research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 3-amino-1-oxo-2,6,8-tri­phenyl-1,2,7,8-tetra­hydro­iso­quinoline-4-carbo­nitrile

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148 Baku, Azerbaijan, bPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St.6, Moscow, 117198 , Russian Federation, cN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991 , Russian Federation, d"Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan, eDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and fAcad. Sci. Republ. Tadzhikistan, Kh. Yu. Yusufbekov Pamir Biol. Inst., 1 Kholdorova St, Khorog 736002, Gbao, Tajikistan
*Correspondence e-mail: anzurat2003@mail.ru

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 14 January 2021; accepted 22 January 2021; online 29 January 2021)

In the title compound, C28H21N3O, the 1,2-di­hydro­pyridine ring of the 1,2,7,8-tetra­hydro­iso­quinoline ring system is planar as expected, while the cyclo­hexa-1,3-diene ring has a twist-boat conformation, with Cremer–Pople parameters QT = 0.367 (2) A, θ = 117.3 (3)° and φ = 327.3 (4)°. The dihedral angles between the best planes through the iso­quinoline ring system and the three phenyl rings are 81.69 (12), 82.45 (11) and 47.36 (10)°. In the crystal, mol­ecules are linked via N—H⋯O and C—H⋯N hydrogen bonds, forming a three-dimensional network. Furthermore, the crystal packing is dominated by C—H⋯π bonds with a strong inter­action involving the phenyl H atoms. The role of the inter­molecular inter­actions in the crystal packing was clarified using Hirshfeld surface analysis, and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H⋯H (46.0%), C⋯H/H⋯C (35.1%) and N⋯H/H⋯N (10.5%) contacts.

1. Chemical context

For many decades, considerable inter­est in organic and medicinal chemistry has been directed toward the synthesis of various biologically valuable nitro­gen heterocycles (Mamedov et al., 2019[Mamedov, I. G., Khrustalev, V. N., Dorovatovskii, P. V., Naghiev, F. N. & Maharramov, A. M. (2019). Mendeleev Commun. 29, 232-233.]; Naghiyev, 2019[Naghiyev, F. N. (2019). New Mater. Compd Appl. 4, 126-131.]; Kerru et al., 2020[Kerru, N., Gummidi, L., Maddila, S., Gangu, K. K. & Jonnalagadda, S. B. (2020). Molecules, 25, 1909.]). They are prevalent structural motifs in many compounds, also having applications in coordination chemistry and material science (Zubkov et al., 2018[Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949-952.]; Mahmoudi et al., 2019[Mahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108-117.]; Velásquez et al., 2019[Velásquez, J. D., Mahmoudi, G., Zangrando, E., Gurbanov, A. V., Zubkov, F. I., Zorlu, Y., Masoudiasl, A. & Echeverría, J. (2019). CrystEngComm, 21, 6018-6025.]). The majority of tetra­hydro­iso­quinoline moieties containing anti­tumor anti­biotics, such as saframycins, renieramycins, safracins, ecteinascidins, tetra­zomine, lemonomycin, dnacins and aclindomycins, have already been isolated from natural sources and reproduced applying different effective techniques (Scott & Williams, 2002[Scott, J. D. & Williams, R. M. (2002). Chem. Rev. 102, 1669-1730.]).

Owing to the above-mentioned value of tetra­hydro­iso­quinolines, there have been significant developments in this class of compounds. Herein, and in the framework of our ongoing structural studies (Naghiyev et al., 2020a[Naghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. & Maharramov, A. M. (2020a). Acta Cryst. E76, 720-723.],b[Naghiyev, F. N., Cisterna, J., Khalilov, A. N., Maharramov, A. M., Askerov, R. K., Asadov, K. A., Mamedov, I. G., Salmanli, K. S., Cárdenas, A. & Brito, I. (2020b). Molecules, 25, 2235.],c[Naghiyev, F. N., Mammadova, G. Z., Mamedov, I. G., Huseynova, A. T., Çelikesir, S. T., Akkurt, M. & Akobirshoeva, A. A. (2020c). Acta Cryst. E76, 1365-1368.]), we report the crystal structure and Hirshfeld surface analysis of the title compound, 3-amino-1-oxo-2,6,8-triphenyl-1,2,7,8-tetra­hydro­iso­quinoline-4-carbo­nitrile.

[Scheme 1]

2. Structural commentary

As shown in Fig. 1[link], the 1,2-di­hydro­pyridine ring (N1/C1–C5) of the 1,2,7,8-tetra­hydro­iso­quinoline ring system (N1/C1–C9) is planar as expected, while the cyclo­hexa-1,3-diene ring (C4–C9) has a twist-boat conformation, with Cremer–Pople parameters QT = 0.367 (2) Å, θ = 117.3 (3)° and φ = 327.3 (4)°. The dihedral angles between the best planes through the iso­quinoline ring system and the three phenyl rings (C11–C16, C17–C22 and C23–C28) are 81.69 (12), 82.45 (11) and 47.36 (10)°, respectively. All bond lengths (Allen et al., 1998[Allen, F. H., Shields, G. P., Taylor, R., Allen, F. H., Raithby, P. R., Shields, G. P. & Taylor, R. (1998). Chem. Commun. pp. 1043-1044.]) and bond angles are all normal.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.

3. Supra­molecular features

In the crystal, mol­ecules are linked via N—H⋯O and C—H⋯N hydrogen bonds, forming a three-dimensional network (Table 1[link], Fig. 2[link]). Furthermore, the crystal packing is dominated by C—H⋯π inter­actions with a strong involvement of the phenyl hydrogens on C13 (H13) and C26 (H26) (Table 1[link], Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg4 and Cg5 are the centroids of the 1,2-di­hydro­pyridine ring (N1/C1–C5) and the C17–C22 and C23–C28 phenyl rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯O1i 0.90 (3) 2.09 (3) 2.813 (3) 136 (3)
C7—H7B⋯N3ii 0.97 2.54 3.391 (4) 146
C13—H13⋯Cg5iii 0.93 2.74 3.576 (3) 149
C26—H26⋯Cg4iv 0.93 2.83 3.729 (3) 162
C16—H16⋯Cg5v 0.93 2.97 3.603 (3) 126
C20—H20⋯Cg1vi 0.93 2.96 3.514 (3) 120
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}]; (iv) [x-1, y, z]; (v) x+1, y, z; (vi) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
A view of the inter­molecular N—H⋯O and C—H⋯N hydrogen bonds of the title compound down the b axis. H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 3]
Figure 3
View of the C—H⋯π inter­actions of the title compound down the b axis. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (a) −1 + x, y, z; (b) 1 + x, y, z; (c) [{1\over 2}] − x, 1 − y, −[{1\over 2}] + z; (d) [{1\over 2}] − x, 1 − y, [{1\over 2}] + z; (e) [{3\over 2}] − x, 1 − y, −[{1\over 2}] + z; (f) [{3\over 2}] − x, 1 − y, [{1\over 2}] + z]. The centroids are defined in Table 1[link].

4. Hirshfeld surface analysis

The Hirshfeld surfaces and two-dimensional fingerprint plots were calculated using CrystalExplorer (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]). Hirshfeld surfaces enable the visualization of inter­molecular inter­actions with different colours and colour intensity representing short or long contacts and indicating the relative strength of the inter­actions. Fig. 4[link](a) and Fig. 4[link](b) show the front and back sides of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm in the range −0.4556 to 1.6207 a.u. Here, the bright-red spots appearing near O1 and N3 result from the N2—H2B⋯O1 and C7—H7B⋯N3 inter­actions, which play a significant role in the mol­ecular packing of the title compound. The overall two-dimensional fingerprint plot for the title compound and those delineated into H⋯H, C⋯H/H⋯C, N⋯H/H⋯N and O⋯H/H⋯O contacts are illustrated in Fig. 5[link], together with their relative contributions to the Hirshfeld surface while details of the various contacts are given in Table 2[link]. The percentage contributions from the different inter­atomic contacts to the Hirshfeld surfaces are as follows: H⋯H (46.0%), C⋯H/H⋯C (35.1%), N⋯H/H⋯N (10.5%) and O⋯H/H⋯O (6.5%) (Table 3[link]). The other C⋯N/N⋯C, C⋯C and C⋯O/O⋯C contacts contribute less than 1% to the Hirshfeld surface mapping and have negligible directional impact on the mol­ecular packing (Table 3[link]).

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

Contact Distance Symmetry operation
O1⋯H25 2.88 1 + x, y, z
H27⋯H22 2.43 [{1\over 2}] + x, [{3\over 2}] − y, 1 − z
H13⋯C23 2.86 [{3\over 2}] − x, 1 − y, [{1\over 2}] + z
H19⋯H24 2.41 [{1\over 2}] + x, [{1\over 2}] − y, 1 − z

Table 3
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the title compound

Contact Percentage contribution
H⋯H 46.0
C⋯H/H⋯C 35.1
N⋯H/H⋯N 10.5
O⋯H/H⋯O 6.5
C⋯N/N⋯C 0.9
C⋯C 0.5
C⋯O/O⋯C 0.4
[Figure 4]
Figure 4
(a) Front and (b) back sides of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm in the range −0.4556 to 1.6207 a.u.
[Figure 5]
Figure 5
Two-dimensional fingerprint plots of the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) N⋯H/H⋯N, (d) C⋯H/H⋯C and (e) O⋯H/H⋯O inter­actions [de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

5. Database survey

A survey of the Cambridge Structural Database (CSD version 5.41, update of March 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) reveals five comparable tetra­hydro­iso­quinoline derivatives, 2-methyl-1,2,3,4-tetra­hydro­iso­quinoline trihydrate (KUGLIK; Lang­en­ohl et al., 2020[Langenohl, F., Otte, F. & Strohmann, C. (2020). Acta Cryst. E76, 298-302.]), (1S,2R)-2-[(3R,4S)-3-methyl-4-phenyl-1,2,3,4-tetra­hydro­isoquinolin-2-yl]-1,2-di­phenyl­ethanol (POPYEB; Ben Ali & Retailleau, 2019[Ben Ali, K. & Retailleau, P. (2019). Acta Cryst. E75, 1399-1402.]), (3S*,4R*)-4-fluoro-3-(4-meth­oxy­phen­yl)-1-oxo-2-phenyl-1,2,3,4-tetra­hydro­iso­quinoline-4-carb­oxy­lic acid (CARCOQ; Lehmann et al., 2017[Lehmann, A., Lechner, L., Radacki, K., Braunschweig, H. & Holzgrabe, U. (2017). Acta Cryst. E73, 867-870.]), (S)-benzyl 3-phenyl­carbamoyl-1,2,3,4-tetra­hydro­iso­quinoline-2-carb­oxy­l­ate (LAQKUL; Naicker et al., 2012[Naicker, T., Chelopo, M., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2012). Acta Cryst. E68, o883.]) and 2-[(1R,3S)-6,7-di­meth­oxy-1-phenyl-1,2,3,4-tetra­hydro­isoquinolin-3-yl]-4-phen­yl-1,3-thia­zole (AZUSOE; Pawar et al., 2011[Pawar, S., Katharigatta, V., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2011). Acta Cryst. E67, o2722.]).

The compound KUGLIK co-crystallizes with three water mol­ecules in the asymmetric unit, which leads to the formation of intense hydrogen bonding in the crystal. In the crystal of POPYEB, mol­ecules are packed in a herringbone manner parallel to (103) and (10[\overline{3}]) via weak C—H⋯O and C—H⋯π(ring) inter­actions. In the crystal of CARCOQ, mol­ecules are linked by an O—H⋯O hydrogen bond, forming chains propagating along the a-axis direction. The chains are linked by C—H⋯F hydrogen bonds, forming layers lying parallel to the ab plane. In LAQKUL, there are two independent mol­ecules in the asymmetric unit. The heterocyclic ring assumes a twisted boat conformation and N—H⋯O inter­actions help to construct the three-dimensional network within the crystal packing. In AZUSOE, no classical hydrogen bonds nor ππ inter­actions were found in the crystal structure.

6. Synthesis and crystallization

To a solution of 2-acetyl-5-oxo-N-3,5-tri­phenyl­penta­namide (5.1 mmol) in aceto­nitrile (40 ml) was added malono­nitrile (5.2 mmol). The solution was stirred for 5 min at room temperature, ethyl­enedi­amine (5.2 mmol) was added and the mixture refluxed for 4 h and cooled down to room temperature. The reaction product precipitated from the reaction mixture as pale-yellow single crystals, was collected by filtration and purified by recrystallization in ethanol/water solution (yield 70%, m.p. 554-556 K).

1H NMR (300 MHz, DMSO-d6): 3.2 (dd, 3JH–H =9.8 Hz, 3JH–H = 2.9 Hz, 2H, CH2); 4.25 (dd, 3JH–H = 9.8 Hz, 3JH–H = 2.9 Hz, 1H, CH—Ar); 6.7 (s, 2H, NH2); 6.8 (s, 1H, CH=); 6.9–7.7 (m, 15H, arom).

13C NMR (75 MHz, DMSO-d6): 35.17 (CH-Ar), 43.57 (CH2), 109.86 (=CH), 117.67 (=Cquat), 119.52 (CN), 125.96 (2CHarom), 126.72 (2CHarom), 126.86 (CHarom), 127.39 (CHarom), 127.99 (2CHarom), 128.66 (2CHarom), 128.89 (2CHarom), 128.89 (2CHarom), 129.21 (=Cquat), 129.56 (CHarom), 129.94 (=Cquat), 135.27 (N—Car), 139.07 (Car), 139.40 (Car.), 144.14 (=Cquat—N), 160.73 (O=Cquat—N), 167.96 (=Cquat—Ar).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The H atoms of the NH2 group were located in the difference-Fourier synthesis and refined isotropically with Uiso(H) = 1.2Ueq(N). All C-bound H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.98 Å, and with Uiso(H) = 1.2Ueq(C). Two reflections, (0 1 1) and (1 0 1), affected by the incident beam-stop and owing to poor agreement between observed and calculated intensities, nine outliers, ([\overline{9}] 9 7), (9 0 7), (0 6 5), (5 14 12), ([\overline{6}] 9 2), (1 0 9), (1 13 10), ([\overline{2}] 7 15) and (9 9 7), were omitted in the final cycles of refinement. The title compound crystallizes in a non-centrosymmetric space group, P 212121, but the absolute structure could not be determined reliably, and the Flack parameter is inconclusive {Flack x = −0.6 (9), determined using 1593 quotients [(I+) − (I)]/[(I+) + (I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])}.

Table 4
Experimental details

Crystal data
Chemical formula C28H21N3O
Mr 415.48
Crystal system, space group Orthorhombic, P212121
Temperature (K) 296
a, b, c (Å) 10.7038 (3), 11.6096 (4), 17.5182 (5)
V3) 2176.93 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.25 × 0.15 × 0.15
 
Data collection
Diffractometer Bruker D8 QUEST PHOTON-III CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.973, 0.981
No. of measured, independent and observed [I > 2σ(I)] reflections 39899, 7913, 4972
Rint 0.081
(sin θ/λ)max−1) 0.758
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.123, 1.01
No. of reflections 7913
No. of parameters 296
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.27, −0.17
Computer programs: APEX3 (Bruker, 2018[Bruker (2018). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

3-Amino-1-oxo-2,6,8-triphenyl-1,2,7,8-tetrahydroisoquinoline-4-carbonitrile top
Crystal data top
C28H21N3ODx = 1.268 Mg m3
Mr = 415.48Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 5592 reflections
a = 10.7038 (3) Åθ = 2.3–27.1°
b = 11.6096 (4) ŵ = 0.08 mm1
c = 17.5182 (5) ÅT = 296 K
V = 2176.93 (11) Å3Prism, pale yellow
Z = 40.25 × 0.15 × 0.15 mm
F(000) = 872
Data collection top
Bruker D8 QUEST PHOTON-III CCD
diffractometer
4972 reflections with I > 2σ(I)
φ and ω scansRint = 0.081
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 32.6°, θmin = 2.3°
Tmin = 0.973, Tmax = 0.981h = 1616
39899 measured reflectionsk = 1717
7913 independent reflectionsl = 2626
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.054 w = 1/[σ2(Fo2) + (0.0438P)2 + 0.242P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.123(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.27 e Å3
7913 reflectionsΔρmin = 0.17 e Å3
296 parametersExtinction correction: SHELXL2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0098 (17)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8603 (2)0.5325 (2)0.67650 (12)0.0305 (5)
C20.8260 (2)0.7274 (2)0.72668 (12)0.0301 (5)
C30.7054 (2)0.7266 (2)0.69663 (13)0.0291 (5)
C40.66343 (19)0.6306 (2)0.65291 (12)0.0267 (4)
C50.7394 (2)0.53749 (19)0.64189 (12)0.0276 (4)
C60.7003 (2)0.43797 (19)0.59129 (13)0.0284 (5)
H60.7366420.3675720.6127190.034*
C70.5567 (2)0.4246 (2)0.59334 (15)0.0331 (5)
H7A0.5310690.3777840.5502210.040*
H7B0.5338640.3834610.6394830.040*
C80.4857 (2)0.5366 (2)0.59104 (12)0.0285 (5)
C90.5374 (2)0.6316 (2)0.62044 (12)0.0288 (5)
H90.4922140.7000330.6202530.035*
C100.6260 (2)0.8212 (2)0.71308 (14)0.0343 (5)
C111.0205 (2)0.6280 (2)0.75426 (14)0.0327 (5)
C121.0273 (2)0.6001 (3)0.83030 (15)0.0468 (7)
H120.9551940.5837550.8579100.056*
C131.1434 (3)0.5967 (3)0.86523 (17)0.0564 (8)
H131.1490440.5790630.9169020.068*
C141.2495 (3)0.6189 (3)0.82467 (18)0.0516 (7)
H141.3271190.6156480.8484010.062*
C151.2409 (2)0.6460 (3)0.74895 (18)0.0580 (8)
H151.3131230.6615500.7213180.070*
C161.1260 (2)0.6505 (3)0.71289 (15)0.0469 (7)
H161.1206190.6685580.6612720.056*
C170.7496 (2)0.4510 (2)0.51044 (13)0.0298 (5)
C180.8123 (3)0.3613 (2)0.47579 (16)0.0469 (7)
H180.8258420.2934840.5028520.056*
C190.8557 (3)0.3702 (3)0.40138 (17)0.0558 (8)
H190.8980310.3085740.3793780.067*
C200.8370 (3)0.4683 (3)0.36024 (16)0.0485 (7)
H200.8654820.4736900.3102030.058*
C210.7759 (3)0.5586 (3)0.39356 (16)0.0518 (7)
H210.7629740.6260880.3660470.062*
C220.7328 (3)0.5504 (2)0.46820 (15)0.0458 (6)
H220.6920850.6129290.4901480.055*
C230.3570 (2)0.5371 (2)0.56106 (12)0.0299 (5)
C240.2781 (2)0.4429 (2)0.57364 (14)0.0357 (5)
H240.3077480.3794050.6004720.043*
C250.1563 (2)0.4429 (2)0.54661 (15)0.0425 (6)
H250.1044800.3802150.5561680.051*
C260.1121 (2)0.5354 (3)0.50570 (15)0.0458 (7)
H260.0308030.5348990.4869330.055*
C270.1884 (3)0.6286 (3)0.49262 (16)0.0473 (7)
H270.1582750.6910990.4649400.057*
C280.3100 (2)0.6304 (2)0.52037 (14)0.0384 (6)
H280.3603340.6943300.5116540.046*
N10.89903 (16)0.63210 (18)0.71755 (11)0.0305 (4)
N20.8714 (2)0.8181 (2)0.76538 (14)0.0438 (6)
N30.5640 (2)0.8978 (2)0.72858 (15)0.0528 (6)
O10.93170 (16)0.44937 (15)0.67346 (11)0.0417 (4)
H2A0.825 (3)0.877 (3)0.7691 (17)0.050*
H2B0.952 (3)0.823 (3)0.7796 (17)0.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0284 (10)0.0349 (12)0.0283 (11)0.0014 (10)0.0022 (9)0.0002 (9)
C20.0283 (10)0.0354 (12)0.0265 (11)0.0017 (10)0.0019 (9)0.0015 (9)
C30.0273 (11)0.0313 (11)0.0288 (12)0.0002 (9)0.0019 (9)0.0029 (9)
C40.0252 (10)0.0306 (11)0.0244 (10)0.0010 (9)0.0010 (8)0.0021 (9)
C50.0256 (10)0.0297 (11)0.0275 (10)0.0002 (9)0.0030 (8)0.0002 (9)
C60.0283 (10)0.0258 (11)0.0309 (11)0.0002 (9)0.0037 (9)0.0008 (9)
C70.0314 (11)0.0312 (12)0.0367 (13)0.0035 (10)0.0012 (10)0.0007 (10)
C80.0266 (10)0.0336 (12)0.0252 (10)0.0015 (9)0.0006 (8)0.0016 (9)
C90.0257 (10)0.0308 (12)0.0297 (11)0.0029 (9)0.0022 (8)0.0011 (9)
C100.0316 (11)0.0380 (13)0.0333 (12)0.0007 (11)0.0041 (10)0.0063 (10)
C110.0272 (11)0.0396 (12)0.0314 (11)0.0006 (10)0.0050 (9)0.0020 (10)
C120.0380 (13)0.069 (2)0.0339 (14)0.0065 (13)0.0054 (11)0.0098 (13)
C130.0567 (18)0.072 (2)0.0406 (16)0.0060 (16)0.0210 (14)0.0100 (14)
C140.0356 (13)0.0614 (18)0.0578 (18)0.0037 (14)0.0196 (13)0.0071 (15)
C150.0275 (12)0.092 (2)0.0543 (18)0.0056 (15)0.0007 (12)0.0048 (17)
C160.0349 (13)0.073 (2)0.0332 (13)0.0020 (14)0.0001 (11)0.0001 (13)
C170.0274 (10)0.0313 (11)0.0308 (11)0.0036 (10)0.0017 (8)0.0038 (9)
C180.0605 (17)0.0344 (14)0.0460 (15)0.0030 (13)0.0124 (13)0.0011 (12)
C190.071 (2)0.0434 (16)0.0534 (17)0.0014 (15)0.0249 (16)0.0146 (14)
C200.0507 (16)0.0587 (18)0.0360 (13)0.0198 (14)0.0086 (12)0.0090 (13)
C210.0619 (19)0.0519 (17)0.0414 (15)0.0014 (15)0.0081 (13)0.0109 (13)
C220.0553 (16)0.0407 (14)0.0413 (15)0.0086 (13)0.0102 (12)0.0041 (12)
C230.0285 (11)0.0344 (12)0.0268 (10)0.0030 (10)0.0008 (9)0.0031 (9)
C240.0324 (12)0.0371 (13)0.0376 (13)0.0042 (10)0.0010 (10)0.0012 (11)
C250.0321 (13)0.0485 (15)0.0467 (15)0.0094 (12)0.0001 (10)0.0037 (13)
C260.0311 (12)0.0607 (18)0.0456 (15)0.0020 (13)0.0088 (11)0.0070 (14)
C270.0456 (15)0.0501 (16)0.0461 (15)0.0035 (14)0.0166 (12)0.0061 (13)
C280.0372 (13)0.0389 (13)0.0391 (13)0.0050 (11)0.0069 (10)0.0033 (11)
N10.0257 (9)0.0371 (11)0.0287 (10)0.0004 (8)0.0049 (7)0.0020 (8)
N20.0345 (11)0.0425 (12)0.0545 (14)0.0002 (10)0.0121 (11)0.0171 (11)
N30.0507 (13)0.0523 (15)0.0553 (16)0.0171 (12)0.0070 (12)0.0123 (12)
O10.0358 (9)0.0394 (10)0.0499 (11)0.0092 (8)0.0108 (8)0.0036 (9)
Geometric parameters (Å, º) top
C1—O11.232 (3)C14—H140.9300
C1—N11.424 (3)C15—C161.384 (4)
C1—C51.430 (3)C15—H150.9300
C2—N21.343 (3)C16—H160.9300
C2—N11.364 (3)C17—C181.380 (3)
C2—C31.395 (3)C17—C221.383 (4)
C3—C101.418 (3)C18—C191.388 (4)
C3—C41.424 (3)C18—H180.9300
C4—C51.367 (3)C19—C201.363 (4)
C4—C91.464 (3)C19—H190.9300
C5—C61.515 (3)C20—C211.367 (4)
C6—C171.519 (3)C20—H200.9300
C6—C71.545 (3)C21—C221.390 (4)
C6—H60.9800C21—H210.9300
C7—C81.507 (3)C22—H220.9300
C7—H7A0.9700C23—C281.390 (3)
C7—H7B0.9700C23—C241.399 (3)
C8—C91.338 (3)C24—C251.387 (3)
C8—C231.475 (3)C24—H240.9300
C9—H90.9300C25—C261.375 (4)
C10—N31.142 (3)C25—H250.9300
C11—C161.367 (3)C26—C271.375 (4)
C11—C121.373 (4)C26—H260.9300
C11—N11.451 (3)C27—C281.390 (4)
C12—C131.386 (4)C27—H270.9300
C12—H120.9300C28—H280.9300
C13—C141.364 (4)N2—H2A0.84 (3)
C13—H130.9300N2—H2B0.90 (3)
C14—C151.366 (4)
O1—C1—N1118.5 (2)C14—C15—H15119.6
O1—C1—C5125.1 (2)C16—C15—H15119.6
N1—C1—C5116.39 (19)C11—C16—C15119.0 (2)
N2—C2—N1119.2 (2)C11—C16—H16120.5
N2—C2—C3122.1 (2)C15—C16—H16120.5
N1—C2—C3118.7 (2)C18—C17—C22117.2 (2)
C2—C3—C10118.2 (2)C18—C17—C6120.3 (2)
C2—C3—C4120.0 (2)C22—C17—C6122.5 (2)
C10—C3—C4121.8 (2)C17—C18—C19121.3 (3)
C5—C4—C3120.48 (19)C17—C18—H18119.3
C5—C4—C9120.0 (2)C19—C18—H18119.3
C3—C4—C9119.5 (2)C20—C19—C18120.7 (3)
C4—C5—C1120.7 (2)C20—C19—H19119.7
C4—C5—C6121.44 (19)C18—C19—H19119.7
C1—C5—C6117.83 (19)C19—C20—C21119.1 (3)
C5—C6—C17111.96 (19)C19—C20—H20120.5
C5—C6—C7109.75 (19)C21—C20—H20120.5
C17—C6—C7112.15 (19)C20—C21—C22120.5 (3)
C5—C6—H6107.6C20—C21—H21119.7
C17—C6—H6107.6C22—C21—H21119.7
C7—C6—H6107.6C17—C22—C21121.2 (3)
C8—C7—C6114.47 (19)C17—C22—H22119.4
C8—C7—H7A108.6C21—C22—H22119.4
C6—C7—H7A108.6C28—C23—C24118.1 (2)
C8—C7—H7B108.6C28—C23—C8121.6 (2)
C6—C7—H7B108.6C24—C23—C8120.3 (2)
H7A—C7—H7B107.6C25—C24—C23120.9 (2)
C9—C8—C23121.4 (2)C25—C24—H24119.6
C9—C8—C7119.52 (19)C23—C24—H24119.6
C23—C8—C7119.0 (2)C26—C25—C24120.1 (3)
C8—C9—C4121.6 (2)C26—C25—H25120.0
C8—C9—H9119.2C24—C25—H25120.0
C4—C9—H9119.2C27—C26—C25119.8 (2)
N3—C10—C3177.8 (3)C27—C26—H26120.1
C16—C11—C12121.0 (2)C25—C26—H26120.1
C16—C11—N1119.9 (2)C26—C27—C28120.6 (3)
C12—C11—N1119.1 (2)C26—C27—H27119.7
C11—C12—C13118.9 (3)C28—C27—H27119.7
C11—C12—H12120.6C23—C28—C27120.4 (2)
C13—C12—H12120.6C23—C28—H28119.8
C14—C13—C12120.7 (3)C27—C28—H28119.8
C14—C13—H13119.6C2—N1—C1123.46 (18)
C12—C13—H13119.6C2—N1—C11119.22 (19)
C13—C14—C15119.5 (3)C1—N1—C11117.25 (19)
C13—C14—H14120.2C2—N2—H2A117 (2)
C15—C14—H14120.2C2—N2—H2B122 (2)
C14—C15—C16120.8 (3)H2A—N2—H2B119 (3)
N2—C2—C3—C105.1 (4)C5—C6—C17—C18129.5 (2)
N1—C2—C3—C10173.7 (2)C7—C6—C17—C18106.6 (3)
N2—C2—C3—C4177.0 (2)C5—C6—C17—C2251.4 (3)
N1—C2—C3—C44.2 (3)C7—C6—C17—C2272.5 (3)
C2—C3—C4—C51.9 (3)C22—C17—C18—C190.6 (4)
C10—C3—C4—C5176.0 (2)C6—C17—C18—C19178.5 (3)
C2—C3—C4—C9178.9 (2)C17—C18—C19—C200.2 (5)
C10—C3—C4—C93.3 (3)C18—C19—C20—C210.7 (5)
C3—C4—C5—C12.5 (3)C19—C20—C21—C220.3 (5)
C9—C4—C5—C1176.7 (2)C18—C17—C22—C211.0 (4)
C3—C4—C5—C6175.9 (2)C6—C17—C22—C21178.1 (3)
C9—C4—C5—C64.9 (3)C20—C21—C22—C170.6 (5)
O1—C1—C5—C4175.4 (2)C9—C8—C23—C2838.7 (3)
N1—C1—C5—C44.4 (3)C7—C8—C23—C28145.5 (2)
O1—C1—C5—C66.1 (3)C9—C8—C23—C24140.8 (2)
N1—C1—C5—C6174.06 (19)C7—C8—C23—C2435.0 (3)
C4—C5—C6—C1794.7 (2)C28—C23—C24—C250.4 (4)
C1—C5—C6—C1783.7 (2)C8—C23—C24—C25179.2 (2)
C4—C5—C6—C730.5 (3)C23—C24—C25—C261.1 (4)
C1—C5—C6—C7151.0 (2)C24—C25—C26—C270.9 (4)
C5—C6—C7—C841.4 (3)C25—C26—C27—C280.0 (4)
C17—C6—C7—C883.8 (3)C24—C23—C28—C270.6 (4)
C6—C7—C8—C929.4 (3)C8—C23—C28—C27179.9 (2)
C6—C7—C8—C23154.7 (2)C26—C27—C28—C230.8 (4)
C23—C8—C9—C4177.7 (2)N2—C2—N1—C1179.0 (2)
C7—C8—C9—C41.9 (3)C3—C2—N1—C12.2 (3)
C5—C4—C9—C811.5 (3)N2—C2—N1—C114.2 (3)
C3—C4—C9—C8167.8 (2)C3—C2—N1—C11174.6 (2)
C16—C11—C12—C131.0 (4)O1—C1—N1—C2177.8 (2)
N1—C11—C12—C13179.7 (3)C5—C1—N1—C22.0 (3)
C11—C12—C13—C141.0 (5)O1—C1—N1—C110.9 (3)
C12—C13—C14—C150.7 (5)C5—C1—N1—C11178.9 (2)
C13—C14—C15—C160.4 (5)C16—C11—N1—C2100.4 (3)
C12—C11—C16—C150.6 (5)C12—C11—N1—C280.2 (3)
N1—C11—C16—C15179.9 (3)C16—C11—N1—C182.5 (3)
C14—C15—C16—C110.3 (5)C12—C11—N1—C196.8 (3)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg4 and Cg5 are the centroids of the 1,2-dihydropyridine ring (N1/C1–C5) and the C17–C22 and C23–C28 phenyl rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H2B···O1i0.90 (3)2.09 (3)2.813 (3)136 (3)
C7—H7B···N3ii0.972.543.391 (4)146
C13—H13···Cg5iii0.932.743.576 (3)149
C26—H26···Cg4iv0.932.833.729 (3)162
C16—H16···Cg5v0.932.973.603 (3)126
C20—H20···Cg1vi0.932.963.514 (3)120
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x+1, y1/2, z+3/2; (iii) x+3/2, y+1, z+1/2; (iv) x1, y, z; (v) x+1, y, z; (vi) x+3/2, y+1, z1/2.
Summary of short interatomic contacts (Å) in the title compound top
ContactDistanceSymmetry operation
O1···H252.881 + x, y, z
H27···H222.43-1/2 + x, 3/2 - y, 1 - z
H13···C232.863/2 - x, 1 - y, 1/2 + z
H19···H242.411/2 + x, 1/2 - y, 1 - z
Percentage contributions of interatomic contacts to the Hirshfeld surface for the title compound top
ContactPercentage contribution
H···H46.0
C···H/H···C35.1
N···H/H···N10.5
O···H/H···O6.5
C···N/N···C0.9
C···C0.5
C···O/O···C0.4
 

Funding information

The authors would like to thank Baku State University and the Ministry of Education and Science of the Russian Federation [award No. 075–03-2020-223 (FSSF-2020–0017)] for the support of this research.

References

First citationAllen, F. H., Shields, G. P., Taylor, R., Allen, F. H., Raithby, P. R., Shields, G. P. & Taylor, R. (1998). Chem. Commun. pp. 1043–1044.  Web of Science CrossRef Google Scholar
First citationBen Ali, K. & Retailleau, P. (2019). Acta Cryst. E75, 1399–1402.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2018). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKerru, N., Gummidi, L., Maddila, S., Gangu, K. K. & Jonnalagadda, S. B. (2020). Molecules, 25, 1909.  Web of Science CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLangenohl, F., Otte, F. & Strohmann, C. (2020). Acta Cryst. E76, 298–302.  CSD CrossRef IUCr Journals Google Scholar
First citationLehmann, A., Lechner, L., Radacki, K., Braunschweig, H. & Holzgrabe, U. (2017). Acta Cryst. E73, 867–870.  CSD CrossRef IUCr Journals Google Scholar
First citationMahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108–117.  Web of Science CSD CrossRef CAS Google Scholar
First citationMamedov, I. G., Khrustalev, V. N., Dorovatovskii, P. V., Naghiev, F. N. & Maharramov, A. M. (2019). Mendeleev Commun. 29, 232–233.  CSD CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationNaghiyev, F. N. (2019). New Mater. Compd Appl. 4, 126–131.  Google Scholar
First citationNaghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. & Maharramov, A. M. (2020a). Acta Cryst. E76, 720–723.  CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Cisterna, J., Khalilov, A. N., Maharramov, A. M., Askerov, R. K., Asadov, K. A., Mamedov, I. G., Salmanli, K. S., Cárdenas, A. & Brito, I. (2020b). Molecules, 25, 2235.  CSD CrossRef Google Scholar
First citationNaghiyev, F. N., Mammadova, G. Z., Mamedov, I. G., Huseynova, A. T., Çelikesir, S. T., Akkurt, M. & Akobirshoeva, A. A. (2020c). Acta Cryst. E76, 1365–1368.  CSD CrossRef IUCr Journals Google Scholar
First citationNaicker, T., Chelopo, M., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2012). Acta Cryst. E68, o883.  CSD CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPawar, S., Katharigatta, V., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2011). Acta Cryst. E67, o2722.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationScott, J. D. & Williams, R. M. (2002). Chem. Rev. 102, 1669–1730.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVelásquez, J. D., Mahmoudi, G., Zangrando, E., Gurbanov, A. V., Zubkov, F. I., Zorlu, Y., Masoudiasl, A. & Echeverría, J. (2019). CrystEngComm, 21, 6018–6025.  Google Scholar
First citationZubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds