C13110.6 (3)O40—C41—C42110.3 (3)
H12A—C12—H12B108.1H41A—C41—H41B108.1
C13—C12—H12A109.5C42—C41—H41A109.6
C13—C12—H12B109.5C42—C41—H41B109.6
O14—C13—C12118.1 (4)O43—C42—C41118.8 (4)
O14—C13—N15125.9 (4)O43—C42—N44125.1 (4)
N15—C13—C12116.0 (4)N44—C42—C41116.1 (3)
C13—N15—H15115 (4)C42—N44—H44110 (3)
C13—N15—C16129.2 (4)C42—N44—C45127.1 (3)
C16—N15—H15114 (4)C45—N44—H44122 (3)
C17—C16—N15118.0 (4)C46—C45—N44122.1 (4)
C17—C16—C21118.1 (4)C46—C45—C50119.3 (4)
C21—C16—N15123.9 (4)C50—C45—N44118.6 (3)
C16—C17—H17119.4C45—C46—H46119.6
C18—C17—C16121.2 (4)C45—C46—C47120.7 (4)
C18—C17—H17119.4C47—C46—H46119.6
C17—C18—H18119.6C46—C47—H47119.8
C17—C18—C19120.8 (4)C48—C47—C46120.3 (4)
C19—C18—H18119.6C48—C47—H47119.8
C18—C19—O22116.1 (4)C47—C48—C49119.3 (4)
C20—C19—C18119.1 (4)C47—C48—O51125.0 (4)
C20—C19—O22124.8 (4)O51—C48—C49115.7 (4)
C19—C20—H20119.9C48—C49—H49119.7
C19—C20—C21120.1 (4)C50—C49—C48120.6 (4)
C21—C20—H20119.9C50—C49—H49119.7
C16—C21—H21119.6C45—C50—H50120.1
C20—C21—C16120.8 (4)C49—C50—C45119.8 (4)
C20—C21—H21119.6C49—C50—H50120.1
C19—O22—C23117.4 (4)C48—O51—C52116.9 (4)
O22—C23—H23A109.5O51—C52—H52C109.5
O22—C23—H23B109.5O51—C52—H52A109.5
O22—C23—H23C109.5O51—C52—H52B109.5
H23A—C23—H23B109.5H52C—C52—H52A109.5
H23A—C23—H23C109.5H52C—C52—H52B109.5
H23B—C23—H23C109.5H52A—C52—H52B109.5
C25—C24—C9121.4 (4)C54—C53—C38123.1 (4)
C29—C24—C9120.2 (4)C54—C53—C58118.7 (4)
C29—C24—C25118.4 (4)C58—C53—C38118.2 (4)
C24—C25—H25120.3C53—C54—H54119.5
C26—C25—C24119.4 (5)C53—C54—C55120.9 (4)
C26—C25—H25120.3C55—C54—H54119.5
C25—C26—H26119.0C54—C55—H55120.0
C27—C26—C25122.0 (5)C54—C55—C56119.9 (5)
C27—C26—H26119.0C56—C55—H55120.0
C26—C27—H27120.4C55—C56—H56120.4
C26—C27—C28119.3 (5)C57—C56—C55119.2 (5)
C28—C27—H27120.4C57—C56—H56120.4
C27—C28—H28120.1C56—C57—H57119.7
C27—C28—C29119.9 (5)C58—C57—C56120.6 (5)
C29—C28—H28120.1C58—C57—H57119.7
C24—C29—H29119.5C53—C58—H58119.7
C28—C29—C24121.0 (5)C57—C58—C53120.6 (4)
C28—C29—H29119.5C57—C58—H58119.7
C89—C88—C93117.1 (4)C60—C59—C64117.6 (4)
C89—C88—C94123.1 (4)C60—C59—C65119.7 (3)
C93—C88—C94119.7 (3)C64—C59—C65122.7 (4)
C88—C89—H89119.5C59—C60—H60118.9
C90—C89—C88121.1 (4)C61—C60—C59122.1 (4)
C90—C89—H89119.5C61—C60—H60118.9
C89—C90—H90119.7C60—C61—H61120.5
C89—C90—C91120.6 (4)C60—C61—C62119.1 (4)
C91—C90—H90119.7C62—C61—H61120.5
C92—C91—C90119.4 (4)C61—C62—C63119.9 (4)
O98—C91—C90124.9 (3)O69—C62—C61115.4 (3)
O98—C91—C92115.7 (3)O69—C62—C63124.7 (3)
C91—C92—H92120.3C62—C63—H63120.0
C93—C92—C91119.4 (4)C64—C63—C62120.1 (4)
C93—C92—H92120.3C64—C63—H63120.0
C88—C93—H93118.8C59—C64—H64119.4
