research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of the non-steroidal anti-inflammatory drug (NSAID) tolmetin sodium

aSSI Institute for Single Crystals of the National Academy of Sciences of Ukraine, 61001, Kharkov, Ukraine, bV.N. Karazin Kharkiv National University, 4 Svobody Aq., Kharkiv, 61077, Ukraine, cChemical Diversity Research Institute, 2A Rabochaya St, Khimki, Moscow Region, 141400, Russian Federation, dFederal State Autonomous Educational Institution of Higher Education, Belgorod State University, 85, Pobedy St, Belgorod, 308015, Russian Federation, and eExperimental Plant for Dental Materials "VladmiVa", 81d, Michurin St, Belgorod, 308015, Russian Federation
*Correspondence e-mail: ikonovalova0210@gmail.com

Edited by O. Blacque, University of Zürich, Switzerland (Received 10 December 2020; accepted 12 January 2021; online 19 January 2021)

The asymmetric unit of the title compound, sodium 2-[1-methyl-5-(4-methyl­benzo­yl)-1H-pyrrol-2-yl]acetate dihydrate, Na+·C15H14NO3·2H2O, contains two sodium cations, two organic anions (A and B) and two water mol­ecules. The coordination geometry around the sodium cations corresponds to a distorted octa­hedron. Each pair of sodium cations (AA or BB) is chelated by two bridging anions coordinated by the O atoms of the deprotonated carb­oxy­lic groups, and each sodium atom is coordinated by an O atom of a third anion, which connects pairs of sodium atoms, and a water mol­ecule. As a result, a two-dimensional polymer is formed in the crystal. Hirshfeld surface analysis and two-dimensional fingerprint plots were used to analyze the inter­molecular contacts present in the crystal.

1. Chemical context

Non-steroidal anti-inflammatory drugs (NSAIDs) are the gold standard for the management of acute or moderate pain associated with inflammatory changes or trauma (Klippel et al., 2010[Klippel, J. H., Stone, J. H., Crofford, L. J. & White, P. H. (2010). Nonsteroidal Anti-Inflammatory Drugs. In The Pocket Primer on the Rheumatic Diseases. London: Springer.]). These drugs can suppress inflammation, lower body temperature, and reduce pain. In terms of the scale and frequency of use of NSAIDs, they rank first in the world. The combination of analgesic, anti-inflammatory and anti­pyretic effects determines the advantage of NSAIDs over other pain relievers. Tolmetin, which is one of the most widely used NSAIDs, belongs to the class of hetaryl­acetic acids (Moreland, 2004[Moreland, L. W. (2004). Tolmetin. Rheumatology and Immunology Therapy. Berlin, Heidelberg: Springer.]; McEvoy, 2007[McEvoy, G. K. (2007). Editor. AHFS Drug Information, pp. 2118-2122. Bethesda, MD: American Society of Health-System Pharmacists.]). It is commonly used for the treatment of rheumatoid arthritis, osteoarthritis, ankylosing spondylitis and periarticular disorders. Tolmetin sodium (CAS Number 64490-92-2) is the sodium salt form of tolmetin with analgesic, anti-inflammatory and anti­pyretic activities (Cordrey, 1976[Cordrey, L. J. (1976). J. Am. Geriatr. Soc. 24, 440-446.]). In addition, the anti­cancer activity of Tolmetin has been studied and it was reported that tolmetin has effects on increasing the cytotoxic activity of anti-cancer drugs (Duffy et al., 1998[Duffy, C. P., Elliott, C. J., O'Connor, R. A., Heenan, M. M., Coyle, S., Cleary, I. M., Kavanagh, K., Verhaegen, S., O'Loughlin, C. M., NicAmhlaoibh, R. & Clynes, M. (1998). Eur. J. Cancer, 34, 1250-1259.]). It inhibits the function of β-catenin, so tolmetin can be used to develop new anti-cancer agents (Lu et al., 2005[Lu, D., Cottam, H. B., Corr, M. & Carson, D. A. (2005). Proc. Natl Acad. Sci. USA, 102, 18567-18571.]).

[Scheme 1]

Recently, work has appeared on the use of this well-known active pharmaceutical compound tolmetin sodium for the development of new dosage forms, for example, novel rectal mucoadhesive hydro­gels (Ramadan et al., 2018[Ramadan, A. A., Elbakry, A. M., Esmaeil, A. H. & Khaleel, S. A. (2018). J. Pharm. Investig. 48, 673-683.]), thermosensitive mucoadhesive liquid suppositories for rectal delivery (Akl et al., 2019[Akl, M. A., Ismael, H. R., Abd Allah, F. I., Kassem, A. A. & Samy, A. M. (2019). Drug Dev. Ind. Pharm. 45, 252-264.]) and different topical gel formulations (Auda et al., 2015[Auda, S. H., El-Rasoul, S. A., Ahmed, M. M., Osman, S. K. & El-Badry, M. (2015). J. Pharm. Investig. 45, 311-317.]).

However, to date, the crystal structure of the substance tolmetin sodium has not been studied and described. Knowledge of the spatial structure of the crystal form of the active pharmaceutical compound is very important to ensure the quality and bioavailability of the drug and, according to the latest pharmacopoeia requirements, X-ray diffraction studies are mandatory for pharmaceutical development. In this work, we carried out an X-ray structural analysis of the crystal form of the substance tolmetin sodium and filled the gap in these studies.

2. Structural commentary

The sodium salt of the C15H14NO3 organic anion exists in the crystal as a 1:2 hydrate (Fig. 1[link]). The asymmetric unit contains two sodium cations, two organic anions (A and B) and two water mol­ecules. The coordination geometry around the sodium cations corresponds to a distorted octa­hedron. Each pair of sodium cations (AA or BB) is chelated by two bridging anions coordinated by the O atoms of the deprotonated carb­oxy­lic groups, and each sodium atom is coordinated by an O atom of a third anion, which connects pairs of sodium atoms, and a water mol­ecule. As a result, a two-dimensional polymer is formed in the crystal (Fig. 2[link]). The Na—Oanion distances are 2.298 (2), 2.416 (2) and 2.441 (2) Å while the Na—Owater distances are on average slightly longer, being in the range 2.364 (2)–2.607 (3) Å. It is worth noting that the terminal atom O2B does not inter­act with a sodium cation.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
Two-dimensional polymeric chains in the crystal of the title compound.

The analysis of the mol­ecular structure of the anions showed that the terminal C1—O1 and C1—O2 bonds [1.249 (3) and 1.250 (3) Å in anion A, 1.243 (3) and 1.250 (3) Å in anion B] are very similar to each other and are slightly elongated in comparison with the standard value of 1.210 Å of a carbonyl group (Burgi et al., 1994[Burgi, H.-B. & Dunitz, J. D. (1994). Structure Correlation, vol. 2, pp. 741-784. Weinheim: VCH.]). It is also much shorter than the standard C—O single bond observed for a hydroxyl group (1.362 Å). We can assume that the negative charge is delocalized on both terminal O atoms for each anion.

The toluene substituent is in a synperiplanar conformation with respect to the C5—C6 bond of the pyrrole ring: the C5—C6—C8—C9 torsion angle is 26.9 (4)° in mol­ecule A and −29.0 (4)° in mol­ecule B. The relative orientation of the toluene ring with respect to the pyrrole ring, neither planar nor perpendicular, is given by the the C6—C8—C9—C10 torsion angle: 41.3 (4)° in mol­ecule A and −38.2 (4)° in mol­ecule B. Such an orientation mainly minimizes the inter­molecular H⋯H repulsions.

3. Supra­molecular features

In the crystal, O—H⋯O hydrogen bonds (Table 1[link]) are formed between H atoms of the water mol­ecules (donors) and O atoms of the anions (acceptors), forming a two-dimensional network parallel to (001).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O3A 0.89 2.12 3.002 (3) 169
O1W—H1WB⋯O1Ai 0.89 2.00 2.665 (4) 130
O2W—H2WA⋯O2Bi 0.89 1.88 2.741 (3) 161
O2W—H2WB⋯O2Bii 0.89 2.13 3.019 (3) 172
O3W—H3WA⋯O3Biii 0.89 2.16 2.961 (3) 150
O3W—H3WB⋯O1Bii 0.89 1.84 2.699 (4) 161
O4W—H4WA⋯O1Bii 0.89 2.19 2.894 (3) 136
O4W—H4WB⋯O3Wii 0.89 2.02 2.889 (3) 163
Symmetry codes: (i) x+1, y, z; (ii) [-x+1, -y, -z+1]; (iii) [-x, -y, -z+1].

4. Hirshfeld surface analysis

Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. University of Western Australia. http://hirshfeldsurface.net.]) was used to analyze the inter­actions in the crystal: fingerprint plots mapped over dnorm (Figs. 3[link] and 4[link]) were generated. The mol­ecular Hirshfeld surfaces were obtained using a standard (high) surface resolution with the three-dimensional dnorm surfaces mapped over a fixed color scale of −0.666 (red) to 1.384 (blue). The areas colored red on the dnorm-mapped Hirshfeld surfaces (Fig. 3[link]) correspond to the contacts which are shorter than van der Waals radii sum of the closest atoms. As can be seen in Fig. 4[link], short contacts are present at the hydrogen atoms and oxygen lone pair of the water mol­ecules. In addition, the areas of short contacts are located at the oxygen atoms of carbonyl groups (Fig. 3[link]).

[Figure 3]
Figure 3
The Hirshfeld surface of the title compound mapped over dnorm.
[Figure 4]
Figure 4
(a) The two-dimensional fingerprint plot for the title compound, and those delineated into (b) H⋯H (48.9%), (c) O⋯H/H⋯O (22.1%), (d) C⋯H/H⋯C (17.9%) and (e) Na⋯O/O⋯Na (5.4%) contacts.

All the inter­molecular inter­actions of the title compound are shown in the two-dimensional fingerprint plot presented in Fig. 4[link]. The contribution of the O⋯H/H⋯O contacts, corresponding to the O—H⋯O inter­action, is represented by a pair of long sharp spikes (22.1%). This indicates that O—H⋯O hydrogen bonds are the strongest inter­actions in the crystal of the title compound (Fig. 4[link]).

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.41, update of November 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 2-(1-methyl-5-(4-methyl­benzo­yl)-1H-pyrrol-2-yl)acetate skeleton yielded only two hits, 2-meth­oxy­phenyl 2-{2-[1-methyl-5-(4-methyl­benzo­yl)pyrrol-2-yl]acetamido}­acetate (CSD refcode MODNID; Lou et al., 2008[Lou, B.-Y., Guo, X. & Lin, Q. (2008). Acta Cryst. E64, o1439.]) and bis­(di­methyl­sulfoxide-O)tetra­kis­[μ2-1-methyl-5-(p-toluo­yl)-1H-pyrrole-2-acetato-O,O′]dicopper(II) (SETBIC; Dendrinou-Samara et al., 1990[Dendrinou-Samara, C., Kessissoglou, D. P., Manoussakis, G. E., Mentzafos, D. & Terzis, A. (1990). J. Chem. Soc. Dalton Trans. pp. 959-965.]).

6. Crystallization

Crystallization by slow evaporation of an aqueous solution of tolmetin sodium was carried out to provide colorless block-shaped single crystals suitable for a X-ray diffraction analysis (Fig. 5[link]).

[Figure 5]
Figure 5
Crystals of tolmetin sodium.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were placed in calculated positions (O—H = 0.98 Å, C—H = 0.93–0.96 Å) and refined as riding with UisoH = 1.2Ueq(C) or 1.5Ueq(O, C-meth­yl).

Table 2
Experimental details

Crystal data
Chemical formula 2Na+·2C15H14NO3·4H2O
Mr 630.59
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 8.5404 (8), 9.0144 (9), 21.6217 (19)
α, β, γ (°) 92.922 (8), 98.873 (7), 113.038 (9)
V3) 1502.1 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.13
Crystal size (mm) 0.4 × 0.2 × 0.1
 
Data collection
Diffractometer Rigaku Oxford Diffraction Xcalibur, Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.737, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11985, 5283, 3288
Rint 0.060
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.191, 1.00
No. of reflections 5283
No. of parameters 403
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.38, −0.28
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Sodium 2-[1-methyl-5-(4-methylbenzoyl)-1H-pyrrol-2-yl]acetate dihydrate top
Crystal data top
2Na+·2C15H14NO3·4H2OZ = 2
Mr = 630.59F(000) = 664
Triclinic, P1Dx = 1.394 Mg m3
a = 8.5404 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.0144 (9) ÅCell parameters from 1420 reflections
c = 21.6217 (19) Åθ = 3.1–24.2°
α = 92.922 (8)°µ = 0.13 mm1
β = 98.873 (7)°T = 293 K
γ = 113.038 (9)°Block, colourless
V = 1502.1 (3) Å30.4 × 0.2 × 0.1 mm
Data collection top
Rigaku Oxford Diffraction Xcalibur, Sapphire3
diffractometer
5283 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source3288 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
Detector resolution: 16.1827 pixels mm-1θmax = 25.0°, θmin = 2.9°
phi and ω scansh = 1010
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
k = 1010
Tmin = 0.737, Tmax = 1.000l = 2525
11985 measured reflections
Refinement top
Refinement on F2Primary atom site location: inferred from neighbouring sites
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.191 w = 1/[σ2(Fo2) + (0.0844P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
5283 reflectionsΔρmax = 0.38 e Å3
403 parametersΔρmin = 0.28 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Na1A1.15418 (14)0.48055 (14)0.46665 (5)0.0463 (4)
O1A0.6328 (3)0.4448 (3)0.43538 (9)0.0463 (5)
O2A0.8756 (3)0.4310 (3)0.41918 (9)0.0527 (6)
O3A1.3144 (3)0.5970 (3)0.27170 (10)0.0572 (6)
N1A0.9595 (3)0.5322 (3)0.28684 (10)0.0370 (6)
C1A0.7367 (4)0.4452 (3)0.40052 (13)0.0369 (7)
C2A0.6907 (4)0.4728 (4)0.33229 (13)0.0441 (7)
H2AA0.5687530.4053860.3169730.053*
H2AB0.7052970.5849950.3321120.053*
C3A0.7899 (4)0.4394 (4)0.28655 (13)0.0397 (7)
C4A0.7319 (4)0.3165 (4)0.23764 (14)0.0445 (7)
H4A0.6205990.2349690.2271540.053*
C5A0.8671 (4)0.3346 (4)0.20653 (14)0.0446 (7)
H5A0.8628080.2677330.1715130.053*
C6A1.0108 (4)0.4710 (4)0.23717 (13)0.0403 (7)
C7A1.0633 (4)0.6845 (3)0.32769 (13)0.0453 (7)
H7AA1.1246460.6632360.3648710.068*
H7AB0.9887020.7331500.3394970.068*
H7AC1.1448880.7571820.3055360.068*
C8A1.1889 (4)0.5209 (4)0.22929 (13)0.0392 (7)
C9A1.2180 (4)0.4679 (3)0.16703 (13)0.0399 (7)
C10A1.1169 (4)0.4703 (4)0.11027 (14)0.0457 (7)
H10A1.0268960.5037340.1106300.055*
C11A1.1493 (4)0.4236 (4)0.05367 (14)0.0488 (8)
H11A1.0798180.4252190.0163070.059*
C12A1.2836 (4)0.3741 (4)0.05106 (15)0.0455 (8)
C13A1.3832 (4)0.3726 (4)0.10725 (15)0.0508 (8)
H13A1.4721560.3377980.1067620.061*
C14A1.3541 (4)0.4217 (4)0.16450 (15)0.0478 (8)
H14A1.4265160.4238030.2016650.057*
C15A1.3099 (5)0.3182 (4)0.01169 (16)0.0620 (9)
H15A1.2531920.2018920.0197740.093*
H15B1.4315990.3518110.0111280.093*
H15C1.2616760.3650830.0442670.093*
Na1B0.45480 (15)0.23476 (14)0.49496 (5)0.0497 (4)
O1B0.3539 (3)0.0551 (3)0.57285 (10)0.0520 (6)
O2B0.1279 (3)0.0952 (3)0.59464 (9)0.0517 (6)
O3B0.3202 (3)0.0817 (3)0.73382 (10)0.0561 (6)
N1B0.0316 (3)0.0303 (3)0.72107 (10)0.0392 (6)
C1B0.2576 (4)0.0630 (3)0.60931 (13)0.0372 (7)
C2B0.2993 (4)0.0232 (4)0.67578 (13)0.0469 (8)
H2BA0.2771210.0911730.6732390.056*
H2BB0.4222040.0841050.6917950.056*
C3B0.2033 (4)0.0571 (4)0.72214 (13)0.0405 (7)
C4B0.2635 (4)0.1815 (4)0.77089 (14)0.0505 (8)
H4B0.3757140.2615290.7814180.061*
C5B0.1287 (4)0.1671 (4)0.80151 (14)0.0451 (7)
H5B0.1344360.2345320.8365950.054*
C6B0.0169 (4)0.0342 (4)0.77058 (13)0.0414 (7)
C7B0.0783 (4)0.1782 (4)0.67844 (14)0.0505 (8)
H7BA0.1408940.1514520.6430880.076*
H7BB0.1587120.2526220.7004420.076*
H7BC0.0073060.2275040.6637670.076*
C8B0.1949 (4)0.0101 (4)0.77748 (14)0.0423 (7)
C9B0.2254 (4)0.0398 (4)0.83992 (13)0.0396 (7)
C10B0.1236 (4)0.0352 (4)0.89619 (14)0.0458 (8)
H10B0.0345550.0006470.8953570.055*
C11B0.1552 (4)0.0819 (4)0.95293 (14)0.0483 (8)
H11B0.0862370.0788480.9901960.058*
C12B0.2879 (4)0.1337 (4)0.95586 (14)0.0463 (8)
C13B0.3882 (4)0.1359 (4)0.89975 (15)0.0505 (8)
H13B0.4770150.1708160.9003530.061*
C14B0.3588 (4)0.0871 (4)0.84272 (15)0.0473 (8)
H14B0.4305730.0862300.8055690.057*
C15B0.3154 (4)0.1885 (5)1.01896 (16)0.0610 (9)
H15D0.2636110.1444011.0516080.091*
H15E0.4373420.1509391.0187310.091*
H15F0.2626900.3049341.0266430.091*
O1W1.3788 (3)0.5461 (3)0.40784 (10)0.0541 (6)
H1WA1.3636920.5755500.3694780.081*
H1WB1.4059220.4603200.4065580.081*
O2W1.1457 (3)0.2133 (3)0.48044 (9)0.0529 (6)
H2WA1.1282620.1900380.5189670.079*
H2WB1.0668220.1271480.4550270.079*
O3W0.3857 (3)0.0443 (3)0.40179 (10)0.0522 (6)
H3WA0.3836940.0940750.3673360.078*
H3WB0.4647940.0029950.4012460.078*
O4W0.7371 (3)0.2175 (3)0.52238 (10)0.0538 (6)
H4WA0.7693500.1682690.4932110.081*
H4WB0.7209810.1383600.5468610.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na1A0.0365 (7)0.0608 (8)0.0418 (7)0.0197 (6)0.0075 (5)0.0091 (6)
O1A0.0426 (12)0.0665 (14)0.0355 (12)0.0258 (11)0.0121 (9)0.0097 (10)
O2A0.0335 (12)0.0802 (16)0.0450 (13)0.0235 (11)0.0045 (9)0.0188 (11)
O3A0.0405 (13)0.0796 (17)0.0398 (13)0.0148 (12)0.0031 (10)0.0030 (11)
N1A0.0369 (14)0.0414 (13)0.0326 (13)0.0153 (11)0.0071 (10)0.0057 (10)
C1A0.0346 (16)0.0406 (16)0.0358 (16)0.0154 (13)0.0062 (13)0.0090 (13)
C2A0.0430 (17)0.0605 (19)0.0377 (17)0.0287 (16)0.0091 (13)0.0145 (14)
C3A0.0360 (16)0.0535 (18)0.0337 (16)0.0211 (14)0.0083 (12)0.0098 (13)
C4A0.0381 (17)0.0456 (18)0.0409 (17)0.0093 (14)0.0030 (13)0.0040 (14)
C5A0.0436 (18)0.0441 (17)0.0417 (17)0.0138 (15)0.0081 (14)0.0008 (14)
C6A0.0422 (17)0.0475 (17)0.0310 (16)0.0164 (14)0.0105 (13)0.0049 (13)
C7A0.0509 (19)0.0416 (16)0.0377 (17)0.0149 (15)0.0046 (14)0.0007 (13)
C8A0.0367 (16)0.0446 (17)0.0377 (17)0.0158 (14)0.0115 (13)0.0092 (13)
C9A0.0382 (17)0.0432 (17)0.0344 (16)0.0121 (14)0.0090 (12)0.0016 (13)
C10A0.0449 (18)0.0544 (19)0.0398 (18)0.0215 (16)0.0087 (14)0.0085 (15)
C11A0.052 (2)0.0553 (19)0.0364 (17)0.0195 (17)0.0064 (14)0.0068 (14)
C12A0.0412 (18)0.0457 (18)0.0473 (19)0.0129 (15)0.0147 (14)0.0052 (14)
C13A0.0431 (18)0.063 (2)0.050 (2)0.0244 (17)0.0117 (15)0.0034 (16)
C14A0.0442 (18)0.059 (2)0.0394 (17)0.0204 (16)0.0067 (14)0.0085 (15)
C15A0.061 (2)0.067 (2)0.055 (2)0.0201 (19)0.0208 (17)0.0028 (17)
Na1B0.0459 (7)0.0559 (8)0.0458 (7)0.0174 (6)0.0125 (5)0.0075 (6)
O1B0.0549 (14)0.0749 (16)0.0407 (12)0.0366 (12)0.0200 (10)0.0163 (11)
O2B0.0505 (13)0.0781 (16)0.0399 (12)0.0372 (12)0.0140 (10)0.0148 (11)
O3B0.0418 (13)0.0753 (16)0.0411 (13)0.0154 (12)0.0042 (10)0.0022 (11)
N1B0.0411 (14)0.0489 (14)0.0304 (13)0.0200 (12)0.0092 (10)0.0062 (11)
C1B0.0401 (17)0.0379 (15)0.0334 (16)0.0152 (13)0.0087 (13)0.0024 (12)
C2B0.0497 (19)0.063 (2)0.0358 (17)0.0279 (16)0.0147 (14)0.0139 (15)
C3B0.0379 (17)0.0560 (19)0.0327 (16)0.0228 (15)0.0081 (12)0.0129 (14)
C4B0.0376 (17)0.061 (2)0.0451 (19)0.0123 (16)0.0061 (14)0.0113 (16)
C5B0.0419 (17)0.0538 (19)0.0346 (17)0.0148 (15)0.0076 (13)0.0031 (14)
C6B0.0379 (17)0.0523 (18)0.0322 (16)0.0162 (15)0.0061 (12)0.0073 (13)
C7B0.056 (2)0.0468 (18)0.0443 (19)0.0197 (16)0.0020 (15)0.0011 (14)
C8B0.0414 (18)0.0483 (18)0.0370 (17)0.0169 (15)0.0093 (14)0.0086 (14)
C9B0.0345 (16)0.0461 (17)0.0373 (17)0.0137 (14)0.0104 (12)0.0083 (13)
C10B0.0464 (18)0.0572 (19)0.0385 (17)0.0252 (16)0.0092 (14)0.0086 (14)
C11B0.0488 (19)0.061 (2)0.0369 (18)0.0231 (17)0.0097 (14)0.0085 (15)
C12B0.0432 (18)0.0501 (18)0.0411 (18)0.0109 (15)0.0171 (14)0.0046 (14)
C13B0.0414 (18)0.059 (2)0.053 (2)0.0226 (16)0.0099 (15)0.0015 (16)
C14B0.0420 (18)0.0561 (19)0.0426 (18)0.0192 (16)0.0063 (14)0.0067 (15)
C15B0.055 (2)0.074 (2)0.052 (2)0.0217 (19)0.0174 (16)0.0008 (17)
O1W0.0640 (15)0.0639 (14)0.0506 (13)0.0369 (12)0.0237 (11)0.0180 (11)
O2W0.0596 (14)0.0589 (14)0.0377 (12)0.0211 (12)0.0085 (10)0.0093 (10)
O3W0.0558 (14)0.0637 (15)0.0429 (12)0.0306 (12)0.0092 (10)0.0048 (11)
O4W0.0626 (15)0.0585 (14)0.0422 (12)0.0260 (12)0.0129 (10)0.0023 (10)
Geometric parameters (Å, º) top
Na1A—Na1Ai3.314 (2)Na1B—O1Wi2.607 (3)
Na1A—O1Ai2.441 (2)Na1B—O2Wiii2.538 (2)
Na1A—O2A2.298 (2)Na1B—O3W2.417 (2)
Na1A—O2Ai2.636 (2)Na1B—O4W2.460 (2)
Na1A—C1Ai2.838 (3)O1B—C1B1.243 (3)
Na1A—Na1Bii3.9976 (16)O2B—C1B1.250 (3)
Na1A—Na1Bi3.2629 (17)O3B—C8B1.241 (4)
Na1A—O1W2.364 (2)N1B—C3B1.362 (4)
Na1A—O2W2.417 (2)N1B—C6B1.385 (4)
Na1A—O4Wi2.493 (2)N1B—C7B1.461 (4)
O1A—C1A1.249 (3)C1B—C2B1.522 (4)
O1A—Na1B2.481 (2)C2B—H2BA0.9700
O2A—C1A1.250 (3)C2B—H2BB0.9700
O3A—C8A1.232 (3)C2B—C3B1.479 (4)
N1A—C3A1.359 (4)C3B—C4B1.376 (4)
N1A—C6A1.387 (3)C4B—H4B0.9300
N1A—C7A1.461 (4)C4B—C5B1.382 (4)
C1A—C2A1.526 (4)C5B—H5B0.9300
C2A—H2AA0.9700C5B—C6B1.387 (4)
C2A—H2AB0.9700C6B—C8B1.446 (4)
C2A—C3A1.488 (4)C7B—H7BA0.9600
C3A—C4A1.371 (4)C7B—H7BB0.9600
C4A—H4A0.9300C7B—H7BC0.9600
C4A—C5A1.384 (4)C8B—C9B1.494 (4)
C5A—H5A0.9300C9B—C10B1.395 (4)
C5A—C6A1.394 (4)C9B—C14B1.371 (4)
C6A—C8A1.448 (4)C10B—H10B0.9300
C7A—H7AA0.9600C10B—C11B1.376 (4)
C7A—H7AB0.9600C11B—H11B0.9300
C7A—H7AC0.9600C11B—C12B1.393 (4)
C8A—C9A1.494 (4)C12B—C13B1.379 (4)
C9A—C10A1.394 (4)C12B—C15B1.510 (4)
C9A—C14A1.387 (4)C13B—H13B0.9300
C10A—H10A0.9300C13B—C14B1.380 (4)
C10A—C11A1.376 (4)C14B—H14B0.9300
C11A—H11A0.9300C15B—H15D0.9600
C11A—C12A1.391 (4)C15B—H15E0.9600
C12A—C13A1.375 (4)C15B—H15F0.9600
C12A—C15A1.503 (4)O1W—H1WA0.8897
C13A—H13A0.9300O1W—H1WB0.8899
C13A—C14A1.384 (4)O2W—H2WA0.8899
C14A—H14A0.9300O2W—H2WB0.8899
C15A—H15A0.9600O3W—H3WA0.8905
C15A—H15B0.9600O3W—H3WB0.8905
C15A—H15C0.9600O4W—H4WA0.8897
Na1B—O1B2.416 (2)O4W—H4WB0.8902
Na1Ai—Na1A—Na1Bii135.58 (5)H15A—C15A—H15C109.5
O1Ai—Na1A—Na1Ai94.89 (7)H15B—C15A—H15C109.5
O1Ai—Na1A—O2Ai51.31 (6)Na1Ai—Na1B—Na1Aiii103.67 (4)
O1Ai—Na1A—C1Ai26.00 (7)O1A—Na1B—Na1Ai47.95 (5)
O1Ai—Na1A—Na1Bi49.01 (5)O1A—Na1B—Na1Aiii81.27 (6)
O1Ai—Na1A—Na1Bii61.96 (6)O1A—Na1B—O1Wi83.94 (8)
O1Ai—Na1A—O4Wi78.93 (8)O1A—Na1B—O2Wiii111.77 (8)
O2Ai—Na1A—Na1Ai43.62 (5)O1B—Na1B—Na1Ai116.87 (7)
O2A—Na1A—Na1Ai52.29 (6)O1B—Na1B—Na1Aiii107.75 (6)
O2A—Na1A—O1Ai147.11 (9)O1B—Na1B—O1A164.64 (8)
O2A—Na1A—O2Ai95.91 (8)O1B—Na1B—O1Wi84.57 (8)
O2Ai—Na1A—C1Ai26.07 (7)O1B—Na1B—O2Wiii81.05 (7)
O2A—Na1A—C1Ai121.17 (9)O1B—Na1B—O3W101.75 (9)
O2Ai—Na1A—Na1Bii104.45 (6)O1B—Na1B—O4W88.42 (8)
O2A—Na1A—Na1Bi142.94 (8)O1Wi—Na1B—Na1Ai45.82 (5)
O2Ai—Na1A—Na1Bi84.23 (6)O1Wi—Na1B—Na1Aiii84.57 (6)
O2A—Na1A—Na1Bii138.04 (8)O2Wiii—Na1B—Na1Aiii35.20 (5)
O2A—Na1A—O1W121.00 (9)O2Wiii—Na1B—Na1Ai137.63 (7)
O2A—Na1A—O2W103.90 (9)O2Wiii—Na1B—O1Wi104.60 (8)
O2A—Na1A—O4Wi95.91 (8)O3W—Na1B—Na1Aiii107.78 (6)
C1Ai—Na1A—Na1Ai69.18 (7)O3W—Na1B—Na1Ai118.49 (7)
C1Ai—Na1A—Na1Bii80.46 (6)O3W—Na1B—O1A86.73 (8)
C1Ai—Na1A—Na1Bi68.45 (6)O3W—Na1B—O1Wi163.22 (8)
Na1Bi—Na1A—Na1Ai118.26 (6)O3W—Na1B—O2Wiii91.80 (8)
Na1Bi—Na1A—Na1Bii76.33 (4)O3W—Na1B—O4W89.29 (8)
O1W—Na1A—Na1Ai158.68 (9)O4W—Na1B—Na1Aiii152.90 (7)
O1W—Na1A—O1Ai90.21 (8)O4W—Na1B—Na1Ai49.23 (6)
O1W—Na1A—O2Ai136.23 (9)O4W—Na1B—O1A78.81 (8)
O1W—Na1A—C1Ai115.58 (9)O4W—Na1B—O1Wi75.24 (8)
O1W—Na1A—Na1Bi52.29 (6)O4W—Na1B—O2Wiii169.41 (8)
O1W—Na1A—Na1Bii64.50 (6)C1B—O1B—Na1B126.86 (19)
O1W—Na1A—O2W93.84 (8)C3B—N1B—C6B109.0 (2)
O1W—Na1A—O4Wi79.14 (8)C3B—N1B—C7B125.0 (2)
O2W—Na1A—Na1Ai107.35 (7)C6B—N1B—C7B125.7 (2)
O2W—Na1A—O1Ai82.17 (8)O1B—C1B—O2B125.0 (3)
O2W—Na1A—O2Ai99.52 (8)O1B—C1B—C2B116.3 (3)
O2W—Na1A—C1Ai86.62 (8)O2B—C1B—C2B118.7 (2)
O2W—Na1A—Na1Bi112.65 (7)C1B—C2B—H2BA108.2
O2W—Na1A—Na1Bii37.26 (6)C1B—C2B—H2BB108.2
O2W—Na1A—O4Wi159.77 (8)H2BA—C2B—H2BB107.3
O4Wi—Na1A—Na1Ai81.55 (7)C3B—C2B—C1B116.5 (2)
O4Wi—Na1A—O2Ai74.06 (8)C3B—C2B—H2BA108.2
O4Wi—Na1A—C1Ai79.57 (8)C3B—C2B—H2BB108.2
O4Wi—Na1A—Na1Bi48.35 (6)N1B—C3B—C2B123.9 (3)
O4Wi—Na1A—Na1Bii124.68 (6)N1B—C3B—C4B107.9 (2)
Na1Ai—O1A—Na1B83.04 (7)C4B—C3B—C2B128.1 (3)
C1A—O1A—Na1Ai95.05 (17)C3B—C4B—H4B125.9
C1A—O1A—Na1B132.45 (19)C3B—C4B—C5B108.2 (3)
Na1A—O2A—Na1Ai84.09 (8)C5B—C4B—H4B125.9
C1A—O2A—Na1Ai86.05 (17)C4B—C5B—H5B126.1
C1A—O2A—Na1A163.4 (2)C4B—C5B—C6B107.8 (3)
C3A—N1A—C6A109.3 (2)C6B—C5B—H5B126.1
C3A—N1A—C7A124.8 (2)N1B—C6B—C5B107.0 (3)
C6A—N1A—C7A125.4 (2)N1B—C6B—C8B123.9 (3)
O1A—C1A—Na1Ai58.95 (14)C5B—C6B—C8B127.8 (3)
O1A—C1A—O2A123.8 (3)N1B—C7B—H7BA109.5
O1A—C1A—C2A116.3 (2)N1B—C7B—H7BB109.5
O2A—C1A—Na1Ai67.89 (15)N1B—C7B—H7BC109.5
O2A—C1A—C2A119.8 (2)H7BA—C7B—H7BB109.5
C2A—C1A—Na1Ai158.3 (2)H7BA—C7B—H7BC109.5
C1A—C2A—H2AA107.9H7BB—C7B—H7BC109.5
C1A—C2A—H2AB107.9O3B—C8B—C6B123.2 (3)
H2AA—C2A—H2AB107.2O3B—C8B—C9B119.5 (3)
C3A—C2A—C1A117.4 (2)C6B—C8B—C9B117.3 (3)
C3A—C2A—H2AA107.9C10B—C9B—C8B121.3 (3)
C3A—C2A—H2AB107.9C14B—C9B—C8B120.0 (3)
N1A—C3A—C2A123.8 (3)C14B—C9B—C10B118.7 (3)
N1A—C3A—C4A108.1 (2)C9B—C10B—H10B120.1
C4A—C3A—C2A128.1 (3)C11B—C10B—C9B119.9 (3)
C3A—C4A—H4A125.8C11B—C10B—H10B120.1
C3A—C4A—C5A108.4 (3)C10B—C11B—H11B119.2
C5A—C4A—H4A125.8C10B—C11B—C12B121.5 (3)
C4A—C5A—H5A126.2C12B—C11B—H11B119.2
C4A—C5A—C6A107.6 (3)C11B—C12B—C15B120.0 (3)
C6A—C5A—H5A126.2C13B—C12B—C11B117.7 (3)
N1A—C6A—C5A106.6 (3)C13B—C12B—C15B122.3 (3)
N1A—C6A—C8A124.4 (3)C12B—C13B—H13B119.5
C5A—C6A—C8A127.6 (3)C12B—C13B—C14B121.1 (3)
N1A—C7A—H7AA109.5C14B—C13B—H13B119.5
N1A—C7A—H7AB109.5C9B—C14B—C13B121.1 (3)
N1A—C7A—H7AC109.5C9B—C14B—H14B119.5
H7AA—C7A—H7AB109.5C13B—C14B—H14B119.5
H7AA—C7A—H7AC109.5C12B—C15B—H15D109.5
H7AB—C7A—H7AC109.5C12B—C15B—H15E109.5
O3A—C8A—C6A123.4 (3)C12B—C15B—H15F109.5
O3A—C8A—C9A119.5 (3)H15D—C15B—H15E109.5
C6A—C8A—C9A117.0 (3)H15D—C15B—H15F109.5
C10A—C9A—C8A122.0 (3)H15E—C15B—H15F109.5
C14A—C9A—C8A119.9 (3)Na1A—O1W—Na1Bi81.89 (7)
C14A—C9A—C10A118.0 (3)Na1A—O1W—H1WA120.2
C9A—C10A—H10A119.7Na1A—O1W—H1WB105.3
C11A—C10A—C9A120.5 (3)Na1Bi—O1W—H1WA120.3
C11A—C10A—H10A119.7Na1Bi—O1W—H1WB115.2
C10A—C11A—H11A119.2H1WA—O1W—H1WB110.6
C10A—C11A—C12A121.5 (3)Na1A—O2W—Na1Bii107.54 (9)
C12A—C11A—H11A119.2Na1A—O2W—H2WA110.1
C11A—C12A—C15A119.7 (3)Na1A—O2W—H2WB119.8
C13A—C12A—C11A117.6 (3)Na1Bii—O2W—H2WA97.1
C13A—C12A—C15A122.7 (3)Na1Bii—O2W—H2WB115.5
C12A—C13A—H13A119.2H2WA—O2W—H2WB104.2
C12A—C13A—C14A121.5 (3)Na1B—O3W—H3WA110.1
C14A—C13A—H13A119.2Na1B—O3W—H3WB111.9
C9A—C14A—H14A119.7H3WA—O3W—H3WB106.7
C13A—C14A—C9A120.7 (3)Na1Ai—O4W—H4WA118.6
C13A—C14A—H14A119.7Na1Ai—O4W—H4WB139.0
C12A—C15A—H15A109.5Na1B—O4W—Na1Ai82.42 (7)
C12A—C15A—H15B109.5Na1B—O4W—H4WA117.6
C12A—C15A—H15C109.5Na1B—O4W—H4WB105.9
H15A—C15A—H15B109.5H4WA—O4W—H4WB93.5
Na1Ai—O1A—C1A—O2A21.2 (3)C15A—C12A—C13A—C14A178.7 (3)
Na1Ai—O1A—C1A—C2A155.9 (2)Na1B—O1A—C1A—Na1Ai85.19 (19)
Na1A—O2A—C1A—Na1Ai53.7 (6)Na1B—O1A—C1A—O2A64.0 (4)
Na1Ai—O2A—C1A—O1A19.5 (3)Na1B—O1A—C1A—C2A119.0 (2)
Na1A—O2A—C1A—O1A73.2 (8)Na1B—O1B—C1B—O2B40.8 (4)
Na1Ai—O2A—C1A—C2A157.4 (2)Na1B—O1B—C1B—C2B141.7 (2)
Na1A—O2A—C1A—C2A103.7 (7)O1B—C1B—C2B—C3B170.7 (3)
Na1Ai—C1A—C2A—C3A120.9 (5)O2B—C1B—C2B—C3B11.7 (4)
O1A—C1A—C2A—C3A167.4 (3)O3B—C8B—C9B—C10B144.1 (3)
O2A—C1A—C2A—C3A15.5 (4)O3B—C8B—C9B—C14B34.1 (4)
O3A—C8A—C9A—C10A142.0 (3)N1B—C3B—C4B—C5B2.0 (3)
O3A—C8A—C9A—C14A34.9 (4)N1B—C6B—C8B—O3B16.1 (5)
N1A—C3A—C4A—C5A0.8 (3)N1B—C6B—C8B—C9B166.3 (3)
N1A—C6A—C8A—O3A15.4 (5)C1B—C2B—C3B—N1B71.0 (4)
N1A—C6A—C8A—C9A168.0 (3)C1B—C2B—C3B—C4B105.8 (3)
C1A—C2A—C3A—N1A70.1 (4)C2B—C3B—C4B—C5B179.2 (3)
C1A—C2A—C3A—C4A110.7 (3)C3B—N1B—C6B—C5B1.6 (3)
C2A—C3A—C4A—C5A178.5 (3)C3B—N1B—C6B—C8B169.0 (3)
C3A—N1A—C6A—C5A1.0 (3)C3B—C4B—C5B—C6B1.1 (4)
C3A—N1A—C6A—C8A168.7 (3)C4B—C5B—C6B—N1B0.3 (3)
C3A—C4A—C5A—C6A0.2 (3)C4B—C5B—C6B—C8B167.0 (3)
C4A—C5A—C6A—N1A0.5 (3)C5B—C6B—C8B—O3B148.6 (3)
C4A—C5A—C6A—C8A167.7 (3)C5B—C6B—C8B—C9B29.0 (4)
C5A—C6A—C8A—O3A149.7 (3)C6B—N1B—C3B—C2B179.5 (3)
C5A—C6A—C8A—C9A26.9 (4)C6B—N1B—C3B—C4B2.2 (3)
C6A—N1A—C3A—C2A178.3 (2)C6B—C8B—C9B—C10B38.2 (4)
C6A—N1A—C3A—C4A1.1 (3)C6B—C8B—C9B—C14B143.6 (3)
C6A—C8A—C9A—C10A41.3 (4)C7B—N1B—C3B—C2B6.3 (4)
C6A—C8A—C9A—C14A141.8 (3)C7B—N1B—C3B—C4B176.4 (3)
C7A—N1A—C3A—C2A6.0 (4)C7B—N1B—C6B—C5B175.7 (3)
C7A—N1A—C3A—C4A173.4 (2)C7B—N1B—C6B—C8B16.9 (4)
C7A—N1A—C6A—C5A173.2 (2)C8B—C9B—C10B—C11B180.0 (3)
C7A—N1A—C6A—C8A19.0 (4)C8B—C9B—C14B—C13B179.1 (3)
C8A—C9A—C10A—C11A178.7 (3)C9B—C10B—C11B—C12B0.3 (5)
C8A—C9A—C14A—C13A179.9 (3)C10B—C9B—C14B—C13B2.7 (5)
C9A—C10A—C11A—C12A0.5 (5)C10B—C11B—C12B—C13B0.3 (5)
C10A—C9A—C14A—C13A2.8 (5)C10B—C11B—C12B—C15B178.3 (3)
C10A—C11A—C12A—C13A0.3 (5)C11B—C12B—C13B—C14B0.6 (5)
C10A—C11A—C12A—C15A177.7 (3)C12B—C13B—C14B—C9B2.1 (5)
C11A—C12A—C13A—C14A1.3 (5)C14B—C9B—C10B—C11B1.8 (5)
C12A—C13A—C14A—C9A2.7 (5)C15B—C12B—C13B—C14B179.1 (3)
C14A—C9A—C10A—C11A1.8 (4)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z; (iii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O3A0.892.123.002 (3)169
O1W—H1WB···O1Aii0.892.002.665 (4)130
O2W—H2WA···O2Bii0.891.882.741 (3)161
O2W—H2WB···O2Biv0.892.133.019 (3)172
O3W—H3WA···O3Bv0.892.162.961 (3)150
O3W—H3WB···O1Biv0.891.842.699 (4)161
O4W—H4WA···O1Biv0.892.192.894 (3)136
O4W—H4WB···O3Wiv0.892.022.889 (3)163
Symmetry codes: (ii) x+1, y, z; (iv) x+1, y, z+1; (v) x, y, z+1.
 

References

First citationAkl, M. A., Ismael, H. R., Abd Allah, F. I., Kassem, A. A. & Samy, A. M. (2019). Drug Dev. Ind. Pharm. 45, 252–264.  CrossRef CAS PubMed Google Scholar
First citationAuda, S. H., El-Rasoul, S. A., Ahmed, M. M., Osman, S. K. & El-Badry, M. (2015). J. Pharm. Investig. 45, 311–317.  CrossRef CAS Google Scholar
First citationBurgi, H.-B. & Dunitz, J. D. (1994). Structure Correlation, vol. 2, pp. 741–784. Weinheim: VCH.  Google Scholar
First citationCordrey, L. J. (1976). J. Am. Geriatr. Soc. 24, 440–446.  CrossRef CAS PubMed Google Scholar
First citationDendrinou-Samara, C., Kessissoglou, D. P., Manoussakis, G. E., Mentzafos, D. & Terzis, A. (1990). J. Chem. Soc. Dalton Trans. pp. 959–965.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDuffy, C. P., Elliott, C. J., O'Connor, R. A., Heenan, M. M., Coyle, S., Cleary, I. M., Kavanagh, K., Verhaegen, S., O'Loughlin, C. M., NicAmhlaoibh, R. & Clynes, M. (1998). Eur. J. Cancer, 34, 1250–1259.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKlippel, J. H., Stone, J. H., Crofford, L. J. & White, P. H. (2010). Nonsteroidal Anti-Inflammatory Drugs. In The Pocket Primer on the Rheumatic Diseases. London: Springer.  Google Scholar
First citationLou, B.-Y., Guo, X. & Lin, Q. (2008). Acta Cryst. E64, o1439.  CSD CrossRef IUCr Journals Google Scholar
First citationLu, D., Cottam, H. B., Corr, M. & Carson, D. A. (2005). Proc. Natl Acad. Sci. USA, 102, 18567–18571.  CrossRef PubMed CAS Google Scholar
First citationMcEvoy, G. K. (2007). Editor. AHFS Drug Information, pp. 2118–2122. Bethesda, MD: American Society of Health-System Pharmacists.  Google Scholar
First citationMoreland, L. W. (2004). Tolmetin. Rheumatology and Immunology Therapy. Berlin, Heidelberg: Springer.  Google Scholar
First citationRamadan, A. A., Elbakry, A. M., Esmaeil, A. H. & Khaleel, S. A. (2018). J. Pharm. Investig. 48, 673–683.  CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. University of Western Australia. http://hirshfeldsurface.net.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds