research communications
and Hirshfeld surface analysis of 3-amino-1-oxo-2,6,8-triphenyl-1,2,7,8-tetrahydroisoquinoline-4-carbonitrile
aDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148 Baku, Azerbaijan, bPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St.6, Moscow, 117198 , Russian Federation, cN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991 , Russian Federation, d"Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan, eDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and fAcad. Sci. Republ. Tadzhikistan, Kh. Yu. Yusufbekov Pamir Biol. Inst., 1 Kholdorova St, Khorog 736002, Gbao, Tajikistan
*Correspondence e-mail: anzurat2003@mail.ru
In the title compound, C28H21N3O, the 1,2-dihydropyridine ring of the 1,2,7,8-tetrahydroisoquinoline ring system is planar as expected, while the cyclohexa-1,3-diene ring has a twist-boat conformation, with Cremer–Pople parameters QT = 0.367 (2) A, θ = 117.3 (3)° and φ = 327.3 (4)°. The dihedral angles between the best planes through the isoquinoline ring system and the three phenyl rings are 81.69 (12), 82.45 (11) and 47.36 (10)°. In the crystal, molecules are linked via N—H⋯O and C—H⋯N hydrogen bonds, forming a three-dimensional network. Furthermore, the crystal packing is dominated by C—H⋯π bonds with a strong interaction involving the phenyl H atoms. The role of the intermolecular interactions in the crystal packing was clarified using Hirshfeld surface analysis, and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H⋯H (46.0%), C⋯H/H⋯C (35.1%) and N⋯H/H⋯N (10.5%) contacts.
Keywords: crystal structure; cyclocondensation product; 1,2,7,8-tetrahydroisoquinoline ring system; Hirshfeld surface analysis.
CCDC reference: 2058071
1. Chemical context
For many decades, considerable interest in organic and medicinal chemistry has been directed toward the synthesis of various biologically valuable nitrogen heterocycles (Mamedov et al., 2019; Naghiyev, 2019; Kerru et al., 2020). They are prevalent structural motifs in many compounds, also having applications in coordination chemistry and material science (Zubkov et al., 2018; Mahmoudi et al., 2019; Velásquez et al., 2019). The majority of tetrahydroisoquinoline moieties containing antitumor antibiotics, such as saframycins, renieramycins, safracins, ecteinascidins, tetrazomine, lemonomycin, dnacins and aclindomycins, have already been isolated from natural sources and reproduced applying different effective techniques (Scott & Williams, 2002).
Owing to the above-mentioned value of tetrahydroisoquinolines, there have been significant developments in this class of compounds. Herein, and in the framework of our ongoing structural studies (Naghiyev et al., 2020a,b,c), we report the and Hirshfeld surface analysis of the title compound, 3-amino-1-oxo-2,6,8-triphenyl-1,2,7,8-tetrahydroisoquinoline-4-carbonitrile.
2. Structural commentary
As shown in Fig. 1, the 1,2-dihydropyridine ring (N1/C1–C5) of the 1,2,7,8-tetrahydroisoquinoline ring system (N1/C1–C9) is planar as expected, while the cyclohexa-1,3-diene ring (C4–C9) has a twist-boat conformation, with Cremer–Pople parameters QT = 0.367 (2) Å, θ = 117.3 (3)° and φ = 327.3 (4)°. The dihedral angles between the best planes through the isoquinoline ring system and the three phenyl rings (C11–C16, C17–C22 and C23–C28) are 81.69 (12), 82.45 (11) and 47.36 (10)°, respectively. All bond lengths (Allen et al., 1998) and bond angles are all normal.
3. Supramolecular features
In the crystal, molecules are linked via N—H⋯O and C—H⋯N hydrogen bonds, forming a three-dimensional network (Table 1, Fig. 2). Furthermore, the crystal packing is dominated by C—H⋯π interactions with a strong involvement of the phenyl hydrogens on C13 (H13) and C26 (H26) (Table 1, Fig. 3).
4. Hirshfeld surface analysis
The Hirshfeld surfaces and two-dimensional fingerprint plots were calculated using CrystalExplorer (McKinnon et al., 2007). Hirshfeld surfaces enable the visualization of intermolecular interactions with different colours and colour intensity representing short or long contacts and indicating the relative strength of the interactions. Fig. 4(a) and Fig. 4(b) show the front and back sides of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm in the range −0.4556 to 1.6207 a.u. Here, the bright-red spots appearing near O1 and N3 result from the N2—H2B⋯O1 and C7—H7B⋯N3 interactions, which play a significant role in the molecular packing of the title compound. The overall two-dimensional fingerprint plot for the title compound and those delineated into H⋯H, C⋯H/H⋯C, N⋯H/H⋯N and O⋯H/H⋯O contacts are illustrated in Fig. 5, together with their relative contributions to the Hirshfeld surface while details of the various contacts are given in Table 2. The percentage contributions from the different interatomic contacts to the Hirshfeld surfaces are as follows: H⋯H (46.0%), C⋯H/H⋯C (35.1%), N⋯H/H⋯N (10.5%) and O⋯H/H⋯O (6.5%) (Table 3). The other C⋯N/N⋯C, C⋯C and C⋯O/O⋯C contacts contribute less than 1% to the Hirshfeld surface mapping and have negligible directional impact on the molecular packing (Table 3).
|
|
5. Database survey
A survey of the Cambridge Structural Database (CSD version 5.41, update of March 2020; Groom et al., 2016) reveals five comparable tetrahydroisoquinoline derivatives, 2-methyl-1,2,3,4-tetrahydroisoquinoline trihydrate (KUGLIK; Langenohl et al., 2020), (1S,2R)-2-[(3R,4S)-3-methyl-4-phenyl-1,2,3,4-tetrahydroisoquinolin-2-yl]-1,2-diphenylethanol (POPYEB; Ben Ali & Retailleau, 2019), (3S*,4R*)-4-fluoro-3-(4-methoxyphenyl)-1-oxo-2-phenyl-1,2,3,4-tetrahydroisoquinoline-4-carboxylic acid (CARCOQ; Lehmann et al., 2017), (S)-benzyl 3-phenylcarbamoyl-1,2,3,4-tetrahydroisoquinoline-2-carboxylate (LAQKUL; Naicker et al., 2012) and 2-[(1R,3S)-6,7-dimethoxy-1-phenyl-1,2,3,4-tetrahydroisoquinolin-3-yl]-4-phenyl-1,3-thiazole (AZUSOE; Pawar et al., 2011).
The compound KUGLIK co-crystallizes with three water molecules in the via weak C—H⋯O and C—H⋯π(ring) interactions. In the crystal of CARCOQ, molecules are linked by an O—H⋯O hydrogen bond, forming chains propagating along the a-axis direction. The chains are linked by C—H⋯F hydrogen bonds, forming layers lying parallel to the ab plane. In LAQKUL, there are two independent molecules in the The heterocyclic ring assumes a twisted boat conformation and N—H⋯O interactions help to construct the three-dimensional network within the crystal packing. In AZUSOE, no classical hydrogen bonds nor π–π interactions were found in the crystal structure.
which leads to the formation of intense hydrogen bonding in the crystal. In the crystal of POPYEB, molecules are packed in a herringbone manner parallel to (103) and (10)6. Synthesis and crystallization
To a solution of 2-acetyl-5-oxo-N-3,5-triphenylpentanamide (5.1 mmol) in acetonitrile (40 ml) was added malononitrile (5.2 mmol). The solution was stirred for 5 min at room temperature, ethylenediamine (5.2 mmol) was added and the mixture refluxed for 4 h and cooled down to room temperature. The reaction product precipitated from the reaction mixture as pale-yellow single crystals, was collected by filtration and purified by recrystallization in ethanol/water solution (yield 70%, m.p. 554-556 K).
1H NMR (300 MHz, DMSO-d6): 3.2 (dd, 3JH–H =9.8 Hz, 3JH–H = 2.9 Hz, 2H, CH2); 4.25 (dd, 3JH–H = 9.8 Hz, 3JH–H = 2.9 Hz, 1H, CH—Ar); 6.7 (s, 2H, NH2); 6.8 (s, 1H, CH=); 6.9–7.7 (m, 15H, arom).
13C NMR (75 MHz, DMSO-d6): 35.17 (CH-Ar), 43.57 (CH2), 109.86 (=CH), 117.67 (=Cquat), 119.52 (CN), 125.96 (2CHarom), 126.72 (2CHarom), 126.86 (CHarom), 127.39 (CHarom), 127.99 (2CHarom), 128.66 (2CHarom), 128.89 (2CHarom), 128.89 (2CHarom), 129.21 (=Cquat), 129.56 (CHarom), 129.94 (=Cquat), 135.27 (N—Car), 139.07 (Car), 139.40 (Car.), 144.14 (=Cquat—N), 160.73 (O=Cquat—N), 167.96 (=Cquat—Ar).
7. Refinement
Crystal data, data collection and structure . The H atoms of the NH2 group were located in the difference-Fourier synthesis and refined isotropically with Uiso(H) = 1.2Ueq(N). All C-bound H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.98 Å, and with Uiso(H) = 1.2Ueq(C). Two reflections, (0 1 1) and (1 0 1), affected by the incident beam-stop and owing to poor agreement between observed and calculated intensities, nine outliers, ( 9 7), (9 0 7), (0 6 5), (5 14 12), ( 9 2), (1 0 9), (1 13 10), ( 7 15) and (9 9 7), were omitted in the final cycles of The title compound crystallizes in a non-centrosymmetric P 212121, but the could not be determined reliably, and the is inconclusive {Flack x = −0.6 (9), determined using 1593 quotients [(I+) − (I−)]/[(I+) + (I−)] (Parsons et al., 2013)}.
details are summarized in Table 4
|
Supporting information
CCDC reference: 2058071
https://doi.org/10.1107/S2056989021000785/vm2245sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021000785/vm2245Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021000785/vm2245Isup3.cml
Data collection: APEX3 (Bruker, 2018); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).C28H21N3O | Dx = 1.268 Mg m−3 |
Mr = 415.48 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 5592 reflections |
a = 10.7038 (3) Å | θ = 2.3–27.1° |
b = 11.6096 (4) Å | µ = 0.08 mm−1 |
c = 17.5182 (5) Å | T = 296 K |
V = 2176.93 (11) Å3 | Prism, pale yellow |
Z = 4 | 0.25 × 0.15 × 0.15 mm |
F(000) = 872 |
Bruker D8 QUEST PHOTON-III CCD diffractometer | 4972 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.081 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 32.6°, θmin = 2.3° |
Tmin = 0.973, Tmax = 0.981 | h = −16→16 |
39899 measured reflections | k = −17→17 |
7913 independent reflections | l = −26→26 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.054 | w = 1/[σ2(Fo2) + (0.0438P)2 + 0.242P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.123 | (Δ/σ)max < 0.001 |
S = 1.01 | Δρmax = 0.27 e Å−3 |
7913 reflections | Δρmin = −0.17 e Å−3 |
296 parameters | Extinction correction: SHELXL2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0098 (17) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.8603 (2) | 0.5325 (2) | 0.67650 (12) | 0.0305 (5) | |
C2 | 0.8260 (2) | 0.7274 (2) | 0.72668 (12) | 0.0301 (5) | |
C3 | 0.7054 (2) | 0.7266 (2) | 0.69663 (13) | 0.0291 (5) | |
C4 | 0.66343 (19) | 0.6306 (2) | 0.65291 (12) | 0.0267 (4) | |
C5 | 0.7394 (2) | 0.53749 (19) | 0.64189 (12) | 0.0276 (4) | |
C6 | 0.7003 (2) | 0.43797 (19) | 0.59129 (13) | 0.0284 (5) | |
H6 | 0.736642 | 0.367572 | 0.612719 | 0.034* | |
C7 | 0.5567 (2) | 0.4246 (2) | 0.59334 (15) | 0.0331 (5) | |
H7A | 0.531069 | 0.377784 | 0.550221 | 0.040* | |
H7B | 0.533864 | 0.383461 | 0.639483 | 0.040* | |
C8 | 0.4857 (2) | 0.5366 (2) | 0.59104 (12) | 0.0285 (5) | |
C9 | 0.5374 (2) | 0.6316 (2) | 0.62044 (12) | 0.0288 (5) | |
H9 | 0.492214 | 0.700033 | 0.620253 | 0.035* | |
C10 | 0.6260 (2) | 0.8212 (2) | 0.71308 (14) | 0.0343 (5) | |
C11 | 1.0205 (2) | 0.6280 (2) | 0.75426 (14) | 0.0327 (5) | |
C12 | 1.0273 (2) | 0.6001 (3) | 0.83030 (15) | 0.0468 (7) | |
H12 | 0.955194 | 0.583755 | 0.857910 | 0.056* | |
C13 | 1.1434 (3) | 0.5967 (3) | 0.86523 (17) | 0.0564 (8) | |
H13 | 1.149044 | 0.579063 | 0.916902 | 0.068* | |
C14 | 1.2495 (3) | 0.6189 (3) | 0.82467 (18) | 0.0516 (7) | |
H14 | 1.327119 | 0.615648 | 0.848401 | 0.062* | |
C15 | 1.2409 (2) | 0.6460 (3) | 0.74895 (18) | 0.0580 (8) | |
H15 | 1.313123 | 0.661550 | 0.721318 | 0.070* | |
C16 | 1.1260 (2) | 0.6505 (3) | 0.71289 (15) | 0.0469 (7) | |
H16 | 1.120619 | 0.668558 | 0.661272 | 0.056* | |
C17 | 0.7496 (2) | 0.4510 (2) | 0.51044 (13) | 0.0298 (5) | |
C18 | 0.8123 (3) | 0.3613 (2) | 0.47579 (16) | 0.0469 (7) | |
H18 | 0.825842 | 0.293484 | 0.502852 | 0.056* | |
C19 | 0.8557 (3) | 0.3702 (3) | 0.40138 (17) | 0.0558 (8) | |
H19 | 0.898031 | 0.308574 | 0.379378 | 0.067* | |
C20 | 0.8370 (3) | 0.4683 (3) | 0.36024 (16) | 0.0485 (7) | |
H20 | 0.865482 | 0.473690 | 0.310203 | 0.058* | |
C21 | 0.7759 (3) | 0.5586 (3) | 0.39356 (16) | 0.0518 (7) | |
H21 | 0.762974 | 0.626088 | 0.366047 | 0.062* | |
C22 | 0.7328 (3) | 0.5504 (2) | 0.46820 (15) | 0.0458 (6) | |
H22 | 0.692085 | 0.612929 | 0.490148 | 0.055* | |
C23 | 0.3570 (2) | 0.5371 (2) | 0.56106 (12) | 0.0299 (5) | |
C24 | 0.2781 (2) | 0.4429 (2) | 0.57364 (14) | 0.0357 (5) | |
H24 | 0.307748 | 0.379405 | 0.600472 | 0.043* | |
C25 | 0.1563 (2) | 0.4429 (2) | 0.54661 (15) | 0.0425 (6) | |
H25 | 0.104480 | 0.380215 | 0.556168 | 0.051* | |
C26 | 0.1121 (2) | 0.5354 (3) | 0.50570 (15) | 0.0458 (7) | |
H26 | 0.030803 | 0.534899 | 0.486933 | 0.055* | |
C27 | 0.1884 (3) | 0.6286 (3) | 0.49262 (16) | 0.0473 (7) | |
H27 | 0.158275 | 0.691099 | 0.464940 | 0.057* | |
C28 | 0.3100 (2) | 0.6304 (2) | 0.52037 (14) | 0.0384 (6) | |
H28 | 0.360334 | 0.694330 | 0.511654 | 0.046* | |
N1 | 0.89903 (16) | 0.63210 (18) | 0.71755 (11) | 0.0305 (4) | |
N2 | 0.8714 (2) | 0.8181 (2) | 0.76538 (14) | 0.0438 (6) | |
N3 | 0.5640 (2) | 0.8978 (2) | 0.72858 (15) | 0.0528 (6) | |
O1 | 0.93170 (16) | 0.44937 (15) | 0.67346 (11) | 0.0417 (4) | |
H2A | 0.825 (3) | 0.877 (3) | 0.7691 (17) | 0.050* | |
H2B | 0.952 (3) | 0.823 (3) | 0.7796 (17) | 0.050* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0284 (10) | 0.0349 (12) | 0.0283 (11) | 0.0014 (10) | −0.0022 (9) | 0.0002 (9) |
C2 | 0.0283 (10) | 0.0354 (12) | 0.0265 (11) | −0.0017 (10) | −0.0019 (9) | −0.0015 (9) |
C3 | 0.0273 (11) | 0.0313 (11) | 0.0288 (12) | −0.0002 (9) | −0.0019 (9) | −0.0029 (9) |
C4 | 0.0252 (10) | 0.0306 (11) | 0.0244 (10) | −0.0010 (9) | −0.0010 (8) | 0.0021 (9) |
C5 | 0.0256 (10) | 0.0297 (11) | 0.0275 (10) | −0.0002 (9) | −0.0030 (8) | −0.0002 (9) |
C6 | 0.0283 (10) | 0.0258 (11) | 0.0309 (11) | 0.0002 (9) | −0.0037 (9) | 0.0008 (9) |
C7 | 0.0314 (11) | 0.0312 (12) | 0.0367 (13) | −0.0035 (10) | 0.0012 (10) | −0.0007 (10) |
C8 | 0.0266 (10) | 0.0336 (12) | 0.0252 (10) | −0.0015 (9) | −0.0006 (8) | 0.0016 (9) |
C9 | 0.0257 (10) | 0.0308 (12) | 0.0297 (11) | 0.0029 (9) | −0.0022 (8) | −0.0011 (9) |
C10 | 0.0316 (11) | 0.0380 (13) | 0.0333 (12) | 0.0007 (11) | −0.0041 (10) | −0.0063 (10) |
C11 | 0.0272 (11) | 0.0396 (12) | 0.0314 (11) | −0.0006 (10) | −0.0050 (9) | −0.0020 (10) |
C12 | 0.0380 (13) | 0.069 (2) | 0.0339 (14) | −0.0065 (13) | −0.0054 (11) | 0.0098 (13) |
C13 | 0.0567 (18) | 0.072 (2) | 0.0406 (16) | −0.0060 (16) | −0.0210 (14) | 0.0100 (14) |
C14 | 0.0356 (13) | 0.0614 (18) | 0.0578 (18) | 0.0037 (14) | −0.0196 (13) | −0.0071 (15) |
C15 | 0.0275 (12) | 0.092 (2) | 0.0543 (18) | −0.0056 (15) | −0.0007 (12) | −0.0048 (17) |
C16 | 0.0349 (13) | 0.073 (2) | 0.0332 (13) | −0.0020 (14) | −0.0001 (11) | 0.0001 (13) |
C17 | 0.0274 (10) | 0.0313 (11) | 0.0308 (11) | −0.0036 (10) | −0.0017 (8) | −0.0038 (9) |
C18 | 0.0605 (17) | 0.0344 (14) | 0.0460 (15) | 0.0030 (13) | 0.0124 (13) | −0.0011 (12) |
C19 | 0.071 (2) | 0.0434 (16) | 0.0534 (17) | −0.0014 (15) | 0.0249 (16) | −0.0146 (14) |
C20 | 0.0507 (16) | 0.0587 (18) | 0.0360 (13) | −0.0198 (14) | 0.0086 (12) | −0.0090 (13) |
C21 | 0.0619 (19) | 0.0519 (17) | 0.0414 (15) | 0.0014 (15) | 0.0081 (13) | 0.0109 (13) |
C22 | 0.0553 (16) | 0.0407 (14) | 0.0413 (15) | 0.0086 (13) | 0.0102 (12) | 0.0041 (12) |
C23 | 0.0285 (11) | 0.0344 (12) | 0.0268 (10) | −0.0030 (10) | −0.0008 (9) | −0.0031 (9) |
C24 | 0.0324 (12) | 0.0371 (13) | 0.0376 (13) | −0.0042 (10) | −0.0010 (10) | 0.0012 (11) |
C25 | 0.0321 (13) | 0.0485 (15) | 0.0467 (15) | −0.0094 (12) | 0.0001 (10) | −0.0037 (13) |
C26 | 0.0311 (12) | 0.0607 (18) | 0.0456 (15) | −0.0020 (13) | −0.0088 (11) | −0.0070 (14) |
C27 | 0.0456 (15) | 0.0501 (16) | 0.0461 (15) | 0.0035 (14) | −0.0166 (12) | 0.0061 (13) |
C28 | 0.0372 (13) | 0.0389 (13) | 0.0391 (13) | −0.0050 (11) | −0.0069 (10) | 0.0033 (11) |
N1 | 0.0257 (9) | 0.0371 (11) | 0.0287 (10) | −0.0004 (8) | −0.0049 (7) | −0.0020 (8) |
N2 | 0.0345 (11) | 0.0425 (12) | 0.0545 (14) | 0.0002 (10) | −0.0121 (11) | −0.0171 (11) |
N3 | 0.0507 (13) | 0.0523 (15) | 0.0553 (16) | 0.0171 (12) | −0.0070 (12) | −0.0123 (12) |
O1 | 0.0358 (9) | 0.0394 (10) | 0.0499 (11) | 0.0092 (8) | −0.0108 (8) | −0.0036 (9) |
C1—O1 | 1.232 (3) | C14—H14 | 0.9300 |
C1—N1 | 1.424 (3) | C15—C16 | 1.384 (4) |
C1—C5 | 1.430 (3) | C15—H15 | 0.9300 |
C2—N2 | 1.343 (3) | C16—H16 | 0.9300 |
C2—N1 | 1.364 (3) | C17—C18 | 1.380 (3) |
C2—C3 | 1.395 (3) | C17—C22 | 1.383 (4) |
C3—C10 | 1.418 (3) | C18—C19 | 1.388 (4) |
C3—C4 | 1.424 (3) | C18—H18 | 0.9300 |
C4—C5 | 1.367 (3) | C19—C20 | 1.363 (4) |
C4—C9 | 1.464 (3) | C19—H19 | 0.9300 |
C5—C6 | 1.515 (3) | C20—C21 | 1.367 (4) |
C6—C17 | 1.519 (3) | C20—H20 | 0.9300 |
C6—C7 | 1.545 (3) | C21—C22 | 1.390 (4) |
C6—H6 | 0.9800 | C21—H21 | 0.9300 |
C7—C8 | 1.507 (3) | C22—H22 | 0.9300 |
C7—H7A | 0.9700 | C23—C28 | 1.390 (3) |
C7—H7B | 0.9700 | C23—C24 | 1.399 (3) |
C8—C9 | 1.338 (3) | C24—C25 | 1.387 (3) |
C8—C23 | 1.475 (3) | C24—H24 | 0.9300 |
C9—H9 | 0.9300 | C25—C26 | 1.375 (4) |
C10—N3 | 1.142 (3) | C25—H25 | 0.9300 |
C11—C16 | 1.367 (3) | C26—C27 | 1.375 (4) |
C11—C12 | 1.373 (4) | C26—H26 | 0.9300 |
C11—N1 | 1.451 (3) | C27—C28 | 1.390 (4) |
C12—C13 | 1.386 (4) | C27—H27 | 0.9300 |
C12—H12 | 0.9300 | C28—H28 | 0.9300 |
C13—C14 | 1.364 (4) | N2—H2A | 0.84 (3) |
C13—H13 | 0.9300 | N2—H2B | 0.90 (3) |
C14—C15 | 1.366 (4) | ||
O1—C1—N1 | 118.5 (2) | C14—C15—H15 | 119.6 |
O1—C1—C5 | 125.1 (2) | C16—C15—H15 | 119.6 |
N1—C1—C5 | 116.39 (19) | C11—C16—C15 | 119.0 (2) |
N2—C2—N1 | 119.2 (2) | C11—C16—H16 | 120.5 |
N2—C2—C3 | 122.1 (2) | C15—C16—H16 | 120.5 |
N1—C2—C3 | 118.7 (2) | C18—C17—C22 | 117.2 (2) |
C2—C3—C10 | 118.2 (2) | C18—C17—C6 | 120.3 (2) |
C2—C3—C4 | 120.0 (2) | C22—C17—C6 | 122.5 (2) |
C10—C3—C4 | 121.8 (2) | C17—C18—C19 | 121.3 (3) |
C5—C4—C3 | 120.48 (19) | C17—C18—H18 | 119.3 |
C5—C4—C9 | 120.0 (2) | C19—C18—H18 | 119.3 |
C3—C4—C9 | 119.5 (2) | C20—C19—C18 | 120.7 (3) |
C4—C5—C1 | 120.7 (2) | C20—C19—H19 | 119.7 |
C4—C5—C6 | 121.44 (19) | C18—C19—H19 | 119.7 |
C1—C5—C6 | 117.83 (19) | C19—C20—C21 | 119.1 (3) |
C5—C6—C17 | 111.96 (19) | C19—C20—H20 | 120.5 |
C5—C6—C7 | 109.75 (19) | C21—C20—H20 | 120.5 |
C17—C6—C7 | 112.15 (19) | C20—C21—C22 | 120.5 (3) |
C5—C6—H6 | 107.6 | C20—C21—H21 | 119.7 |
C17—C6—H6 | 107.6 | C22—C21—H21 | 119.7 |
C7—C6—H6 | 107.6 | C17—C22—C21 | 121.2 (3) |
C8—C7—C6 | 114.47 (19) | C17—C22—H22 | 119.4 |
C8—C7—H7A | 108.6 | C21—C22—H22 | 119.4 |
C6—C7—H7A | 108.6 | C28—C23—C24 | 118.1 (2) |
C8—C7—H7B | 108.6 | C28—C23—C8 | 121.6 (2) |
C6—C7—H7B | 108.6 | C24—C23—C8 | 120.3 (2) |
H7A—C7—H7B | 107.6 | C25—C24—C23 | 120.9 (2) |
C9—C8—C23 | 121.4 (2) | C25—C24—H24 | 119.6 |
C9—C8—C7 | 119.52 (19) | C23—C24—H24 | 119.6 |
C23—C8—C7 | 119.0 (2) | C26—C25—C24 | 120.1 (3) |
C8—C9—C4 | 121.6 (2) | C26—C25—H25 | 120.0 |
C8—C9—H9 | 119.2 | C24—C25—H25 | 120.0 |
C4—C9—H9 | 119.2 | C27—C26—C25 | 119.8 (2) |
N3—C10—C3 | 177.8 (3) | C27—C26—H26 | 120.1 |
C16—C11—C12 | 121.0 (2) | C25—C26—H26 | 120.1 |
C16—C11—N1 | 119.9 (2) | C26—C27—C28 | 120.6 (3) |
C12—C11—N1 | 119.1 (2) | C26—C27—H27 | 119.7 |
C11—C12—C13 | 118.9 (3) | C28—C27—H27 | 119.7 |
C11—C12—H12 | 120.6 | C23—C28—C27 | 120.4 (2) |
C13—C12—H12 | 120.6 | C23—C28—H28 | 119.8 |
C14—C13—C12 | 120.7 (3) | C27—C28—H28 | 119.8 |
C14—C13—H13 | 119.6 | C2—N1—C1 | 123.46 (18) |
C12—C13—H13 | 119.6 | C2—N1—C11 | 119.22 (19) |
C13—C14—C15 | 119.5 (3) | C1—N1—C11 | 117.25 (19) |
C13—C14—H14 | 120.2 | C2—N2—H2A | 117 (2) |
C15—C14—H14 | 120.2 | C2—N2—H2B | 122 (2) |
C14—C15—C16 | 120.8 (3) | H2A—N2—H2B | 119 (3) |
N2—C2—C3—C10 | −5.1 (4) | C5—C6—C17—C18 | 129.5 (2) |
N1—C2—C3—C10 | 173.7 (2) | C7—C6—C17—C18 | −106.6 (3) |
N2—C2—C3—C4 | 177.0 (2) | C5—C6—C17—C22 | −51.4 (3) |
N1—C2—C3—C4 | −4.2 (3) | C7—C6—C17—C22 | 72.5 (3) |
C2—C3—C4—C5 | 1.9 (3) | C22—C17—C18—C19 | −0.6 (4) |
C10—C3—C4—C5 | −176.0 (2) | C6—C17—C18—C19 | 178.5 (3) |
C2—C3—C4—C9 | −178.9 (2) | C17—C18—C19—C20 | −0.2 (5) |
C10—C3—C4—C9 | 3.3 (3) | C18—C19—C20—C21 | 0.7 (5) |
C3—C4—C5—C1 | 2.5 (3) | C19—C20—C21—C22 | −0.3 (5) |
C9—C4—C5—C1 | −176.7 (2) | C18—C17—C22—C21 | 1.0 (4) |
C3—C4—C5—C6 | −175.9 (2) | C6—C17—C22—C21 | −178.1 (3) |
C9—C4—C5—C6 | 4.9 (3) | C20—C21—C22—C17 | −0.6 (5) |
O1—C1—C5—C4 | 175.4 (2) | C9—C8—C23—C28 | 38.7 (3) |
N1—C1—C5—C4 | −4.4 (3) | C7—C8—C23—C28 | −145.5 (2) |
O1—C1—C5—C6 | −6.1 (3) | C9—C8—C23—C24 | −140.8 (2) |
N1—C1—C5—C6 | 174.06 (19) | C7—C8—C23—C24 | 35.0 (3) |
C4—C5—C6—C17 | 94.7 (2) | C28—C23—C24—C25 | −0.4 (4) |
C1—C5—C6—C17 | −83.7 (2) | C8—C23—C24—C25 | 179.2 (2) |
C4—C5—C6—C7 | −30.5 (3) | C23—C24—C25—C26 | 1.1 (4) |
C1—C5—C6—C7 | 151.0 (2) | C24—C25—C26—C27 | −0.9 (4) |
C5—C6—C7—C8 | 41.4 (3) | C25—C26—C27—C28 | 0.0 (4) |
C17—C6—C7—C8 | −83.8 (3) | C24—C23—C28—C27 | −0.6 (4) |
C6—C7—C8—C9 | −29.4 (3) | C8—C23—C28—C27 | 179.9 (2) |
C6—C7—C8—C23 | 154.7 (2) | C26—C27—C28—C23 | 0.8 (4) |
C23—C8—C9—C4 | 177.7 (2) | N2—C2—N1—C1 | −179.0 (2) |
C7—C8—C9—C4 | 1.9 (3) | C3—C2—N1—C1 | 2.2 (3) |
C5—C4—C9—C8 | 11.5 (3) | N2—C2—N1—C11 | 4.2 (3) |
C3—C4—C9—C8 | −167.8 (2) | C3—C2—N1—C11 | −174.6 (2) |
C16—C11—C12—C13 | 1.0 (4) | O1—C1—N1—C2 | −177.8 (2) |
N1—C11—C12—C13 | −179.7 (3) | C5—C1—N1—C2 | 2.0 (3) |
C11—C12—C13—C14 | −1.0 (5) | O1—C1—N1—C11 | −0.9 (3) |
C12—C13—C14—C15 | 0.7 (5) | C5—C1—N1—C11 | 178.9 (2) |
C13—C14—C15—C16 | −0.4 (5) | C16—C11—N1—C2 | −100.4 (3) |
C12—C11—C16—C15 | −0.6 (5) | C12—C11—N1—C2 | 80.2 (3) |
N1—C11—C16—C15 | −179.9 (3) | C16—C11—N1—C1 | 82.5 (3) |
C14—C15—C16—C11 | 0.3 (5) | C12—C11—N1—C1 | −96.8 (3) |
Cg1, Cg4 and Cg5 are the centroids of the 1,2-dihydropyridine ring (N1/C1–C5) and the C17–C22 and C23–C28 phenyl rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2B···O1i | 0.90 (3) | 2.09 (3) | 2.813 (3) | 136 (3) |
C7—H7B···N3ii | 0.97 | 2.54 | 3.391 (4) | 146 |
C13—H13···Cg5iii | 0.93 | 2.74 | 3.576 (3) | 149 |
C26—H26···Cg4iv | 0.93 | 2.83 | 3.729 (3) | 162 |
C16—H16···Cg5v | 0.93 | 2.97 | 3.603 (3) | 126 |
C20—H20···Cg1vi | 0.93 | 2.96 | 3.514 (3) | 120 |
Symmetry codes: (i) −x+2, y+1/2, −z+3/2; (ii) −x+1, y−1/2, −z+3/2; (iii) −x+3/2, −y+1, z+1/2; (iv) x−1, y, z; (v) x+1, y, z; (vi) −x+3/2, −y+1, z−1/2. |
Contact | Distance | Symmetry operation |
O1···H25 | 2.88 | 1 + x, y, z |
H27···H22 | 2.43 | -1/2 + x, 3/2 - y, 1 - z |
H13···C23 | 2.86 | 3/2 - x, 1 - y, 1/2 + z |
H19···H24 | 2.41 | 1/2 + x, 1/2 - y, 1 - z |
Contact | Percentage contribution |
H···H | 46.0 |
C···H/H···C | 35.1 |
N···H/H···N | 10.5 |
O···H/H···O | 6.5 |
C···N/N···C | 0.9 |
C···C | 0.5 |
C···O/O···C | 0.4 |
Funding information
The authors would like to thank Baku State University and the Ministry of Education and Science of the Russian Federation [award No. 075–03-2020-223 (FSSF-2020–0017)] for the support of this research.
References
Allen, F. H., Shields, G. P., Taylor, R., Allen, F. H., Raithby, P. R., Shields, G. P. & Taylor, R. (1998). Chem. Commun. pp. 1043–1044. Web of Science CrossRef Google Scholar
Ben Ali, K. & Retailleau, P. (2019). Acta Cryst. E75, 1399–1402. CSD CrossRef IUCr Journals Google Scholar
Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2018). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Kerru, N., Gummidi, L., Maddila, S., Gangu, K. K. & Jonnalagadda, S. B. (2020). Molecules, 25, 1909. Web of Science CrossRef Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Langenohl, F., Otte, F. & Strohmann, C. (2020). Acta Cryst. E76, 298–302. CSD CrossRef IUCr Journals Google Scholar
Lehmann, A., Lechner, L., Radacki, K., Braunschweig, H. & Holzgrabe, U. (2017). Acta Cryst. E73, 867–870. CSD CrossRef IUCr Journals Google Scholar
Mahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108–117. Web of Science CSD CrossRef CAS Google Scholar
Mamedov, I. G., Khrustalev, V. N., Dorovatovskii, P. V., Naghiev, F. N. & Maharramov, A. M. (2019). Mendeleev Commun. 29, 232–233. CSD CrossRef CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Naghiyev, F. N. (2019). New Mater. Compd Appl. 4, 126–131. Google Scholar
Naghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. & Maharramov, A. M. (2020a). Acta Cryst. E76, 720–723. CrossRef IUCr Journals Google Scholar
Naghiyev, F. N., Cisterna, J., Khalilov, A. N., Maharramov, A. M., Askerov, R. K., Asadov, K. A., Mamedov, I. G., Salmanli, K. S., Cárdenas, A. & Brito, I. (2020b). Molecules, 25, 2235. CSD CrossRef Google Scholar
Naghiyev, F. N., Mammadova, G. Z., Mamedov, I. G., Huseynova, A. T., Çelikesir, S. T., Akkurt, M. & Akobirshoeva, A. A. (2020c). Acta Cryst. E76, 1365–1368. CSD CrossRef IUCr Journals Google Scholar
Naicker, T., Chelopo, M., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2012). Acta Cryst. E68, o883. CSD CrossRef IUCr Journals Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Pawar, S., Katharigatta, V., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2011). Acta Cryst. E67, o2722. Web of Science CSD CrossRef IUCr Journals Google Scholar
Scott, J. D. & Williams, R. M. (2002). Chem. Rev. 102, 1669–1730. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Velásquez, J. D., Mahmoudi, G., Zangrando, E., Gurbanov, A. V., Zubkov, F. I., Zorlu, Y., Masoudiasl, A. & Echeverría, J. (2019). CrystEngComm, 21, 6018–6025. Google Scholar
Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.