C92—C93—C88122.4 (4)C63—C64—C59121.1 (4)
C92—C93—H93118.8C63—C64—H64119.4
C88—C94—H94115.6C59—C65—H65115.6
C95—C94—C88128.8 (4)C66—C65—C59128.8 (4)
C95—C94—H94115.6C66—C65—H65115.6
C94—C95—H95119.6C65—C66—H66119.1
C94—C95—C96120.9 (4)C65—C66—C67121.8 (4)
C96—C95—H95119.6C67—C66—H66119.1
C95—C96—C111118.8 (4)C66—C67—C82119.4 (4)
O97—C96—C95121.5 (4)O68—C67—C66120.9 (4)
O97—C96—C111119.7 (4)O68—C67—C82119.7 (4)
C91—O98—C99118.1 (3)C62—O69—C70118.9 (3)
O98—C99—H99A109.5O69—C70—H70A109.7
O98—C99—H99B109.5O69—C70—H70B109.7
O98—C99—C100110.7 (3)O69—C70—C71109.6 (3)
H99A—C99—H99B108.1H70A—C70—H70B108.2
C100—C99—H99A109.5C71—C70—H70A109.7
C100—C99—H99B109.5C71—C70—H70B109.7
O101—C100—C99118.5 (4)O72—C71—C70118.8 (4)
O101—C100—N102125.9 (4)O72—C71—N73125.7 (4)
N102—C100—C99115.6 (4)N73—C71—C70115.5 (3)
C100—N102—H102112 (3)C71—N73—H73116 (3)
C100—N102—C103129.1 (4)C71—N73—C74128.6 (4)
C103—N102—H102118 (3)C74—N73—H73116 (3)
C104—C103—N102117.7 (4)C75—C74—N73118.7 (3)
C108—C103—N102124.4 (4)C75—C74—C79118.4 (4)
C108—C103—C104117.9 (4)C79—C74—N73122.8 (4)
C103—C104—H104119.3C74—C75—H75118.9
C105—C104—C103121.4 (4)C74—C75—C76122.2 (4)
C105—C104—H104119.3C76—C75—H75118.9
C104—C105—H105120.1C75—C76—H76120.4
C104—C105—C106119.8 (5)C77—C76—C75119.3 (4)
C106—C105—H105120.1C77—C76—H76120.4
C107—C106—C105119.4 (4)C76—C77—C78119.4 (4)
C107—C106—O109125.6 (4)C76—C77—O80124.1 (4)
O109—C106—C105115.0 (4)O80—C77—C78116.5 (4)
C106—C107—H107119.6C77—C78—H78119.5
C106—C107—C108120.7 (4)C77—C78—C79121.0 (4)
C108—C107—H107119.6C79—C78—H78119.5
C103—C108—C107120.6 (4)C74—C79—H79120.2
C103—C108—H108119.7C78—C79—C74119.6 (4)
C107—C108—H108119.7C78—C79—H79120.2
C106—O109—C110118.1 (4)C77—O80—C81117.2 (4)
O109—C110—H11A109.5O80—C81—H81A109.5
O109—C110—H11B109.5O80—C81—H81B109.5
O109—C110—H11C109.5O80—C81—H81C109.5
H11A—C110—H11B109.5H81A—C81—H81B109.5
H11A—C110—H11C109.5H81A—C81—H81C109.5
H11B—C110—H11C109.5H81B—C81—H81C109.5
C112—C111—C96121.9 (4)C83—C82—C67118.5 (4)
C112—C111—C116119.3 (4)C83—C82—C87118.8 (4)
C116—C111—C96118.8 (4)C87—C82—C67122.7 (4)
C111—C112—H112119.6C82—C83—H83119.3
C111—C112—C113120.7 (5)C84—C83—C82121.3 (4)
C113—C112—H112119.6C84—C83—H83119.3
C112—C113—H113120.0C83—C84—H84120.2
C112—C113—C114120.0 (5)C85—C84—C83119.6 (5)
C114—C113—H113120.0C85—C84—H84120.2
C113—C114—H114120.3C84—C85—H85120.1
C115—C114—C113119.4 (5)C86—C85—C84119.8 (5)
C115—C114—H114120.3C86—C85—H85120.1
C114—C115—H115119.8C85—C86—H86119.5
C114—C115—C116120.4 (5)C85—C86—C87120.9 (5)
C116—C115—H115119.8C87—C86—H86119.5
C111—C116—H116119.9C82—C87—C86119.5 (4)
C115—C116—C111120.2 (5)C82—C87—H87120.2
C115—C116—H116119.9C86—C87—H87120.2
C1—C2—C3—C41.7 (6)C30—C31—C32—C331.3 (6)
C1—C7—C8—C9173.2 (4)C30—C36—C37—C38180.0 (4)
C2—C1—C6—C50.8 (6)C31—C30—C35—C342.7 (6)
C2—C1—C7—C8175.4 (4)C31—C30—C36—C375.5 (7)
C2—C3—C4—C50.5 (6)C31—C32—C33—C342.5 (6)
C2—C3—C4—O11179.0 (3)C31—C32—C33—O40177.6 (4)
C3—C4—C5—C62.0 (6)C32—C33—C34—C351.1 (6)
C3—C4—O11—C12177.8 (3)C32—C33—O40—C415.0 (5)
C4—C5—C6—C11.3 (6)C33—C34—C35—C301.6 (6)
C4—O11—C12—C13172.3 (3)C33—O40—C41—C42171.3 (3)
C5—C4—O11—C122.7 (6)C34—C33—O40—C41174.9 (3)
C6—C1—C2—C32.3 (6)C35—C30—C31—C321.3 (6)
C6—C1—C7—C80.7 (7)C35—C30—C36—C37173.2 (4)
C7—C1—C2—C3173.9 (4)C36—C30—C31—C32177.5 (4)
C7—C1—C6—C5175.4 (4)C36—C30—C35—C34176.1 (4)
C7—C8—C9—O1010.1 (7)C36—C37—C38—O394.6 (7)
C7—C8—C9—C24171.9 (4)C36—C37—C38—C53174.7 (4)
C8—C9—C24—C2530.9 (6)C37—C38—C53—C5430.4 (6)
C8—C9—C24—C29151.9 (4)C37—C38—C53—C58151.5 (4)
C9—C24—C25—C26174.1 (4)C38—C53—C54—C55178.2 (5)
C9—C24—C29—C28175.7 (4)C38—C53—C58—C57179.9 (4)
O10—C9—C24—C25151.0 (5)O39—C38—C53—C54150.3 (5)
O10—C9—C24—C2926.1 (6)O39—C38—C53—C5827.8 (7)
O11—C4—C5—C6177.5 (4)O40—C33—C34—C35179.0 (3)
O11—C12—C13—O14177.5 (3)O40—C41—C42—O43173.5 (4)
O11—C12—C13—N153.6 (5)O40—C41—C42—N447.3 (5)
C12—C13—N15—C16173.1 (4)C41—C42—N44—C45179.5 (4)
C13—N15—C16—C17174.5 (4)C42—N44—C45—C4634.6 (6)
C13—N15—C16—C216.1 (7)C42—N44—C45—C50149.4 (4)
O14—C13—N15—C165.6 (7)O43—C42—N44—C450.2 (7)
N15—C16—C17—C18179.0 (4)N44—C45—C46—C47175.4 (4)
N15—C16—C21—C20179.4 (4)N44—C45—C50—C49175.5 (4)
C16—C17—C18—C190.1 (8)C45—C46—C47—C480.4 (7)
C17—C16—C21—C200.0 (6)C46—C45—C50—C490.6 (7)
C17—C18—C19—C201.1 (7)C46—C47—C48—C490.2 (7)
C17—C18—C19—O22178.5 (4)C46—C47—C48—O51179.3 (5)
C18—C19—C20—C211.6 (6)C47—C48—C49—C500.2 (7)
C18—C19—O22—C23175.3 (4)C47—C48—O51—C5211.1 (7)
C19—C20—C21—C161.0 (6)C48—C49—C50—C450.4 (7)
C20—C19—O22—C235.1 (6)C49—C48—O51—C52169.8 (5)
C21—C16—C17—C180.5 (7)C50—C45—C46—C470.6 (7)
O22—C19—C20—C21178.0 (4)O51—C48—C49—C50179.4 (4)
C24—C25—C26—C272.7 (8)C53—C54—C55—C561.4 (8)
C25—C24—C29—C281.5 (7)C54—C53—C58—C571.8 (7)
C25—C26—C27—C280.5 (8)C54—C55—C56—C571.3 (9)
C26—C27—C28—C291.2 (8)C55—C56—C57—C580.3 (8)
C27—C28—C29—C240.7 (8)C56—C57—C58—C531.8 (8)
C29—C24—C25—C263.1 (7)C58—C53—C54—C550.1 (7)
C88—C89—C90—C910.7 (6)C59—C60—C61—C622.2 (6)
C88—C94—C95—C96172.1 (4)C59—C65—C66—C67179.6 (4)
C89—C88—C93—C922.3 (6)C60—C59—C64—C631.3 (6)
C89—C88—C94—C952.7 (7)C60—C59—C65—C66173.6 (4)
C89—C90—C91—C921.7 (6)C60—C61—C62—C630.4 (6)
C89—C90—C91—O98177.9 (4)C60—C61—C62—O69179.4 (3)
C90—C91—C92—C930.7 (6)C61—C62—C63—C642.1 (6)
C90—C91—O98—C990.6 (6)C61—C62—O69—C70177.7 (3)
C91—C92—C93—C881.4 (6)C62—C63—C64—C591.2 (6)
C91—O98—C99—C100170.4 (3)C62—O69—C70—C71168.3 (3)
C92—C91—O98—C99179.8 (3)C63—C62—O69—C702.5 (6)
C93—C88—C89—C901.3 (6)C64—C59—C60—C613.0 (6)
C93—C88—C94—C95173.7 (4)C64—C59—C65—C665.1 (7)
C94—C88—C89—C90175.2 (4)C65—C59—C60—C61175.8 (4)
C94—C88—C93—C92174.3 (4)C65—C59—C64—C63177.5 (4)
C94—C95—C96—O976.8 (7)C65—C66—C67—O686.9 (8)
C94—C95—C96—C111175.3 (4)C65—C66—C67—C82172.5 (4)
C95—C96—C111—C11232.9 (6)C66—C67—C82—C83151.2 (4)
C95—C96—C111—C116149.0 (4)C66—C67—C82—C8727.8 (7)
C96—C111—C112—C113175.7 (4)C67—C82—C83—C84178.7 (5)
C96—C111—C116—C115178.5 (4)C67—C82—C87—C86179.4 (5)
O97—C96—C111—C112149.1 (5)O68—C67—C82—C8328.2 (7)
O97—C96—C111—C11629.0 (6)O68—C67—C82—C87152.8 (5)
O98—C91—C92—C93178.9 (4)O69—C62—C63—C64177.7 (4)
O98—C99—C100—O101177.7 (4)O69—C70—C71—O72174.1 (4)
O98—C99—C100—N1021.7 (5)O69—C70—C71—N737.7 (5)
C99—C100—N102—C103175.1 (4)C70—C71—N73—C74178.7 (4)
C100—N102—C103—C104176.3 (4)C71—N73—C74—C75153.5 (4)
C100—N102—C103—C1083.3 (7)C71—N73—C74—C7929.1 (6)
O101—C100—N102—C1035.6 (7)O72—C71—N73—C740.6 (7)
N102—C103—C104—C105178.7 (5)N73—C74—C75—C76174.4 (4)
N102—C103—C108—C107179.3 (4)N73—C74—C79—C78175.0 (4)
C103—C104—C105—C1060.8 (8)C74—C75—C76—C771.2 (7)
C104—C103—C108—C1071.1 (7)C75—C74—C79—C782.4 (6)
C104—C105—C106—C1070.6 (8)C75—C76—C77—C781.4 (7)
C104—C105—C106—O109179.3 (5)C75—C76—C77—O80178.1 (4)
C105—C106—C107—C1081.1 (7)C76—C77—C78—C792.1 (7)
C105—C106—O109—C110168.8 (5)C76—C77—O80—C814.1 (7)
C106—C107—C108—C1030.3 (7)C77—C78—C79—C740.1 (6)
C107—C106—O109—C11011.4 (7)C78—C77—O80—C81176.3 (4)
C108—C103—C104—C1051.6 (7)C79—C74—C75—C763.1 (7)
O109—C106—C107—C108178.7 (4)O80—C77—C78—C79177.5 (4)
C111—C112—C113—C1142.6 (8)C82—C83—C84—C851.2 (9)
C112—C111—C116—C1150.4 (7)C83—C82—C87—C861.6 (7)
C112—C113—C114—C1150.2 (8)C83—C84—C85—C860.1 (10)
C113—C114—C115—C1162.4 (8)C84—C85—C86—C871.9 (10)
C114—C115—C116—C1112.7 (8)C85—C86—C87—C822.7 (9)
C116—C111—C112—C1132.3 (7)C87—C82—C83—C840.4 (7)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg4, Cg5, Cg7, Cg8 and Cg10 are the centroids of the C1–C6, C30–C35, C45–C50, C59–C64, C74–C79 and C88–C89 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N15—H15···O110.84 (5)2.14 (5)2.602 (4)115 (4)
N44—H44···O400.83 (3)2.11 (3)2.605 (4)118 (3)
N73—H73···O690.86 (4)2.12 (4)2.579 (4)113 (3)
N102—H102···O980.86 (4)2.09 (4)2.603 (4)118 (3)
C7—H7···O100.932.472.807 (5)101
C21—H21···O140.932.322.925 (5)122
C36—H36···O390.932.472.811 (6)102
C46—H46···O430.932.472.964 (5)113
C65—H65···O680.932.462.803 (6)102
C79—H79···O720.932.482.992 (5)115
C94—H94···O970.932.462.804 (6)102
C108—H108···O1010.932.332.934 (5)122
C31—H31···O140.932.573.494 (5)175
C56—H56···O109i0.932.573.487 (6)167
C75—H75···O97ii0.932.573.409 (6)151
C114—H114···O51iii0.932.563.444 (7)159
C12—H12A···Cg7iv0.972.813.522 (4)131
C23—H23A···Cg8iv0.962.723.669 (5)168
C41—H41B···Cg10v0.972.843.592 (4)135
C70—H70A···Cg10.972.923.667 (5)135
C99—H99B···Cg4vi0.972.803.517 (4)131
C110—H11C···Cg5vi0.962.643.569 (5)162
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x, y1, z; (iii) x+1/2, y+3/2, z1/2; (iv) x, y+1, z; (v) x1/2, y1/2, z; (vi) x+1/2, y1/2, z.
 

Funding information

LVM thanks the Hercules Foundation for supporting the purchase of the diffractometer through project AKUL/09/0035.

References

First citationBerest, G. G., Voskoboynik, O. Y., Kovalenko, S. I., Antypenko, O. M., Nosulenko, I. S., Katsev, A. M. & Shandrovskaya, O. S. (2011). Eur. J. Med. Chem. 46, 6066–6074.  CrossRef CAS PubMed Google Scholar
First citationBonakdar, A. P. S., Vafaei, F., Farokhpour, M., Esfahani, M. H. N. & Massah, A. R. (2017). Iran. J. Pharm. Res. 16, 565–568.  CAS PubMed Google Scholar
First citationBui, T. T. L., Nguyen, T. C. & Huynh, T. X. T. (2020). J. Sci. 17, 1536–1546.  Google Scholar
First citationDimmock, J. R., Kandepu, N. M., Hetherington, M., Quail, J. W., Pugazhenthi, U., Sudom, A. M., Chamankhah, M., Rose, P., Pass, E., Allen, T. M., Halleran, S., Szydlowski, J., Mutus, B., Tannous, M., Manavathu, E. K., Myers, T. G., De Clercq, E. & Balzarini, J. (1998). J. Med. Chem. 41, 1014–1026.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFang, X., Yang, B., Cheng, Z., Zhang, P. & Yang, M. (2014). Res. Chem. Intermed. 40, 1715–1725.  CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHsieh, C. T., Hsieh, T. J., El-Shazly, M., Chuang, D. W., Tsai, Y. H., Yen, C. T., Wu, S. F., Wu, Y. C. & Chang, F. R. (2012). Bioorg. Med. Chem. Lett. 22, 3912–3915.  CrossRef CAS PubMed Google Scholar
First citationHsieh, H. K., Tsao, L. T., Wang, J. P. & Lin, C. N. (2000). J. Pharm. Pharmacol. 52, 163–171.  CrossRef PubMed CAS Google Scholar
First citationKonidala, S. K., Kotra, V., Danduga, R. C. S. R. & Kola, P. K. (2020). Bioorg. Chem. 104, 104207.  CrossRef PubMed Google Scholar
First citationLi, Z., Wang, X., Xu, X., Yang, J., Qiu, Q., Qiang, H., Huang, W. & Qian, H. (2015). Bioorg. Med. Chem. 23, 6666–6672.  CrossRef CAS PubMed Google Scholar
First citationLim, Y. H., Oo, C. W., Koh, R. Y., Voon, G. L., Yew, M. Y., Yam, M. F. & Loh, Y. C. (2020). Drug Dev. Res. 1–10 https://doi. org/10.1002/ddr. 21715  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816.  Google Scholar
First citationNguyen, T. C., Bui, M. H. & Nguyen, H. M. D. (2018). Acta Chemica Iasi 26, 13–20.  CrossRef CAS Google Scholar
First citationNurkenov, O. A., Ibraev, M. K., Schepetkin, I. A., Khlebnikov, A. I., Seilkhanov, T. M., Arinova, A. E. & Isabaeva, M. B. (2019). Russ. J. Gen. Chem. 89, 1360–1367.  CrossRef CAS Google Scholar
First citationOhkatsu, Y. & Satoh, T. (2008). J. Jpn. Petrol. Inst. 51, 298–308.  CrossRef CAS Google Scholar
First citationOvonramwen, O. B., Owolabi, B. J. & Oviawe, A. P. (2019). Asian J. Chem. Sci. 6, 1–16.  Google Scholar
First citationParamonova, M. P., Khandazhinskaya, A. L., Seley-Radtke, K. L. & Novikov, M. S. (2017). Mendeleev Commun. 27, 85–87.  CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPatel, V. G., Shukla, M. B., Bhatt, A. R. & Prajapati, S. N. (2013). Int. J. Res. Pharm. Biomed. Sci. 4, 270–278.  CAS Google Scholar
First citationRammohan, A., Bhaskar, B. V., Venkateswarlu, N., Gu, W. & Zyryanov, G. V. (2020). Bioorg. Chem. 95, 103527.  CrossRef PubMed Google Scholar
First citationRani, P., Pal, D., Hegde, R. R. & Hashim, S. R. (2014). BioMed Research International Article ID 386473, 9 pages. https://doi. org/10.1155/2014/386473  Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, UK.  Google Scholar
First citationShaik, A., Bhandare, R. R., Palleapati, K., Nissankararao, S., Kancharlapalli, V. & Shaik, S. (2020). Molecules, 25 ID 1047. https://doi.org/10.3390/molecules25051047  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net  Google Scholar
First citationVásquez-Martínez, Y. A., Osorio, M. E., San Martín, D. A., Carvajal, M. A., Vergara, A. P., Sanchez, E., Raimondi, M., Zacchino, S. A., Mascayano, C., Torrent, C., Cabezas, F., Mejias, S., Montoya, M. & Martín, M. C. S. (2019). J. Braz. Chem. Soc. 30, 286–304.  Google Scholar
First citationVenkatachalam, H., Nayak, Y. & Jayashree, B. S. (2012). APCBEE Procedia 3, 209–213.  CrossRef CAS Google Scholar
First citationWilliams, J. D., Torhan, M. C., Neelagiri, V. R., Brown, C., Bowlin, N. O., Di, M., McCarthy, C. T., Aiello, D., Peet, N. P., Bowlin, T. L. & Moir, D. T. (2015). Bioorg. Med. Chem. 23, 1027–1043.  CrossRef CAS PubMed Google Scholar
First citationZhuang, C., Zhang, W., Sheng, C., Zhang, W., Xing, C. & Miao, Z. (2017). Chem. Rev. 117, 7762–7810.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds