research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and comparative structural study of 2-(pyridin-2-yl)-1H-perimidine and its mono- and di-N-methyl­ated analogues

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Lomonosov Moscow State University, Lenin's Hills, 1-3, Moscow, 119991, Russian Federation, and bN.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr. 31, Moscow 119991, Russian Federation
*Correspondence e-mail: bezzubov@igic.ras.ru

Edited by M. Weil, Vienna University of Technology, Austria (Received 22 December 2020; accepted 5 January 2021; online 8 January 2021)

The title compounds, 2-(pyridin-2-yl)-1H-perimidine (C16H11N3; 1), 1-methyl-2-(pyridin-2-yl)-1H-perimidine (C17H13N3; 2), and 1,3-dimethyl-2-(pyridin-2-yl)-1H-perimidinium iodide (C18H16N3+·I; 3) were synthesized under mild conditions and their structures were determined by 1H NMR spectroscopy and single-crystal X-ray analysis. The N-methyl­ation of the nitro­gen atom(s) at the perimidine moiety results in a significant increase of the inter­plane angle between the pyridin-2-yl ring and the perimidine system. The unsubstituted perimidine (1) forms a weak intra­molecular N—H⋯N bond that consolidates the mol­ecular conformation. In the crystal structures of 13, the mol­ecular entities all are assembled through ππ and C—H⋯π inter­actions.

1. Chemical context

Perimidines are fused nitro­gen heterocyclic aromatics possessing equally a π-electron excess and a π-electron deficiency that determine their diverse reactivities as well as their unique optical and spectroscopic properties (Pozharskii et al., 2020[Pozharskii, A. F., Gulevskaya, A. V., Claramunt, R. M., Alkorta, I. & Elguero, J. (2020). Russ. Chem. Rev. 89, 1204-1260.]). These compounds have attracted considerable attention over the past two decades because of their growing application in industrial chemistry (especially as dyes and pigments), as optoelectronics, in biotechnology and medicinal chemistry (Sahiba & Agarwal, 2020[Sahiba, N. & Agarwal, S. (2020). Top. Curr. Chem. 378 article number 44.]).

[Scheme 1]

Herein, we report structural studies of 1-H-2-(pyridin-2-yl)perimidine (1) and its mono- and di-N-methyl­ated analogues (2 and 3, respectively).

2. Structural commentary

The compositions and structures of the synthesized compounds were determined both by 1H NMR spectroscopy (for assignment, see: Figs. S1–S3 in the supporting information) and single-crystal X-ray analysis. In all cases, the organic mol­ecules occupy general positions and comprise an essentially flat perimidine system and the pyridyl ring. Depending on the number of N-substituents, the ring systems are twisted to a greater or lesser extent (Figs. 1[link]–3[link][link]). The unsubstituted mol­ecule of 1 is almost planar with the dihedral angle between the aromatic parts as small as 1.60 (5)°, while the mol­ecules of 2 and especially 3 show notably larger inter­plane angles [59.39 (8) and 87.21 (9)°, respectively] because of steric repulsion between the N-methyl group(s) and the pyridin-2-yl ring. The flat conformation of 1 may be stabilized by a weak intra­molecular hydrogen bond between the perimidine N1—H1 donor group and the pyridyl N3 acceptor group [d(N1⋯N3) = 2.626 (2) Å, d(N1—H1) = 0.87 (2) Å, d(H1⋯N3) = 2.19 (2) Å, N1—H1⋯N3 = 110.9 (17)°] whereas in the mol­ecular structure of 2 the pyridyl nitro­gen atom participates in a weak intra­molecular C12(sp3)—H12A⋯N3 contact [d(H12A⋯N3) = 2.46 (2) Å; C12⋯N3 = 3.059 (1) Å; C12—H12A⋯N3 = 120.8 (18)°]. Compound 3 is a salt and its crystal consists of doubly N-methyl­ated perimidinium cations and iodide counter-ions combined mainly through Coulombic inter­actions.

[Figure 1]
Figure 1
The mol­ecular structure of 1-H-2-(pyridin-2-yl)perimidine (1), with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of 1-methyl-2-(pyridin-2-yl)perimidine (2), with displacement ellipsoids drawn at the 50% probability level.
[Figure 3]
Figure 3
The mol­ecular structure of 1,3-dimethyl-2-(pyridin-2-yl)perimidinium iodide (3, only the cation is presented), with displacement ellipsoids drawn at the 50% probability level.

1H NMR spectroscopic studies of 13 revealed correlations between the chemical shifts of some bands in the spectra and the mutual arrangement of the perimidine and pyridyl aromatics. In the 1H NMR spectrum of 1 in CDCl3, doublets at 6.36 and 6.91 ppm arise from the j and e protons, respectively, while the other protons of the perimidine core appear as complex multiplets in the range 7.06–7.25 ppm (Fig. S1). A similar set of bands (corresponding to the same protons) with slightly different chemical shifts can be found in the 1H NMR spectrum of 2 (Fig. S2) whereas 1,3-dimethyl-2-(pyridin-2-yl)perimidinium iodide (3) demonstrates a reduced number of resonance signals (Fig. S3) because the protons of the fused benzene rings become equivalent. The latter results from the above arrangement of the pyridyl ring almost orthogonal to the perimidine system.

For compound 1, solvent-dependent resonance signals in the 1H NMR spectrum were detected. In DMSO-d6 as a solvent (Fig. S4), the characteristic doublets arising from the protons j and e are now closer (6.74 and 6.79 ppm, respectively) while the integrated intensity of the signal of the N—H proton becomes lower (0.77 ppm) which may result from a weakening of the intra­molecular N—H⋯N hydrogen bond by the polar solvent.

3. Supra­molecular features

In the crystal of 1, mol­ecules are assembled through parallel displaced ππ stacking inter­actions between the flat pyridyl and perimidine fragments distant by 3.295 (4) Å (C5⋯N1–C11centroid) and 3.302 (4) Å (N2⋯pycentroid), while the resulting offset stacks [centroid-to-centroid shift between the adjacent mol­ecules in the stack 3.791 (4) Å] are grafted together in the resulting three-dimensional network by a C—H⋯π inter­action [d(H⋯π) = 2.96 (2) Å] involving the pyridyl H15 atom and the centroid of the C2–C11 ring (Fig. 4[link]). In contrast, two types of ππ inter­actions are found in the crystal of 2, one of which is a slipped stacking [centroid-to-centroid shift 1.645 (2) Å] between the perimidine units [d(C7⋯N1–C11centroid) = 3.375 (2) Å, d(C9⋯N1–C11centroid) = 3.774 (3) Å, d(C11⋯C6–C11centroid) = 3.423 (2) Å] while the other is a pyrid­yl–pyridyl contact [distance between the C16 atom and the pyridyl ring 3.499 (3) Å] connecting the stacks together. Inter­molecular contacts between the H12C atom and the C6–C11centroid [3.17 (2) Å] and between the H14 atom and C2–C11centroid [3.684 (19) Å] form a three-dimensional network in the crystal structure of 2 (Fig. 5[link]). In the crystal structure of 3, there are ππ-bonded dimers [inter­plane distance 3.447 (3) Å between the perimidine moieties], which form dense layers via C—H⋯π inter­actions [d(H⋯π) = 3.132 (2) Å between the H18 atom and the centroid of the C6–C11 ring and 3.075 (2) Å between the H9 atom and the centroid of the pyridyl ring; Fig. 6[link]]. The resulting cationic organic layers and anionic iodide layers alternate along the c axis.

[Figure 4]
Figure 4
Inter­molecular contacts (Å) in the crystal of 1-H-2-(pyridin-2-yl)perimidine (1). Displacement ellipsoids are shown at the 50% probability level.
[Figure 5]
Figure 5
Inter­molecular contacts (Å) in the crystal of 1-methyl-2-(pyridin-2-yl)perimidine (2). Displacement ellipsoids are shown at the 50% probability level.
[Figure 6]
Figure 6
Inter­molecular contacts (Å) in the crystal of 1,3-dimethyl-2-(pyridin-2-yl)perimidinium iodide (3, only cations are presented). Displacement ellipsoids are shown at the 50% probability level.

4. Database survey

Though many perimidines have been prepared so far, fewer than 60 crystal structures of them (including a few of metal complexes) have been published (Pozharskii et al., 2020[Pozharskii, A. F., Gulevskaya, A. V., Claramunt, R. M., Alkorta, I. & Elguero, J. (2020). Russ. Chem. Rev. 89, 1204-1260.]; Hill et al., 2018[Hill, A. F., Ma, C., McQueen, C. M. A. & Ward, J. S. (2018). Dalton Trans. 47, 1577-1587.]; Bahena et al., 2019[Bahena, E. N., Gijon, C. A. F., Fomine, S., Alexandrova, L. & Le Lagadec, R. (2019). Eur. J. Inorg. Chem. 3494-3502.]; Booysen et al., 2016[Booysen, I. N., Ebinumoliseh, I., Sithebe, S., Akerman, M. P. & Xulu, B. (2016). Polyhedron, 117, 755-760.]). Crystal structures of several 1,3-dimethyl-2-aryl­perimidinium iodides have been determined (Li et al., 2017[Li, Z.-Y., Zhang, M., Yuan, X.-Y. & Yuan, L. (2017). Z. Kristallogr. New Cryst. Struct. 232, 429-430.]). A comprehensive structural study of 2-aryl­perimidines (including those having intra­molecular hydrogen bonds) has also been conducted (Foces-Foces et al., 1993[Foces-Foces, C., Llamas-Saiz, A. L., Claramunt, R. M., Sanz, D., Dotor, J. & Elguero, J. (1993). J. Cryst. Spec. Res. 23, 305-312.]; Llamas-Saiz et al., 1995[Llamas-Saiz, A. L., Foces-Foces, C., Sanz, D., Claramunt, R. M., Dotor, J., Elguero, J., Catalan, J. & del Valle, J. C. (1995). J. Chem. Soc., Perkin Trans. 2, 1389-1398.]).

5. Synthesis and crystallization

The title compounds were prepared as follows:

1-H-2-(pyridin-2-yl)perimidine (1).

A mixture of 1,8-di­aminona­phthalene (4.523 g, 28.6 mmol), pyridin-2-ylcarboxaldehyde (2.72 ml, 28.6 mmol) and sodium metabisulfite (16.317 g, 85.8 mmol) in ethanol (50 ml) was refluxed under Ar for 4 h. The reaction mixture was evaporated to dryness, washed with water and redissolved in ethanol. Keeping the resulting solution in a freezer overnight gave a red powder, which was recrystallized from methyl­ene chloride and dried in vacuo. Yield 6 g (86%). Single crystals suitable for X-ray analysis were grown by slow evaporation of the solvent from a solution of the substance in methyl­ene chloride.

1H NMR (CDCl3, ppm, 400 MHz): δ 6.36 (d, J = 7.4 Hz, 1H, Hnaph), 6.91 (d, J = 7.4 Hz, 1H, Hnaph), 7.06–7.25 (m, 4H, Hnaph), 7.44–7.47 (m, 1H, Hpy), 7.88 (td, J1 = 7.8 Hz, J2 = 1.7 Hz, 1H, Hpy), 8.44 (d, J = 7.6 Hz, 1H, Hpy), 8.62–8.64 (m, 1H, Hpy), 9.39 (br. s, 1H, N-H). See supplementary Fig. S1.

1-Methyl-2-(pyridin-2-yl)perimidine (2).

To a mixture of 1 (0.250 g, 1.02 mmol), solid KOH (0.057 g, 1.02 mmol) and anhydrous K2CO3 (0.141 g, 1.02 mmol) in anhydrous Ar-saturated aceto­nitrile methyl iodide (0.064 ml, 1.02 mmol) was added dropwise upon stirring and the resulting suspension was heated at 323 K for 3 h and then at r.t. for two days. The reaction mixture was evaporated to dryness and the crude product was purified by column chromatography (eluent hexa­ne/ethyl acetate 1/1 v/v), recrystallized from a mixture of CH2Cl2/hexane and dried in vacuo. Yield 185 mg (70%). Single crystals suitable for X-ray analysis were grown by slow evaporation of the solvent from a solution of the substance in chloro­form.

1H NMR (CDCl3, ppm, 400 MHz): δ 3.17 (s, 3H, N—CH3), 6.32 (dd, J1 = 7.2 Hz, J2 = 1.0 Hz, 1H, Hnaph), 6.94 (dd, J1 = 7.3 Hz, J2 = 1.0 Hz, 1H, Hnaph), 7.17–7.32 (m, 4H, Hnaph), 7.39–7.42 (m, 1H, Hpy), 7.77–7.80 (m, 1H, Hpy), 7.86–7.89 (m, 1H, Hpy), 8.70 (m, 1H, Hpy). See supplementary Fig. S2.

1,3-Dimethyl-2-(pyridin-2-yl)perimidinium iodide (3).

This compound was isolated from the above reaction mixture (synthesis of compound 2) as a side product (15 mg). Single crystals suitable for X-ray analysis were grown by slow evaporation of the solvent from a solution of the substance in ethanol.

1H NMR (CDCl3, ppm, 400 MHz): δ 3.34 (s, 6H, N—CH3), 6.96 (d, J = 7.7 Hz, 2H, Hnaph), 7.50 (m, 2H, Hnaph), 7.60 (m, 2H, Hnaph), 7.66–7.70 (m, 1H, Hpy), 8.19 (td, J1 = 7.8 Hz, J2 = 1.7 Hz, 1H, Hpy), 8.65–8.68 (m, 1H, Hpy), 9.24–9.26 (m, 1H, Hpy). See supplementary Fig. S3.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. Hydrogen atoms in the structures of 1 and 2 were located from difference electron density maps and were refined freely. In the structure of 3, hydrogen atoms were placed in calculated positions and refined using a riding model [C—H = 0.94–0.97 Å with Uiso(H) = 1.2–1.5Ueq(C)].

Table 1
Experimental details

  (1) (2) (3)
Crystal data
Chemical formula C16H11N3 C17H13N3 C18H16N3+·I
Mr 245.28 259.30 401.24
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c Monoclinic, P21/n
Temperature (K) 100 100 230
a, b, c (Å) 13.5479 (5), 5.0242 (2), 17.3881 (7) 7.5095 (2), 12.1216 (3), 13.5616 (4) 9.8821 (2), 9.7125 (2), 17.9839 (4)
β (°) 101.382 (2) 92.547 (1) 103.676 (1)
V3) 1160.28 (8) 1233.25 (6) 1677.15 (6)
Z 4 4 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.09 0.09 1.91
Crystal size (mm) 0.42 × 0.1 × 0.08 0.34 × 0.12 × 0.11 0.32 × 0.18 × 0.13
 
Data collection
Diffractometer Bruker D8 Venture Bruker D8 Venture Bruker SMART APEXII
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.684, 0.746 0.685, 0.746 0.668, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 16322, 2866, 2405 14029, 3280, 2803 28389, 4146, 3700
Rint 0.036 0.035 0.026
(sin θ/λ)max−1) 0.667 0.682 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.140, 1.05 0.060, 0.146, 1.04 0.028, 0.067, 1.06
No. of reflections 2866 3280 4146
No. of parameters 216 233 201
H-atom treatment All H-atom parameters refined All H-atom parameters refined H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.39, −0.33 0.45, −0.34 0.72, −0.46
Computer programs: APEX3 and SAINT (Bruker, 2017[Bruker (2017). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For all structures, data collection: APEX3 (Bruker, 2017); cell refinement: SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

2-(Pyridin-2-yl)-1H-perimidine (1) top
Crystal data top
C16H11N3F(000) = 512
Mr = 245.28Dx = 1.404 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.5479 (5) ÅCell parameters from 7163 reflections
b = 5.0242 (2) Åθ = 3.1–28.3°
c = 17.3881 (7) ŵ = 0.09 mm1
β = 101.382 (2)°T = 100 K
V = 1160.28 (8) Å3Needle, red
Z = 40.42 × 0.1 × 0.08 mm
Data collection top
Bruker D8 Venture
diffractometer
2866 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec IµS microsource2405 reflections with I > 2σ(I)
Focusing mirrors monochromatorRint = 0.036
Detector resolution: 10.4 pixels mm-1θmax = 28.3°, θmin = 3.5°
ω–scanh = 1818
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 66
Tmin = 0.684, Tmax = 0.746l = 2322
16322 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057All H-atom parameters refined
wR(F2) = 0.140 w = 1/[σ2(Fo2) + (0.057P)2 + 1.1159P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2866 reflectionsΔρmax = 0.39 e Å3
216 parametersΔρmin = 0.33 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.67572 (10)0.4402 (3)0.27627 (8)0.0154 (3)
N30.71391 (10)0.0786 (3)0.17704 (8)0.0168 (3)
N20.84493 (10)0.5837 (3)0.30290 (8)0.0155 (3)
C120.79419 (12)0.2223 (3)0.21158 (9)0.0143 (3)
C100.64357 (12)0.6204 (3)0.32655 (9)0.0149 (3)
C10.77359 (12)0.4307 (3)0.26757 (9)0.0142 (3)
C20.81956 (12)0.7734 (3)0.35506 (9)0.0150 (3)
C130.89068 (12)0.1825 (3)0.19733 (9)0.0156 (3)
C30.89194 (13)0.9430 (3)0.39534 (9)0.0174 (3)
C80.52046 (13)0.8239 (4)0.38981 (10)0.0200 (4)
C160.72925 (13)0.1115 (3)0.12658 (10)0.0189 (4)
C150.82269 (13)0.1659 (3)0.10900 (9)0.0191 (4)
C90.54570 (12)0.6318 (3)0.33781 (9)0.0182 (3)
C60.69204 (12)0.9893 (3)0.41877 (9)0.0168 (3)
C50.76845 (13)1.1625 (3)0.45756 (9)0.0186 (3)
C140.90460 (13)0.0168 (3)0.14534 (10)0.0181 (3)
C110.71827 (12)0.7951 (3)0.36697 (9)0.0145 (3)
C70.59039 (13)0.9992 (4)0.42875 (10)0.0201 (4)
C40.86549 (13)1.1376 (3)0.44599 (9)0.0187 (4)
H30.9603 (15)0.931 (4)0.3862 (11)0.020 (5)*
H130.9452 (16)0.282 (4)0.2226 (12)0.024 (5)*
H80.4528 (16)0.829 (4)0.3965 (12)0.024 (5)*
H140.9698 (17)0.050 (5)0.1362 (13)0.031 (6)*
H90.4957 (14)0.510 (4)0.3102 (11)0.016 (5)*
H70.5720 (16)1.125 (5)0.4625 (13)0.030 (6)*
H40.9168 (15)1.252 (4)0.4733 (12)0.023 (5)*
H160.6709 (15)0.203 (4)0.1022 (12)0.024 (5)*
H10.6349 (17)0.326 (5)0.2490 (13)0.032 (6)*
H50.7526 (14)1.292 (4)0.4910 (12)0.019 (5)*
H150.8299 (15)0.302 (4)0.0730 (12)0.024 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0149 (6)0.0159 (7)0.0152 (6)0.0011 (5)0.0022 (5)0.0026 (5)
N30.0164 (6)0.0168 (7)0.0166 (7)0.0005 (5)0.0016 (5)0.0003 (5)
N20.0172 (6)0.0147 (7)0.0147 (6)0.0004 (5)0.0033 (5)0.0008 (5)
C120.0176 (7)0.0129 (7)0.0120 (7)0.0013 (6)0.0018 (6)0.0024 (6)
C100.0172 (7)0.0141 (7)0.0128 (7)0.0016 (6)0.0016 (6)0.0016 (6)
C10.0169 (7)0.0127 (7)0.0130 (7)0.0016 (6)0.0030 (6)0.0023 (6)
C20.0183 (8)0.0132 (7)0.0135 (7)0.0008 (6)0.0034 (6)0.0034 (6)
C130.0154 (7)0.0155 (8)0.0150 (7)0.0010 (6)0.0011 (6)0.0002 (6)
C30.0194 (8)0.0166 (8)0.0158 (7)0.0012 (6)0.0022 (6)0.0024 (6)
C80.0166 (8)0.0262 (9)0.0177 (8)0.0044 (7)0.0047 (6)0.0012 (7)
C160.0223 (8)0.0160 (8)0.0165 (8)0.0024 (7)0.0010 (6)0.0006 (6)
C150.0284 (9)0.0142 (8)0.0143 (7)0.0027 (6)0.0031 (6)0.0008 (6)
C90.0177 (8)0.0197 (8)0.0165 (8)0.0013 (6)0.0017 (6)0.0005 (6)
C60.0240 (8)0.0141 (7)0.0118 (7)0.0020 (6)0.0026 (6)0.0025 (6)
C50.0288 (9)0.0132 (8)0.0135 (7)0.0013 (7)0.0035 (6)0.0006 (6)
C140.0181 (8)0.0200 (8)0.0167 (8)0.0042 (6)0.0044 (6)0.0019 (6)
C110.0186 (8)0.0129 (7)0.0121 (7)0.0014 (6)0.0030 (6)0.0026 (6)
C70.0248 (9)0.0202 (8)0.0162 (8)0.0063 (7)0.0059 (6)0.0017 (7)
C40.0260 (8)0.0148 (8)0.0137 (7)0.0047 (7)0.0002 (6)0.0009 (6)
Geometric parameters (Å, º) top
N1—C101.387 (2)C8—C91.410 (2)
N1—C11.365 (2)C8—C71.371 (2)
N1—H10.87 (2)C8—H80.95 (2)
N3—C121.344 (2)C16—C151.387 (2)
N3—C161.341 (2)C16—H160.94 (2)
N2—C11.292 (2)C15—C141.384 (2)
N2—C21.404 (2)C15—H150.94 (2)
C12—C11.493 (2)C9—H90.97 (2)
C12—C131.392 (2)C6—C51.417 (2)
C10—C91.379 (2)C6—C111.420 (2)
C10—C111.417 (2)C6—C71.422 (2)
C2—C31.381 (2)C5—C41.374 (2)
C2—C111.432 (2)C5—H50.93 (2)
C13—C141.387 (2)C14—H140.94 (2)
C13—H130.93 (2)C7—H70.93 (2)
C3—C41.409 (2)C4—H40.95 (2)
C3—H30.97 (2)
C10—N1—H1122.0 (15)N3—C16—H16114.7 (13)
C1—N1—C10121.71 (14)C15—C16—H16121.8 (13)
C1—N1—H1116.3 (15)C16—C15—H15120.4 (12)
C16—N3—C12117.31 (14)C14—C15—C16118.52 (15)
C1—N2—C2117.11 (14)C14—C15—H15121.0 (12)
N3—C12—C1115.40 (14)C10—C9—C8118.76 (15)
N3—C12—C13123.28 (15)C10—C9—H9120.1 (11)
C13—C12—C1121.31 (14)C8—C9—H9121.1 (11)
N1—C10—C11115.76 (14)C5—C6—C11118.24 (15)
C9—C10—N1123.16 (15)C5—C6—C7123.66 (15)
C9—C10—C11121.09 (15)C11—C6—C7118.11 (15)
N1—C1—C12114.06 (14)C6—C5—H5119.6 (12)
N2—C1—N1125.35 (15)C4—C5—C6120.29 (15)
N2—C1—C12120.59 (14)C4—C5—H5120.2 (12)
N2—C2—C11120.58 (14)C13—C14—H14119.4 (14)
C3—C2—N2120.44 (14)C15—C14—C13119.24 (15)
C3—C2—C11118.98 (15)C15—C14—H14121.4 (14)
C12—C13—H13121.8 (13)C10—C11—C2119.48 (14)
C14—C13—C12118.23 (15)C10—C11—C6119.78 (14)
C14—C13—H13119.9 (13)C6—C11—C2120.74 (15)
C2—C3—C4120.17 (15)C8—C7—C6120.58 (15)
C2—C3—H3118.9 (12)C8—C7—H7120.3 (13)
C4—C3—H3120.9 (12)C6—C7—H7119.2 (13)
C9—C8—H8117.3 (13)C3—C4—H4118.7 (12)
C7—C8—C9121.68 (15)C5—C4—C3121.57 (15)
C7—C8—H8121.0 (13)C5—C4—H4119.8 (12)
N3—C16—C15123.42 (15)
N1—C10—C9—C8179.50 (15)C13—C12—C1—N1178.61 (14)
N1—C10—C11—C21.0 (2)C13—C12—C1—N21.6 (2)
N1—C10—C11—C6179.00 (14)C3—C2—C11—C10179.38 (14)
N3—C12—C1—N11.1 (2)C3—C2—C11—C60.6 (2)
N3—C12—C1—N2178.67 (14)C16—N3—C12—C1179.71 (13)
N3—C12—C13—C140.5 (2)C16—N3—C12—C130.0 (2)
N3—C16—C15—C140.1 (3)C16—C15—C14—C130.6 (2)
N2—C2—C3—C4178.31 (14)C9—C10—C11—C2178.63 (15)
N2—C2—C11—C101.0 (2)C9—C10—C11—C61.3 (2)
N2—C2—C11—C6179.07 (14)C9—C8—C7—C61.1 (3)
C12—N3—C16—C150.2 (2)C6—C5—C4—C30.5 (2)
C12—C13—C14—C150.8 (2)C5—C6—C11—C10179.34 (14)
C10—N1—C1—N20.8 (2)C5—C6—C11—C20.7 (2)
C10—N1—C1—C12179.41 (13)C5—C6—C7—C8179.48 (16)
C1—N1—C10—C9178.72 (15)C11—C10—C9—C80.8 (2)
C1—N1—C10—C111.0 (2)C11—C2—C3—C41.3 (2)
C1—N2—C2—C3179.62 (14)C11—C6—C5—C41.3 (2)
C1—N2—C2—C110.7 (2)C11—C6—C7—C80.6 (2)
C1—C12—C13—C14179.19 (14)C7—C8—C9—C100.4 (3)
C2—N2—C1—N10.7 (2)C7—C6—C5—C4178.83 (16)
C2—N2—C1—C12179.58 (13)C7—C6—C11—C100.6 (2)
C2—C3—C4—C50.8 (2)C7—C6—C11—C2179.37 (14)
1-Methyl-2-(pyridin-2-yl)-1H-perimidine (2) top
Crystal data top
C17H13N3F(000) = 544
Mr = 259.30Dx = 1.397 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.5095 (2) ÅCell parameters from 5485 reflections
b = 12.1216 (3) Åθ = 2.3–30.5°
c = 13.5616 (4) ŵ = 0.09 mm1
β = 92.547 (1)°T = 100 K
V = 1233.25 (6) Å3Block, orange
Z = 40.34 × 0.12 × 0.11 mm
Data collection top
Bruker D8 Venture
diffractometer
3280 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec IµS microsource2803 reflections with I > 2σ(I)
Focusing mirrors monochromatorRint = 0.035
Detector resolution: 10.4 pixels mm-1θmax = 29.0°, θmin = 2.3°
ω–scanh = 1010
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1516
Tmin = 0.685, Tmax = 0.746l = 1818
14029 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060All H-atom parameters refined
wR(F2) = 0.146 w = 1/[σ2(Fo2) + (0.0706P)2 + 0.7754P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3280 reflectionsΔρmax = 0.45 e Å3
233 parametersΔρmin = 0.33 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.76302 (17)0.66381 (10)0.66410 (9)0.0173 (3)
N30.79159 (17)0.88961 (10)0.52437 (10)0.0197 (3)
N10.69884 (16)0.65068 (10)0.49124 (9)0.0153 (3)
C110.79946 (19)0.48774 (12)0.57893 (11)0.0160 (3)
C10.71526 (19)0.70642 (12)0.57923 (11)0.0155 (3)
C130.68606 (19)0.82886 (12)0.58029 (11)0.0157 (3)
C20.80957 (19)0.55209 (12)0.66662 (11)0.0166 (3)
C140.5640 (2)0.87417 (13)0.64331 (11)0.0177 (3)
C60.85120 (19)0.37474 (12)0.58061 (12)0.0187 (3)
C120.6294 (2)0.70168 (13)0.39951 (11)0.0194 (3)
C30.8700 (2)0.50420 (13)0.75469 (12)0.0208 (3)
C160.6670 (2)1.05215 (13)0.59611 (12)0.0206 (3)
C150.5551 (2)0.98867 (13)0.65099 (12)0.0200 (3)
C170.7802 (2)0.99943 (13)0.53330 (13)0.0219 (3)
C90.7297 (2)0.47699 (13)0.40235 (12)0.0202 (3)
C100.74095 (19)0.53778 (12)0.48835 (11)0.0156 (3)
C50.9117 (2)0.32879 (13)0.67236 (13)0.0218 (3)
C70.8416 (2)0.31473 (12)0.49048 (13)0.0220 (3)
C40.9205 (2)0.39232 (13)0.75648 (13)0.0226 (3)
C80.7817 (2)0.36497 (13)0.40491 (12)0.0228 (3)
H12A0.603 (3)0.7776 (18)0.4103 (15)0.029 (5)*
H30.879 (3)0.5482 (16)0.8163 (15)0.027 (5)*
H50.951 (3)0.2505 (18)0.6727 (15)0.030 (5)*
H70.882 (3)0.2398 (17)0.4889 (14)0.025 (5)*
H160.663 (3)1.1313 (17)0.5991 (14)0.026 (5)*
H12B0.723 (3)0.7008 (16)0.3497 (14)0.023 (5)*
H40.961 (3)0.3617 (18)0.8184 (16)0.033 (5)*
H170.856 (3)1.0433 (17)0.4948 (15)0.028 (5)*
H90.695 (3)0.5092 (17)0.3402 (15)0.026 (5)*
H12C0.518 (3)0.6600 (16)0.3771 (14)0.025 (5)*
H150.474 (3)1.0204 (17)0.6955 (15)0.027 (5)*
H140.489 (3)0.8271 (16)0.6786 (14)0.023 (5)*
H80.777 (3)0.3237 (17)0.3434 (16)0.033 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0187 (6)0.0155 (6)0.0178 (6)0.0007 (5)0.0024 (5)0.0012 (5)
N30.0193 (6)0.0155 (6)0.0248 (7)0.0029 (5)0.0045 (5)0.0026 (5)
N10.0172 (6)0.0128 (6)0.0160 (6)0.0024 (5)0.0005 (5)0.0006 (4)
C110.0123 (6)0.0151 (7)0.0208 (7)0.0008 (5)0.0030 (5)0.0023 (5)
C10.0130 (6)0.0144 (6)0.0192 (7)0.0011 (5)0.0023 (5)0.0003 (5)
C130.0146 (6)0.0148 (6)0.0174 (7)0.0021 (5)0.0011 (5)0.0006 (5)
C20.0142 (6)0.0158 (7)0.0200 (7)0.0003 (5)0.0030 (5)0.0025 (5)
C140.0162 (7)0.0194 (7)0.0175 (7)0.0007 (6)0.0009 (5)0.0003 (6)
C60.0143 (6)0.0147 (7)0.0274 (8)0.0006 (5)0.0045 (6)0.0027 (6)
C120.0207 (7)0.0182 (7)0.0189 (7)0.0038 (6)0.0024 (6)0.0013 (6)
C30.0200 (7)0.0217 (8)0.0206 (7)0.0001 (6)0.0017 (6)0.0040 (6)
C160.0174 (7)0.0143 (7)0.0299 (8)0.0027 (6)0.0020 (6)0.0023 (6)
C150.0184 (7)0.0216 (7)0.0199 (7)0.0046 (6)0.0006 (6)0.0045 (6)
C170.0188 (7)0.0167 (7)0.0304 (8)0.0010 (6)0.0030 (6)0.0035 (6)
C90.0205 (7)0.0184 (7)0.0219 (7)0.0017 (6)0.0026 (6)0.0019 (6)
C100.0135 (6)0.0131 (6)0.0205 (7)0.0004 (5)0.0033 (5)0.0004 (5)
C50.0181 (7)0.0144 (7)0.0329 (8)0.0011 (6)0.0035 (6)0.0076 (6)
C70.0217 (7)0.0118 (7)0.0330 (8)0.0003 (6)0.0076 (6)0.0015 (6)
C40.0191 (7)0.0223 (8)0.0262 (8)0.0001 (6)0.0010 (6)0.0097 (6)
C80.0234 (8)0.0190 (7)0.0265 (8)0.0037 (6)0.0066 (6)0.0070 (6)
Geometric parameters (Å, º) top
N2—C11.2974 (19)C12—H12B0.996 (19)
N2—C21.3986 (18)C12—H12C1.01 (2)
N3—C131.341 (2)C3—C41.408 (2)
N3—C171.340 (2)C3—H30.99 (2)
N1—C11.3720 (18)C16—C151.381 (2)
N1—C121.4644 (18)C16—C171.386 (2)
N1—C101.4055 (18)C16—H160.96 (2)
C11—C21.421 (2)C15—H150.96 (2)
C11—C61.424 (2)C17—H170.95 (2)
C11—C101.422 (2)C9—C101.379 (2)
C1—C131.5005 (19)C9—C81.413 (2)
C13—C141.393 (2)C9—H90.95 (2)
C2—C31.386 (2)C5—C41.376 (2)
C14—C151.394 (2)C5—H50.99 (2)
C14—H140.94 (2)C7—C81.369 (2)
C6—C51.419 (2)C7—H70.96 (2)
C6—C71.421 (2)C4—H40.96 (2)
C12—H12A0.95 (2)C8—H80.97 (2)
C1—N2—C2117.78 (13)C2—C3—H3120.6 (12)
C17—N3—C13116.91 (13)C4—C3—H3119.6 (12)
C1—N1—C12123.08 (12)C15—C16—C17118.60 (14)
C1—N1—C10119.48 (12)C15—C16—H16120.9 (12)
C10—N1—C12117.35 (12)C17—C16—H16120.4 (12)
C2—C11—C6120.68 (13)C14—C15—H15118.8 (12)
C2—C11—C10119.45 (13)C16—C15—C14118.81 (14)
C10—C11—C6119.86 (14)C16—C15—H15122.3 (12)
N2—C1—N1125.88 (13)N3—C17—C16123.87 (15)
N2—C1—C13114.84 (13)N3—C17—H17117.6 (12)
N1—C1—C13119.20 (12)C16—C17—H17118.5 (12)
N3—C13—C1116.58 (13)C10—C9—C8119.10 (15)
N3—C13—C14123.48 (14)C10—C9—H9122.2 (12)
C14—C13—C1119.74 (13)C8—C9—H9118.6 (12)
N2—C2—C11120.45 (13)N1—C10—C11116.90 (13)
C3—C2—N2119.91 (14)C9—C10—N1122.59 (13)
C3—C2—C11119.62 (14)C9—C10—C11120.51 (14)
C13—C14—C15118.27 (14)C6—C5—H5117.5 (12)
C13—C14—H14119.6 (12)C4—C5—C6120.59 (14)
C15—C14—H14122.2 (12)C4—C5—H5121.9 (12)
C5—C6—C11117.91 (14)C6—C7—H7120.0 (12)
C5—C6—C7123.71 (14)C8—C7—C6120.24 (14)
C7—C6—C11118.37 (14)C8—C7—H7119.7 (12)
N1—C12—H12A110.2 (12)C3—C4—H4117.7 (13)
N1—C12—H12B109.7 (11)C5—C4—C3121.47 (15)
N1—C12—H12C107.6 (11)C5—C4—H4120.9 (13)
H12A—C12—H12B105.7 (17)C9—C8—H8118.3 (12)
H12A—C12—H12C110.7 (17)C7—C8—C9121.90 (14)
H12B—C12—H12C113.0 (15)C7—C8—H8119.8 (12)
C2—C3—C4119.73 (15)
N2—C1—C13—N3118.34 (15)C6—C11—C2—C30.2 (2)
N2—C1—C13—C1456.73 (19)C6—C11—C10—N1177.46 (12)
N2—C2—C3—C4178.61 (13)C6—C11—C10—C91.6 (2)
N3—C13—C14—C152.1 (2)C6—C5—C4—C30.1 (2)
N1—C1—C13—N358.57 (18)C6—C7—C8—C90.7 (2)
N1—C1—C13—C14126.37 (15)C12—N1—C1—N2174.50 (14)
C11—C2—C3—C40.1 (2)C12—N1—C1—C139.0 (2)
C11—C6—C5—C40.3 (2)C12—N1—C10—C11176.81 (13)
C11—C6—C7—C80.8 (2)C12—N1—C10—C94.2 (2)
C1—N2—C2—C111.7 (2)C15—C16—C17—N32.0 (2)
C1—N2—C2—C3176.77 (14)C17—N3—C13—C1172.77 (13)
C1—N1—C10—C110.12 (19)C17—N3—C13—C142.1 (2)
C1—N1—C10—C9179.15 (14)C17—C16—C15—C141.9 (2)
C1—C13—C14—C15172.63 (13)C10—N1—C1—N22.0 (2)
C13—N3—C17—C160.0 (2)C10—N1—C1—C13174.54 (12)
C13—C14—C15—C160.0 (2)C10—C11—C2—N20.2 (2)
C2—N2—C1—N12.9 (2)C10—C11—C2—C3178.68 (13)
C2—N2—C1—C13173.79 (12)C10—C11—C6—C5178.90 (13)
C2—C11—C6—C50.4 (2)C10—C11—C6—C70.3 (2)
C2—C11—C6—C7178.86 (13)C10—C9—C8—C70.6 (2)
C2—C11—C10—N11.1 (2)C5—C6—C7—C8179.97 (15)
C2—C11—C10—C9179.87 (13)C7—C6—C5—C4178.87 (15)
C2—C3—C4—C50.2 (2)C8—C9—C10—N1177.31 (13)
C6—C11—C2—N2178.32 (13)C8—C9—C10—C111.7 (2)
1,3-Dimethyl-2-(pyridin-2-yl)-1H-perimidinium iodide (3) top
Crystal data top
C18H16N3+·IF(000) = 792
Mr = 401.24Dx = 1.589 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.8821 (2) ÅCell parameters from 9859 reflections
b = 9.7125 (2) Åθ = 2.3–28.3°
c = 17.9839 (4) ŵ = 1.91 mm1
β = 103.676 (1)°T = 230 K
V = 1677.15 (6) Å3Block, yellow
Z = 40.32 × 0.18 × 0.13 mm
Data collection top
Bruker SMART APEXII
diffractometer
4146 independent reflections
Radiation source: fine-focus sealed X-ray tube, X-ray tube3700 reflections with I > 2σ(I)
Mirror optics monochromatorRint = 0.026
Detector resolution: 7.9 pixels mm-1θmax = 28.4°, θmin = 2.3°
ω scanh = 1313
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1212
Tmin = 0.668, Tmax = 0.746l = 2323
28389 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0273P)2 + 1.1509P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
4146 reflectionsΔρmax = 0.72 e Å3
201 parametersΔρmin = 0.46 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.46311 (2)0.43924 (2)0.27610 (2)0.05057 (7)
N20.70014 (19)0.6145 (2)0.48068 (10)0.0417 (4)
C140.6404 (2)0.8060 (2)0.39271 (12)0.0389 (4)
N10.78491 (17)0.61380 (19)0.37060 (10)0.0380 (4)
C110.8424 (2)0.4240 (2)0.45912 (13)0.0397 (4)
C150.5033 (2)0.8101 (2)0.35210 (14)0.0475 (5)
H150.4531300.7285790.3369380.057*
C10.7119 (2)0.6712 (2)0.41527 (12)0.0377 (4)
N30.7182 (2)0.9164 (2)0.41510 (15)0.0633 (6)
C20.7651 (2)0.4869 (2)0.50629 (13)0.0425 (5)
C100.8527 (2)0.4851 (2)0.38939 (12)0.0401 (4)
C30.7545 (3)0.4271 (3)0.57385 (16)0.0573 (6)
H30.7018120.4691740.6047590.069*
C60.9113 (2)0.2971 (2)0.48227 (15)0.0494 (5)
C160.4421 (3)0.9371 (3)0.33438 (17)0.0562 (6)
H160.3486260.9439240.3070670.067*
C70.9857 (3)0.2348 (3)0.43274 (18)0.0619 (7)
H71.0318670.1507680.4467000.074*
C130.6248 (3)0.6850 (3)0.53130 (15)0.0618 (7)
H13A0.5893180.7724510.5087340.093*
H13B0.6876510.7010410.5807890.093*
H13C0.5477190.6280240.5376890.093*
C80.9909 (3)0.2948 (3)0.36572 (18)0.0646 (7)
H81.0393150.2505270.3333920.078*
C170.5194 (3)1.0531 (2)0.35717 (18)0.0600 (7)
H170.4801651.1410640.3461410.072*
C120.7915 (3)0.6767 (3)0.29709 (13)0.0525 (6)
H12A0.7412650.6195740.2553970.079*
H12B0.8879770.6845640.2942070.079*
H12C0.7495860.7675650.2932240.079*
C180.6552 (4)1.0379 (3)0.3964 (2)0.0725 (9)
H180.7077701.1181270.4112450.087*
C90.9255 (3)0.4220 (3)0.34300 (16)0.0536 (6)
H90.9318710.4629690.2965940.064*
C50.8993 (3)0.2393 (3)0.55276 (18)0.0622 (7)
H50.9447620.1559280.5695050.075*
C40.8238 (3)0.3020 (3)0.59604 (17)0.0659 (8)
H40.8171900.2611120.6424110.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.05271 (10)0.04098 (9)0.05737 (11)0.00419 (6)0.01171 (7)0.01150 (6)
N20.0404 (9)0.0444 (10)0.0404 (9)0.0032 (8)0.0100 (7)0.0044 (8)
C140.0395 (10)0.0339 (10)0.0430 (10)0.0019 (8)0.0090 (8)0.0019 (8)
N10.0339 (8)0.0395 (9)0.0389 (9)0.0004 (7)0.0054 (7)0.0043 (7)
C110.0312 (9)0.0350 (10)0.0467 (11)0.0059 (8)0.0029 (8)0.0020 (8)
C150.0396 (11)0.0363 (11)0.0629 (14)0.0025 (9)0.0049 (10)0.0001 (10)
C10.0313 (9)0.0375 (10)0.0416 (10)0.0021 (8)0.0035 (8)0.0033 (8)
N30.0528 (12)0.0445 (12)0.0820 (16)0.0107 (10)0.0054 (11)0.0028 (11)
C20.0363 (10)0.0416 (11)0.0463 (11)0.0045 (9)0.0031 (9)0.0085 (9)
C100.0326 (10)0.0401 (11)0.0427 (11)0.0011 (8)0.0005 (8)0.0030 (9)
C30.0531 (14)0.0652 (17)0.0532 (14)0.0032 (12)0.0118 (11)0.0165 (12)
C60.0384 (11)0.0356 (11)0.0644 (14)0.0056 (9)0.0072 (10)0.0028 (10)
C160.0457 (13)0.0501 (14)0.0697 (16)0.0107 (11)0.0079 (12)0.0046 (12)
C70.0487 (14)0.0378 (12)0.088 (2)0.0056 (11)0.0068 (13)0.0064 (12)
C130.0679 (16)0.0709 (17)0.0523 (14)0.0169 (14)0.0255 (12)0.0077 (13)
C80.0539 (15)0.0597 (16)0.0761 (18)0.0122 (13)0.0072 (13)0.0189 (14)
C170.0728 (18)0.0353 (12)0.0735 (17)0.0086 (11)0.0201 (14)0.0032 (11)
C120.0540 (13)0.0605 (15)0.0452 (12)0.0073 (12)0.0163 (10)0.0136 (11)
C180.075 (2)0.0353 (13)0.099 (2)0.0130 (13)0.0047 (17)0.0059 (13)
C90.0497 (13)0.0563 (14)0.0530 (13)0.0056 (11)0.0086 (11)0.0080 (11)
C50.0538 (14)0.0416 (13)0.0792 (18)0.0041 (11)0.0085 (13)0.0203 (12)
C40.0599 (16)0.0647 (17)0.0673 (17)0.0064 (14)0.0036 (13)0.0311 (14)
Geometric parameters (Å, º) top
N2—C11.328 (3)C6—C51.417 (4)
N2—C21.422 (3)C16—H160.9400
N2—C131.474 (3)C16—C171.369 (4)
C14—C151.379 (3)C7—H70.9400
C14—C11.497 (3)C7—C81.351 (4)
C14—N31.326 (3)C13—H13A0.9700
N1—C11.323 (3)C13—H13B0.9700
N1—C101.421 (3)C13—H13C0.9700
N1—C121.472 (3)C8—H80.9400
C11—C21.408 (3)C8—C91.409 (4)
C11—C101.413 (3)C17—H170.9400
C11—C61.422 (3)C17—C181.368 (4)
C15—H150.9400C12—H12A0.9700
C15—C161.378 (3)C12—H12B0.9700
N3—C181.339 (4)C12—H12C0.9700
C2—C31.373 (3)C18—H180.9400
C10—C91.369 (3)C9—H90.9400
C3—H30.9400C5—H50.9400
C3—C41.405 (4)C5—C41.345 (4)
C6—C71.417 (4)C4—H40.9400
C1—N2—C2121.39 (19)C6—C7—H7119.6
C1—N2—C13121.1 (2)C8—C7—C6120.8 (2)
C2—N2—C13117.40 (19)C8—C7—H7119.6
C15—C14—C1120.71 (19)N2—C13—H13A109.5
N3—C14—C15124.3 (2)N2—C13—H13B109.5
N3—C14—C1114.99 (19)N2—C13—H13C109.5
C1—N1—C10121.36 (18)H13A—C13—H13B109.5
C1—N1—C12121.10 (18)H13A—C13—H13C109.5
C10—N1—C12117.43 (18)H13B—C13—H13C109.5
C2—C11—C10121.08 (19)C7—C8—H8119.2
C2—C11—C6119.4 (2)C7—C8—C9121.7 (3)
C10—C11—C6119.6 (2)C9—C8—H8119.2
C14—C15—H15120.9C16—C17—H17120.8
C16—C15—C14118.2 (2)C18—C17—C16118.4 (2)
C16—C15—H15120.9C18—C17—H17120.8
N2—C1—C14117.88 (19)N1—C12—H12A109.5
N1—C1—N2122.52 (19)N1—C12—H12B109.5
N1—C1—C14119.60 (18)N1—C12—H12C109.5
C14—N3—C18115.8 (2)H12A—C12—H12B109.5
C11—C2—N2116.78 (19)H12A—C12—H12C109.5
C3—C2—N2122.2 (2)H12B—C12—H12C109.5
C3—C2—C11121.0 (2)N3—C18—C17124.5 (2)
C11—C10—N1116.85 (19)N3—C18—H18117.8
C9—C10—N1122.4 (2)C17—C18—H18117.8
C9—C10—C11120.8 (2)C10—C9—C8119.1 (3)
C2—C3—H3120.6C10—C9—H9120.4
C2—C3—C4118.9 (3)C8—C9—H9120.4
C4—C3—H3120.6C6—C5—H5119.6
C7—C6—C11118.0 (2)C4—C5—C6120.9 (2)
C5—C6—C11118.0 (2)C4—C5—H5119.6
C5—C6—C7123.9 (2)C3—C4—H4119.1
C15—C16—H16120.5C5—C4—C3121.8 (3)
C17—C16—C15118.9 (2)C5—C4—H4119.1
C17—C16—H16120.5
N2—C2—C3—C4178.8 (2)C2—C11—C6—C50.2 (3)
C14—C15—C16—C170.4 (4)C2—C3—C4—C50.3 (4)
C14—N3—C18—C170.3 (5)C10—N1—C1—N21.7 (3)
N1—C10—C9—C8179.6 (2)C10—N1—C1—C14179.10 (18)
C11—C2—C3—C40.7 (4)C10—C11—C2—N20.7 (3)
C11—C10—C9—C80.2 (4)C10—C11—C2—C3179.7 (2)
C11—C6—C7—C80.2 (4)C10—C11—C6—C71.6 (3)
C11—C6—C5—C40.6 (4)C10—C11—C6—C5179.6 (2)
C15—C14—C1—N287.1 (3)C6—C11—C2—N2179.11 (18)
C15—C14—C1—N193.6 (3)C6—C11—C2—C30.5 (3)
C15—C14—N3—C180.6 (4)C6—C11—C10—N1178.17 (18)
C15—C16—C17—C180.4 (5)C6—C11—C10—C91.6 (3)
C1—N2—C2—C110.2 (3)C6—C7—C8—C91.2 (4)
C1—N2—C2—C3179.7 (2)C6—C5—C4—C30.4 (4)
C1—C14—C15—C16178.6 (2)C16—C17—C18—N30.8 (5)
C1—C14—N3—C18179.0 (3)C7—C6—C5—C4178.1 (3)
C1—N1—C10—C112.1 (3)C7—C8—C9—C101.3 (4)
C1—N1—C10—C9178.1 (2)C13—N2—C1—C142.8 (3)
N3—C14—C15—C161.0 (4)C13—N2—C1—N1176.4 (2)
N3—C14—C1—N292.5 (3)C13—N2—C2—C11177.0 (2)
N3—C14—C1—N186.8 (3)C13—N2—C2—C32.6 (3)
C2—N2—C1—C14179.88 (18)C12—N1—C1—N2177.7 (2)
C2—N2—C1—N10.6 (3)C12—N1—C1—C143.1 (3)
C2—C11—C10—N11.7 (3)C12—N1—C10—C11178.33 (19)
C2—C11—C10—C9178.6 (2)C12—N1—C10—C91.9 (3)
C2—C11—C6—C7178.6 (2)C5—C6—C7—C8178.9 (3)
 

Acknowledgements

X-ray diffraction studies were performed at the Centre of Shared Equipment of IGIC RAS. Dr I. M. Vatsouro is acknowledged for assistance with the NMR measurements.

Funding information

Funding for this research was provided by: Presidential Grant Program (grant No. MK-1200.2020.3).

References

First citationBahena, E. N., Gijon, C. A. F., Fomine, S., Alexandrova, L. & Le Lagadec, R. (2019). Eur. J. Inorg. Chem. 3494–3502.  Google Scholar
First citationBooysen, I. N., Ebinumoliseh, I., Sithebe, S., Akerman, M. P. & Xulu, B. (2016). Polyhedron, 117, 755–760.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2017). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFoces-Foces, C., Llamas-Saiz, A. L., Claramunt, R. M., Sanz, D., Dotor, J. & Elguero, J. (1993). J. Cryst. Spec. Res. 23, 305–312.  CAS Google Scholar
First citationHill, A. F., Ma, C., McQueen, C. M. A. & Ward, J. S. (2018). Dalton Trans. 47, 1577–1587.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLi, Z.-Y., Zhang, M., Yuan, X.-Y. & Yuan, L. (2017). Z. Kristallogr. New Cryst. Struct. 232, 429–430.  CSD CrossRef CAS Google Scholar
First citationLlamas-Saiz, A. L., Foces-Foces, C., Sanz, D., Claramunt, R. M., Dotor, J., Elguero, J., Catalan, J. & del Valle, J. C. (1995). J. Chem. Soc., Perkin Trans. 2, 1389–1398.  Google Scholar
First citationPozharskii, A. F., Gulevskaya, A. V., Claramunt, R. M., Alkorta, I. & Elguero, J. (2020). Russ. Chem. Rev. 89, 1204–1260.  CrossRef Google Scholar
First citationSahiba, N. & Agarwal, S. (2020). Top. Curr. Chem. 378 article number 44.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds