research communications
E)-1,3-dimethyl-2-[3-(4-nitrophenyl)triaz-2-enylidene]-2,3-dihydro-1H-imidazole
and spectroscopic properties of (aDepartment of Chemistry & Physics, Florida Gulf Coast University, 10501 FGCU, Boulevard South, Fort Myers, FL 33965, USA, bFacultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Nuevo Campus Universitario, Circuito Universitario, Chihuahua, Chih., CP 31125, Mexico, cDepartment of Chemistry and Physics, Ave Maria University, 5050 Ave Maria Blvd, Ave Maria, FL 34142, USA, and dCentre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagaram, Bangalore 562112, India
*Correspondence e-mail: abugarin@fgcu.edu
The title compound (E)-1,3-dimethyl-2-[3-(4-nitrophenyl)triaz-2-enylidene]-2,3-dihydro-1H-imidazole, C11H12N6O2, has monoclinic (C2/c) symmetry at 100 K. This triazene derivative was synthesized by the coupling reaction of 1,3-dimethylimidazolium iodide with 1-azido-4-nitro benzene in the presence of sodium hydride (60% in mineral oil) and characterized by 1H NMR, 13C NMR, IR, and single-crystal X-ray diffraction. The molecule consists of six-membered and five-membered rings, which are connected by a triazene moiety (–N=N—N–). In the solid-state, the molecule is found to be planar due to conjugation throughout the molecule. The extended structure shows two layers of molecules, which present weak intermolecular interactions that facilitate the stacked arrangement of the molecules forming the extended structure. Furthermore, there are several weak pseudo-cyclical interactions between the nitro oxygen atoms and symmetry-adjacent H atoms, which help to arrange the molecules.
Keywords: crystal structure; azides; π-conjugated triazenes; N-heterocyclic carbene.
CCDC reference: 2055595
1. Chemical context
). Triazene derivatives have been studied for their potential anticancer properties (Rouzer et al., 1996; Connors et al., 1976), used as a protecting group in natural product synthesis (Nicolaou et al., 1999) and combinatorial chemistry (Brase et al., 2000), incorporated into polymers (Jones et al., 1997) and oligomer synthesis (Moore, 1997), and used to prepare heterocycles (Wirschun et al., 1998). Their modular nature allows to be converted into a different after treatment with the appropriate reagents. For example, aryl can be transformed to useful cross-coupling reagents (iodoarenes) via iodomethane-induced decomposition (Zollinger, 1994). Further, aryl have been studied for their unique structural and chemical properties (Cornali et al., 2016; Knyazeva et al., 2017). They have been used in medicinal, combinatorial chemistry, in natural synthesis and as organometallic ligands (Kimball et al., 2002). In chemical biology, masked diazonium ions (triazabutadienes) have found use on protein surfaces for identifying host proteins that interact during early stages of viral entities (Jensen et al., 2016; Shadmehr et al., 2018). In addition, triazabutadienes have shown tunable reactivity under specific conditions. For example, unique transformations of triazabutadienes have been affected via water solubility, pH (Kimani & Jewett, 2015; Guzman et al., 2016; He et al., 2017), and photoinduced isomerization (He et al., 2015). In synthesis, these have been used as starting materials for and under mild reaction conditions (Barragan & Bugarin, 2017; Cornali et al., 2016). Furthermore, natural sunlight has been utilized to activate those to produce bisaryls and (Noonikara-Poyil et al., 2019; Barragan et al., 2020).
are versatile compounds in preparative chemistry because of their stable and highly modular nature (Patil & Bugarin, 20162. Structural commentary
The title compound 1 crystallizes in the monoclinic C2/c with a single moiety in the (see Fig. 1). The molecule is nearly planar with a dihedral angle of 7.36 (9)° between the imidazole and benzene rings. Plane I (N1/N3/C2/C4–C7) makes dihedral angles of 9.70 (3) and 2.40 (6)°, respectively, with planes II (N7/C8–C13) and III (N4–N6) while plane II makes a dihedral angle of 7.36 (4)° with plane III.
There are no lattice-held water molecules or organic solvent molecules in the 1 are similar to those reported for analogous structures (Khramov & Bielawski, 2005; Jishkariani et al., 2013). The C—C bond lengths in the phenyl rings are in the normal range of 1.33–1.40 Å, which is characteristic of delocalized phenyl rings. The C—C—C bond angles are around 120°, with the variation being less than 2°, which is characteristic of sp2-hybridized carbons.
of the determined structure, a potential issue since the starting material 1,3-dimethylimidazolium iodide is hydroscopic. The bond lengths and angles in3. Supramolecular features
Figs. 2 and 3 show a perspective view of the crystal packing of the title compound. The packing diagram shows two layers of molecules, which are independently arranged in the without intra- and inter molecular hydrogen bonds. In each layer, the molecules are alternately parallel.
4. Database survey
The first X-ray structure of a π-conjugated triazene was reported by Khramov & Bielawski (2005). The current WebCSD structural database includes the structures of only 18 π-conjugated However, there is only one structure, reported by our research group (Patil & Bugarin, 2014), that utilizes the small molecule (1,3-dimethylimidazolium iodide) as the carbene coupling partner, and one more that bears an electron-deficient aryl group in combination with the small carbene precursor (Patil et al., 2014). Those characteristics highlight the novelty and uniqueness of the compound reported herein.
5. Synthesis and crystallization
1-Azido-4-nitro benzene (Siddiki et al., 2013) and 1,3-dimethylimidazolium iodide (Oertel et al., 2011) were prepared according to literature procedures. For the synthesis of the title compound, 1-azido-4-nitro benzene (131.2 mg, 0.8 mmol) and 1,3-dimethylimidazolium iodide (89.5 mg, 0.4 mmol) were stirred at room temperature for 5 min. in dry THF (5 mL). NaH (16 mg, 0.4 mmol, 60% in mineral oil) was added in one portion and stirring was continued at room temperature overnight. A red precipitate formed, which was collected by filtration and dried under reduced pressure, giving the pure product (E)-1,3-dimethyl-2-[(4-nitrophenyl)triaz-2-enylidene])-2,3-dihydro-1H-imidazole as a red crystalline solid (88.2 mg, 85%). Crystals suitable for X-ray analysis were grown from the slow evaporation of a THF/hexane mixture yielding air-stable, red-colored crystals.
IR (neat) ν 3435, 1572, 1382, 1360, 1233 cm−1. 1H NMR (400 MHz, DMSO-d6): δ 8.12 (d, J = 9.2 Hz, 2 H, Ph-H), 7.43 (d, J = 9.2 Hz, 2 H, Ph-H), 7.13 (s, 2 H, NCH), 3.62 (s, 6 H, N—CH3). 13C NMR (100 MHz, DMSO-d6): δ 159.1, 150.7, 143.2, 125.5, 120.8, 118.9, 35.7. UV/Vis (0.1 µM, CH2Cl2): λ (ɛ) = 450 nm. HRMS (ESI, N2): m/z calculated for C11H12N6O2Na [M + Na]+ 283.0914, found 283.0918.
6. Refinement
Crystal data, data collection and structure . H atoms were included in calculated positions and treated as riding atoms: C—H = 0.95–0.98 Å with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-methyl).
details are summarized in Table 1Supporting information
CCDC reference: 2055595
https://doi.org/10.1107/S2056989021000426/jy2004sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021000426/jy2004Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021000426/jy2004Isup4.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2056989021000426/jy2004Isup4.cml
Data collection: APEX3 (Bruker, 2018); cell
SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C11H12N6O2 | F(000) = 1088 |
Mr = 260.27 | Dx = 1.478 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 27.7311 (18) Å | Cell parameters from 4851 reflections |
b = 7.1747 (9) Å | θ = 3.0–27.8° |
c = 11.7849 (14) Å | µ = 0.11 mm−1 |
β = 94.101 (4)° | T = 100 K |
V = 2338.7 (4) Å3 | Plates, red |
Z = 8 | 0.11 × 0.05 × 0.02 mm |
Bruker AXS D8 Quest diffractometer with PhotonII charge-integrating pixel array detector (CPAD) | 2206 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.077 |
Absorption correction: multi-scan (SADABS; Bruker, 2018) | θmax = 27.9°, θmin = 2.9° |
Tmin = 0.655, Tmax = 0.746 | h = −36→36 |
23709 measured reflections | k = −9→9 |
2807 independent reflections | l = −15→15 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.070 | H-atom parameters constrained |
wR(F2) = 0.158 | w = 1/[σ2(Fo2) + (0.0623P)2 + 4.2467P] where P = (Fo2 + 2Fc2)/3 |
S = 1.16 | (Δ/σ)max < 0.001 |
2807 reflections | Δρmax = 0.36 e Å−3 |
174 parameters | Δρmin = −0.37 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O2 | 0.90725 (6) | 0.6192 (3) | 0.42545 (14) | 0.0208 (4) | |
O1 | 0.91792 (6) | 0.7705 (3) | 0.58417 (15) | 0.0231 (4) | |
N5 | 0.67583 (7) | 0.4345 (3) | 0.54983 (15) | 0.0122 (4) | |
N3 | 0.60385 (7) | 0.2903 (3) | 0.39246 (15) | 0.0133 (4) | |
N6 | 0.70494 (7) | 0.4980 (3) | 0.63041 (15) | 0.0144 (4) | |
N1 | 0.55532 (7) | 0.2913 (3) | 0.52968 (16) | 0.0163 (4) | |
N7 | 0.89267 (7) | 0.6760 (3) | 0.51636 (16) | 0.0156 (4) | |
N4 | 0.63305 (7) | 0.3932 (3) | 0.58753 (15) | 0.0147 (4) | |
C2 | 0.60118 (8) | 0.3293 (3) | 0.50481 (18) | 0.0132 (5) | |
C8 | 0.75071 (8) | 0.5395 (3) | 0.59381 (18) | 0.0131 (5) | |
C13 | 0.76739 (8) | 0.4927 (3) | 0.48705 (19) | 0.0138 (5) | |
H13 | 0.746476 | 0.430092 | 0.432205 | 0.017* | |
C10 | 0.82858 (8) | 0.6785 (3) | 0.64889 (18) | 0.0140 (5) | |
H10 | 0.849717 | 0.740951 | 0.703362 | 0.017* | |
C12 | 0.81359 (8) | 0.5371 (3) | 0.46184 (19) | 0.0150 (5) | |
H12 | 0.824761 | 0.505139 | 0.390018 | 0.018* | |
C9 | 0.78212 (8) | 0.6344 (3) | 0.67289 (18) | 0.0140 (5) | |
H9 | 0.771038 | 0.668868 | 0.744390 | 0.017* | |
C11 | 0.84393 (8) | 0.6295 (3) | 0.54293 (19) | 0.0148 (5) | |
C7 | 0.64554 (8) | 0.3132 (3) | 0.32329 (18) | 0.0157 (5) | |
H7A | 0.656635 | 0.442877 | 0.327693 | 0.023* | |
H7B | 0.635989 | 0.281514 | 0.243959 | 0.023* | |
H7C | 0.671761 | 0.230600 | 0.352109 | 0.023* | |
C4 | 0.55897 (8) | 0.2268 (4) | 0.34928 (19) | 0.0184 (5) | |
H4 | 0.550771 | 0.189696 | 0.272952 | 0.022* | |
C5 | 0.52938 (8) | 0.2270 (4) | 0.4335 (2) | 0.0200 (5) | |
H5 | 0.496428 | 0.189691 | 0.428140 | 0.024* | |
C6 | 0.53830 (9) | 0.3056 (4) | 0.6434 (2) | 0.0249 (6) | |
H6A | 0.553996 | 0.209729 | 0.692393 | 0.037* | |
H6B | 0.503190 | 0.287618 | 0.639429 | 0.037* | |
H6C | 0.546263 | 0.429166 | 0.674856 | 0.037* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O2 | 0.0169 (8) | 0.0327 (10) | 0.0134 (8) | −0.0025 (7) | 0.0046 (6) | 0.0010 (8) |
O1 | 0.0202 (9) | 0.0287 (10) | 0.0195 (9) | −0.0084 (8) | −0.0042 (7) | −0.0001 (8) |
N5 | 0.0143 (9) | 0.0132 (9) | 0.0092 (8) | 0.0006 (7) | 0.0006 (7) | 0.0000 (7) |
N3 | 0.0145 (9) | 0.0185 (10) | 0.0072 (8) | −0.0003 (8) | 0.0022 (7) | 0.0002 (7) |
N6 | 0.0159 (10) | 0.0204 (10) | 0.0070 (8) | 0.0011 (8) | 0.0010 (7) | −0.0003 (8) |
N1 | 0.0133 (9) | 0.0269 (11) | 0.0089 (9) | −0.0009 (8) | 0.0009 (7) | 0.0009 (8) |
N7 | 0.0147 (9) | 0.0192 (10) | 0.0126 (9) | −0.0016 (8) | −0.0004 (7) | 0.0040 (8) |
N4 | 0.0136 (9) | 0.0226 (10) | 0.0080 (8) | 0.0006 (8) | 0.0013 (7) | −0.0019 (8) |
C2 | 0.0158 (11) | 0.0162 (11) | 0.0076 (10) | 0.0026 (9) | 0.0002 (8) | 0.0020 (8) |
C8 | 0.0161 (11) | 0.0134 (10) | 0.0097 (10) | 0.0022 (9) | 0.0002 (8) | 0.0015 (8) |
C13 | 0.0149 (11) | 0.0172 (11) | 0.0090 (10) | −0.0015 (9) | −0.0004 (8) | −0.0032 (8) |
C10 | 0.0174 (11) | 0.0156 (11) | 0.0084 (10) | 0.0001 (9) | −0.0035 (8) | 0.0003 (8) |
C12 | 0.0180 (11) | 0.0183 (11) | 0.0088 (10) | 0.0005 (9) | 0.0014 (8) | 0.0017 (9) |
C9 | 0.0184 (11) | 0.0177 (11) | 0.0059 (9) | 0.0032 (9) | 0.0003 (8) | 0.0008 (9) |
C11 | 0.0146 (11) | 0.0179 (11) | 0.0118 (10) | −0.0005 (9) | −0.0007 (8) | 0.0052 (9) |
C7 | 0.0164 (11) | 0.0238 (12) | 0.0073 (10) | −0.0006 (9) | 0.0047 (8) | −0.0004 (9) |
C4 | 0.0171 (11) | 0.0281 (13) | 0.0096 (10) | −0.0009 (10) | −0.0024 (8) | −0.0011 (10) |
C5 | 0.0146 (11) | 0.0308 (14) | 0.0141 (11) | −0.0040 (10) | −0.0032 (9) | 0.0027 (10) |
C6 | 0.0169 (11) | 0.0473 (17) | 0.0112 (11) | −0.0049 (12) | 0.0063 (9) | −0.0017 (11) |
O2—N7 | 1.241 (3) | C13—C12 | 1.373 (3) |
O1—N7 | 1.228 (3) | C10—H10 | 0.9500 |
N5—N6 | 1.285 (3) | C10—C9 | 1.375 (3) |
N5—N4 | 1.330 (3) | C10—C11 | 1.393 (3) |
N3—C2 | 1.360 (3) | C12—H12 | 0.9500 |
N3—C7 | 1.471 (3) | C12—C11 | 1.395 (3) |
N3—C4 | 1.387 (3) | C9—H9 | 0.9500 |
N6—C8 | 1.402 (3) | C7—H7A | 0.9800 |
N1—C2 | 1.353 (3) | C7—H7B | 0.9800 |
N1—C5 | 1.378 (3) | C7—H7C | 0.9800 |
N1—C6 | 1.456 (3) | C4—H4 | 0.9500 |
N7—C11 | 1.448 (3) | C4—C5 | 1.332 (3) |
N4—C2 | 1.348 (3) | C5—H5 | 0.9500 |
C8—C13 | 1.412 (3) | C6—H6A | 0.9800 |
C8—C9 | 1.405 (3) | C6—H6B | 0.9800 |
C13—H13 | 0.9500 | C6—H6C | 0.9800 |
N6—N5—N4 | 111.13 (17) | C11—C12—H12 | 120.4 |
C2—N3—C7 | 128.02 (19) | C8—C9—H9 | 119.3 |
C2—N3—C4 | 108.35 (18) | C10—C9—C8 | 121.4 (2) |
C4—N3—C7 | 123.61 (18) | C10—C9—H9 | 119.3 |
N5—N6—C8 | 112.51 (18) | C10—C11—N7 | 119.1 (2) |
C2—N1—C5 | 109.43 (19) | C10—C11—C12 | 121.7 (2) |
C2—N1—C6 | 123.82 (19) | C12—C11—N7 | 119.2 (2) |
C5—N1—C6 | 126.6 (2) | N3—C7—H7A | 109.5 |
O2—N7—C11 | 118.54 (19) | N3—C7—H7B | 109.5 |
O1—N7—O2 | 122.5 (2) | N3—C7—H7C | 109.5 |
O1—N7—C11 | 118.95 (19) | H7A—C7—H7B | 109.5 |
N5—N4—C2 | 112.85 (18) | H7A—C7—H7C | 109.5 |
N1—C2—N3 | 106.65 (19) | H7B—C7—H7C | 109.5 |
N4—C2—N3 | 134.0 (2) | N3—C4—H4 | 125.9 |
N4—C2—N1 | 119.30 (19) | C5—C4—N3 | 108.1 (2) |
N6—C8—C13 | 125.8 (2) | C5—C4—H4 | 125.9 |
N6—C8—C9 | 115.53 (19) | N1—C5—H5 | 126.3 |
C9—C8—C13 | 118.6 (2) | C4—C5—N1 | 107.5 (2) |
C8—C13—H13 | 119.7 | C4—C5—H5 | 126.3 |
C12—C13—C8 | 120.5 (2) | N1—C6—H6A | 109.5 |
C12—C13—H13 | 119.7 | N1—C6—H6B | 109.5 |
C9—C10—H10 | 120.7 | N1—C6—H6C | 109.5 |
C9—C10—C11 | 118.5 (2) | H6A—C6—H6B | 109.5 |
C11—C10—H10 | 120.7 | H6A—C6—H6C | 109.5 |
C13—C12—H12 | 120.4 | H6B—C6—H6C | 109.5 |
C13—C12—C11 | 119.2 (2) | ||
O2—N7—C11—C10 | 174.5 (2) | C13—C12—C11—N7 | 179.9 (2) |
O2—N7—C11—C12 | −5.6 (3) | C13—C12—C11—C10 | −0.1 (3) |
O1—N7—C11—C10 | −5.8 (3) | C9—C8—C13—C12 | 0.9 (3) |
O1—N7—C11—C12 | 174.2 (2) | C9—C10—C11—N7 | 179.7 (2) |
N5—N6—C8—C13 | −9.6 (3) | C9—C10—C11—C12 | −0.3 (3) |
N5—N6—C8—C9 | 171.13 (19) | C11—C10—C9—C8 | 1.0 (3) |
N5—N4—C2—N3 | 3.5 (4) | C7—N3—C2—N1 | 178.1 (2) |
N5—N4—C2—N1 | −176.5 (2) | C7—N3—C2—N4 | −1.8 (4) |
N3—C4—C5—N1 | 0.3 (3) | C7—N3—C4—C5 | −178.5 (2) |
N6—N5—N4—C2 | 178.84 (19) | C4—N3—C2—N1 | −0.3 (3) |
N6—C8—C13—C12 | −178.4 (2) | C4—N3—C2—N4 | 179.8 (3) |
N6—C8—C9—C10 | 178.0 (2) | C5—N1—C2—N3 | 0.5 (3) |
N4—N5—N6—C8 | 178.84 (18) | C5—N1—C2—N4 | −179.6 (2) |
C2—N3—C4—C5 | 0.0 (3) | C6—N1—C2—N3 | 176.7 (2) |
C2—N1—C5—C4 | −0.5 (3) | C6—N1—C2—N4 | −3.4 (4) |
C8—C13—C12—C11 | −0.2 (3) | C6—N1—C5—C4 | −176.5 (2) |
C13—C8—C9—C10 | −1.3 (3) |
Acknowledgements
We thank Florida Gulf Coast University and its facilities for the support provided to complete this work.
Funding information
Funding for this research was provided by: American Chemical Society Petroleum Research Fund (award No. 58269-ND1 to Alejandro Bugarin).
References
Barragan, E. & Bugarin, A. (2017). J. Org. Chem. 82, 1499–1506. Web of Science CrossRef CAS PubMed Google Scholar
Barragan, E., Noonikara–Poyil, A. & Bugarin, A. (2020). Asia. J. Org. Chem. 9, 445–445. CrossRef CAS Google Scholar
Bräse, S., Dahmen, S. & Pfefferkorn, M. (2000). J. Comb. Chem. 2, 710–715. Web of Science PubMed Google Scholar
Bruker (2018). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Connors, T. A., Goddard, P. M., Merai, K., Ross, W. C. J. & Wilman, D. E. V. (1976). Biochem. Pharmacol. 25, 241–246. CrossRef PubMed CAS Web of Science Google Scholar
Cornali, B. M., Kimani, F. W. & Jewett, J. C. (2016). Org. Lett. 18, 4948–4950. Web of Science CrossRef CAS PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Guzman, L. E., Kimani, F. W. & Jewett, J. C. (2016). ChemBioChem, 17, 2220–2222. Web of Science CrossRef CAS PubMed Google Scholar
He, J., Kimani, F. W. & Jewett, J. C. (2015). J. Am. Chem. Soc. 137, 9764–9767. Web of Science CrossRef CAS PubMed Google Scholar
He, J., Kimani, F. W. & Jewett, J. C. (2017). Synlett, 28, 1767–1770. Web of Science CrossRef CAS Google Scholar
Jensen, S. M., Kimani, F. W. & Jewett, J. C. (2016). ChemBioChem, 17, 2216–2219. Web of Science CrossRef CAS PubMed Google Scholar
Jishkariani, D., Hall, C. D., Demircan, A., Tomlin, B. J., Steel, P. J. & Katritzky, A. R. (2013). J. Org. Chem. 78, 3349–3354. Web of Science CSD CrossRef CAS PubMed Google Scholar
Jones, L. R., Schumm, J. S. & Tour, J. M. (1997). J. Org. Chem. 62, 1388–1410. CrossRef CAS Web of Science Google Scholar
Khramov, D. M. & Bielawski, C. W. (2005). Chem. Commun. pp. 4958–4960. Web of Science CSD CrossRef Google Scholar
Kimani, F. W. & Jewett, J. C. (2015). Angew. Chem. Int. Ed. 54, 4051–4054. Web of Science CrossRef CAS Google Scholar
Kimball, D. B., Herges, R. & Haley, M. M. (2002). J. Am. Chem. Soc. 124, 1572–1573. Web of Science CrossRef PubMed CAS Google Scholar
Knyazeva, D. C., Kimani, F. W., Blanche, J. L. & Jewett, J. C. (2017). Tetrahedron Lett. 58, 2700–2702. Web of Science CrossRef CAS Google Scholar
Moore, J. S. (1997). Acc. Chem. Res. 30, 402–413. CrossRef CAS Web of Science Google Scholar
Nicolaou, K. C., Boddy, C. N. C., Li, H., Koumbis, A. E., Hughes, R., Natarajan, S., Jain, N. F., Ramanjulu, J. M., Bräse, S. & Solomon, M. E. (1999). Chem. Eur. J. 5, 2602–2621. CrossRef CAS Google Scholar
Noonikara-Poyil, A., Barragan, E., Patil, S. & Bugarin, A. (2019). J. Mex. Chem. Soc. 63, 84–92. CAS Google Scholar
Oertel, A. M., Ritleng, V., Burr, L. & Chetcuti, M. J. (2011). Organometallics, 30, 6685–6691. Web of Science CSD CrossRef CAS Google Scholar
Patil, S. & Bugarin, A. (2014). Acta Cryst. E70, 224–227. CSD CrossRef IUCr Journals Google Scholar
Patil, S. & Bugarin, A. (2016). Eur. J. Org. Chem. pp. 860–870. Web of Science CrossRef Google Scholar
Patil, S., White, K. & Bugarin, A. (2014). Tetrahedron Lett. 55, 4826–4829. Web of Science CSD CrossRef CAS Google Scholar
Rouzer, C. A., Sabourin, M., Skinner, T. L., Thompson, E. J., Wood, T. O., Chmurny, G. N., Klose, J. R., Roman, J. M., Smith, R. H. & Michejda, C. J. (1996). Chem. Res. Toxicol. 9, 172–178. CrossRef CAS PubMed Web of Science Google Scholar
Shadmehr, M., Davis, G. J., Mehari, B. T., Jensen, S. M. & Jewett, J. C. (2018). ChemBioChem, 19, 2550–2552. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Siddiki, A. A., Takale, B. S. & Telvekar, V. N. (2013). Tetrahedron Lett. 54, 1294–1297. Web of Science CrossRef CAS Google Scholar
Wirschun, W., Winkler, M., Lutz, K. & Jochims, J. C. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 1755–1762. Web of Science CSD CrossRef Google Scholar
Zollinger, H. (1994). Diazo Chemistry, Vol I, pp. 382–404. Weinheim: VCH. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.