research communications
2-Chloro-3-nitro-5-(trifluoromethyl)benzoic acid and -benzamide: structural characterization of two precursors for antitubercular benzothiazinones
aInstitut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany, and bMax-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
*Correspondence e-mail: ruediger.seidel@pharmazie.uni-halle.de
8-Nitro-1,3-benzothiazin-4-ones are a promising class of new antitubercular agents, two candidates of which, namely BTZ043 and PBTZ169 (INN: macozinone), have reached clinical trials. The crystal and molecular structures of two synthetic precursors, 2-chloro-3-nitro-5-(trifluoromethyl)benzoic acid, C8H3ClF3NO4 (1), and 2-chloro-3-nitro-5-(trifluoromethyl)benzamide, C8H4ClF3N2O3 (2), are reported. In 1 and 2, the respective carboxy, carboxamide and the nitro groups are significantly twisted out of the plane of the benzene ring. In 1, the nitro group is oriented almost perpendicular to the benzene ring plane. In the crystal, 1 and 2 form O—H⋯O and N—H⋯O hydrogen-bonded dimers, respectively, which in 2 extend into primary amide tapes along the [101] direction. The trifluoromethyl group in 2 exhibits rotational disorder with an occupancy ratio of 0.876 (3):0.124 (3).
1. Chemical context
2-Chloro-3-nitro-5-(trifluoromethyl)benzoic acid (1) and 2-chloro-3-nitro-5-(trifluoromethyl)benzamide (2), the title compounds, have been used as precursors in various synthetic routes to 8-nitro-6-(trifluoromethyl)benzo-1,3-thiazin-4-ones (BTZ) (Makarov et al., 2007; Moellmann et al., 2009; Cooper et al., 2011; Gao et al., 2013; Rudolph, 2014; Peng et al., 2015; Rudolph et al., 2016; Zhang & Aldrich, 2019; Zhang et al., 2019), a promising new class of antitubercular agents, which target the mycobacterial enzyme decaprenylphosphoryl-β-D-ribose 2′-epimerase (DprE1) (Trefzer et al., 2010, 2012; Mikušová et al., 2014; Piton et al., 2017; Richter et al., 2018). Two compounds from this class, viz. BTZ043 and PBTZ169 (INN: macozinone), have already reached clinical trials (Makarov & Mikušová, 2020; Mariandyshev et al., 2020; Shetye et al., 2020).
Fig. 1 depicts two representative syntheses of the lead compound BTZ043 starting from 1 or 2. In the original synthesis, reaction of 1 (Makarov et al., 2007) with potassium thiocyanate after activation with thionyl chloride gives the highly reactive benzoyl isothiocyanate derivative, which is reacted in situ with the secondary amine (S)-2-methyl-1,4-dioxa-8-azaspiro[4.5]decane to form a thiourea derivative (not shown), which undergoes ring closure to form BTZ043. Starting from 2 (Makarov, 2011), reaction with carbon disulfide and methyl iodide leads to the stable 2-(methylthio)-8-nitro-6-(trifluoromethyl)benzo-1,3-thiazin-4-one. Reaction with the aforementioned secondary amine eventually affords BTZ043.
To the best of our knowledge, Welch et al. (1969) were the first to report the synthesis of the title compounds more than 50 years ago in the course of a study on trifluoromethylbenzamides as anticoccidial agents. Compound 1 is readily obtained from 2-chloro-5-(trifluoromethyl)benzonitrile upon reaction with nitrating acid mixture. Treatment of 1 with thionyl chloride affords the corresponding acid chloride, which is reacted with concentrated ammonia solution to give amide 2 in good yield (Fig. 1).
2. Structural commentary
Fig. 2 shows the molecular structures of 1 and 2 in the crystal. Both compounds form hydrogen-bonded dimers in the solid state, which in the case of 2 is augmented by additional N—H⋯O hydrogen bonds to form a catemer (see Section 3). In 1, the plane defined by the carboxy group non-hydrogen atoms (O1, O2 and C7) is twisted out of the mean plane of the benzene ring (C1–C6) by 22.9 (1)°. Remarkably, the plane defined by the nitro group (O3, O4 and N1) is oriented nearly perpendicular to the mean plane of the benzene ring with a tilt angle of 85.38 (7)°.
Compound 2 crystallizes with two molecules in the (Z′ = 2), one of which exhibits partial rotational disorder of the trifluoromethyl group. With respect to the mean plane of benzene ring (C1–C6), the plane defined by the non-hydrogen atoms of the amide group (O1, N1 and C7) is inclined at 49.0 (2) and 43.4 (2)° in molecule 1 and 2, respectively. The tilt angle between the plane of the nitro group (O2, O3 and N2) and the benzene ring mean plane is 46.1 (1)° in molecule 1 and 46.7 (1)° in molecule 2, which is significantly smaller than in 1.
The 1H NMR spectrum of 2 in DMSO-d6 at room temperature shows two distinct broad singlets for the amide hydrogen atoms (see supporting information), indicating about the C—N bond due to partial double-bond character (Wiberg, 2003). In the IR spectrum of solid 2 (see supporting information), two characteristic N—H stretching bands at 3356 and 3178 cm−1 are present (Parker, 1971).
3. Supramolecular features
The supramolecular structures of 1 and 2 feature carboxylic acid–carboxylic acid and amide–amide homosynthons (Desiraju, 1995; Thakuria et al., 2017), respectively. The hydrogen-bond motif is R22(8) (Bernstein et al., 1995) in both cases. Geometric parameters of the O—H⋯O hydrogen bonds in 1 (Table 1) and the N—H⋯O hydrogen bonds in 2 (Table 2) are within expected ranges (Thakuria et al., 2017). In 1 two molecules related by crystallographic inversion symmetry form a carboxylic acid dimer, whereas in 2 two crystallographically unique molecules related by approximate local inversion symmetry form a carboxamide dimer. The second amide hydrogen atom forms a hydrogen bond to the carbonyl oxygen atom of an adjacent dimer. The additional R42(8) hydrogen-bond motif thus formed about a crystallographic centre of symmetry extends the N—H⋯O hydrogen-bonding pattern in 2 into typical primary amide tapes (Leiserowitz & Schmidt, 1969) parallel to the [101] direction (Fig. 3a).
|
In addition to classical O—H⋯O and N—H⋯O intermolecular hydrogen bonds in 1 and 2, respectively, the solid-state supramolecular structures of both compounds feature a number of possible weak interactions (Tables 1 and 2). In 1 the C4—H4 moiety forms a short contact to a fluorine atom of the trifluoromethyl group of a neighbouring molecule (Fig. S1 in the supporting information) and the nitro group appears to accept a donating bifurcated weak C—H⋯O hydrogen bond from the C6—H6 moiety (Fig. S2 in the supporting information). The latter interaction links the molecules into chains in the [110] direction and may be discussed in connection with the remarkable twist of the nitro group out of the plane of the benzene ring. A packing index for 1 of 74.3%, as calculated with PLATON (Spek, 2020), indicates a fairly dense crystal packing for a molecular compound (Kitaigorodskii, 1973).
In the 2, short fluorine–fluorine contacts between the non-disordered trifluoromethyl groups of adjacent molecules 1 can be identified (Fig. S3 in the supporting information). Based on the corresponding C—F⋯F angles of 152.1 (1)° at F1 and 168.6 (1)° at F3, these contacts may be classified as type I fluorine–fluorine interactions (Baker et al., 2012). As in 1, the C6—H6 moieties in 2 form short C—H⋯O contacts to nitro oxygen atoms of adjacent molecules (Fig. 3b). The electron-withdrawing effect exerted by the ring substituents in both 1 and 2 should activate the C—H moieties for weak hydrogen bonding (Thakuria et al., 2017) to some extent. Notably, the packing index for 2 of 70.0%, as calculated only for the major disorder part of the trifluoromethyl group in molecule 2, is markedly smaller than for 1.
of4. Database survey
A search of the Cambridge Structural Database (CSD; version 5.41 with August 2020 updates; Groom et al., 2016) for a 1-chloro-2-nitro-4-(trifluoromethyl)benzene moiety revealed two related structures, viz. 1,5-dichloro-2-nitro-4-(trifluoromethyl)benzene (CSD refcode: JIHNOG) and 2-chloro-1,3-dinitro-5-(trifluoromethyl)benzene, also known as chloralin (JIHNUM) (del Casino et al., 2018). In the two structures, the largest twist of a nitro group in ortho position to chlorine and meta position to the trifluoromethyl group out of the benzene ring is 61.5° in JIHNUM. For [2-chloro-3-nitro-5-(trifluoromethyl)phenyl](piperidin-1-yl)methanone (MUPZAB), a structurally characterized side product in benzothiazinone synthesis, the twist angle is 38.1 (2)° (Eckhardt et al., 2020).
5. Synthesis and crystallization
General: Starting materials and reagents were obtained from chemical suppliers and used as received. Solvents were of reagent grade and were distilled before use. NMR spectra were measured on an Agilent Technologies VNMRS 400 MHz spectrometer. Chemical shifts are reported relative to the residual solvent peak of DMSO-d6 (δH = 2.50 ppm, δC = 39.5 ppm). Abbreviations: s = singlet, d = doublet, q = quartet. IR spectra were measured on a Bruker ALPHA Platinum ATR–FT–IR spectrometer. Mass spectra were recorded on a Thermo Fisher Q ExactiveTM Plus Orbitrap for 1 and on an Advion expressionS compact for 2, using methanol as solvent.
2-Chloro-3-nitro-5-(trifluoromethyl)benzoic acid (1): Compound 1 was synthesized from 2-chloro-5-(trifluoromethyl)benzonitrile (Lundbeck) using a literature method (Welch et al., 1969). 1H NMR (400 MHz, DMSO-d6): δ = 8.70 (d, J = 2.2 Hz, 1H), 8.40 (d, J = 2.2 Hz, 1H) ppm; 13C{1H} NMR (126 MHz, DMSO-d6) δ = 164.3, 149.7, 135.7, 129.7 (q, 3J = 4 Hz), 128.8 (q, 2J = 35 Hz), 127.2, 124.0 (q, 3J = 4 Hz), 122.3 (q, 1J = 273 Hz) ppm; IR(ATR): ν~ = 3097 (C—H stretch), 2865 (O—H stretch), 1702 (C=O stretch), 1542, 1323 (NO2 stretch), 1117 (C—F stretch) cm−1; MS (ESI−) m/z [M − COOH]− calculated for C7H2ClF3NO2− 224.0, found 224.0, [M − H]− calculated for C8H2ClF3NO4− 268.0, found 268.0.
2-Chloro-3-nitro-5-(trifluoromethyl)benzamide (2): Compound 2 was prepared from 1 following a published procedure (Makarov et al., 2007). 1H NMR (400 MHz, DMSO-d6): δ = 8.60 (d, J = 2.2 Hz, 1H), 8.22 (s, 1H), 8.18 (d, J = 2.2 Hz, 1H), 8.03 (s, 1H) ppm; 13C{1H} NMR (101 MHz, DMSO-d6) δ = 165.1, 148.9, 140.8, 128.8 (q, 2J = 34 Hz), 128.2 (q, 3J = 4 Hz), 125.8, 122.42 (q, 1J = 273 Hz), 122.4 (q, 3J = 4 Hz) ppm; IR(ATR): ν~ = 3356, 3178 (N—H stretch), 3096 (C—H stretch), 1659 (C=O stretch), 1629 (N—H bend), 1537, 1317 (NO2 stretch), 1116 (C—F stretch) cm−1; MS (APCI+) m/z [M + H]+ calculated for C8H5ClF3N2O3+ 269.0, found 268.9.
Crystals suitable for single-crystal X-ray diffraction were obtained by slow evaporation at room temperature of 1 in methanol/water and of 2 in ethanol.
6. Refinement
Crystal data, data collection and structure . Diffraction data for 1 were measured at the P11 beamline at PETRA III at DESY (Meents et al., 2013; Burkhardt et al., 2016). Rotational disorder of a trifluoromethyl group in 2 was refined using a split model with similar distance restraints on the 1,2- and 1,3-distances and equal atomic displacement parameters for opposite fluorine atoms belonging to different disorder sites. of the ratio of occupancies by means of a free variable resulted in 0.876 (3):0.124 (3). Carbon-bound H atoms were placed in geometrically calculated positions with C—H = 0.95 Å, and refined with the appropriate riding model and Uiso(H) = 1.2 Ueq(C). The carboxy hydrogen atom in 1 was located in a difference-Fourier map and refined freely. The amide H atoms in 2 were also located in difference-Fourier maps and refined semi-freely with the N—H distances restrained to a target value of 0.88 (2) Å and with Uiso(H) = 1.2 Ueq(N).
details are summarized in Table 3
|
Supporting information
https://doi.org/10.1107/S2056989021000517/tx2035sup1.cif
contains datablocks global, 1, 2. DOI:Structure factors: contains datablock 1. DOI: https://doi.org/10.1107/S2056989021000517/tx20351sup2.hkl
Structure factors: contains datablock 2. DOI: https://doi.org/10.1107/S2056989021000517/tx20352sup3.hkl
Additional structure pictures, 1H and 13C NMR spectra, IR spectra and mass spectra. DOI: https://doi.org/10.1107/S2056989021000517/tx2035sup4.pdf
Supporting information file. DOI: https://doi.org/10.1107/S2056989021000517/tx20351sup5.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989021000517/tx20351sup6.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2056989021000517/tx20352sup7.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989021000517/tx20352sup8.cdx
Data collection: P11 Crystallography Control (Meents et al., 2013) for (1); APEX3 (Bruker, 2017) for (2). Cell
XDS (Kabsch, 2010) for (1); SAINT (Bruker, 2004) for (2). Data reduction: XDS (Kabsch, 2010) for (1); SAINT (Bruker, 2004) for (2). For both structures, program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2018); software used to prepare material for publication: enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).C8H3ClF3NO4 | Z = 2 |
Mr = 269.56 | F(000) = 268 |
Triclinic, P1 | Dx = 1.916 Mg m−3 |
a = 4.7297 (10) Å | Synchrotron radiation, λ = 0.6199 Å |
b = 7.8993 (16) Å | Cell parameters from 9110 reflections |
c = 13.044 (3) Å | θ = 1.4–26.9° |
α = 91.57 (3)° | µ = 0.31 mm−1 |
β = 96.51 (3)° | T = 100 K |
γ = 104.79 (3)° | Plate, colourless |
V = 467.36 (18) Å3 | 0.33 × 0.20 × 0.04 mm |
P11 beamline at Petra III with Pilatus 6M detector (Kraft et al., 2009) diffractometer | 2766 reflections with I > 2σ(I) |
Radiation source: synchrotron | Rint = 0.019 |
Detector resolution: 5.81 pixels mm-1 | θmax = 26.9°, θmin = 1.4° |
φ scan | h = −6→6 |
9797 measured reflections | k = −11→11 |
2834 independent reflections | l = −19→19 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: mixed |
wR(F2) = 0.082 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0446P)2 + 0.2681P] where P = (Fo2 + 2Fc2)/3 |
2834 reflections | (Δ/σ)max = 0.001 |
158 parameters | Δρmax = 0.64 e Å−3 |
0 restraints | Δρmin = −0.43 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.8267 (2) | 0.79164 (11) | 0.32984 (7) | 0.00863 (16) | |
C2 | 0.9897 (2) | 0.96649 (11) | 0.32560 (7) | 0.00871 (16) | |
C3 | 0.8979 (2) | 1.06490 (11) | 0.24763 (7) | 0.00957 (17) | |
C4 | 0.6603 (2) | 0.99896 (12) | 0.17358 (7) | 0.01093 (17) | |
H4 | 0.604630 | 1.069994 | 0.121438 | 0.013* | |
C5 | 0.5045 (2) | 0.82466 (12) | 0.17771 (7) | 0.00969 (16) | |
C6 | 0.5845 (2) | 0.72297 (11) | 0.25554 (7) | 0.01008 (17) | |
H6 | 0.472768 | 0.605062 | 0.258199 | 0.012* | |
C7 | 0.9092 (2) | 0.67213 (11) | 0.40892 (7) | 0.00943 (17) | |
C8 | 0.2606 (2) | 0.74456 (13) | 0.09293 (8) | 0.01313 (18) | |
N1 | 1.0646 (2) | 1.24888 (10) | 0.24249 (7) | 0.01242 (16) | |
O1 | 0.68411 (17) | 0.53906 (9) | 0.42044 (6) | 0.01328 (15) | |
H1 | 0.743 (5) | 0.469 (3) | 0.4618 (17) | 0.037 (5)* | |
O2 | 1.15606 (18) | 0.69465 (9) | 0.45466 (6) | 0.01391 (15) | |
O3 | 0.9986 (3) | 1.35882 (11) | 0.29446 (9) | 0.0333 (3) | |
O4 | 1.2576 (2) | 1.27866 (12) | 0.18631 (9) | 0.0296 (2) | |
F1 | 0.12540 (18) | 0.86369 (9) | 0.05423 (6) | 0.02163 (16) | |
F2 | 0.05311 (18) | 0.61547 (10) | 0.12436 (6) | 0.02413 (17) | |
F3 | 0.36346 (19) | 0.68013 (11) | 0.01315 (6) | 0.02649 (18) | |
Cl1 | 1.29187 (5) | 1.06719 (3) | 0.41157 (2) | 0.01187 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0110 (4) | 0.0033 (3) | 0.0108 (4) | 0.0005 (3) | 0.0007 (3) | 0.0019 (3) |
C2 | 0.0106 (4) | 0.0033 (3) | 0.0106 (4) | −0.0007 (3) | 0.0001 (3) | 0.0003 (3) |
C3 | 0.0133 (5) | 0.0016 (3) | 0.0122 (4) | −0.0008 (3) | 0.0014 (3) | 0.0015 (3) |
C4 | 0.0149 (5) | 0.0052 (3) | 0.0114 (4) | 0.0007 (3) | 0.0003 (3) | 0.0020 (3) |
C5 | 0.0114 (4) | 0.0053 (3) | 0.0103 (4) | −0.0006 (3) | −0.0008 (3) | 0.0004 (3) |
C6 | 0.0125 (5) | 0.0037 (3) | 0.0124 (4) | −0.0005 (3) | 0.0004 (3) | 0.0015 (3) |
C7 | 0.0124 (5) | 0.0036 (3) | 0.0120 (4) | 0.0014 (3) | 0.0016 (3) | 0.0018 (3) |
C8 | 0.0153 (5) | 0.0090 (4) | 0.0126 (4) | 0.0002 (3) | −0.0017 (3) | 0.0004 (3) |
N1 | 0.0173 (4) | 0.0034 (3) | 0.0142 (4) | −0.0007 (3) | −0.0003 (3) | 0.0023 (3) |
O1 | 0.0117 (4) | 0.0076 (3) | 0.0195 (3) | 0.0000 (2) | 0.0012 (3) | 0.0084 (2) |
O2 | 0.0140 (4) | 0.0065 (3) | 0.0191 (3) | 0.0005 (2) | −0.0022 (3) | 0.0045 (2) |
O3 | 0.0543 (7) | 0.0053 (3) | 0.0411 (5) | 0.0009 (4) | 0.0251 (5) | −0.0028 (3) |
O4 | 0.0309 (5) | 0.0104 (4) | 0.0477 (6) | −0.0020 (3) | 0.0225 (5) | 0.0052 (4) |
F1 | 0.0228 (4) | 0.0162 (3) | 0.0232 (3) | 0.0054 (3) | −0.0095 (3) | 0.0030 (2) |
F2 | 0.0197 (4) | 0.0179 (3) | 0.0247 (3) | −0.0100 (3) | −0.0065 (3) | 0.0067 (3) |
F3 | 0.0267 (4) | 0.0320 (4) | 0.0187 (3) | 0.0079 (3) | −0.0028 (3) | −0.0137 (3) |
Cl1 | 0.01275 (14) | 0.00512 (10) | 0.01442 (11) | −0.00170 (8) | −0.00296 (8) | 0.00074 (7) |
C1—C6 | 1.3957 (15) | C5—C8 | 1.5013 (15) |
C1—C2 | 1.4054 (13) | C6—H6 | 0.9500 |
C1—C7 | 1.5026 (13) | C7—O2 | 1.2170 (14) |
C2—C3 | 1.3937 (13) | C7—O1 | 1.3170 (12) |
C2—Cl1 | 1.7148 (12) | C8—F2 | 1.3318 (13) |
C3—C4 | 1.3765 (15) | C8—F3 | 1.3384 (13) |
C3—N1 | 1.4733 (13) | C8—F1 | 1.3451 (13) |
C4—C5 | 1.3916 (13) | N1—O3 | 1.2105 (13) |
C4—H4 | 0.9500 | N1—O4 | 1.2153 (13) |
C5—C6 | 1.3900 (13) | O1—H1 | 0.86 (2) |
C6—C1—C2 | 119.12 (9) | C5—C6—H6 | 119.5 |
C6—C1—C7 | 118.16 (8) | C1—C6—H6 | 119.5 |
C2—C1—C7 | 122.67 (9) | O2—C7—O1 | 124.60 (9) |
C3—C2—C1 | 118.06 (9) | O2—C7—C1 | 123.69 (9) |
C3—C2—Cl1 | 117.94 (7) | O1—C7—C1 | 111.69 (9) |
C1—C2—Cl1 | 124.00 (8) | F2—C8—F3 | 107.89 (9) |
C4—C3—C2 | 123.52 (8) | F2—C8—F1 | 106.91 (9) |
C4—C3—N1 | 117.66 (9) | F3—C8—F1 | 105.88 (9) |
C2—C3—N1 | 118.82 (9) | F2—C8—C5 | 112.71 (8) |
C3—C4—C5 | 117.72 (9) | F3—C8—C5 | 111.35 (9) |
C3—C4—H4 | 121.1 | F1—C8—C5 | 111.73 (8) |
C5—C4—H4 | 121.1 | O3—N1—O4 | 125.01 (10) |
C6—C5—C4 | 120.63 (9) | O3—N1—C3 | 117.49 (9) |
C6—C5—C8 | 120.31 (8) | O4—N1—C3 | 117.50 (9) |
C4—C5—C8 | 118.95 (9) | C7—O1—H1 | 109.2 (15) |
C5—C6—C1 | 120.93 (9) | ||
C6—C1—C2—C3 | 1.05 (14) | C7—C1—C6—C5 | −177.27 (9) |
C7—C1—C2—C3 | 178.55 (8) | C6—C1—C7—O2 | 155.57 (10) |
C6—C1—C2—Cl1 | −179.86 (7) | C2—C1—C7—O2 | −21.95 (15) |
C7—C1—C2—Cl1 | −2.36 (14) | C6—C1—C7—O1 | −22.94 (12) |
C1—C2—C3—C4 | −1.35 (15) | C2—C1—C7—O1 | 159.54 (9) |
Cl1—C2—C3—C4 | 179.51 (8) | C6—C5—C8—F2 | 31.69 (14) |
C1—C2—C3—N1 | 179.50 (8) | C4—C5—C8—F2 | −152.19 (10) |
Cl1—C2—C3—N1 | 0.36 (12) | C6—C5—C8—F3 | −89.73 (12) |
C2—C3—C4—C5 | 0.19 (15) | C4—C5—C8—F3 | 86.40 (12) |
N1—C3—C4—C5 | 179.35 (9) | C6—C5—C8—F1 | 152.10 (9) |
C3—C4—C5—C6 | 1.26 (15) | C4—C5—C8—F1 | −31.77 (13) |
C3—C4—C5—C8 | −174.85 (9) | C4—C3—N1—O3 | 94.69 (13) |
C4—C5—C6—C1 | −1.54 (15) | C2—C3—N1—O3 | −86.11 (13) |
C8—C5—C6—C1 | 174.52 (9) | C4—C3—N1—O4 | −85.22 (13) |
C2—C1—C6—C5 | 0.34 (14) | C2—C3—N1—O4 | 93.98 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O2i | 0.86 (2) | 1.83 (2) | 2.6891 (13) | 176 (2) |
C4—H4···F3ii | 0.95 | 2.66 | 3.5767 (16) | 161 |
C6—H6···O3iii | 0.95 | 2.66 | 3.5410 (19) | 154 |
C6—H6···O4iii | 0.95 | 2.62 | 3.5019 (17) | 154 |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y+2, −z; (iii) x−1, y−1, z. |
C8H4ClF3N2O3 | F(000) = 1072 |
Mr = 268.58 | Dx = 1.775 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 8.3012 (12) Å | Cell parameters from 8332 reflections |
b = 28.230 (4) Å | θ = 2.7–32.0° |
c = 9.1522 (14) Å | µ = 0.42 mm−1 |
β = 110.424 (3)° | T = 100 K |
V = 2009.9 (5) Å3 | Prism, colourless |
Z = 8 | 0.05 × 0.02 × 0.01 mm |
Bruker Kappa Mach3 APEXII diffractometer | 8316 independent reflections |
Radiation source: microfocus X-ray tube | 5593 reflections with I > 2σ(I) |
Incoatec Helios mirrors monochromator | Rint = 0.080 |
Detector resolution: 66.67 pixels mm-1 | θmax = 34.3°, θmin = 1.4° |
φ– and ω–scans | h = −13→13 |
Absorption correction: gaussian (SADABS; Bruker, 2012) | k = −44→43 |
Tmin = 0.989, Tmax = 0.996 | l = −14→14 |
64252 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.056 | Hydrogen site location: mixed |
wR(F2) = 0.136 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.047P)2 + 2.2564P] where P = (Fo2 + 2Fc2)/3 |
8316 reflections | (Δ/σ)max < 0.001 |
329 parameters | Δρmax = 0.79 e Å−3 |
121 restraints | Δρmin = −0.59 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1_1 | 0.6080 (2) | 0.40838 (6) | 0.4317 (2) | 0.0121 (3) | |
C2_1 | 0.4418 (2) | 0.41062 (6) | 0.4365 (2) | 0.0132 (3) | |
C3_1 | 0.3904 (2) | 0.37581 (7) | 0.5183 (2) | 0.0143 (3) | |
C4_1 | 0.4966 (2) | 0.33920 (7) | 0.5936 (2) | 0.0142 (3) | |
H4_1 | 0.459003 | 0.316214 | 0.650464 | 0.017* | |
C5_1 | 0.6590 (2) | 0.33663 (6) | 0.5847 (2) | 0.0125 (3) | |
C6_1 | 0.7155 (2) | 0.37105 (6) | 0.5056 (2) | 0.0121 (3) | |
H6_1 | 0.828258 | 0.369169 | 0.501743 | 0.015* | |
C7_1 | 0.6725 (2) | 0.44400 (6) | 0.3435 (2) | 0.0132 (3) | |
C8_1 | 0.7697 (2) | 0.29469 (7) | 0.6533 (2) | 0.0164 (3) | |
N1_1 | 0.82735 (19) | 0.46157 (6) | 0.41884 (19) | 0.0161 (3) | |
H1A_1 | 0.872 (3) | 0.4820 (8) | 0.370 (3) | 0.019* | |
H1B_1 | 0.882 (3) | 0.4553 (9) | 0.519 (2) | 0.019* | |
N2_1 | 0.2167 (2) | 0.37541 (6) | 0.5271 (2) | 0.0188 (3) | |
O1_1 | 0.58652 (17) | 0.45467 (5) | 0.20742 (16) | 0.0211 (3) | |
O2_1 | 0.09471 (19) | 0.38169 (7) | 0.4067 (2) | 0.0343 (4) | |
O3_1 | 0.2059 (2) | 0.36737 (6) | 0.6541 (2) | 0.0299 (4) | |
F1_1 | 0.74246 (19) | 0.25946 (5) | 0.55044 (16) | 0.0323 (3) | |
F2_1 | 0.93677 (16) | 0.30500 (5) | 0.70284 (18) | 0.0316 (3) | |
F3_1 | 0.73792 (18) | 0.27697 (5) | 0.77582 (15) | 0.0276 (3) | |
Cl1_1 | 0.30947 (6) | 0.45781 (2) | 0.35459 (6) | 0.02245 (11) | |
C1_2 | 0.9002 (2) | 0.59541 (6) | 0.0619 (2) | 0.0114 (3) | |
C2_2 | 1.0602 (2) | 0.59679 (6) | 0.0421 (2) | 0.0129 (3) | |
C3_2 | 1.0995 (2) | 0.63574 (7) | −0.0321 (2) | 0.0138 (3) | |
C4_2 | 0.9863 (2) | 0.67303 (7) | −0.0875 (2) | 0.0155 (3) | |
H4_2 | 1.014872 | 0.698891 | −0.140342 | 0.019* | |
C5_2 | 0.8306 (2) | 0.67163 (7) | −0.0641 (2) | 0.0152 (3) | |
C6_2 | 0.7871 (2) | 0.63314 (6) | 0.0082 (2) | 0.0133 (3) | |
H6_2 | 0.678569 | 0.632474 | 0.021372 | 0.016* | |
C7_2 | 0.8488 (2) | 0.55491 (6) | 0.1431 (2) | 0.0123 (3) | |
C8_2 | 0.7080 (3) | 0.71245 (8) | −0.1177 (3) | 0.0236 (4) | |
N1_2 | 0.68823 (19) | 0.54002 (6) | 0.07712 (18) | 0.0151 (3) | |
H1A_2 | 0.655 (3) | 0.5167 (7) | 0.121 (3) | 0.018* | |
H1B_2 | 0.620 (3) | 0.5499 (8) | −0.015 (2) | 0.018* | |
N2_2 | 1.2661 (2) | 0.63984 (6) | −0.05424 (19) | 0.0168 (3) | |
O1_2 | 0.95089 (17) | 0.53776 (5) | 0.26449 (16) | 0.0190 (3) | |
O2_2 | 1.39629 (17) | 0.63141 (6) | 0.05787 (18) | 0.0252 (3) | |
O3_2 | 1.26362 (19) | 0.65271 (6) | −0.18276 (18) | 0.0250 (3) | |
F1_2 | 0.7834 (3) | 0.75213 (7) | −0.1279 (4) | 0.0713 (10) | 0.876 (3) |
F2_2 | 0.6181 (3) | 0.72010 (7) | −0.0243 (2) | 0.0392 (5) | 0.876 (3) |
F3_2 | 0.5873 (3) | 0.70422 (8) | −0.2565 (2) | 0.0544 (7) | 0.876 (3) |
F1'_2 | 0.5683 (15) | 0.7094 (5) | −0.100 (2) | 0.0713 (10) | 0.124 (3) |
F2'_2 | 0.6950 (18) | 0.7262 (5) | −0.2565 (12) | 0.0392 (5) | 0.124 (3) |
F3'_2 | 0.7907 (17) | 0.7497 (4) | −0.0237 (15) | 0.0544 (7) | 0.124 (3) |
Cl1_2 | 1.19856 (6) | 0.54955 (2) | 0.09572 (7) | 0.02395 (11) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1_1 | 0.0101 (7) | 0.0156 (8) | 0.0101 (7) | −0.0009 (6) | 0.0028 (6) | 0.0013 (6) |
C2_1 | 0.0106 (7) | 0.0147 (8) | 0.0129 (8) | 0.0023 (6) | 0.0025 (6) | 0.0004 (6) |
C3_1 | 0.0098 (7) | 0.0192 (9) | 0.0149 (8) | −0.0008 (6) | 0.0056 (6) | −0.0029 (6) |
C4_1 | 0.0145 (7) | 0.0159 (8) | 0.0136 (8) | −0.0029 (6) | 0.0067 (6) | −0.0001 (6) |
C5_1 | 0.0125 (7) | 0.0144 (8) | 0.0112 (7) | 0.0003 (6) | 0.0047 (6) | 0.0006 (6) |
C6_1 | 0.0096 (6) | 0.0169 (8) | 0.0100 (7) | −0.0002 (6) | 0.0036 (5) | 0.0014 (6) |
C7_1 | 0.0114 (7) | 0.0148 (8) | 0.0117 (7) | −0.0008 (6) | 0.0021 (6) | 0.0018 (6) |
C8_1 | 0.0180 (8) | 0.0172 (9) | 0.0132 (8) | 0.0019 (6) | 0.0044 (6) | 0.0027 (6) |
N1_1 | 0.0121 (6) | 0.0217 (8) | 0.0110 (7) | −0.0047 (6) | −0.0002 (5) | 0.0043 (6) |
N2_1 | 0.0125 (7) | 0.0239 (8) | 0.0230 (8) | −0.0019 (6) | 0.0098 (6) | −0.0043 (7) |
O1_1 | 0.0169 (6) | 0.0276 (8) | 0.0127 (6) | −0.0077 (5) | −0.0025 (5) | 0.0069 (5) |
O2_1 | 0.0109 (6) | 0.0605 (12) | 0.0298 (9) | −0.0005 (7) | 0.0050 (6) | −0.0026 (8) |
O3_1 | 0.0263 (8) | 0.0415 (10) | 0.0304 (9) | −0.0029 (7) | 0.0205 (7) | −0.0020 (7) |
F1_1 | 0.0434 (8) | 0.0258 (7) | 0.0223 (7) | 0.0154 (6) | 0.0047 (6) | −0.0048 (5) |
F2_1 | 0.0139 (5) | 0.0323 (7) | 0.0436 (8) | 0.0049 (5) | 0.0037 (5) | 0.0153 (6) |
F3_1 | 0.0354 (7) | 0.0270 (7) | 0.0234 (6) | 0.0068 (5) | 0.0142 (6) | 0.0130 (5) |
Cl1_1 | 0.0176 (2) | 0.0227 (2) | 0.0252 (2) | 0.00890 (17) | 0.00511 (17) | 0.00489 (19) |
C1_2 | 0.0086 (6) | 0.0147 (8) | 0.0101 (7) | −0.0017 (5) | 0.0024 (5) | −0.0005 (6) |
C2_2 | 0.0095 (7) | 0.0151 (8) | 0.0134 (7) | 0.0007 (6) | 0.0031 (6) | −0.0004 (6) |
C3_2 | 0.0089 (7) | 0.0192 (8) | 0.0136 (8) | −0.0023 (6) | 0.0045 (6) | −0.0019 (6) |
C4_2 | 0.0146 (7) | 0.0167 (8) | 0.0151 (8) | −0.0037 (6) | 0.0048 (6) | 0.0016 (6) |
C5_2 | 0.0109 (7) | 0.0162 (8) | 0.0168 (8) | 0.0001 (6) | 0.0029 (6) | 0.0019 (7) |
C6_2 | 0.0083 (6) | 0.0159 (8) | 0.0146 (8) | −0.0003 (6) | 0.0026 (6) | 0.0005 (6) |
C7_2 | 0.0102 (7) | 0.0146 (8) | 0.0107 (7) | −0.0016 (6) | 0.0019 (6) | 0.0011 (6) |
C8_2 | 0.0194 (9) | 0.0207 (10) | 0.0305 (11) | 0.0040 (7) | 0.0086 (8) | 0.0068 (8) |
N1_2 | 0.0116 (6) | 0.0181 (8) | 0.0125 (7) | −0.0037 (5) | 0.0002 (5) | 0.0045 (6) |
N2_2 | 0.0142 (7) | 0.0198 (8) | 0.0191 (8) | −0.0033 (6) | 0.0093 (6) | −0.0028 (6) |
O1_2 | 0.0141 (6) | 0.0241 (7) | 0.0133 (6) | −0.0044 (5) | −0.0021 (5) | 0.0067 (5) |
O2_2 | 0.0105 (6) | 0.0394 (9) | 0.0249 (8) | −0.0017 (6) | 0.0051 (5) | −0.0017 (7) |
O3_2 | 0.0236 (7) | 0.0350 (9) | 0.0215 (7) | −0.0059 (6) | 0.0143 (6) | 0.0006 (6) |
F1_2 | 0.0288 (9) | 0.0234 (9) | 0.168 (3) | 0.0095 (7) | 0.0429 (14) | 0.0400 (13) |
F2_2 | 0.0442 (10) | 0.0398 (11) | 0.0407 (10) | 0.0245 (8) | 0.0235 (9) | 0.0100 (8) |
F3_2 | 0.0489 (13) | 0.0597 (14) | 0.0341 (10) | 0.0336 (11) | −0.0113 (8) | −0.0033 (9) |
F1'_2 | 0.0288 (9) | 0.0234 (9) | 0.168 (3) | 0.0095 (7) | 0.0429 (14) | 0.0400 (13) |
F2'_2 | 0.0442 (10) | 0.0398 (11) | 0.0407 (10) | 0.0245 (8) | 0.0235 (9) | 0.0100 (8) |
F3'_2 | 0.0489 (13) | 0.0597 (14) | 0.0341 (10) | 0.0336 (11) | −0.0113 (8) | −0.0033 (9) |
Cl1_2 | 0.0173 (2) | 0.0205 (2) | 0.0365 (3) | 0.00767 (17) | 0.01266 (19) | 0.0078 (2) |
C1_1—C6_1 | 1.394 (2) | C1_2—C7_2 | 1.505 (2) |
C1_1—C2_1 | 1.397 (2) | C2_2—C3_2 | 1.390 (3) |
C1_1—C7_1 | 1.500 (2) | C2_2—Cl1_2 | 1.7163 (18) |
C2_1—C3_1 | 1.390 (3) | C3_2—C4_2 | 1.384 (3) |
C2_1—Cl1_1 | 1.7229 (18) | C3_2—N2_2 | 1.470 (2) |
C3_1—C4_1 | 1.377 (3) | C4_2—C5_2 | 1.383 (2) |
C3_1—N2_1 | 1.471 (2) | C4_2—H4_2 | 0.9500 |
C4_1—C5_1 | 1.381 (2) | C5_2—C6_2 | 1.384 (3) |
C4_1—H4_1 | 0.9500 | C5_2—C8_2 | 1.502 (3) |
C5_1—C6_1 | 1.388 (2) | C6_2—H6_2 | 0.9500 |
C5_1—C8_1 | 1.496 (3) | C7_2—O1_2 | 1.236 (2) |
C6_1—H6_1 | 0.9500 | C7_2—N1_2 | 1.325 (2) |
C7_1—O1_1 | 1.237 (2) | C8_2—F1'_2 | 1.227 (9) |
C7_1—N1_1 | 1.325 (2) | C8_2—F2'_2 | 1.297 (9) |
C8_1—F2_1 | 1.332 (2) | C8_2—F1_2 | 1.302 (3) |
C8_1—F1_1 | 1.333 (2) | C8_2—F2_2 | 1.334 (3) |
C8_1—F3_1 | 1.336 (2) | C8_2—F3_2 | 1.335 (3) |
N1_1—H1A_1 | 0.887 (16) | C8_2—F3'_2 | 1.381 (10) |
N1_1—H1B_1 | 0.886 (16) | N1_2—H1A_2 | 0.863 (16) |
N2_1—O3_1 | 1.218 (2) | N1_2—H1B_2 | 0.884 (16) |
N2_1—O2_1 | 1.222 (2) | N2_2—O3_2 | 1.224 (2) |
C1_2—C6_2 | 1.391 (2) | N2_2—O2_2 | 1.226 (2) |
C1_2—C2_2 | 1.402 (2) | ||
C6_1—C1_1—C2_1 | 119.42 (16) | C3_2—C2_2—C1_2 | 118.66 (16) |
C6_1—C1_1—C7_1 | 118.65 (14) | C3_2—C2_2—Cl1_2 | 120.43 (13) |
C2_1—C1_1—C7_1 | 121.88 (16) | C1_2—C2_2—Cl1_2 | 120.75 (14) |
C3_1—C2_1—C1_1 | 118.51 (16) | C4_2—C3_2—C2_2 | 122.40 (15) |
C3_1—C2_1—Cl1_1 | 120.79 (13) | C4_2—C3_2—N2_2 | 116.11 (16) |
C1_1—C2_1—Cl1_1 | 120.53 (14) | C2_2—C3_2—N2_2 | 121.49 (16) |
C4_1—C3_1—C2_1 | 122.45 (15) | C5_2—C4_2—C3_2 | 118.22 (17) |
C4_1—C3_1—N2_1 | 115.82 (16) | C5_2—C4_2—H4_2 | 120.9 |
C2_1—C3_1—N2_1 | 121.72 (16) | C3_2—C4_2—H4_2 | 120.9 |
C3_1—C4_1—C5_1 | 118.54 (16) | C4_2—C5_2—C6_2 | 120.71 (17) |
C3_1—C4_1—H4_1 | 120.7 | C4_2—C5_2—C8_2 | 119.39 (17) |
C5_1—C4_1—H4_1 | 120.7 | C6_2—C5_2—C8_2 | 119.91 (16) |
C4_1—C5_1—C6_1 | 120.59 (16) | C5_2—C6_2—C1_2 | 120.89 (15) |
C4_1—C5_1—C8_1 | 119.07 (16) | C5_2—C6_2—H6_2 | 119.6 |
C6_1—C5_1—C8_1 | 120.24 (15) | C1_2—C6_2—H6_2 | 119.6 |
C5_1—C6_1—C1_1 | 120.45 (15) | O1_2—C7_2—N1_2 | 123.41 (16) |
C5_1—C6_1—H6_1 | 119.8 | O1_2—C7_2—C1_2 | 121.18 (15) |
C1_1—C6_1—H6_1 | 119.8 | N1_2—C7_2—C1_2 | 115.40 (15) |
O1_1—C7_1—N1_1 | 123.15 (17) | F1'_2—C8_2—F2'_2 | 112.8 (9) |
O1_1—C7_1—C1_1 | 121.07 (15) | F1_2—C8_2—F2_2 | 107.2 (2) |
N1_1—C7_1—C1_1 | 115.74 (15) | F1_2—C8_2—F3_2 | 107.6 (2) |
F2_1—C8_1—F1_1 | 107.64 (16) | F2_2—C8_2—F3_2 | 103.65 (19) |
F2_1—C8_1—F3_1 | 106.43 (15) | F1'_2—C8_2—F3'_2 | 105.0 (9) |
F1_1—C8_1—F3_1 | 106.19 (16) | F2'_2—C8_2—F3'_2 | 103.6 (8) |
F2_1—C8_1—C5_1 | 112.58 (16) | F1'_2—C8_2—C5_2 | 117.9 (7) |
F1_1—C8_1—C5_1 | 111.49 (15) | F2'_2—C8_2—C5_2 | 111.4 (5) |
F3_1—C8_1—C5_1 | 112.13 (15) | F1_2—C8_2—C5_2 | 113.31 (18) |
C7_1—N1_1—H1A_1 | 118.7 (16) | F2_2—C8_2—C5_2 | 112.42 (18) |
C7_1—N1_1—H1B_1 | 121.3 (16) | F3_2—C8_2—C5_2 | 112.05 (19) |
H1A_1—N1_1—H1B_1 | 120 (2) | F3'_2—C8_2—C5_2 | 104.4 (5) |
O3_1—N2_1—O2_1 | 125.01 (17) | C7_2—N1_2—H1A_2 | 117.4 (16) |
O3_1—N2_1—C3_1 | 116.95 (16) | C7_2—N1_2—H1B_2 | 122.9 (16) |
O2_1—N2_1—C3_1 | 118.01 (16) | H1A_2—N1_2—H1B_2 | 119 (2) |
C6_2—C1_2—C2_2 | 119.09 (16) | O3_2—N2_2—O2_2 | 125.16 (16) |
C6_2—C1_2—C7_2 | 118.92 (14) | O3_2—N2_2—C3_2 | 117.04 (16) |
C2_2—C1_2—C7_2 | 121.97 (15) | O2_2—N2_2—C3_2 | 117.77 (15) |
C6_1—C1_1—C2_1—C3_1 | 1.4 (3) | C7_2—C1_2—C2_2—Cl1_2 | 5.6 (2) |
C7_1—C1_1—C2_1—C3_1 | 178.83 (17) | C1_2—C2_2—C3_2—C4_2 | −0.3 (3) |
C6_1—C1_1—C2_1—Cl1_1 | 176.81 (14) | Cl1_2—C2_2—C3_2—C4_2 | 175.15 (15) |
C7_1—C1_1—C2_1—Cl1_1 | −5.8 (2) | C1_2—C2_2—C3_2—N2_2 | 178.95 (16) |
C1_1—C2_1—C3_1—C4_1 | −0.4 (3) | Cl1_2—C2_2—C3_2—N2_2 | −5.6 (2) |
Cl1_1—C2_1—C3_1—C4_1 | −175.85 (15) | C2_2—C3_2—C4_2—C5_2 | 1.7 (3) |
C1_1—C2_1—C3_1—N2_1 | −179.22 (16) | N2_2—C3_2—C4_2—C5_2 | −177.58 (16) |
Cl1_1—C2_1—C3_1—N2_1 | 5.4 (2) | C3_2—C4_2—C5_2—C6_2 | −2.2 (3) |
C2_1—C3_1—C4_1—C5_1 | −1.2 (3) | C3_2—C4_2—C5_2—C8_2 | 177.74 (18) |
N2_1—C3_1—C4_1—C5_1 | 177.60 (16) | C4_2—C5_2—C6_2—C1_2 | 1.3 (3) |
C3_1—C4_1—C5_1—C6_1 | 2.0 (3) | C8_2—C5_2—C6_2—C1_2 | −178.60 (18) |
C3_1—C4_1—C5_1—C8_1 | −174.41 (17) | C2_2—C1_2—C6_2—C5_2 | 0.1 (3) |
C4_1—C5_1—C6_1—C1_1 | −1.0 (3) | C7_2—C1_2—C6_2—C5_2 | 178.55 (17) |
C8_1—C5_1—C6_1—C1_1 | 175.30 (17) | C6_2—C1_2—C7_2—O1_2 | −135.37 (19) |
C2_1—C1_1—C6_1—C5_1 | −0.7 (3) | C2_2—C1_2—C7_2—O1_2 | 43.0 (3) |
C7_1—C1_1—C6_1—C5_1 | −178.19 (16) | C6_2—C1_2—C7_2—N1_2 | 43.5 (2) |
C6_1—C1_1—C7_1—O1_1 | 128.86 (19) | C2_2—C1_2—C7_2—N1_2 | −138.08 (18) |
C2_1—C1_1—C7_1—O1_1 | −48.6 (3) | C4_2—C5_2—C8_2—F1'_2 | 177.4 (11) |
C6_1—C1_1—C7_1—N1_1 | −49.0 (2) | C6_2—C5_2—C8_2—F1'_2 | −2.7 (11) |
C2_1—C1_1—C7_1—N1_1 | 133.54 (19) | C4_2—C5_2—C8_2—F2'_2 | 44.6 (8) |
C4_1—C5_1—C8_1—F2_1 | −150.70 (17) | C6_2—C5_2—C8_2—F2'_2 | −135.5 (8) |
C6_1—C5_1—C8_1—F2_1 | 32.9 (2) | C4_2—C5_2—C8_2—F1_2 | −24.5 (3) |
C4_1—C5_1—C8_1—F1_1 | 88.2 (2) | C6_2—C5_2—C8_2—F1_2 | 155.5 (3) |
C6_1—C5_1—C8_1—F1_1 | −88.2 (2) | C4_2—C5_2—C8_2—F2_2 | −146.3 (2) |
C4_1—C5_1—C8_1—F3_1 | −30.7 (2) | C6_2—C5_2—C8_2—F2_2 | 33.7 (3) |
C6_1—C5_1—C8_1—F3_1 | 152.89 (17) | C4_2—C5_2—C8_2—F3_2 | 97.5 (2) |
C4_1—C3_1—N2_1—O3_1 | 45.0 (2) | C6_2—C5_2—C8_2—F3_2 | −82.6 (3) |
C2_1—C3_1—N2_1—O3_1 | −136.1 (2) | C4_2—C5_2—C8_2—F3'_2 | −66.6 (8) |
C4_1—C3_1—N2_1—O2_1 | −132.8 (2) | C6_2—C5_2—C8_2—F3'_2 | 113.3 (8) |
C2_1—C3_1—N2_1—O2_1 | 46.0 (3) | C4_2—C3_2—N2_2—O3_2 | −45.6 (2) |
C6_2—C1_2—C2_2—C3_2 | −0.6 (3) | C2_2—C3_2—N2_2—O3_2 | 135.17 (19) |
C7_2—C1_2—C2_2—C3_2 | −179.02 (16) | C4_2—C3_2—N2_2—O2_2 | 132.50 (19) |
C6_2—C1_2—C2_2—Cl1_2 | −176.04 (14) | C2_2—C3_2—N2_2—O2_2 | −46.8 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1_1—H1A_1···O1_2 | 0.89 (2) | 2.07 (2) | 2.947 (2) | 170 (2) |
N1_1—H1B_1···O1_2i | 0.89 (2) | 1.99 (2) | 2.840 (2) | 160 (2) |
N1_2—H1A_2···O1_1 | 0.86 (2) | 2.08 (2) | 2.940 (2) | 172 (2) |
N1_2—H1B_2···O1_1ii | 0.88 (2) | 1.99 (2) | 2.804 (2) | 153 (2) |
C6_1—H6_1···O2_1iii | 0.95 | 2.67 | 3.578 (2) | 161 |
C6_2—H6_2···O2_2iv | 0.95 | 2.48 | 3.430 (2) | 179 |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y+1, −z; (iii) x+1, y, z; (iv) x−1, y, z. |
Acknowledgements
We thank Lundbeck (Kopenhagen, Denmark) for the generous gift of 2-chloro-5-(trifluoromethyl)benzonitrile. Professor Christian W. Lehmann is gratefully acknowledged for providing access to the X-ray diffraction facilities. Thanks are due to Elke Dreher and Heike Schucht for technical assistance with the 1. We acknowledge DESY (Hamburg, Germany), a member of the Helmholtz Association (HGF), for the provision of experimental facilities and we would like to thank Dr Sofiane Saouane for assistance in using the P11 beamline.
data collections and Frank Kohler for recording the ofFunding information
We acknowledge the financial support within the funding programme Open Access Publishing by the German Research Foundation (DFG).
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Baker, R. J., Colavita, P. E., Murphy, D. M., Platts, J. A. & Wallis, J. D. (2012). J. Phys. Chem. A, 116, 1435–1444. Web of Science CSD CrossRef CAS PubMed Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Brandenburg, K. (2018). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2012). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2017). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burkhardt, A., Pakendorf, T., Reime, B., Meyer, J., Fischer, P., Stübe, N., Panneerselvam, S., Lorbeer, O., Stachnik, K., Warmer, M., Rödig, P., Göries, D. & Meents, A. (2016). Eur. Phys. J. Plus, 131, 56. Web of Science CrossRef Google Scholar
Casino, A. del, Lukinović, V., Bhatt, R., Randle, L. E., Dascombe, M. J., Fennell, B. J., Drew, M. G. B., Bell, A., Fielding, A. J. & Ismail, F. M. D. (2018). ChemistrySelect 3, 7572–7580. Web of Science CSD CrossRef CAS Google Scholar
Cooper, M., Zuegg, J., Becker, B. & Karoli, T. (2011). PCT Int. Appl. WO 2013038259 A1. Google Scholar
Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311–2327. CrossRef CAS Web of Science Google Scholar
Eckhardt, T., Goddard, R., Rudolph, I., Richter, A., Lehmann, C., Imming, P. & Seidel, R. W. (2020). Acta Cryst. E76, 1442–1446. CSD CrossRef IUCr Journals Google Scholar
Gao, C., Ye, T.-H., Wang, N.-Y., Zeng, X.-X., Zhang, L.-D., Xiong, Y., You, X.-Y., Xia, Y., Xu, Y., Peng, C.-T., Zuo, W.-Q., Wei, Y. & Yu, L.-T. (2013). Bioorg. Med. Chem. Lett. 23, 4919–4922. CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Kabsch, W. (2010). Acta Cryst. D66, 125–132. Web of Science CrossRef CAS IUCr Journals Google Scholar
Kitaigorodskii, A. I. (1973). Molecular Crystals and Molecules. London: Academic Press. Google Scholar
Kraft, P., Bergamaschi, A., Broennimann, Ch., Dinapoli, R., Eikenberry, E. F., Henrich, B., Johnson, I., Mozzanica, A., Schlepütz, C. M., Willmott, P. R. & Schmitt, B. (2009). J. Synchrotron Rad. 16, 368–375. Web of Science CrossRef CAS IUCr Journals Google Scholar
Leiserowitz, L. & Schmidt, G. M. J. (1969). J. Chem. Soc. A, pp. 2372–2382. CrossRef Web of Science Google Scholar
Makarov, V. (2011). PCT Int. Appl. WO 2011132070 A1. Google Scholar
Makarov, V., Cole, S. T. & Moellmann, U. (2007). PCT Int. Appl. WO 2007134625 A1. Google Scholar
Makarov, V. & Mikušová, K. (2020). Appl. Sci. 10, 2269. Web of Science CrossRef Google Scholar
Mariandyshev, A. O., Khokhlov, A. L., Smerdin, S. V., Shcherbakova, V. S., Igumnova, O. V., Ozerova, I. V., Bolgarina, A. A. & Nikitina, N. A. (2020). Ter. Arkh. 92, 61–72. Web of Science CAS PubMed Google Scholar
Meents, A., Reime, B., Stuebe, N., Fischer, P., Warmer, M., Goeries, D., Roever, J., Meyer, J., Fischer, J., Burkhardt, A., Vartiainen, I., Karvinen, P. & David, C. (2013). Proc. SPIE, 8851, 88510K. Google Scholar
Mikušová, K., Makarov, V. & Neres, J. (2014). Curr. Pharm. Des. 20, 4379–4403. Web of Science PubMed Google Scholar
Moellmann, U., Makarov, V. & Cole, S. T. (2009). PCT Int. Appl. WO 2009010163 A1. Google Scholar
Parker, F. S. (1971). Applications of Infrared Spectroscopy in Biochemistry, Biology and Medicine, pp. 165–172. Boston: Springer. Google Scholar
Peng, C.-T., Gao, C., Wang, N.-Y., You, X.-Y., Zhang, L.-D., Zhu, Y.-X., Xv, Y., Zuo, W.-Q., Ran, K., Deng, H.-X., Lei, Q., Xiao, K.-J. & Yu, L.-T. (2015). Bioorg. Med. Chem. Lett. 25, 1373–1376. Web of Science CrossRef CAS PubMed Google Scholar
Piton, J., Foo, C. S.-Y. & Cole, S. T. (2017). Drug Discovery Today, 22, 526–533. CrossRef CAS PubMed Google Scholar
Richter, A., Rudolph, I., Möllmann, U., Voigt, K., Chung, C.-W., Singh, O. M. P., Rees, M., Mendoza-Losana, A., Bates, R., Ballell, L., Batt, S., Veerapen, N., Fütterer, K., Besra, G., Imming, P. & Argyrou, A. (2018). Sci. Rep. 8, 13473. CrossRef PubMed Google Scholar
Rudolph, A. I. (2014). PhD thesis, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany. Google Scholar
Rudolph, I., Imming, P. & Richter, A. (2016). Ger. Offen. DE 102014012546 A1 20160331. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shetye, G. S., Franzblau, S. G. & Cho, S. (2020). Transl. Res. 220, 68–97. CrossRef CAS PubMed Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Thakuria, R., Sarma, B. & Nangia, A. (2017). Hydrogen Bonding in Molecular Crystals. In Comprehensive Supramolecular Chemistry II, vol. 7, edited by J. L. Atwood, pp. 25–48. Oxford: Elsevier. Google Scholar
Trefzer, C., Rengifo-Gonzalez, M., Hinner, M. J., Schneider, P., Makarov, V., Cole, S. T. & Johnsson, K. (2010). J. Am. Chem. Soc. 132, 13663–13665. Web of Science CrossRef CAS PubMed Google Scholar
Trefzer, C., Škovierová, H., Buroni, S., Bobovská, A., Nenci, S., Molteni, E., Pojer, F., Pasca, M. R., Makarov, V., Cole, S. T., Riccardi, G., Mikušová, K. & Johnsson, K. (2012). J. Am. Chem. Soc. 134, 912–915. Web of Science CrossRef CAS PubMed Google Scholar
Welch, D. E., Baron, R. R. & Burton, B. A. (1969). J. Med. Chem. 12, 299–303. CrossRef CAS PubMed Web of Science Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wiberg, K. B. (2003). In: The Amide Linkage: Structural Significance in Chemistry, Biochemistry, and Materials Science edited by A. Greenberg, C. M. Breneman & J. F. Liebmann, pp. 33–46. Hoboken: John Wiley & Sons, Inc. Google Scholar
Zhang, G. & Aldrich, C. C. (2019). Acta Cryst. C75, 1031–1035. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhang, G., Howe, M. & Aldrich, C. C. (2019). ACS Med. Chem. Lett. 10, 348–351. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.