research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and spectroscopic properties of (E)-1,3-di­methyl-2-[3-(4-nitro­phen­yl)triaz-2-enyl­­idene]-2,3-di­hydro-1H-imidazole

aDepartment of Chemistry & Physics, Florida Gulf Coast University, 10501 FGCU, Boulevard South, Fort Myers, FL 33965, USA, bFacultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Nuevo Campus Universitario, Circuito Universitario, Chihuahua, Chih., CP 31125, Mexico, cDepartment of Chemistry and Physics, Ave Maria University, 5050 Ave Maria Blvd, Ave Maria, FL 34142, USA, and dCentre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagaram, Bangalore 562112, India
*Correspondence e-mail: abugarin@fgcu.edu

Edited by J. Reibenspies, Texas A & M University, USA (Received 9 December 2020; accepted 12 January 2021; online 15 January 2021)

The title compound (E)-1,3-dimethyl-2-[3-(4-nitro­phen­yl)triaz-2-enyl­idene]-2,3-di­hydro-1H-imidazole, C11H12N6O2, has monoclinic (C2/c) symmetry at 100 K. This triazene derivative was synthesized by the coupling reaction of 1,3-di­methyl­imidazolium iodide with 1-azido-4-nitro benzene in the presence of sodium hydride (60% in mineral oil) and characterized by 1H NMR, 13C NMR, IR, mass spectrometry, and single-crystal X-ray diffraction. The mol­ecule consists of six-membered and five-membered rings, which are connected by a triazene moiety (–N=N—N–). In the solid-state, the mol­ecule is found to be planar due to conjugation throughout the mol­ecule. The extended structure shows two layers of mol­ecules, which present weak inter­molecular inter­actions that facilitate the stacked arrangement of the mol­ecules forming the extended structure. Furthermore, there are several weak pseudo-cyclical inter­actions between the nitro oxygen atoms and symmetry-adjacent H atoms, which help to arrange the mol­ecules.

1. Chemical context

Triazenes are versatile compounds in preparative chemistry because of their stable and highly modular nature (Patil & Bugarin, 2016[Patil, S. & Bugarin, A. (2016). Eur. J. Org. Chem. pp. 860-870.]). Triazene derivatives have been studied for their potential anti­cancer properties (Rouzer et al., 1996[Rouzer, C. A., Sabourin, M., Skinner, T. L., Thompson, E. J., Wood, T. O., Chmurny, G. N., Klose, J. R., Roman, J. M., Smith, R. H. & Michejda, C. J. (1996). Chem. Res. Toxicol. 9, 172-178.]; Connors et al., 1976[Connors, T. A., Goddard, P. M., Merai, K., Ross, W. C. J. & Wilman, D. E. V. (1976). Biochem. Pharmacol. 25, 241-246.]), used as a protecting group in natural product synthesis (Nicolaou et al., 1999[Nicolaou, K. C., Boddy, C. N. C., Li, H., Koumbis, A. E., Hughes, R., Natarajan, S., Jain, N. F., Ramanjulu, J. M., Bräse, S. & Solomon, M. E. (1999). Chem. Eur. J. 5, 2602-2621.]) and combinatorial chemistry (Brase et al., 2000[Bräse, S., Dahmen, S. & Pfefferkorn, M. (2000). J. Comb. Chem. 2, 710-715.]), incorporated into polymers (Jones et al., 1997[Jones, L. R., Schumm, J. S. & Tour, J. M. (1997). J. Org. Chem. 62, 1388-1410.]) and oligomer synthesis (Moore, 1997[Moore, J. S. (1997). Acc. Chem. Res. 30, 402-413.]), and used to prepare heterocycles (Wirschun et al., 1998[Wirschun, W., Winkler, M., Lutz, K. & Jochims, J. C. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 1755-1762.]). Their modular nature allows triazenes to be converted into a different functional group after treatment with the appropriate reagents. For example, aryl triazenes can be transformed to useful cross-coupling reagents (iodo­arenes) via iodo­methane-induced decomposition (Zollinger, 1994[Zollinger, H. (1994). Diazo Chemistry, Vol I, pp. 382-404. Weinheim: VCH.]). Further, aryl triazenes have been studied for their unique structural and chemical properties (Cornali et al., 2016[Cornali, B. M., Kimani, F. W. & Jewett, J. C. (2016). Org. Lett. 18, 4948-4950.]; Knyazeva et al., 2017[Knyazeva, D. C., Kimani, F. W., Blanche, J. L. & Jewett, J. C. (2017). Tetrahedron Lett. 58, 2700-2702.]). They have been used in medicinal, combinatorial chemistry, in natural synthesis and as organometallic ligands (Kimball et al., 2002[Kimball, D. B., Herges, R. & Haley, M. M. (2002). J. Am. Chem. Soc. 124, 1572-1573.]). In chemical biology, masked diazo­nium ions (tri­aza­butadienes) have found use on protein surfaces for identifying host proteins that inter­act during early stages of viral entities (Jensen et al., 2016[Jensen, S. M., Kimani, F. W. & Jewett, J. C. (2016). ChemBioChem, 17, 2216-2219.]; Shadmehr et al., 2018[Shadmehr, M., Davis, G. J., Mehari, B. T., Jensen, S. M. & Jewett, J. C. (2018). ChemBioChem, 19, 2550-2552.]). In addition, tri­aza­butadienes have shown tunable reactivity under specific conditions. For example, unique transformations of tri­aza­butadienes have been affected via water solubility, pH (Kimani & Jewett, 2015[Kimani, F. W. & Jewett, J. C. (2015). Angew. Chem. Int. Ed. 54, 4051-4054.]; Guzman et al., 2016[Guzman, L. E., Kimani, F. W. & Jewett, J. C. (2016). ChemBioChem, 17, 2220-2222.]; He et al., 2017[He, J., Kimani, F. W. & Jewett, J. C. (2017). Synlett, 28, 1767-1770.]), and photoinduced isomerization (He et al., 2015[He, J., Kimani, F. W. & Jewett, J. C. (2015). J. Am. Chem. Soc. 137, 9764-9767.]). In synthesis, these triazenes have been used as starting materials for aldehydes, ketones, ethers, and sulfides, under mild reaction conditions (Barragan & Bugarin, 2017[Barragan, E. & Bugarin, A. (2017). J. Org. Chem. 82, 1499-1506.]; Cornali et al., 2016[Cornali, B. M., Kimani, F. W. & Jewett, J. C. (2016). Org. Lett. 18, 4948-4950.]). Furthermore, natural sunlight has been utilized to activate those triazenes to produce bis­aryls and anilides (Noonikara-Poyil et al., 2019[Noonikara-Poyil, A., Barragan, E., Patil, S. & Bugarin, A. (2019). J. Mex. Chem. Soc. 63, 84-92.]; Barragan et al., 2020[Barragan, E., Noonikara-Poyil, A. & Bugarin, A. (2020). Asia. J. Org. Chem. 9, 445-445.]).

[Scheme 1]

2. Structural commentary

The title compound 1 crystallizes in the monoclinic C2/c space group with a single moiety in the asymmetric unit (see Fig. 1[link]). The mol­ecule is nearly planar with a dihedral angle of 7.36 (9)° between the imidazole and benzene rings. Plane I (N1/N3/C2/C4–C7) makes dihedral angles of 9.70 (3) and 2.40 (6)°, respectively, with planes II (N7/C8–C13) and III (N4–N6) while plane II makes a dihedral angle of 7.36 (4)° with plane III.

[Figure 1]
Figure 1
ORTEP diagram of compound 1 showing the atom-labeling scheme with 50% probability displacement ellipsoids.

There are no lattice-held water mol­ecules or organic solvent mol­ecules in the unit cell of the determined structure, a potential issue since the starting material 1,3-di­methyl­imidazolium iodide is hydro­scopic. The bond lengths and angles in 1 are similar to those reported for analogous structures (Khramov & Bielawski, 2005[Khramov, D. M. & Bielawski, C. W. (2005). Chem. Commun. pp. 4958-4960.]; Jishkariani et al., 2013[Jishkariani, D., Hall, C. D., Demircan, A., Tomlin, B. J., Steel, P. J. & Katritzky, A. R. (2013). J. Org. Chem. 78, 3349-3354.]). The C—C bond lengths in the phenyl rings are in the normal range of 1.33–1.40 Å, which is characteristic of delocalized phenyl rings. The C—C—C bond angles are around 120°, with the variation being less than 2°, which is characteristic of sp2-hybridized carbons.

3. Supra­molecular features

Figs. 2[link] and 3[link] show a perspective view of the crystal packing of the title compound. The packing diagram shows two layers of mol­ecules, which are independently arranged in the unit cell without intra- and inter mol­ecular hydrogen bonds. In each layer, the mol­ecules are alternately parallel.

[Figure 2]
Figure 2
Perspective view of the mol­ecular packing of 1 (there are no hydrogen atoms involved in hydrogen-bonding inter­actions. Dotted lines represent weak non-covalent C—H⋯N and C—H⋯O interactions, which direct the packing.
[Figure 3]
Figure 3
Extended network of the structure of compound 1 viewed from (001). There are two layers of mol­ecules, which are arranged independently in the unit cell without intra- and/or inter­molecular hydrogen bonds. Dotted lines represent weak non-covalent C–H⋯N and C–H⋯O interactions, which direct the packing.

4. Database survey

The first X-ray structure of a π-conjugated triazene was reported by Khramov & Bielawski (2005[Khramov, D. M. & Bielawski, C. W. (2005). Chem. Commun. pp. 4958-4960.]). The current WebCSD structural database includes the structures of only 18 π-conjugated triazenes. However, there is only one structure, reported by our research group (Patil & Bugarin, 2014[Patil, S. & Bugarin, A. (2014). Acta Cryst. E70, 224-227.]), that utilizes the small mol­ecule (1,3-di­methyl­imidazolium iodide) as the carbene coupling partner, and one more that bears an electron-deficient aryl group in combination with the small carbene precursor (Patil et al., 2014[Patil, S., White, K. & Bugarin, A. (2014). Tetrahedron Lett. 55, 4826-4829.]). Those characteristics highlight the novelty and uniqueness of the compound reported herein.

5. Synthesis and crystallization

1-Azido-4-nitro benzene (Siddiki et al., 2013[Siddiki, A. A., Takale, B. S. & Telvekar, V. N. (2013). Tetrahedron Lett. 54, 1294-1297.]) and 1,3-di­methyl­imidazolium iodide (Oertel et al., 2011[Oertel, A. M., Ritleng, V., Burr, L. & Chetcuti, M. J. (2011). Organometallics, 30, 6685-6691.]) were prepared according to literature procedures. For the synthesis of the title compound, 1-azido-4-nitro benzene (131.2 mg, 0.8 mmol) and 1,3-di­methyl­imidazolium iodide (89.5 mg, 0.4 mmol) were stirred at room temperature for 5 min. in dry THF (5 mL). NaH (16 mg, 0.4 mmol, 60% in mineral oil) was added in one portion and stirring was continued at room temperature overnight. A red precipitate formed, which was collected by filtration and dried under reduced pressure, giving the pure product (E)-1,3-dimethyl-2-[(4-nitro­phen­yl)triaz-2-enyl­idene])-2,3-di­hydro-1H-imidazole as a red crystalline solid (88.2 mg, 85%). Crystals suitable for X-ray analysis were grown from the slow evaporation of a THF/hexane mixture yielding air-stable, red-colored crystals.

IR (neat) ν 3435, 1572, 1382, 1360, 1233 cm−1. 1H NMR (400 MHz, DMSO-d6): δ 8.12 (d, J = 9.2 Hz, 2 H, Ph-H), 7.43 (d, J = 9.2 Hz, 2 H, Ph-H), 7.13 (s, 2 H, NCH), 3.62 (s, 6 H, N—CH3). 13C NMR (100 MHz, DMSO-d6): δ 159.1, 150.7, 143.2, 125.5, 120.8, 118.9, 35.7. UV/Vis (0.1 µM, CH2Cl2): λ (ɛ) = 450 nm. HRMS (ESI, N2): m/z calculated for C11H12N6O2Na [M + Na]+ 283.0914, found 283.0918.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. H atoms were included in calculated positions and treated as riding atoms: C—H = 0.95–0.98 Å with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl).

Table 1
Experimental details

Crystal data
Chemical formula C11H12N6O2
Mr 260.27
Crystal system, space group Monoclinic, C2/c
Temperature (K) 100
a, b, c (Å) 27.7311 (18), 7.1747 (9), 11.7849 (14)
β (°) 94.101 (4)
V3) 2338.7 (4)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.11 × 0.05 × 0.02
 
Data collection
Diffractometer Bruker AXS D8 Quest diffractometer with PhotonII charge-integrating pixel array detector (CPAD)
Absorption correction Multi-scan (SADABS; Bruker, 2018[Bruker (2018). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.655, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 23709, 2807, 2206
Rint 0.077
(sin θ/λ)max−1) 0.659
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.158, 1.16
No. of reflections 2807
No. of parameters 174
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.36, −0.37
Computer programs: APEX3 and SAINT (Bruker, 2018[Bruker (2018). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(E)-1,3-Dimethyl-2-[3-(4-nitrophenyl)triaz-2-enylidene]-2,3-dihydro-1H-imidazole top
Crystal data top
C11H12N6O2F(000) = 1088
Mr = 260.27Dx = 1.478 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 27.7311 (18) ÅCell parameters from 4851 reflections
b = 7.1747 (9) Åθ = 3.0–27.8°
c = 11.7849 (14) ŵ = 0.11 mm1
β = 94.101 (4)°T = 100 K
V = 2338.7 (4) Å3Plates, red
Z = 80.11 × 0.05 × 0.02 mm
Data collection top
Bruker AXS D8 Quest
diffractometer with PhotonII charge-integrating pixel array detector (CPAD)
2206 reflections with I > 2σ(I)
φ and ω scansRint = 0.077
Absorption correction: multi-scan
(SADABS; Bruker, 2018)
θmax = 27.9°, θmin = 2.9°
Tmin = 0.655, Tmax = 0.746h = 3636
23709 measured reflectionsk = 99
2807 independent reflectionsl = 1515
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.070H-atom parameters constrained
wR(F2) = 0.158 w = 1/[σ2(Fo2) + (0.0623P)2 + 4.2467P]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max < 0.001
2807 reflectionsΔρmax = 0.36 e Å3
174 parametersΔρmin = 0.37 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.90725 (6)0.6192 (3)0.42545 (14)0.0208 (4)
O10.91792 (6)0.7705 (3)0.58417 (15)0.0231 (4)
N50.67583 (7)0.4345 (3)0.54983 (15)0.0122 (4)
N30.60385 (7)0.2903 (3)0.39246 (15)0.0133 (4)
N60.70494 (7)0.4980 (3)0.63041 (15)0.0144 (4)
N10.55532 (7)0.2913 (3)0.52968 (16)0.0163 (4)
N70.89267 (7)0.6760 (3)0.51636 (16)0.0156 (4)
N40.63305 (7)0.3932 (3)0.58753 (15)0.0147 (4)
C20.60118 (8)0.3293 (3)0.50481 (18)0.0132 (5)
C80.75071 (8)0.5395 (3)0.59381 (18)0.0131 (5)
C130.76739 (8)0.4927 (3)0.48705 (19)0.0138 (5)
H130.7464760.4300920.4322050.017*
C100.82858 (8)0.6785 (3)0.64889 (18)0.0140 (5)
H100.8497170.7409510.7033620.017*
C120.81359 (8)0.5371 (3)0.46184 (19)0.0150 (5)
H120.8247610.5051390.3900180.018*
C90.78212 (8)0.6344 (3)0.67289 (18)0.0140 (5)
H90.7710380.6688680.7443900.017*
C110.84393 (8)0.6295 (3)0.54293 (19)0.0148 (5)
C70.64554 (8)0.3132 (3)0.32329 (18)0.0157 (5)
H7A0.6566350.4428770.3276930.023*
H7B0.6359890.2815140.2439590.023*
H7C0.6717610.2306000.3521090.023*
C40.55897 (8)0.2268 (4)0.34928 (19)0.0184 (5)
H40.5507710.1896960.2729520.022*
C50.52938 (8)0.2270 (4)0.4335 (2)0.0200 (5)
H50.4964280.1896910.4281400.024*
C60.53830 (9)0.3056 (4)0.6434 (2)0.0249 (6)
H6A0.5539960.2097290.6923930.037*
H6B0.5031900.2876180.6394290.037*
H6C0.5462630.4291660.6748560.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0169 (8)0.0327 (10)0.0134 (8)0.0025 (7)0.0046 (6)0.0010 (8)
O10.0202 (9)0.0287 (10)0.0195 (9)0.0084 (8)0.0042 (7)0.0001 (8)
N50.0143 (9)0.0132 (9)0.0092 (8)0.0006 (7)0.0006 (7)0.0000 (7)
N30.0145 (9)0.0185 (10)0.0072 (8)0.0003 (8)0.0022 (7)0.0002 (7)
N60.0159 (10)0.0204 (10)0.0070 (8)0.0011 (8)0.0010 (7)0.0003 (8)
N10.0133 (9)0.0269 (11)0.0089 (9)0.0009 (8)0.0009 (7)0.0009 (8)
N70.0147 (9)0.0192 (10)0.0126 (9)0.0016 (8)0.0004 (7)0.0040 (8)
N40.0136 (9)0.0226 (10)0.0080 (8)0.0006 (8)0.0013 (7)0.0019 (8)
C20.0158 (11)0.0162 (11)0.0076 (10)0.0026 (9)0.0002 (8)0.0020 (8)
C80.0161 (11)0.0134 (10)0.0097 (10)0.0022 (9)0.0002 (8)0.0015 (8)
C130.0149 (11)0.0172 (11)0.0090 (10)0.0015 (9)0.0004 (8)0.0032 (8)
C100.0174 (11)0.0156 (11)0.0084 (10)0.0001 (9)0.0035 (8)0.0003 (8)
C120.0180 (11)0.0183 (11)0.0088 (10)0.0005 (9)0.0014 (8)0.0017 (9)
C90.0184 (11)0.0177 (11)0.0059 (9)0.0032 (9)0.0003 (8)0.0008 (9)
C110.0146 (11)0.0179 (11)0.0118 (10)0.0005 (9)0.0007 (8)0.0052 (9)
C70.0164 (11)0.0238 (12)0.0073 (10)0.0006 (9)0.0047 (8)0.0004 (9)
C40.0171 (11)0.0281 (13)0.0096 (10)0.0009 (10)0.0024 (8)0.0011 (10)
C50.0146 (11)0.0308 (14)0.0141 (11)0.0040 (10)0.0032 (9)0.0027 (10)
C60.0169 (11)0.0473 (17)0.0112 (11)0.0049 (12)0.0063 (9)0.0017 (11)
Geometric parameters (Å, º) top
O2—N71.241 (3)C13—C121.373 (3)
O1—N71.228 (3)C10—H100.9500
N5—N61.285 (3)C10—C91.375 (3)
N5—N41.330 (3)C10—C111.393 (3)
N3—C21.360 (3)C12—H120.9500
N3—C71.471 (3)C12—C111.395 (3)
N3—C41.387 (3)C9—H90.9500
N6—C81.402 (3)C7—H7A0.9800
N1—C21.353 (3)C7—H7B0.9800
N1—C51.378 (3)C7—H7C0.9800
N1—C61.456 (3)C4—H40.9500
N7—C111.448 (3)C4—C51.332 (3)
N4—C21.348 (3)C5—H50.9500
C8—C131.412 (3)C6—H6A0.9800
C8—C91.405 (3)C6—H6B0.9800
C13—H130.9500C6—H6C0.9800
N6—N5—N4111.13 (17)C11—C12—H12120.4
C2—N3—C7128.02 (19)C8—C9—H9119.3
C2—N3—C4108.35 (18)C10—C9—C8121.4 (2)
C4—N3—C7123.61 (18)C10—C9—H9119.3
N5—N6—C8112.51 (18)C10—C11—N7119.1 (2)
C2—N1—C5109.43 (19)C10—C11—C12121.7 (2)
C2—N1—C6123.82 (19)C12—C11—N7119.2 (2)
C5—N1—C6126.6 (2)N3—C7—H7A109.5
O2—N7—C11118.54 (19)N3—C7—H7B109.5
O1—N7—O2122.5 (2)N3—C7—H7C109.5
O1—N7—C11118.95 (19)H7A—C7—H7B109.5
N5—N4—C2112.85 (18)H7A—C7—H7C109.5
N1—C2—N3106.65 (19)H7B—C7—H7C109.5
N4—C2—N3134.0 (2)N3—C4—H4125.9
N4—C2—N1119.30 (19)C5—C4—N3108.1 (2)
N6—C8—C13125.8 (2)C5—C4—H4125.9
N6—C8—C9115.53 (19)N1—C5—H5126.3
C9—C8—C13118.6 (2)C4—C5—N1107.5 (2)
C8—C13—H13119.7C4—C5—H5126.3
C12—C13—C8120.5 (2)N1—C6—H6A109.5
C12—C13—H13119.7N1—C6—H6B109.5
C9—C10—H10120.7N1—C6—H6C109.5
C9—C10—C11118.5 (2)H6A—C6—H6B109.5
C11—C10—H10120.7H6A—C6—H6C109.5
C13—C12—H12120.4H6B—C6—H6C109.5
C13—C12—C11119.2 (2)
O2—N7—C11—C10174.5 (2)C13—C12—C11—N7179.9 (2)
O2—N7—C11—C125.6 (3)C13—C12—C11—C100.1 (3)
O1—N7—C11—C105.8 (3)C9—C8—C13—C120.9 (3)
O1—N7—C11—C12174.2 (2)C9—C10—C11—N7179.7 (2)
N5—N6—C8—C139.6 (3)C9—C10—C11—C120.3 (3)
N5—N6—C8—C9171.13 (19)C11—C10—C9—C81.0 (3)
N5—N4—C2—N33.5 (4)C7—N3—C2—N1178.1 (2)
N5—N4—C2—N1176.5 (2)C7—N3—C2—N41.8 (4)
N3—C4—C5—N10.3 (3)C7—N3—C4—C5178.5 (2)
N6—N5—N4—C2178.84 (19)C4—N3—C2—N10.3 (3)
N6—C8—C13—C12178.4 (2)C4—N3—C2—N4179.8 (3)
N6—C8—C9—C10178.0 (2)C5—N1—C2—N30.5 (3)
N4—N5—N6—C8178.84 (18)C5—N1—C2—N4179.6 (2)
C2—N3—C4—C50.0 (3)C6—N1—C2—N3176.7 (2)
C2—N1—C5—C40.5 (3)C6—N1—C2—N43.4 (4)
C8—C13—C12—C110.2 (3)C6—N1—C5—C4176.5 (2)
C13—C8—C9—C101.3 (3)
 

Acknowledgements

We thank Florida Gulf Coast University and its facilities for the support provided to complete this work.

Funding information

Funding for this research was provided by: American Chemical Society Petroleum Research Fund (award No. 58269-ND1 to Alejandro Bugarin).

References

First citationBarragan, E. & Bugarin, A. (2017). J. Org. Chem. 82, 1499–1506.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBarragan, E., Noonikara–Poyil, A. & Bugarin, A. (2020). Asia. J. Org. Chem. 9, 445–445.  CrossRef CAS Google Scholar
First citationBräse, S., Dahmen, S. & Pfefferkorn, M. (2000). J. Comb. Chem. 2, 710–715.  Web of Science PubMed Google Scholar
First citationBruker (2018). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationConnors, T. A., Goddard, P. M., Merai, K., Ross, W. C. J. & Wilman, D. E. V. (1976). Biochem. Pharmacol. 25, 241–246.  CrossRef PubMed CAS Web of Science Google Scholar
First citationCornali, B. M., Kimani, F. W. & Jewett, J. C. (2016). Org. Lett. 18, 4948–4950.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGuzman, L. E., Kimani, F. W. & Jewett, J. C. (2016). ChemBioChem, 17, 2220–2222.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHe, J., Kimani, F. W. & Jewett, J. C. (2015). J. Am. Chem. Soc. 137, 9764–9767.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHe, J., Kimani, F. W. & Jewett, J. C. (2017). Synlett, 28, 1767–1770.  Web of Science CrossRef CAS Google Scholar
First citationJensen, S. M., Kimani, F. W. & Jewett, J. C. (2016). ChemBioChem, 17, 2216–2219.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJishkariani, D., Hall, C. D., Demircan, A., Tomlin, B. J., Steel, P. J. & Katritzky, A. R. (2013). J. Org. Chem. 78, 3349–3354.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationJones, L. R., Schumm, J. S. & Tour, J. M. (1997). J. Org. Chem. 62, 1388–1410.  CrossRef CAS Web of Science Google Scholar
First citationKhramov, D. M. & Bielawski, C. W. (2005). Chem. Commun. pp. 4958–4960.  Web of Science CSD CrossRef Google Scholar
First citationKimani, F. W. & Jewett, J. C. (2015). Angew. Chem. Int. Ed. 54, 4051–4054.  Web of Science CrossRef CAS Google Scholar
First citationKimball, D. B., Herges, R. & Haley, M. M. (2002). J. Am. Chem. Soc. 124, 1572–1573.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKnyazeva, D. C., Kimani, F. W., Blanche, J. L. & Jewett, J. C. (2017). Tetrahedron Lett. 58, 2700–2702.  Web of Science CrossRef CAS Google Scholar
First citationMoore, J. S. (1997). Acc. Chem. Res. 30, 402–413.  CrossRef CAS Web of Science Google Scholar
First citationNicolaou, K. C., Boddy, C. N. C., Li, H., Koumbis, A. E., Hughes, R., Natarajan, S., Jain, N. F., Ramanjulu, J. M., Bräse, S. & Solomon, M. E. (1999). Chem. Eur. J. 5, 2602–2621.  CrossRef CAS Google Scholar
First citationNoonikara-Poyil, A., Barragan, E., Patil, S. & Bugarin, A. (2019). J. Mex. Chem. Soc. 63, 84–92.  CAS Google Scholar
First citationOertel, A. M., Ritleng, V., Burr, L. & Chetcuti, M. J. (2011). Organometallics, 30, 6685–6691.  Web of Science CSD CrossRef CAS Google Scholar
First citationPatil, S. & Bugarin, A. (2014). Acta Cryst. E70, 224–227.  CSD CrossRef IUCr Journals Google Scholar
First citationPatil, S. & Bugarin, A. (2016). Eur. J. Org. Chem. pp. 860–870.  Web of Science CrossRef Google Scholar
First citationPatil, S., White, K. & Bugarin, A. (2014). Tetrahedron Lett. 55, 4826–4829.  Web of Science CSD CrossRef CAS Google Scholar
First citationRouzer, C. A., Sabourin, M., Skinner, T. L., Thompson, E. J., Wood, T. O., Chmurny, G. N., Klose, J. R., Roman, J. M., Smith, R. H. & Michejda, C. J. (1996). Chem. Res. Toxicol. 9, 172–178.  CrossRef CAS PubMed Web of Science Google Scholar
First citationShadmehr, M., Davis, G. J., Mehari, B. T., Jensen, S. M. & Jewett, J. C. (2018). ChemBioChem, 19, 2550–2552.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiddiki, A. A., Takale, B. S. & Telvekar, V. N. (2013). Tetrahedron Lett. 54, 1294–1297.  Web of Science CrossRef CAS Google Scholar
First citationWirschun, W., Winkler, M., Lutz, K. & Jochims, J. C. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 1755–1762.  Web of Science CSD CrossRef Google Scholar
First citationZollinger, H. (1994). Diazo Chemistry, Vol I, pp. 382–404. Weinheim: VCH.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds