research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-3-nitro-5-(tri­fluoro­meth­yl)benzoic acid and -benzamide: structural characterization of two precursors for anti­tubercular benzo­thia­zinones

CROSSMARK_Color_square_no_text.svg

aInstitut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany, and bMax-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
*Correspondence e-mail: ruediger.seidel@pharmazie.uni-halle.de

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 1 January 2021; accepted 13 January 2021; online 19 January 2021)

8-Nitro-1,3-benzo­thia­zin-4-ones are a promising class of new anti­tubercular agents, two candidates of which, namely BTZ043 and PBTZ169 (INN: macozinone), have reached clinical trials. The crystal and mol­ecular structures of two synthetic precursors, 2-chloro-3-nitro-5-(tri­fluoro­meth­yl)benzoic acid, C8H3ClF3NO4 (1), and 2-chloro-3-nitro-5-(tri­fluoro­meth­yl)benzamide, C8H4ClF3N2O3 (2), are reported. In 1 and 2, the respective carb­oxy, carboxamide and the nitro groups are significantly twisted out of the plane of the benzene ring. In 1, the nitro group is oriented almost perpendicular to the benzene ring plane. In the crystal, 1 and 2 form O—H⋯O and N—H⋯O hydrogen-bonded dimers, respectively, which in 2 extend into primary amide tapes along the [101] direction. The tri­fluoro­methyl group in 2 exhibits rotational disorder with an occupancy ratio of 0.876 (3):0.124 (3).

1. Chemical context

2-Chloro-3-nitro-5-(tri­fluoro­meth­yl)benzoic acid (1) and 2-chloro-3-nitro-5-(tri­fluoro­meth­yl)benzamide (2), the title compounds, have been used as precursors in various synthetic routes to 8-nitro-6-(tri­fluoro­meth­yl)benzo-1,3-thia­zin-4-ones (BTZ) (Makarov et al., 2007[Makarov, V., Cole, S. T. & Moellmann, U. (2007). PCT Int. Appl. WO 2007134625 A1.]; Moellmann et al., 2009[Moellmann, U., Makarov, V. & Cole, S. T. (2009). PCT Int. Appl. WO 2009010163 A1.]; Cooper et al., 2011[Cooper, M., Zuegg, J., Becker, B. & Karoli, T. (2011). PCT Int. Appl. WO 2013038259 A1.]; Gao et al., 2013[Gao, C., Ye, T.-H., Wang, N.-Y., Zeng, X.-X., Zhang, L.-D., Xiong, Y., You, X.-Y., Xia, Y., Xu, Y., Peng, C.-T., Zuo, W.-Q., Wei, Y. & Yu, L.-T. (2013). Bioorg. Med. Chem. Lett. 23, 4919-4922.]; Rudolph, 2014[Rudolph, A. I. (2014). PhD thesis, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany.]; Peng et al., 2015[Peng, C.-T., Gao, C., Wang, N.-Y., You, X.-Y., Zhang, L.-D., Zhu, Y.-X., Xv, Y., Zuo, W.-Q., Ran, K., Deng, H.-X., Lei, Q., Xiao, K.-J. & Yu, L.-T. (2015). Bioorg. Med. Chem. Lett. 25, 1373-1376.]; Rudolph et al., 2016[Rudolph, I., Imming, P. & Richter, A. (2016). Ger. Offen. DE 102014012546 A1 20160331.]; Zhang & Aldrich, 2019[Zhang, G. & Aldrich, C. C. (2019). Acta Cryst. C75, 1031-1035.]; Zhang et al., 2019[Zhang, G., Howe, M. & Aldrich, C. C. (2019). ACS Med. Chem. Lett. 10, 348-351.]), a promising new class of anti­tubercular agents, which target the mycobacterial enzyme deca­prenyl­phosphoryl-β-D-ribose 2′-epimerase (DprE1) (Trefzer et al., 2010[Trefzer, C., Rengifo-Gonzalez, M., Hinner, M. J., Schneider, P., Makarov, V., Cole, S. T. & Johnsson, K. (2010). J. Am. Chem. Soc. 132, 13663-13665.], 2012[Trefzer, C., Škovierová, H., Buroni, S., Bobovská, A., Nenci, S., Molteni, E., Pojer, F., Pasca, M. R., Makarov, V., Cole, S. T., Riccardi, G., Mikušová, K. & Johnsson, K. (2012). J. Am. Chem. Soc. 134, 912-915.]; Mikušová et al., 2014[Mikušová, K., Makarov, V. & Neres, J. (2014). Curr. Pharm. Des. 20, 4379-4403.]; Piton et al., 2017[Piton, J., Foo, C. S.-Y. & Cole, S. T. (2017). Drug Discovery Today, 22, 526-533.]; Richter et al., 2018[Richter, A., Rudolph, I., Möllmann, U., Voigt, K., Chung, C.-W., Singh, O. M. P., Rees, M., Mendoza-Losana, A., Bates, R., Ballell, L., Batt, S., Veerapen, N., Fütterer, K., Besra, G., Imming, P. & Argyrou, A. (2018). Sci. Rep. 8, 13473.]). Two compounds from this class, viz. BTZ043 and PBTZ169 (INN: macozinone), have already reached clinical trials (Makarov & Mikušová, 2020[Makarov, V. & Mikušová, K. (2020). Appl. Sci. 10, 2269.]; Mariandyshev et al., 2020[Mariandyshev, A. O., Khokhlov, A. L., Smerdin, S. V., Shcherbakova, V. S., Igumnova, O. V., Ozerova, I. V., Bolgarina, A. A. & Nikitina, N. A. (2020). Ter. Arkh. 92, 61-72.]; Shetye et al., 2020[Shetye, G. S., Franzblau, S. G. & Cho, S. (2020). Transl. Res. 220, 68-97.]).

[Scheme 1]

Fig. 1[link] depicts two representative syntheses of the lead compound BTZ043 starting from 1 or 2. In the original synthesis, reaction of 1 (Makarov et al., 2007[Makarov, V., Cole, S. T. & Moellmann, U. (2007). PCT Int. Appl. WO 2007134625 A1.]) with potassium thio­cyanate after activation with thionyl chloride gives the highly reactive benzoyl iso­thio­cyanate derivative, which is reacted in situ with the secondary amine (S)-2-methyl-1,4-dioxa-8-aza­spiro­[4.5]decane to form a thio­urea derivative (not shown), which undergoes ring closure to form BTZ043. Starting from 2 (Makarov, 2011[Makarov, V. (2011). PCT Int. Appl. WO 2011132070 A1.]), reaction with carbon di­sulfide and methyl iodide leads to the stable 2-(methyl­thio)-8-nitro-6-(tri­fluoro­meth­yl)benzo-1,3-thia­zin-4-one. Reaction with the aforementioned secondary amine eventually affords BTZ043.

[Figure 1]
Figure 1
Conversion of 1 to 2 in two steps and schematic illustration of two representative syntheses of BTZ043 starting from 1 (Makarov et al., 2007[Makarov, V., Cole, S. T. & Moellmann, U. (2007). PCT Int. Appl. WO 2007134625 A1.]) or 2 (Makarov, 2011[Makarov, V. (2011). PCT Int. Appl. WO 2011132070 A1.]).

To the best of our knowledge, Welch et al. (1969[Welch, D. E., Baron, R. R. & Burton, B. A. (1969). J. Med. Chem. 12, 299-303.]) were the first to report the synthesis of the title compounds more than 50 years ago in the course of a study on tri­fluoro­methyl­benzamides as anti­coccidial agents. Compound 1 is readily obtained from 2-chloro-5-(tri­fluoro­meth­yl)benzo­nitrile upon reaction with nitrating acid mixture. Treatment of 1 with thionyl chloride affords the corresponding acid chloride, which is reacted with concentrated ammonia solution to give amide 2 in good yield (Fig. 1[link]).

2. Structural commentary

Fig. 2[link] shows the mol­ecular structures of 1 and 2 in the crystal. Both compounds form hydrogen-bonded dimers in the solid state, which in the case of 2 is augmented by additional N—H⋯O hydrogen bonds to form a catemer (see Section 3). In 1, the plane defined by the carb­oxy group non-hydrogen atoms (O1, O2 and C7) is twisted out of the mean plane of the benzene ring (C1–C6) by 22.9 (1)°. Remarkably, the plane defined by the nitro group (O3, O4 and N1) is oriented nearly perpendicular to the mean plane of the benzene ring with a tilt angle of 85.38 (7)°.

[Figure 2]
Figure 2
Hydrogen-bonded dimers of 1 (a) and 2 (b) in the crystal. Displacement ellipsoids are drawn at the 50% probability level. The site of the disordered tri­fluoro­methyl group in 2 with minor occupancy (ca 12%) in the crystal is shown by empty ellipsoids. Hydrogen atoms are represented by small spheres of arbitrary radius and hydrogen bonds are shown by dashed lines. Symmetry code: (i) −x + 2, −y + 1, −z + 1.

Compound 2 crystallizes with two mol­ecules in the asymmetric unit (Z′ = 2), one of which exhibits partial rotational disorder of the tri­fluoro­methyl group. With respect to the mean plane of benzene ring (C1–C6), the plane defined by the non-hydrogen atoms of the amide group (O1, N1 and C7) is inclined at 49.0 (2) and 43.4 (2)° in mol­ecule 1 and 2, respectively. The tilt angle between the plane of the nitro group (O2, O3 and N2) and the benzene ring mean plane is 46.1 (1)° in mol­ecule 1 and 46.7 (1)° in mol­ecule 2, which is significantly smaller than in 1.

The 1H NMR spectrum of 2 in DMSO-d6 at room temperature shows two distinct broad singlets for the amide hydrogen atoms (see supporting information), indicating restricted rotation about the C—N bond due to partial double-bond character (Wiberg, 2003[Wiberg, K. B. (2003). In: The Amide Linkage: Structural Significance in Chemistry, Biochemistry, and Materials Science edited by A. Greenberg, C. M. Breneman & J. F. Liebmann, pp. 33-46. Hoboken: John Wiley & Sons, Inc.]). In the IR spectrum of solid 2 (see supporting information), two characteristic N—H stretching bands at 3356 and 3178 cm−1 are present (Parker, 1971[Parker, F. S. (1971). Applications of Infrared Spectroscopy in Biochemistry, Biology and Medicine, pp. 165-172. Boston: Springer.]).

3. Supra­molecular features

The supra­molecular structures of 1 and 2 feature carb­oxy­lic acid–carb­oxy­lic acid and amide–amide homosynthons (Desiraju, 1995[Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311-2327.]; Thakuria et al., 2017[Thakuria, R., Sarma, B. & Nangia, A. (2017). Hydrogen Bonding in Molecular Crystals. In Comprehensive Supramolecular Chemistry II, vol. 7, edited by J. L. Atwood, pp. 25-48. Oxford: Elsevier.]), respectively. The hydrogen-bond motif is R22(8) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) in both cases. Geometric parameters of the O—H⋯O hydrogen bonds in 1 (Table 1[link]) and the N—H⋯O hydrogen bonds in 2 (Table 2[link]) are within expected ranges (Thakuria et al., 2017[Thakuria, R., Sarma, B. & Nangia, A. (2017). Hydrogen Bonding in Molecular Crystals. In Comprehensive Supramolecular Chemistry II, vol. 7, edited by J. L. Atwood, pp. 25-48. Oxford: Elsevier.]). In 1 two mol­ecules related by crystallographic inversion symmetry form a carb­oxy­lic acid dimer, whereas in 2 two crystallographically unique mol­ecules related by approximate local inversion symmetry form a carboxamide dimer. The second amide hydrogen atom forms a hydrogen bond to the carbonyl oxygen atom of an adjacent dimer. The additional R42(8) hydrogen-bond motif thus formed about a crystallographic centre of symmetry extends the N—H⋯O hydrogen-bonding pattern in 2 into typical primary amide tapes (Leiserowitz & Schmidt, 1969[Leiserowitz, L. & Schmidt, G. M. J. (1969). J. Chem. Soc. A, pp. 2372-2382.]) parallel to the [101] direction (Fig. 3[link]a).

Table 1
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.86 (2) 1.83 (2) 2.6891 (13) 176 (2)
C4—H4⋯F3ii 0.95 2.66 3.5767 (16) 161
C6—H6⋯O3iii 0.95 2.66 3.5410 (19) 154
C6—H6⋯O4iii 0.95 2.62 3.5019 (17) 154
Symmetry codes: (i) [-x+2, -y+1, -z+1]; (ii) [-x+1, -y+2, -z]; (iii) [x-1, y-1, z].

Table 2
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1_1—H1A_1⋯O1_2 0.89 (2) 2.07 (2) 2.947 (2) 170 (2)
N1_1—H1B_1⋯O1_2i 0.89 (2) 1.99 (2) 2.840 (2) 160 (2)
N1_2—H1A_2⋯O1_1 0.86 (2) 2.08 (2) 2.940 (2) 172 (2)
N1_2—H1B_2⋯O1_1ii 0.88 (2) 1.99 (2) 2.804 (2) 153 (2)
C6_1—H6_1⋯O2_1iii 0.95 2.67 3.578 (2) 161
C6_2—H6_2⋯O2_2iv 0.95 2.48 3.430 (2) 179
Symmetry codes: (i) [-x+2, -y+1, -z+1]; (ii) [-x+1, -y+1, -z]; (iii) x+1, y, z; (iv) [x-1, y, z].
[Figure 3]
Figure 3
Parts of the crystal structure of 2 viewed (a) down [1[\overline{1}]0], showing N—H⋯O hydrogen-bonded tapes extending in the [101] direction, and (b) towards the plane (001), showing short C—H⋯O contacts in addition to classical N—H⋯O hydrogen bonds (both represented by dashed lines). The number after the underscore indicate unique mol­ecule 1 or 2 (Fig. 2[link]). The minor disorder part of the tri­fluoro­methyl group in mol­ecule 2 and carbon-bound hydrogen atoms are omitted for clarity in (a). Symmetry codes: (i) −x + 2, −y + 1; (ii) −x + 1, −y + 1, -z; (iii) x + 1, y, z; (iv) x − 1, y, z.

In addition to classical O—H⋯O and N—H⋯O inter­molecular hydrogen bonds in 1 and 2, respectively, the solid-state supra­molecular structures of both compounds feature a number of possible weak inter­actions (Tables 1[link] and 2[link]). In 1 the C4—H4 moiety forms a short contact to a fluorine atom of the tri­fluoro­methyl group of a neighbouring mol­ecule (Fig. S1 in the supporting information) and the nitro group appears to accept a donating bifurcated weak C—H⋯O hydrogen bond from the C6—H6 moiety (Fig. S2 in the supporting information). The latter inter­action links the mol­ecules into chains in the [110] direction and may be discussed in connection with the remarkable twist of the nitro group out of the plane of the benzene ring. A packing index for 1 of 74.3%, as calculated with PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), indicates a fairly dense crystal packing for a mol­ecular compound (Kitaigorodskii, 1973[Kitaigorodskii, A. I. (1973). Molecular Crystals and Molecules. London: Academic Press.]).

In the crystal structure of 2, short fluorine–fluorine contacts between the non-disordered tri­fluoro­methyl groups of adjacent mol­ecules 1 can be identified (Fig. S3 in the supporting information). Based on the corresponding C—F⋯F angles of 152.1 (1)° at F1 and 168.6 (1)° at F3, these contacts may be classified as type I fluorine–fluorine inter­actions (Baker et al., 2012[Baker, R. J., Colavita, P. E., Murphy, D. M., Platts, J. A. & Wallis, J. D. (2012). J. Phys. Chem. A, 116, 1435-1444.]). As in 1, the C6—H6 moieties in 2 form short C—H⋯O contacts to nitro oxygen atoms of adjacent mol­ecules (Fig. 3[link]b). The electron-withdrawing effect exerted by the ring subs­tituents in both 1 and 2 should activate the C—H moieties for weak hydrogen bonding (Thakuria et al., 2017[Thakuria, R., Sarma, B. & Nangia, A. (2017). Hydrogen Bonding in Molecular Crystals. In Comprehensive Supramolecular Chemistry II, vol. 7, edited by J. L. Atwood, pp. 25-48. Oxford: Elsevier.]) to some extent. Notably, the packing index for 2 of 70.0%, as calculated only for the major disorder part of the tri­fluoro­methyl group in mol­ecule 2, is markedly smaller than for 1.

4. Database survey

A search of the Cambridge Structural Database (CSD; version 5.41 with August 2020 updates; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for a 1-chloro-2-nitro-4-(tri­fluoro­meth­yl)benzene moiety revealed two related structures, viz. 1,5-di­chloro-2-nitro-4-(tri­fluoro­meth­yl)benzene (CSD refcode: JIHNOG) and 2-chloro-1,3-di­nitro-5-(tri­fluoro­meth­yl)benzene, also known as chloralin (JIHNUM) (del Casino et al., 2018[Casino, A. del, Lukinović, V., Bhatt, R., Randle, L. E., Dascombe, M. J., Fennell, B. J., Drew, M. G. B., Bell, A., Fielding, A. J. & Ismail, F. M. D. (2018). ChemistrySelect 3, 7572-7580.]). In the two structures, the largest twist of a nitro group in ortho position to chlorine and meta position to the tri­fluoro­methyl group out of the benzene ring is 61.5° in JIHNUM. For [2-chloro-3-nitro-5-(tri­fluoro­meth­yl)phen­yl](piperidin-1-yl)methanone (MUPZAB), a structurally characterized side product in benzo­thia­zinone synthesis, the twist angle is 38.1 (2)° (Eckhardt et al., 2020[Eckhardt, T., Goddard, R., Rudolph, I., Richter, A., Lehmann, C., Imming, P. & Seidel, R. W. (2020). Acta Cryst. E76, 1442-1446.]).

5. Synthesis and crystallization

General: Starting materials and reagents were obtained from chemical suppliers and used as received. Solvents were of reagent grade and were distilled before use. NMR spectra were measured on an Agilent Technologies VNMRS 400 MHz spectrometer. Chemical shifts are reported relative to the residual solvent peak of DMSO-d6 (δH = 2.50 ppm, δC = 39.5 ppm). Abbreviations: s = singlet, d = doublet, q = quartet. IR spectra were measured on a Bruker ALPHA Platinum ATR–FT–IR spectrometer. Mass spectra were recorded on a Thermo Fisher Q ExactiveTM Plus Orbitrap mass spectrometer for 1 and on an Advion expressionS compact mass spectrometer for 2, using methanol as solvent.

2-Chloro-3-nitro-5-(tri­fluoro­meth­yl)benzoic acid (1): Compound 1 was synthesized from 2-chloro-5-(tri­fluoro­meth­yl)benzo­nitrile (Lundbeck) using a literature method (Welch et al., 1969[Welch, D. E., Baron, R. R. & Burton, B. A. (1969). J. Med. Chem. 12, 299-303.]). 1H NMR (400 MHz, DMSO-d6): δ = 8.70 (d, J = 2.2 Hz, 1H), 8.40 (d, J = 2.2 Hz, 1H) ppm; 13C{1H} NMR (126 MHz, DMSO-d6) δ = 164.3, 149.7, 135.7, 129.7 (q, 3J = 4 Hz), 128.8 (q, 2J = 35 Hz), 127.2, 124.0 (q, 3J = 4 Hz), 122.3 (q, 1J = 273 Hz) ppm; IR(ATR): ν~ = 3097 (C—H stretch), 2865 (O—H stretch), 1702 (C=O stretch), 1542, 1323 (NO2 stretch), 1117 (C—F stretch) cm−1; MS (ESI) m/z [M − COOH] calculated for C7H2ClF3NO2 224.0, found 224.0, [M − H] calculated for C8H2ClF3NO4 268.0, found 268.0.

2-Chloro-3-nitro-5-(tri­fluoro­meth­yl)benzamide (2): Compound 2 was prepared from 1 following a published procedure (Makarov et al., 2007[Makarov, V., Cole, S. T. & Moellmann, U. (2007). PCT Int. Appl. WO 2007134625 A1.]). 1H NMR (400 MHz, DMSO-d6): δ = 8.60 (d, J = 2.2 Hz, 1H), 8.22 (s, 1H), 8.18 (d, J = 2.2 Hz, 1H), 8.03 (s, 1H) ppm; 13C{1H} NMR (101 MHz, DMSO-d6) δ = 165.1, 148.9, 140.8, 128.8 (q, 2J = 34 Hz), 128.2 (q, 3J = 4 Hz), 125.8, 122.42 (q, 1J = 273 Hz), 122.4 (q, 3J = 4 Hz) ppm; IR(ATR): ν~ = 3356, 3178 (N—H stretch), 3096 (C—H stretch), 1659 (C=O stretch), 1629 (N—H bend), 1537, 1317 (NO2 stretch), 1116 (C—F stretch) cm−1; MS (APCI+) m/z [M + H]+ calculated for C8H5ClF3N2O3+ 269.0, found 268.9.

Crystals suitable for single-crystal X-ray diffraction were obtained by slow evaporation at room temperature of 1 in methanol/water and of 2 in ethanol.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Diffraction data for 1 were measured at the P11 beamline at PETRA III at DESY (Meents et al., 2013[Meents, A., Reime, B., Stuebe, N., Fischer, P., Warmer, M., Goeries, D., Roever, J., Meyer, J., Fischer, J., Burkhardt, A., Vartiainen, I., Karvinen, P. & David, C. (2013). Proc. SPIE, 8851, 88510K.]; Burkhardt et al., 2016[Burkhardt, A., Pakendorf, T., Reime, B., Meyer, J., Fischer, P., Stübe, N., Panneerselvam, S., Lorbeer, O., Stachnik, K., Warmer, M., Rödig, P., Göries, D. & Meents, A. (2016). Eur. Phys. J. Plus, 131, 56.]). Rotational disorder of a tri­fluoro­methyl group in 2 was refined using a split model with similar distance restraints on the 1,2- and 1,3-distances and equal atomic displacement parameters for opposite fluorine atoms belonging to different disorder sites. Refinement of the ratio of occupancies by means of a free variable resulted in 0.876 (3):0.124 (3). Carbon-bound H atoms were placed in geometrically calculated positions with C—H = 0.95 Å, and refined with the appropriate riding model and Uiso(H) = 1.2 Ueq(C). The carb­oxy hydrogen atom in 1 was located in a difference-Fourier map and refined freely. The amide H atoms in 2 were also located in difference-Fourier maps and refined semi-freely with the N—H distances restrained to a target value of 0.88 (2) Å and with Uiso(H) = 1.2 Ueq(N).

Table 3
Experimental details

  1 2
Crystal data
Chemical formula C8H3ClF3NO4 C8H4ClF3N2O3
Mr 269.56 268.58
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/c
Temperature (K) 100 100
a, b, c (Å) 4.7297 (10), 7.8993 (16), 13.044 (3) 8.3012 (12), 28.230 (4), 9.1522 (14)
α, β, γ (°) 91.57 (3), 96.51 (3), 104.79 (3) 90, 110.424 (3), 90
V3) 467.36 (18) 2009.9 (5)
Z 2 8
Radiation type Synchrotron, λ = 0.6199 Å Mo Kα
μ (mm−1) 0.31 0.42
Crystal size (mm) 0.33 × 0.20 × 0.04 0.05 × 0.02 × 0.01
 
Data collection
Diffractometer P11 beamline at Petra III with Pilatus 6M detector (Kraft et al., 2009[Kraft, P., Bergamaschi, A., Broennimann, Ch., Dinapoli, R., Eikenberry, E. F., Henrich, B., Johnson, I., Mozzanica, A., Schlepütz, C. M., Willmott, P. R. & Schmitt, B. (2009). J. Synchrotron Rad. 16, 368-375.]) Bruker Kappa Mach3 APEXII
Absorption correction Gaussian (SADABS; Bruker, 2012[Bruker (2012). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.989, 0.996
No. of measured, independent and observed [I > 2σ(I)] reflections 9797, 2834, 2766 64252, 8316, 5593
Rint 0.019 0.080
(sin θ/λ)max−1) 0.730 0.793
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.082, 1.05 0.056, 0.136, 1.04
No. of reflections 2834 8316
No. of parameters 158 329
No. of restraints 0 121
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.64, −0.43 0.79, −0.59
Computer programs: P11 Crystallography Control (Meents et al., 2013[Meents, A., Reime, B., Stuebe, N., Fischer, P., Warmer, M., Goeries, D., Roever, J., Meyer, J., Fischer, J., Burkhardt, A., Vartiainen, I., Karvinen, P. & David, C. (2013). Proc. SPIE, 8851, 88510K.]), APEX3 (Bruker, 2017[Bruker (2017). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), XDS (Kabsch, 2010[Kabsch, W. (2010). Acta Cryst. D66, 125-132.]), SAINT (Bruker, 2004[Bruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2018[Brandenburg, K. (2018). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: P11 Crystallography Control (Meents et al., 2013) for (1); APEX3 (Bruker, 2017) for (2). Cell refinement: XDS (Kabsch, 2010) for (1); SAINT (Bruker, 2004) for (2). Data reduction: XDS (Kabsch, 2010) for (1); SAINT (Bruker, 2004) for (2). For both structures, program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2018); software used to prepare material for publication: enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).

2-Chloro-3-nitro-5-(trifluoromethyl)benzoic acid (1) top
Crystal data top
C8H3ClF3NO4Z = 2
Mr = 269.56F(000) = 268
Triclinic, P1Dx = 1.916 Mg m3
a = 4.7297 (10) ÅSynchrotron radiation, λ = 0.6199 Å
b = 7.8993 (16) ÅCell parameters from 9110 reflections
c = 13.044 (3) Åθ = 1.4–26.9°
α = 91.57 (3)°µ = 0.31 mm1
β = 96.51 (3)°T = 100 K
γ = 104.79 (3)°Plate, colourless
V = 467.36 (18) Å30.33 × 0.20 × 0.04 mm
Data collection top
P11 beamline at Petra III with Pilatus 6M detector (Kraft et al., 2009)
diffractometer
2766 reflections with I > 2σ(I)
Radiation source: synchrotronRint = 0.019
Detector resolution: 5.81 pixels mm-1θmax = 26.9°, θmin = 1.4°
φ scanh = 66
9797 measured reflectionsk = 1111
2834 independent reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: mixed
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0446P)2 + 0.2681P]
where P = (Fo2 + 2Fc2)/3
2834 reflections(Δ/σ)max = 0.001
158 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.43 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8267 (2)0.79164 (11)0.32984 (7)0.00863 (16)
C20.9897 (2)0.96649 (11)0.32560 (7)0.00871 (16)
C30.8979 (2)1.06490 (11)0.24763 (7)0.00957 (17)
C40.6603 (2)0.99896 (12)0.17358 (7)0.01093 (17)
H40.6046301.0699940.1214380.013*
C50.5045 (2)0.82466 (12)0.17771 (7)0.00969 (16)
C60.5845 (2)0.72297 (11)0.25554 (7)0.01008 (17)
H60.4727680.6050620.2581990.012*
C70.9092 (2)0.67213 (11)0.40892 (7)0.00943 (17)
C80.2606 (2)0.74456 (13)0.09293 (8)0.01313 (18)
N11.0646 (2)1.24888 (10)0.24249 (7)0.01242 (16)
O10.68411 (17)0.53906 (9)0.42044 (6)0.01328 (15)
H10.743 (5)0.469 (3)0.4618 (17)0.037 (5)*
O21.15606 (18)0.69465 (9)0.45466 (6)0.01391 (15)
O30.9986 (3)1.35882 (11)0.29446 (9)0.0333 (3)
O41.2576 (2)1.27866 (12)0.18631 (9)0.0296 (2)
F10.12540 (18)0.86369 (9)0.05423 (6)0.02163 (16)
F20.05311 (18)0.61547 (10)0.12436 (6)0.02413 (17)
F30.36346 (19)0.68013 (11)0.01315 (6)0.02649 (18)
Cl11.29187 (5)1.06719 (3)0.41157 (2)0.01187 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0110 (4)0.0033 (3)0.0108 (4)0.0005 (3)0.0007 (3)0.0019 (3)
C20.0106 (4)0.0033 (3)0.0106 (4)0.0007 (3)0.0001 (3)0.0003 (3)
C30.0133 (5)0.0016 (3)0.0122 (4)0.0008 (3)0.0014 (3)0.0015 (3)
C40.0149 (5)0.0052 (3)0.0114 (4)0.0007 (3)0.0003 (3)0.0020 (3)
C50.0114 (4)0.0053 (3)0.0103 (4)0.0006 (3)0.0008 (3)0.0004 (3)
C60.0125 (5)0.0037 (3)0.0124 (4)0.0005 (3)0.0004 (3)0.0015 (3)
C70.0124 (5)0.0036 (3)0.0120 (4)0.0014 (3)0.0016 (3)0.0018 (3)
C80.0153 (5)0.0090 (4)0.0126 (4)0.0002 (3)0.0017 (3)0.0004 (3)
N10.0173 (4)0.0034 (3)0.0142 (4)0.0007 (3)0.0003 (3)0.0023 (3)
O10.0117 (4)0.0076 (3)0.0195 (3)0.0000 (2)0.0012 (3)0.0084 (2)
O20.0140 (4)0.0065 (3)0.0191 (3)0.0005 (2)0.0022 (3)0.0045 (2)
O30.0543 (7)0.0053 (3)0.0411 (5)0.0009 (4)0.0251 (5)0.0028 (3)
O40.0309 (5)0.0104 (4)0.0477 (6)0.0020 (3)0.0225 (5)0.0052 (4)
F10.0228 (4)0.0162 (3)0.0232 (3)0.0054 (3)0.0095 (3)0.0030 (2)
F20.0197 (4)0.0179 (3)0.0247 (3)0.0100 (3)0.0065 (3)0.0067 (3)
F30.0267 (4)0.0320 (4)0.0187 (3)0.0079 (3)0.0028 (3)0.0137 (3)
Cl10.01275 (14)0.00512 (10)0.01442 (11)0.00170 (8)0.00296 (8)0.00074 (7)
Geometric parameters (Å, º) top
C1—C61.3957 (15)C5—C81.5013 (15)
C1—C21.4054 (13)C6—H60.9500
C1—C71.5026 (13)C7—O21.2170 (14)
C2—C31.3937 (13)C7—O11.3170 (12)
C2—Cl11.7148 (12)C8—F21.3318 (13)
C3—C41.3765 (15)C8—F31.3384 (13)
C3—N11.4733 (13)C8—F11.3451 (13)
C4—C51.3916 (13)N1—O31.2105 (13)
C4—H40.9500N1—O41.2153 (13)
C5—C61.3900 (13)O1—H10.86 (2)
C6—C1—C2119.12 (9)C5—C6—H6119.5
C6—C1—C7118.16 (8)C1—C6—H6119.5
C2—C1—C7122.67 (9)O2—C7—O1124.60 (9)
C3—C2—C1118.06 (9)O2—C7—C1123.69 (9)
C3—C2—Cl1117.94 (7)O1—C7—C1111.69 (9)
C1—C2—Cl1124.00 (8)F2—C8—F3107.89 (9)
C4—C3—C2123.52 (8)F2—C8—F1106.91 (9)
C4—C3—N1117.66 (9)F3—C8—F1105.88 (9)
C2—C3—N1118.82 (9)F2—C8—C5112.71 (8)
C3—C4—C5117.72 (9)F3—C8—C5111.35 (9)
C3—C4—H4121.1F1—C8—C5111.73 (8)
C5—C4—H4121.1O3—N1—O4125.01 (10)
C6—C5—C4120.63 (9)O3—N1—C3117.49 (9)
C6—C5—C8120.31 (8)O4—N1—C3117.50 (9)
C4—C5—C8118.95 (9)C7—O1—H1109.2 (15)
C5—C6—C1120.93 (9)
C6—C1—C2—C31.05 (14)C7—C1—C6—C5177.27 (9)
C7—C1—C2—C3178.55 (8)C6—C1—C7—O2155.57 (10)
C6—C1—C2—Cl1179.86 (7)C2—C1—C7—O221.95 (15)
C7—C1—C2—Cl12.36 (14)C6—C1—C7—O122.94 (12)
C1—C2—C3—C41.35 (15)C2—C1—C7—O1159.54 (9)
Cl1—C2—C3—C4179.51 (8)C6—C5—C8—F231.69 (14)
C1—C2—C3—N1179.50 (8)C4—C5—C8—F2152.19 (10)
Cl1—C2—C3—N10.36 (12)C6—C5—C8—F389.73 (12)
C2—C3—C4—C50.19 (15)C4—C5—C8—F386.40 (12)
N1—C3—C4—C5179.35 (9)C6—C5—C8—F1152.10 (9)
C3—C4—C5—C61.26 (15)C4—C5—C8—F131.77 (13)
C3—C4—C5—C8174.85 (9)C4—C3—N1—O394.69 (13)
C4—C5—C6—C11.54 (15)C2—C3—N1—O386.11 (13)
C8—C5—C6—C1174.52 (9)C4—C3—N1—O485.22 (13)
C2—C1—C6—C50.34 (14)C2—C3—N1—O493.98 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.86 (2)1.83 (2)2.6891 (13)176 (2)
C4—H4···F3ii0.952.663.5767 (16)161
C6—H6···O3iii0.952.663.5410 (19)154
C6—H6···O4iii0.952.623.5019 (17)154
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+2, z; (iii) x1, y1, z.
2-Chloro-3-nitro-5-(trifluoromethyl)benzamide (2) top
Crystal data top
C8H4ClF3N2O3F(000) = 1072
Mr = 268.58Dx = 1.775 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.3012 (12) ÅCell parameters from 8332 reflections
b = 28.230 (4) Åθ = 2.7–32.0°
c = 9.1522 (14) ŵ = 0.42 mm1
β = 110.424 (3)°T = 100 K
V = 2009.9 (5) Å3Prism, colourless
Z = 80.05 × 0.02 × 0.01 mm
Data collection top
Bruker Kappa Mach3 APEXII
diffractometer
8316 independent reflections
Radiation source: microfocus X-ray tube5593 reflections with I > 2σ(I)
Incoatec Helios mirrors monochromatorRint = 0.080
Detector resolution: 66.67 pixels mm-1θmax = 34.3°, θmin = 1.4°
φ– and ω–scansh = 1313
Absorption correction: gaussian
(SADABS; Bruker, 2012)
k = 4443
Tmin = 0.989, Tmax = 0.996l = 1414
64252 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: mixed
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.047P)2 + 2.2564P]
where P = (Fo2 + 2Fc2)/3
8316 reflections(Δ/σ)max < 0.001
329 parametersΔρmax = 0.79 e Å3
121 restraintsΔρmin = 0.59 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C1_10.6080 (2)0.40838 (6)0.4317 (2)0.0121 (3)
C2_10.4418 (2)0.41062 (6)0.4365 (2)0.0132 (3)
C3_10.3904 (2)0.37581 (7)0.5183 (2)0.0143 (3)
C4_10.4966 (2)0.33920 (7)0.5936 (2)0.0142 (3)
H4_10.4590030.3162140.6504640.017*
C5_10.6590 (2)0.33663 (6)0.5847 (2)0.0125 (3)
C6_10.7155 (2)0.37105 (6)0.5056 (2)0.0121 (3)
H6_10.8282580.3691690.5017430.015*
C7_10.6725 (2)0.44400 (6)0.3435 (2)0.0132 (3)
C8_10.7697 (2)0.29469 (7)0.6533 (2)0.0164 (3)
N1_10.82735 (19)0.46157 (6)0.41884 (19)0.0161 (3)
H1A_10.872 (3)0.4820 (8)0.370 (3)0.019*
H1B_10.882 (3)0.4553 (9)0.519 (2)0.019*
N2_10.2167 (2)0.37541 (6)0.5271 (2)0.0188 (3)
O1_10.58652 (17)0.45467 (5)0.20742 (16)0.0211 (3)
O2_10.09471 (19)0.38169 (7)0.4067 (2)0.0343 (4)
O3_10.2059 (2)0.36737 (6)0.6541 (2)0.0299 (4)
F1_10.74246 (19)0.25946 (5)0.55044 (16)0.0323 (3)
F2_10.93677 (16)0.30500 (5)0.70284 (18)0.0316 (3)
F3_10.73792 (18)0.27697 (5)0.77582 (15)0.0276 (3)
Cl1_10.30947 (6)0.45781 (2)0.35459 (6)0.02245 (11)
C1_20.9002 (2)0.59541 (6)0.0619 (2)0.0114 (3)
C2_21.0602 (2)0.59679 (6)0.0421 (2)0.0129 (3)
C3_21.0995 (2)0.63574 (7)0.0321 (2)0.0138 (3)
C4_20.9863 (2)0.67303 (7)0.0875 (2)0.0155 (3)
H4_21.0148720.6988910.1403420.019*
C5_20.8306 (2)0.67163 (7)0.0641 (2)0.0152 (3)
C6_20.7871 (2)0.63314 (6)0.0082 (2)0.0133 (3)
H6_20.6785690.6324740.0213720.016*
C7_20.8488 (2)0.55491 (6)0.1431 (2)0.0123 (3)
C8_20.7080 (3)0.71245 (8)0.1177 (3)0.0236 (4)
N1_20.68823 (19)0.54002 (6)0.07712 (18)0.0151 (3)
H1A_20.655 (3)0.5167 (7)0.121 (3)0.018*
H1B_20.620 (3)0.5499 (8)0.015 (2)0.018*
N2_21.2661 (2)0.63984 (6)0.05424 (19)0.0168 (3)
O1_20.95089 (17)0.53776 (5)0.26449 (16)0.0190 (3)
O2_21.39629 (17)0.63141 (6)0.05787 (18)0.0252 (3)
O3_21.26362 (19)0.65271 (6)0.18276 (18)0.0250 (3)
F1_20.7834 (3)0.75213 (7)0.1279 (4)0.0713 (10)0.876 (3)
F2_20.6181 (3)0.72010 (7)0.0243 (2)0.0392 (5)0.876 (3)
F3_20.5873 (3)0.70422 (8)0.2565 (2)0.0544 (7)0.876 (3)
F1'_20.5683 (15)0.7094 (5)0.100 (2)0.0713 (10)0.124 (3)
F2'_20.6950 (18)0.7262 (5)0.2565 (12)0.0392 (5)0.124 (3)
F3'_20.7907 (17)0.7497 (4)0.0237 (15)0.0544 (7)0.124 (3)
Cl1_21.19856 (6)0.54955 (2)0.09572 (7)0.02395 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1_10.0101 (7)0.0156 (8)0.0101 (7)0.0009 (6)0.0028 (6)0.0013 (6)
C2_10.0106 (7)0.0147 (8)0.0129 (8)0.0023 (6)0.0025 (6)0.0004 (6)
C3_10.0098 (7)0.0192 (9)0.0149 (8)0.0008 (6)0.0056 (6)0.0029 (6)
C4_10.0145 (7)0.0159 (8)0.0136 (8)0.0029 (6)0.0067 (6)0.0001 (6)
C5_10.0125 (7)0.0144 (8)0.0112 (7)0.0003 (6)0.0047 (6)0.0006 (6)
C6_10.0096 (6)0.0169 (8)0.0100 (7)0.0002 (6)0.0036 (5)0.0014 (6)
C7_10.0114 (7)0.0148 (8)0.0117 (7)0.0008 (6)0.0021 (6)0.0018 (6)
C8_10.0180 (8)0.0172 (9)0.0132 (8)0.0019 (6)0.0044 (6)0.0027 (6)
N1_10.0121 (6)0.0217 (8)0.0110 (7)0.0047 (6)0.0002 (5)0.0043 (6)
N2_10.0125 (7)0.0239 (8)0.0230 (8)0.0019 (6)0.0098 (6)0.0043 (7)
O1_10.0169 (6)0.0276 (8)0.0127 (6)0.0077 (5)0.0025 (5)0.0069 (5)
O2_10.0109 (6)0.0605 (12)0.0298 (9)0.0005 (7)0.0050 (6)0.0026 (8)
O3_10.0263 (8)0.0415 (10)0.0304 (9)0.0029 (7)0.0205 (7)0.0020 (7)
F1_10.0434 (8)0.0258 (7)0.0223 (7)0.0154 (6)0.0047 (6)0.0048 (5)
F2_10.0139 (5)0.0323 (7)0.0436 (8)0.0049 (5)0.0037 (5)0.0153 (6)
F3_10.0354 (7)0.0270 (7)0.0234 (6)0.0068 (5)0.0142 (6)0.0130 (5)
Cl1_10.0176 (2)0.0227 (2)0.0252 (2)0.00890 (17)0.00511 (17)0.00489 (19)
C1_20.0086 (6)0.0147 (8)0.0101 (7)0.0017 (5)0.0024 (5)0.0005 (6)
C2_20.0095 (7)0.0151 (8)0.0134 (7)0.0007 (6)0.0031 (6)0.0004 (6)
C3_20.0089 (7)0.0192 (8)0.0136 (8)0.0023 (6)0.0045 (6)0.0019 (6)
C4_20.0146 (7)0.0167 (8)0.0151 (8)0.0037 (6)0.0048 (6)0.0016 (6)
C5_20.0109 (7)0.0162 (8)0.0168 (8)0.0001 (6)0.0029 (6)0.0019 (7)
C6_20.0083 (6)0.0159 (8)0.0146 (8)0.0003 (6)0.0026 (6)0.0005 (6)
C7_20.0102 (7)0.0146 (8)0.0107 (7)0.0016 (6)0.0019 (6)0.0011 (6)
C8_20.0194 (9)0.0207 (10)0.0305 (11)0.0040 (7)0.0086 (8)0.0068 (8)
N1_20.0116 (6)0.0181 (8)0.0125 (7)0.0037 (5)0.0002 (5)0.0045 (6)
N2_20.0142 (7)0.0198 (8)0.0191 (8)0.0033 (6)0.0093 (6)0.0028 (6)
O1_20.0141 (6)0.0241 (7)0.0133 (6)0.0044 (5)0.0021 (5)0.0067 (5)
O2_20.0105 (6)0.0394 (9)0.0249 (8)0.0017 (6)0.0051 (5)0.0017 (7)
O3_20.0236 (7)0.0350 (9)0.0215 (7)0.0059 (6)0.0143 (6)0.0006 (6)
F1_20.0288 (9)0.0234 (9)0.168 (3)0.0095 (7)0.0429 (14)0.0400 (13)
F2_20.0442 (10)0.0398 (11)0.0407 (10)0.0245 (8)0.0235 (9)0.0100 (8)
F3_20.0489 (13)0.0597 (14)0.0341 (10)0.0336 (11)0.0113 (8)0.0033 (9)
F1'_20.0288 (9)0.0234 (9)0.168 (3)0.0095 (7)0.0429 (14)0.0400 (13)
F2'_20.0442 (10)0.0398 (11)0.0407 (10)0.0245 (8)0.0235 (9)0.0100 (8)
F3'_20.0489 (13)0.0597 (14)0.0341 (10)0.0336 (11)0.0113 (8)0.0033 (9)
Cl1_20.0173 (2)0.0205 (2)0.0365 (3)0.00767 (17)0.01266 (19)0.0078 (2)
Geometric parameters (Å, º) top
C1_1—C6_11.394 (2)C1_2—C7_21.505 (2)
C1_1—C2_11.397 (2)C2_2—C3_21.390 (3)
C1_1—C7_11.500 (2)C2_2—Cl1_21.7163 (18)
C2_1—C3_11.390 (3)C3_2—C4_21.384 (3)
C2_1—Cl1_11.7229 (18)C3_2—N2_21.470 (2)
C3_1—C4_11.377 (3)C4_2—C5_21.383 (2)
C3_1—N2_11.471 (2)C4_2—H4_20.9500
C4_1—C5_11.381 (2)C5_2—C6_21.384 (3)
C4_1—H4_10.9500C5_2—C8_21.502 (3)
C5_1—C6_11.388 (2)C6_2—H6_20.9500
C5_1—C8_11.496 (3)C7_2—O1_21.236 (2)
C6_1—H6_10.9500C7_2—N1_21.325 (2)
C7_1—O1_11.237 (2)C8_2—F1'_21.227 (9)
C7_1—N1_11.325 (2)C8_2—F2'_21.297 (9)
C8_1—F2_11.332 (2)C8_2—F1_21.302 (3)
C8_1—F1_11.333 (2)C8_2—F2_21.334 (3)
C8_1—F3_11.336 (2)C8_2—F3_21.335 (3)
N1_1—H1A_10.887 (16)C8_2—F3'_21.381 (10)
N1_1—H1B_10.886 (16)N1_2—H1A_20.863 (16)
N2_1—O3_11.218 (2)N1_2—H1B_20.884 (16)
N2_1—O2_11.222 (2)N2_2—O3_21.224 (2)
C1_2—C6_21.391 (2)N2_2—O2_21.226 (2)
C1_2—C2_21.402 (2)
C6_1—C1_1—C2_1119.42 (16)C3_2—C2_2—C1_2118.66 (16)
C6_1—C1_1—C7_1118.65 (14)C3_2—C2_2—Cl1_2120.43 (13)
C2_1—C1_1—C7_1121.88 (16)C1_2—C2_2—Cl1_2120.75 (14)
C3_1—C2_1—C1_1118.51 (16)C4_2—C3_2—C2_2122.40 (15)
C3_1—C2_1—Cl1_1120.79 (13)C4_2—C3_2—N2_2116.11 (16)
C1_1—C2_1—Cl1_1120.53 (14)C2_2—C3_2—N2_2121.49 (16)
C4_1—C3_1—C2_1122.45 (15)C5_2—C4_2—C3_2118.22 (17)
C4_1—C3_1—N2_1115.82 (16)C5_2—C4_2—H4_2120.9
C2_1—C3_1—N2_1121.72 (16)C3_2—C4_2—H4_2120.9
C3_1—C4_1—C5_1118.54 (16)C4_2—C5_2—C6_2120.71 (17)
C3_1—C4_1—H4_1120.7C4_2—C5_2—C8_2119.39 (17)
C5_1—C4_1—H4_1120.7C6_2—C5_2—C8_2119.91 (16)
C4_1—C5_1—C6_1120.59 (16)C5_2—C6_2—C1_2120.89 (15)
C4_1—C5_1—C8_1119.07 (16)C5_2—C6_2—H6_2119.6
C6_1—C5_1—C8_1120.24 (15)C1_2—C6_2—H6_2119.6
C5_1—C6_1—C1_1120.45 (15)O1_2—C7_2—N1_2123.41 (16)
C5_1—C6_1—H6_1119.8O1_2—C7_2—C1_2121.18 (15)
C1_1—C6_1—H6_1119.8N1_2—C7_2—C1_2115.40 (15)
O1_1—C7_1—N1_1123.15 (17)F1'_2—C8_2—F2'_2112.8 (9)
O1_1—C7_1—C1_1121.07 (15)F1_2—C8_2—F2_2107.2 (2)
N1_1—C7_1—C1_1115.74 (15)F1_2—C8_2—F3_2107.6 (2)
F2_1—C8_1—F1_1107.64 (16)F2_2—C8_2—F3_2103.65 (19)
F2_1—C8_1—F3_1106.43 (15)F1'_2—C8_2—F3'_2105.0 (9)
F1_1—C8_1—F3_1106.19 (16)F2'_2—C8_2—F3'_2103.6 (8)
F2_1—C8_1—C5_1112.58 (16)F1'_2—C8_2—C5_2117.9 (7)
F1_1—C8_1—C5_1111.49 (15)F2'_2—C8_2—C5_2111.4 (5)
F3_1—C8_1—C5_1112.13 (15)F1_2—C8_2—C5_2113.31 (18)
C7_1—N1_1—H1A_1118.7 (16)F2_2—C8_2—C5_2112.42 (18)
C7_1—N1_1—H1B_1121.3 (16)F3_2—C8_2—C5_2112.05 (19)
H1A_1—N1_1—H1B_1120 (2)F3'_2—C8_2—C5_2104.4 (5)
O3_1—N2_1—O2_1125.01 (17)C7_2—N1_2—H1A_2117.4 (16)
O3_1—N2_1—C3_1116.95 (16)C7_2—N1_2—H1B_2122.9 (16)
O2_1—N2_1—C3_1118.01 (16)H1A_2—N1_2—H1B_2119 (2)
C6_2—C1_2—C2_2119.09 (16)O3_2—N2_2—O2_2125.16 (16)
C6_2—C1_2—C7_2118.92 (14)O3_2—N2_2—C3_2117.04 (16)
C2_2—C1_2—C7_2121.97 (15)O2_2—N2_2—C3_2117.77 (15)
C6_1—C1_1—C2_1—C3_11.4 (3)C7_2—C1_2—C2_2—Cl1_25.6 (2)
C7_1—C1_1—C2_1—C3_1178.83 (17)C1_2—C2_2—C3_2—C4_20.3 (3)
C6_1—C1_1—C2_1—Cl1_1176.81 (14)Cl1_2—C2_2—C3_2—C4_2175.15 (15)
C7_1—C1_1—C2_1—Cl1_15.8 (2)C1_2—C2_2—C3_2—N2_2178.95 (16)
C1_1—C2_1—C3_1—C4_10.4 (3)Cl1_2—C2_2—C3_2—N2_25.6 (2)
Cl1_1—C2_1—C3_1—C4_1175.85 (15)C2_2—C3_2—C4_2—C5_21.7 (3)
C1_1—C2_1—C3_1—N2_1179.22 (16)N2_2—C3_2—C4_2—C5_2177.58 (16)
Cl1_1—C2_1—C3_1—N2_15.4 (2)C3_2—C4_2—C5_2—C6_22.2 (3)
C2_1—C3_1—C4_1—C5_11.2 (3)C3_2—C4_2—C5_2—C8_2177.74 (18)
N2_1—C3_1—C4_1—C5_1177.60 (16)C4_2—C5_2—C6_2—C1_21.3 (3)
C3_1—C4_1—C5_1—C6_12.0 (3)C8_2—C5_2—C6_2—C1_2178.60 (18)
C3_1—C4_1—C5_1—C8_1174.41 (17)C2_2—C1_2—C6_2—C5_20.1 (3)
C4_1—C5_1—C6_1—C1_11.0 (3)C7_2—C1_2—C6_2—C5_2178.55 (17)
C8_1—C5_1—C6_1—C1_1175.30 (17)C6_2—C1_2—C7_2—O1_2135.37 (19)
C2_1—C1_1—C6_1—C5_10.7 (3)C2_2—C1_2—C7_2—O1_243.0 (3)
C7_1—C1_1—C6_1—C5_1178.19 (16)C6_2—C1_2—C7_2—N1_243.5 (2)
C6_1—C1_1—C7_1—O1_1128.86 (19)C2_2—C1_2—C7_2—N1_2138.08 (18)
C2_1—C1_1—C7_1—O1_148.6 (3)C4_2—C5_2—C8_2—F1'_2177.4 (11)
C6_1—C1_1—C7_1—N1_149.0 (2)C6_2—C5_2—C8_2—F1'_22.7 (11)
C2_1—C1_1—C7_1—N1_1133.54 (19)C4_2—C5_2—C8_2—F2'_244.6 (8)
C4_1—C5_1—C8_1—F2_1150.70 (17)C6_2—C5_2—C8_2—F2'_2135.5 (8)
C6_1—C5_1—C8_1—F2_132.9 (2)C4_2—C5_2—C8_2—F1_224.5 (3)
C4_1—C5_1—C8_1—F1_188.2 (2)C6_2—C5_2—C8_2—F1_2155.5 (3)
C6_1—C5_1—C8_1—F1_188.2 (2)C4_2—C5_2—C8_2—F2_2146.3 (2)
C4_1—C5_1—C8_1—F3_130.7 (2)C6_2—C5_2—C8_2—F2_233.7 (3)
C6_1—C5_1—C8_1—F3_1152.89 (17)C4_2—C5_2—C8_2—F3_297.5 (2)
C4_1—C3_1—N2_1—O3_145.0 (2)C6_2—C5_2—C8_2—F3_282.6 (3)
C2_1—C3_1—N2_1—O3_1136.1 (2)C4_2—C5_2—C8_2—F3'_266.6 (8)
C4_1—C3_1—N2_1—O2_1132.8 (2)C6_2—C5_2—C8_2—F3'_2113.3 (8)
C2_1—C3_1—N2_1—O2_146.0 (3)C4_2—C3_2—N2_2—O3_245.6 (2)
C6_2—C1_2—C2_2—C3_20.6 (3)C2_2—C3_2—N2_2—O3_2135.17 (19)
C7_2—C1_2—C2_2—C3_2179.02 (16)C4_2—C3_2—N2_2—O2_2132.50 (19)
C6_2—C1_2—C2_2—Cl1_2176.04 (14)C2_2—C3_2—N2_2—O2_246.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1_1—H1A_1···O1_20.89 (2)2.07 (2)2.947 (2)170 (2)
N1_1—H1B_1···O1_2i0.89 (2)1.99 (2)2.840 (2)160 (2)
N1_2—H1A_2···O1_10.86 (2)2.08 (2)2.940 (2)172 (2)
N1_2—H1B_2···O1_1ii0.88 (2)1.99 (2)2.804 (2)153 (2)
C6_1—H6_1···O2_1iii0.952.673.578 (2)161
C6_2—H6_2···O2_2iv0.952.483.430 (2)179
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) x1, y, z.
 

Acknowledgements

We thank Lundbeck (Kopenhagen, Denmark) for the generous gift of 2-chloro-5-(tri­fluoro­meth­yl)benzo­nitrile. Professor Christian W. Lehmann is gratefully acknowledged for providing access to the X-ray diffraction facilities. Thanks are due to Elke Dreher and Heike Schucht for technical assistance with the X-ray intensity data collections and Frank Kohler for recording the mass spectrum of 1. We acknowledge DESY (Hamburg, Germany), a member of the Helmholtz Association (HGF), for the provision of experimental facilities and we would like to thank Dr Sofiane Saouane for assistance in using the P11 beamline.

Funding information

We acknowledge the financial support within the funding programme Open Access Publishing by the German Research Foundation (DFG).

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBaker, R. J., Colavita, P. E., Murphy, D. M., Platts, J. A. & Wallis, J. D. (2012). J. Phys. Chem. A, 116, 1435–1444.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2018). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2012). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2017). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurkhardt, A., Pakendorf, T., Reime, B., Meyer, J., Fischer, P., Stübe, N., Panneerselvam, S., Lorbeer, O., Stachnik, K., Warmer, M., Rödig, P., Göries, D. & Meents, A. (2016). Eur. Phys. J. Plus, 131, 56.  Web of Science CrossRef Google Scholar
First citationCasino, A. del, Lukinović, V., Bhatt, R., Randle, L. E., Dascombe, M. J., Fennell, B. J., Drew, M. G. B., Bell, A., Fielding, A. J. & Ismail, F. M. D. (2018). ChemistrySelect 3, 7572–7580.  Web of Science CSD CrossRef CAS Google Scholar
First citationCooper, M., Zuegg, J., Becker, B. & Karoli, T. (2011). PCT Int. Appl. WO 2013038259 A1.  Google Scholar
First citationDesiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311–2327.  CrossRef CAS Web of Science Google Scholar
First citationEckhardt, T., Goddard, R., Rudolph, I., Richter, A., Lehmann, C., Imming, P. & Seidel, R. W. (2020). Acta Cryst. E76, 1442–1446.  CSD CrossRef IUCr Journals Google Scholar
First citationGao, C., Ye, T.-H., Wang, N.-Y., Zeng, X.-X., Zhang, L.-D., Xiong, Y., You, X.-Y., Xia, Y., Xu, Y., Peng, C.-T., Zuo, W.-Q., Wei, Y. & Yu, L.-T. (2013). Bioorg. Med. Chem. Lett. 23, 4919–4922.  CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKabsch, W. (2010). Acta Cryst. D66, 125–132.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKitaigorodskii, A. I. (1973). Molecular Crystals and Molecules. London: Academic Press.  Google Scholar
First citationKraft, P., Bergamaschi, A., Broennimann, Ch., Dinapoli, R., Eikenberry, E. F., Henrich, B., Johnson, I., Mozzanica, A., Schlepütz, C. M., Willmott, P. R. & Schmitt, B. (2009). J. Synchrotron Rad. 16, 368–375.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLeiserowitz, L. & Schmidt, G. M. J. (1969). J. Chem. Soc. A, pp. 2372–2382.  CrossRef Web of Science Google Scholar
First citationMakarov, V. (2011). PCT Int. Appl. WO 2011132070 A1.  Google Scholar
First citationMakarov, V., Cole, S. T. & Moellmann, U. (2007). PCT Int. Appl. WO 2007134625 A1.  Google Scholar
First citationMakarov, V. & Mikušová, K. (2020). Appl. Sci. 10, 2269.  Web of Science CrossRef Google Scholar
First citationMariandyshev, A. O., Khokhlov, A. L., Smerdin, S. V., Shcherbakova, V. S., Igumnova, O. V., Ozerova, I. V., Bolgarina, A. A. & Nikitina, N. A. (2020). Ter. Arkh. 92, 61–72.  Web of Science CAS PubMed Google Scholar
First citationMeents, A., Reime, B., Stuebe, N., Fischer, P., Warmer, M., Goeries, D., Roever, J., Meyer, J., Fischer, J., Burkhardt, A., Vartiainen, I., Karvinen, P. & David, C. (2013). Proc. SPIE, 8851, 88510K.  Google Scholar
First citationMikušová, K., Makarov, V. & Neres, J. (2014). Curr. Pharm. Des. 20, 4379–4403.  Web of Science PubMed Google Scholar
First citationMoellmann, U., Makarov, V. & Cole, S. T. (2009). PCT Int. Appl. WO 2009010163 A1.  Google Scholar
First citationParker, F. S. (1971). Applications of Infrared Spectroscopy in Biochemistry, Biology and Medicine, pp. 165–172. Boston: Springer.  Google Scholar
First citationPeng, C.-T., Gao, C., Wang, N.-Y., You, X.-Y., Zhang, L.-D., Zhu, Y.-X., Xv, Y., Zuo, W.-Q., Ran, K., Deng, H.-X., Lei, Q., Xiao, K.-J. & Yu, L.-T. (2015). Bioorg. Med. Chem. Lett. 25, 1373–1376.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPiton, J., Foo, C. S.-Y. & Cole, S. T. (2017). Drug Discovery Today, 22, 526–533.  CrossRef CAS PubMed Google Scholar
First citationRichter, A., Rudolph, I., Möllmann, U., Voigt, K., Chung, C.-W., Singh, O. M. P., Rees, M., Mendoza-Losana, A., Bates, R., Ballell, L., Batt, S., Veerapen, N., Fütterer, K., Besra, G., Imming, P. & Argyrou, A. (2018). Sci. Rep. 8, 13473.  CrossRef PubMed Google Scholar
First citationRudolph, A. I. (2014). PhD thesis, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany.  Google Scholar
First citationRudolph, I., Imming, P. & Richter, A. (2016). Ger. Offen. DE 102014012546 A1 20160331.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShetye, G. S., Franzblau, S. G. & Cho, S. (2020). Transl. Res. 220, 68–97.  CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThakuria, R., Sarma, B. & Nangia, A. (2017). Hydrogen Bonding in Molecular Crystals. In Comprehensive Supramolecular Chemistry II, vol. 7, edited by J. L. Atwood, pp. 25–48. Oxford: Elsevier.  Google Scholar
First citationTrefzer, C., Rengifo-Gonzalez, M., Hinner, M. J., Schneider, P., Makarov, V., Cole, S. T. & Johnsson, K. (2010). J. Am. Chem. Soc. 132, 13663–13665.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTrefzer, C., Škovierová, H., Buroni, S., Bobovská, A., Nenci, S., Molteni, E., Pojer, F., Pasca, M. R., Makarov, V., Cole, S. T., Riccardi, G., Mikušová, K. & Johnsson, K. (2012). J. Am. Chem. Soc. 134, 912–915.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWelch, D. E., Baron, R. R. & Burton, B. A. (1969). J. Med. Chem. 12, 299–303.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWiberg, K. B. (2003). In: The Amide Linkage: Structural Significance in Chemistry, Biochemistry, and Materials Science edited by A. Greenberg, C. M. Breneman & J. F. Liebmann, pp. 33–46. Hoboken: John Wiley & Sons, Inc.  Google Scholar
First citationZhang, G. & Aldrich, C. C. (2019). Acta Cryst. C75, 1031–1035.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, G., Howe, M. & Aldrich, C. C. (2019). ACS Med. Chem. Lett. 10, 348–351.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds