research communications
Synthesis and comparative structural study of 2-(pyridin-2-yl)-1H-perimidine and its mono- and di-N-methylated analogues
aDepartment of Chemistry, Lomonosov Moscow State University, Lenin's Hills, 1-3, Moscow, 119991, Russian Federation, and bN.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr. 31, Moscow 119991, Russian Federation
*Correspondence e-mail: bezzubov@igic.ras.ru
The title compounds, 2-(pyridin-2-yl)-1H-perimidine (C16H11N3; 1), 1-methyl-2-(pyridin-2-yl)-1H-perimidine (C17H13N3; 2), and 1,3-dimethyl-2-(pyridin-2-yl)-1H-perimidinium iodide (C18H16N3+·I−; 3) were synthesized under mild conditions and their structures were determined by 1H NMR spectroscopy and single-crystal X-ray analysis. The N-methylation of the nitrogen atom(s) at the perimidine moiety results in a significant increase of the interplane angle between the pyridin-2-yl ring and the perimidine system. The unsubstituted perimidine (1) forms a weak intramolecular N—H⋯N bond that consolidates the molecular conformation. In the crystal structures of 1–3, the molecular entities all are assembled through π–π and C—H⋯π interactions.
Keywords: crystal structure; perimidine; π–π stacking; hydrogen-bonding; NMR study.
1. Chemical context
Perimidines are fused nitrogen heterocyclic aromatics possessing equally a π-electron excess and a π-electron deficiency that determine their diverse reactivities as well as their unique optical and spectroscopic properties (Pozharskii et al., 2020). These compounds have attracted considerable attention over the past two decades because of their growing application in industrial chemistry (especially as dyes and pigments), as optoelectronics, in biotechnology and medicinal chemistry (Sahiba & Agarwal, 2020).
Herein, we report structural studies of 1-H-2-(pyridin-2-yl)perimidine (1) and its mono- and di-N-methylated analogues (2 and 3, respectively).
2. Structural commentary
The compositions and structures of the synthesized compounds were determined both by 1H NMR spectroscopy (for assignment, see: Figs. S1–S3 in the supporting information) and single-crystal X-ray analysis. In all cases, the organic molecules occupy general positions and comprise an essentially flat perimidine system and the pyridyl ring. Depending on the number of N-substituents, the ring systems are twisted to a greater or lesser extent (Figs. 1–3). The unsubstituted molecule of 1 is almost planar with the dihedral angle between the aromatic parts as small as 1.60 (5)°, while the molecules of 2 and especially 3 show notably larger interplane angles [59.39 (8) and 87.21 (9)°, respectively] because of steric repulsion between the N-methyl group(s) and the pyridin-2-yl ring. The flat conformation of 1 may be stabilized by a weak intramolecular hydrogen bond between the perimidine N1—H1 donor group and the pyridyl N3 acceptor group [d(N1⋯N3) = 2.626 (2) Å, d(N1—H1) = 0.87 (2) Å, d(H1⋯N3) = 2.19 (2) Å, N1—H1⋯N3 = 110.9 (17)°] whereas in the molecular structure of 2 the pyridyl nitrogen atom participates in a weak intramolecular C12(sp3)—H12A⋯N3 contact [d(H12A⋯N3) = 2.46 (2) Å; C12⋯N3 = 3.059 (1) Å; C12—H12A⋯N3 = 120.8 (18)°]. Compound 3 is a salt and its crystal consists of doubly N-methylated perimidinium cations and iodide counter-ions combined mainly through Coulombic interactions.
1H NMR spectroscopic studies of 1–3 revealed correlations between the chemical shifts of some bands in the spectra and the mutual arrangement of the perimidine and pyridyl aromatics. In the 1H NMR spectrum of 1 in CDCl3, doublets at 6.36 and 6.91 ppm arise from the j and e protons, respectively, while the other protons of the perimidine core appear as complex multiplets in the range 7.06–7.25 ppm (Fig. S1). A similar set of bands (corresponding to the same protons) with slightly different chemical shifts can be found in the 1H NMR spectrum of 2 (Fig. S2) whereas 1,3-dimethyl-2-(pyridin-2-yl)perimidinium iodide (3) demonstrates a reduced number of resonance signals (Fig. S3) because the protons of the fused benzene rings become equivalent. The latter results from the above arrangement of the pyridyl ring almost orthogonal to the perimidine system.
For compound 1, solvent-dependent resonance signals in the 1H NMR spectrum were detected. In DMSO-d6 as a solvent (Fig. S4), the characteristic doublets arising from the protons j and e are now closer (6.74 and 6.79 ppm, respectively) while the integrated intensity of the signal of the N—H proton becomes lower (0.77 ppm) which may result from a weakening of the intramolecular N—H⋯N hydrogen bond by the polar solvent.
3. Supramolecular features
In the crystal of 1, molecules are assembled through parallel displaced π–π stacking interactions between the flat pyridyl and perimidine fragments distant by 3.295 (4) Å (C5⋯N1–C11centroid) and 3.302 (4) Å (N2⋯pycentroid), while the resulting offset stacks [centroid-to-centroid shift between the adjacent molecules in the stack 3.791 (4) Å] are grafted together in the resulting three-dimensional network by a C—H⋯π interaction [d(H⋯π) = 2.96 (2) Å] involving the pyridyl H15 atom and the centroid of the C2–C11 ring (Fig. 4). In contrast, two types of π–π interactions are found in the crystal of 2, one of which is a slipped stacking [centroid-to-centroid shift 1.645 (2) Å] between the perimidine units [d(C7⋯N1–C11centroid) = 3.375 (2) Å, d(C9⋯N1–C11centroid) = 3.774 (3) Å, d(C11⋯C6–C11centroid) = 3.423 (2) Å] while the other is a pyridyl–pyridyl contact [distance between the C16 atom and the pyridyl ring 3.499 (3) Å] connecting the stacks together. Intermolecular contacts between the H12C atom and the C6–C11centroid [3.17 (2) Å] and between the H14 atom and C2–C11centroid [3.684 (19) Å] form a three-dimensional network in the of 2 (Fig. 5). In the of 3, there are π–π-bonded dimers [interplane distance 3.447 (3) Å between the perimidine moieties], which form dense layers via C—H⋯π interactions [d(H⋯π) = 3.132 (2) Å between the H18 atom and the centroid of the C6–C11 ring and 3.075 (2) Å between the H9 atom and the centroid of the pyridyl ring; Fig. 6]. The resulting cationic organic layers and anionic iodide layers alternate along the c axis.
4. Database survey
Though many perimidines have been prepared so far, fewer than 60 crystal structures of them (including a few of metal complexes) have been published (Pozharskii et al., 2020; Hill et al., 2018; Bahena et al., 2019; Booysen et al., 2016). Crystal structures of several 1,3-dimethyl-2-arylperimidinium iodides have been determined (Li et al., 2017). A comprehensive structural study of 2-arylperimidines (including those having intramolecular hydrogen bonds) has also been conducted (Foces-Foces et al., 1993; Llamas-Saiz et al., 1995).
5. Synthesis and crystallization
The title compounds were prepared as follows:
1-H-2-(pyridin-2-yl)perimidine (1).
A mixture of 1,8-diaminonaphthalene (4.523 g, 28.6 mmol), pyridin-2-ylcarboxaldehyde (2.72 ml, 28.6 mmol) and sodium metabisulfite (16.317 g, 85.8 mmol) in ethanol (50 ml) was refluxed under Ar for 4 h. The reaction mixture was evaporated to dryness, washed with water and redissolved in ethanol. Keeping the resulting solution in a freezer overnight gave a red powder, which was recrystallized from methylene chloride and dried in vacuo. Yield 6 g (86%). Single crystals suitable for X-ray analysis were grown by slow evaporation of the solvent from a solution of the substance in methylene chloride.
1H NMR (CDCl3, ppm, 400 MHz): δ 6.36 (d, J = 7.4 Hz, 1H, Hnaph), 6.91 (d, J = 7.4 Hz, 1H, Hnaph), 7.06–7.25 (m, 4H, Hnaph), 7.44–7.47 (m, 1H, Hpy), 7.88 (td, J1 = 7.8 Hz, J2 = 1.7 Hz, 1H, Hpy), 8.44 (d, J = 7.6 Hz, 1H, Hpy), 8.62–8.64 (m, 1H, Hpy), 9.39 (br. s, 1H, N-H). See supplementary Fig. S1.
1-Methyl-2-(pyridin-2-yl)perimidine (2).
To a mixture of 1 (0.250 g, 1.02 mmol), solid KOH (0.057 g, 1.02 mmol) and anhydrous K2CO3 (0.141 g, 1.02 mmol) in anhydrous Ar-saturated acetonitrile methyl iodide (0.064 ml, 1.02 mmol) was added dropwise upon stirring and the resulting suspension was heated at 323 K for 3 h and then at r.t. for two days. The reaction mixture was evaporated to dryness and the crude product was purified by (eluent hexane/ethyl acetate 1/1 v/v), recrystallized from a mixture of CH2Cl2/hexane and dried in vacuo. Yield 185 mg (70%). Single crystals suitable for X-ray analysis were grown by slow evaporation of the solvent from a solution of the substance in chloroform.
1H NMR (CDCl3, ppm, 400 MHz): δ 3.17 (s, 3H, N—CH3), 6.32 (dd, J1 = 7.2 Hz, J2 = 1.0 Hz, 1H, Hnaph), 6.94 (dd, J1 = 7.3 Hz, J2 = 1.0 Hz, 1H, Hnaph), 7.17–7.32 (m, 4H, Hnaph), 7.39–7.42 (m, 1H, Hpy), 7.77–7.80 (m, 1H, Hpy), 7.86–7.89 (m, 1H, Hpy), 8.70 (m, 1H, Hpy). See supplementary Fig. S2.
1,3-Dimethyl-2-(pyridin-2-yl)perimidinium iodide (3).
This compound was isolated from the above reaction mixture (synthesis of compound 2) as a side product (15 mg). Single crystals suitable for X-ray analysis were grown by slow evaporation of the solvent from a solution of the substance in ethanol.
1H NMR (CDCl3, ppm, 400 MHz): δ 3.34 (s, 6H, N—CH3), 6.96 (d, J = 7.7 Hz, 2H, Hnaph), 7.50 (m, 2H, Hnaph), 7.60 (m, 2H, Hnaph), 7.66–7.70 (m, 1H, Hpy), 8.19 (td, J1 = 7.8 Hz, J2 = 1.7 Hz, 1H, Hpy), 8.65–8.68 (m, 1H, Hpy), 9.24–9.26 (m, 1H, Hpy). See supplementary Fig. S3.
6. Refinement
Crystal data, data collection and structure . Hydrogen atoms in the structures of 1 and 2 were located from difference electron density maps and were refined freely. In the structure of 3, hydrogen atoms were placed in calculated positions and refined using a riding model [C—H = 0.94–0.97 Å with Uiso(H) = 1.2–1.5Ueq(C)].
details are summarized in Table 1Supporting information
https://doi.org/10.1107/S205698902100013X/wm5594sup1.cif
contains datablocks 1, 2, 3. DOI:Structure factors: contains datablock 1. DOI: https://doi.org/10.1107/S205698902100013X/wm55941sup2.hkl
Structure factors: contains datablock 2. DOI: https://doi.org/10.1107/S205698902100013X/wm55942sup3.hkl
Structure factors: contains datablock 3. DOI: https://doi.org/10.1107/S205698902100013X/wm55943sup4.hkl
Supporting information file. DOI: https://doi.org/10.1107/S205698902100013X/wm55941sup5.mol
Supporting information file. DOI: https://doi.org/10.1107/S205698902100013X/wm55942sup6.mol
Supporting information file. DOI: https://doi.org/10.1107/S205698902100013X/wm55943sup7.mol
Supporting information file. DOI: https://doi.org/10.1107/S205698902100013X/wm55941sup8.cml
Supporting information file. DOI: https://doi.org/10.1107/S205698902100013X/wm55942sup9.cml
Supporting information file. DOI: https://doi.org/10.1107/S205698902100013X/wm55943sup10.cml
Fig. S1. NMR spectrum for 1. DOI: https://doi.org/10.1107/S205698902100013X/wm5594sup11.tif
Fig. S2. NMR spectrum for 2. DOI: https://doi.org/10.1107/S205698902100013X/wm5594sup12.tif
Fig. S3. NMR spectrum for 3. DOI: https://doi.org/10.1107/S205698902100013X/wm5594sup13.tif
Fig. S4. NMR spectrum for 1 in DMSO solvent. DOI: https://doi.org/10.1107/S205698902100013X/wm5594sup14.tif
For all structures, data collection: APEX3 (Bruker, 2017); cell
SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).C16H11N3 | F(000) = 512 |
Mr = 245.28 | Dx = 1.404 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 13.5479 (5) Å | Cell parameters from 7163 reflections |
b = 5.0242 (2) Å | θ = 3.1–28.3° |
c = 17.3881 (7) Å | µ = 0.09 mm−1 |
β = 101.382 (2)° | T = 100 K |
V = 1160.28 (8) Å3 | Needle, red |
Z = 4 | 0.42 × 0.1 × 0.08 mm |
Bruker D8 Venture diffractometer | 2866 independent reflections |
Radiation source: microfocus sealed X-ray tube, Incoatec IµS microsource | 2405 reflections with I > 2σ(I) |
Focusing mirrors monochromator | Rint = 0.036 |
Detector resolution: 10.4 pixels mm-1 | θmax = 28.3°, θmin = 3.5° |
ω–scan | h = −18→18 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −6→6 |
Tmin = 0.684, Tmax = 0.746 | l = −23→22 |
16322 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.057 | All H-atom parameters refined |
wR(F2) = 0.140 | w = 1/[σ2(Fo2) + (0.057P)2 + 1.1159P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
2866 reflections | Δρmax = 0.39 e Å−3 |
216 parameters | Δρmin = −0.33 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.67572 (10) | 0.4402 (3) | 0.27627 (8) | 0.0154 (3) | |
N3 | 0.71391 (10) | 0.0786 (3) | 0.17704 (8) | 0.0168 (3) | |
N2 | 0.84493 (10) | 0.5837 (3) | 0.30290 (8) | 0.0155 (3) | |
C12 | 0.79419 (12) | 0.2223 (3) | 0.21158 (9) | 0.0143 (3) | |
C10 | 0.64357 (12) | 0.6204 (3) | 0.32655 (9) | 0.0149 (3) | |
C1 | 0.77359 (12) | 0.4307 (3) | 0.26757 (9) | 0.0142 (3) | |
C2 | 0.81956 (12) | 0.7734 (3) | 0.35506 (9) | 0.0150 (3) | |
C13 | 0.89068 (12) | 0.1825 (3) | 0.19733 (9) | 0.0156 (3) | |
C3 | 0.89194 (13) | 0.9430 (3) | 0.39534 (9) | 0.0174 (3) | |
C8 | 0.52046 (13) | 0.8239 (4) | 0.38981 (10) | 0.0200 (4) | |
C16 | 0.72925 (13) | −0.1115 (3) | 0.12658 (10) | 0.0189 (4) | |
C15 | 0.82269 (13) | −0.1659 (3) | 0.10900 (9) | 0.0191 (4) | |
C9 | 0.54570 (12) | 0.6318 (3) | 0.33781 (9) | 0.0182 (3) | |
C6 | 0.69204 (12) | 0.9893 (3) | 0.41877 (9) | 0.0168 (3) | |
C5 | 0.76845 (13) | 1.1625 (3) | 0.45756 (9) | 0.0186 (3) | |
C14 | 0.90460 (13) | −0.0168 (3) | 0.14534 (10) | 0.0181 (3) | |
C11 | 0.71827 (12) | 0.7951 (3) | 0.36697 (9) | 0.0145 (3) | |
C7 | 0.59039 (13) | 0.9992 (4) | 0.42875 (10) | 0.0201 (4) | |
C4 | 0.86549 (13) | 1.1376 (3) | 0.44599 (9) | 0.0187 (4) | |
H3 | 0.9603 (15) | 0.931 (4) | 0.3862 (11) | 0.020 (5)* | |
H13 | 0.9452 (16) | 0.282 (4) | 0.2226 (12) | 0.024 (5)* | |
H8 | 0.4528 (16) | 0.829 (4) | 0.3965 (12) | 0.024 (5)* | |
H14 | 0.9698 (17) | −0.050 (5) | 0.1362 (13) | 0.031 (6)* | |
H9 | 0.4957 (14) | 0.510 (4) | 0.3102 (11) | 0.016 (5)* | |
H7 | 0.5720 (16) | 1.125 (5) | 0.4625 (13) | 0.030 (6)* | |
H4 | 0.9168 (15) | 1.252 (4) | 0.4733 (12) | 0.023 (5)* | |
H16 | 0.6709 (15) | −0.203 (4) | 0.1022 (12) | 0.024 (5)* | |
H1 | 0.6349 (17) | 0.326 (5) | 0.2490 (13) | 0.032 (6)* | |
H5 | 0.7526 (14) | 1.292 (4) | 0.4910 (12) | 0.019 (5)* | |
H15 | 0.8299 (15) | −0.302 (4) | 0.0730 (12) | 0.024 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0149 (6) | 0.0159 (7) | 0.0152 (6) | −0.0011 (5) | 0.0022 (5) | −0.0026 (5) |
N3 | 0.0164 (6) | 0.0168 (7) | 0.0166 (7) | −0.0005 (5) | 0.0016 (5) | 0.0003 (5) |
N2 | 0.0172 (6) | 0.0147 (7) | 0.0147 (6) | 0.0004 (5) | 0.0033 (5) | 0.0008 (5) |
C12 | 0.0176 (7) | 0.0129 (7) | 0.0120 (7) | 0.0013 (6) | 0.0018 (6) | 0.0024 (6) |
C10 | 0.0172 (7) | 0.0141 (7) | 0.0128 (7) | 0.0016 (6) | 0.0016 (6) | 0.0016 (6) |
C1 | 0.0169 (7) | 0.0127 (7) | 0.0130 (7) | 0.0016 (6) | 0.0030 (6) | 0.0023 (6) |
C2 | 0.0183 (8) | 0.0132 (7) | 0.0135 (7) | 0.0008 (6) | 0.0034 (6) | 0.0034 (6) |
C13 | 0.0154 (7) | 0.0155 (8) | 0.0150 (7) | −0.0010 (6) | 0.0011 (6) | −0.0002 (6) |
C3 | 0.0194 (8) | 0.0166 (8) | 0.0158 (7) | −0.0012 (6) | 0.0022 (6) | 0.0024 (6) |
C8 | 0.0166 (8) | 0.0262 (9) | 0.0177 (8) | 0.0044 (7) | 0.0047 (6) | 0.0012 (7) |
C16 | 0.0223 (8) | 0.0160 (8) | 0.0165 (8) | −0.0024 (7) | −0.0010 (6) | −0.0006 (6) |
C15 | 0.0284 (9) | 0.0142 (8) | 0.0143 (7) | 0.0027 (6) | 0.0031 (6) | −0.0008 (6) |
C9 | 0.0177 (8) | 0.0197 (8) | 0.0165 (8) | 0.0013 (6) | 0.0017 (6) | −0.0005 (6) |
C6 | 0.0240 (8) | 0.0141 (7) | 0.0118 (7) | 0.0020 (6) | 0.0026 (6) | 0.0025 (6) |
C5 | 0.0288 (9) | 0.0132 (8) | 0.0135 (7) | 0.0013 (7) | 0.0035 (6) | −0.0006 (6) |
C14 | 0.0181 (8) | 0.0200 (8) | 0.0167 (8) | 0.0042 (6) | 0.0044 (6) | 0.0019 (6) |
C11 | 0.0186 (8) | 0.0129 (7) | 0.0121 (7) | 0.0014 (6) | 0.0030 (6) | 0.0026 (6) |
C7 | 0.0248 (9) | 0.0202 (8) | 0.0162 (8) | 0.0063 (7) | 0.0059 (6) | −0.0017 (7) |
C4 | 0.0260 (8) | 0.0148 (8) | 0.0137 (7) | −0.0047 (7) | −0.0002 (6) | 0.0009 (6) |
N1—C10 | 1.387 (2) | C8—C9 | 1.410 (2) |
N1—C1 | 1.365 (2) | C8—C7 | 1.371 (2) |
N1—H1 | 0.87 (2) | C8—H8 | 0.95 (2) |
N3—C12 | 1.344 (2) | C16—C15 | 1.387 (2) |
N3—C16 | 1.341 (2) | C16—H16 | 0.94 (2) |
N2—C1 | 1.292 (2) | C15—C14 | 1.384 (2) |
N2—C2 | 1.404 (2) | C15—H15 | 0.94 (2) |
C12—C1 | 1.493 (2) | C9—H9 | 0.97 (2) |
C12—C13 | 1.392 (2) | C6—C5 | 1.417 (2) |
C10—C9 | 1.379 (2) | C6—C11 | 1.420 (2) |
C10—C11 | 1.417 (2) | C6—C7 | 1.422 (2) |
C2—C3 | 1.381 (2) | C5—C4 | 1.374 (2) |
C2—C11 | 1.432 (2) | C5—H5 | 0.93 (2) |
C13—C14 | 1.387 (2) | C14—H14 | 0.94 (2) |
C13—H13 | 0.93 (2) | C7—H7 | 0.93 (2) |
C3—C4 | 1.409 (2) | C4—H4 | 0.95 (2) |
C3—H3 | 0.97 (2) | ||
C10—N1—H1 | 122.0 (15) | N3—C16—H16 | 114.7 (13) |
C1—N1—C10 | 121.71 (14) | C15—C16—H16 | 121.8 (13) |
C1—N1—H1 | 116.3 (15) | C16—C15—H15 | 120.4 (12) |
C16—N3—C12 | 117.31 (14) | C14—C15—C16 | 118.52 (15) |
C1—N2—C2 | 117.11 (14) | C14—C15—H15 | 121.0 (12) |
N3—C12—C1 | 115.40 (14) | C10—C9—C8 | 118.76 (15) |
N3—C12—C13 | 123.28 (15) | C10—C9—H9 | 120.1 (11) |
C13—C12—C1 | 121.31 (14) | C8—C9—H9 | 121.1 (11) |
N1—C10—C11 | 115.76 (14) | C5—C6—C11 | 118.24 (15) |
C9—C10—N1 | 123.16 (15) | C5—C6—C7 | 123.66 (15) |
C9—C10—C11 | 121.09 (15) | C11—C6—C7 | 118.11 (15) |
N1—C1—C12 | 114.06 (14) | C6—C5—H5 | 119.6 (12) |
N2—C1—N1 | 125.35 (15) | C4—C5—C6 | 120.29 (15) |
N2—C1—C12 | 120.59 (14) | C4—C5—H5 | 120.2 (12) |
N2—C2—C11 | 120.58 (14) | C13—C14—H14 | 119.4 (14) |
C3—C2—N2 | 120.44 (14) | C15—C14—C13 | 119.24 (15) |
C3—C2—C11 | 118.98 (15) | C15—C14—H14 | 121.4 (14) |
C12—C13—H13 | 121.8 (13) | C10—C11—C2 | 119.48 (14) |
C14—C13—C12 | 118.23 (15) | C10—C11—C6 | 119.78 (14) |
C14—C13—H13 | 119.9 (13) | C6—C11—C2 | 120.74 (15) |
C2—C3—C4 | 120.17 (15) | C8—C7—C6 | 120.58 (15) |
C2—C3—H3 | 118.9 (12) | C8—C7—H7 | 120.3 (13) |
C4—C3—H3 | 120.9 (12) | C6—C7—H7 | 119.2 (13) |
C9—C8—H8 | 117.3 (13) | C3—C4—H4 | 118.7 (12) |
C7—C8—C9 | 121.68 (15) | C5—C4—C3 | 121.57 (15) |
C7—C8—H8 | 121.0 (13) | C5—C4—H4 | 119.8 (12) |
N3—C16—C15 | 123.42 (15) | ||
N1—C10—C9—C8 | −179.50 (15) | C13—C12—C1—N1 | −178.61 (14) |
N1—C10—C11—C2 | −1.0 (2) | C13—C12—C1—N2 | 1.6 (2) |
N1—C10—C11—C6 | 179.00 (14) | C3—C2—C11—C10 | −179.38 (14) |
N3—C12—C1—N1 | 1.1 (2) | C3—C2—C11—C6 | 0.6 (2) |
N3—C12—C1—N2 | −178.67 (14) | C16—N3—C12—C1 | −179.71 (13) |
N3—C12—C13—C14 | −0.5 (2) | C16—N3—C12—C13 | 0.0 (2) |
N3—C16—C15—C14 | 0.1 (3) | C16—C15—C14—C13 | −0.6 (2) |
N2—C2—C3—C4 | 178.31 (14) | C9—C10—C11—C2 | 178.63 (15) |
N2—C2—C11—C10 | 1.0 (2) | C9—C10—C11—C6 | −1.3 (2) |
N2—C2—C11—C6 | −179.07 (14) | C9—C8—C7—C6 | −1.1 (3) |
C12—N3—C16—C15 | 0.2 (2) | C6—C5—C4—C3 | 0.5 (2) |
C12—C13—C14—C15 | 0.8 (2) | C5—C6—C11—C10 | −179.34 (14) |
C10—N1—C1—N2 | −0.8 (2) | C5—C6—C11—C2 | 0.7 (2) |
C10—N1—C1—C12 | 179.41 (13) | C5—C6—C7—C8 | −179.48 (16) |
C1—N1—C10—C9 | −178.72 (15) | C11—C10—C9—C8 | 0.8 (2) |
C1—N1—C10—C11 | 1.0 (2) | C11—C2—C3—C4 | −1.3 (2) |
C1—N2—C2—C3 | 179.62 (14) | C11—C6—C5—C4 | −1.3 (2) |
C1—N2—C2—C11 | −0.7 (2) | C11—C6—C7—C8 | 0.6 (2) |
C1—C12—C13—C14 | 179.19 (14) | C7—C8—C9—C10 | 0.4 (3) |
C2—N2—C1—N1 | 0.7 (2) | C7—C6—C5—C4 | 178.83 (16) |
C2—N2—C1—C12 | −179.58 (13) | C7—C6—C11—C10 | 0.6 (2) |
C2—C3—C4—C5 | 0.8 (2) | C7—C6—C11—C2 | −179.37 (14) |
C17H13N3 | F(000) = 544 |
Mr = 259.30 | Dx = 1.397 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.5095 (2) Å | Cell parameters from 5485 reflections |
b = 12.1216 (3) Å | θ = 2.3–30.5° |
c = 13.5616 (4) Å | µ = 0.09 mm−1 |
β = 92.547 (1)° | T = 100 K |
V = 1233.25 (6) Å3 | Block, orange |
Z = 4 | 0.34 × 0.12 × 0.11 mm |
Bruker D8 Venture diffractometer | 3280 independent reflections |
Radiation source: microfocus sealed X-ray tube, Incoatec IµS microsource | 2803 reflections with I > 2σ(I) |
Focusing mirrors monochromator | Rint = 0.035 |
Detector resolution: 10.4 pixels mm-1 | θmax = 29.0°, θmin = 2.3° |
ω–scan | h = −10→10 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −15→16 |
Tmin = 0.685, Tmax = 0.746 | l = −18→18 |
14029 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.060 | All H-atom parameters refined |
wR(F2) = 0.146 | w = 1/[σ2(Fo2) + (0.0706P)2 + 0.7754P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
3280 reflections | Δρmax = 0.45 e Å−3 |
233 parameters | Δρmin = −0.33 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N2 | 0.76302 (17) | 0.66381 (10) | 0.66410 (9) | 0.0173 (3) | |
N3 | 0.79159 (17) | 0.88961 (10) | 0.52437 (10) | 0.0197 (3) | |
N1 | 0.69884 (16) | 0.65068 (10) | 0.49124 (9) | 0.0153 (3) | |
C11 | 0.79946 (19) | 0.48774 (12) | 0.57893 (11) | 0.0160 (3) | |
C1 | 0.71526 (19) | 0.70642 (12) | 0.57923 (11) | 0.0155 (3) | |
C13 | 0.68606 (19) | 0.82886 (12) | 0.58029 (11) | 0.0157 (3) | |
C2 | 0.80957 (19) | 0.55209 (12) | 0.66662 (11) | 0.0166 (3) | |
C14 | 0.5640 (2) | 0.87417 (13) | 0.64331 (11) | 0.0177 (3) | |
C6 | 0.85120 (19) | 0.37474 (12) | 0.58061 (12) | 0.0187 (3) | |
C12 | 0.6294 (2) | 0.70168 (13) | 0.39951 (11) | 0.0194 (3) | |
C3 | 0.8700 (2) | 0.50420 (13) | 0.75469 (12) | 0.0208 (3) | |
C16 | 0.6670 (2) | 1.05215 (13) | 0.59611 (12) | 0.0206 (3) | |
C15 | 0.5551 (2) | 0.98867 (13) | 0.65099 (12) | 0.0200 (3) | |
C17 | 0.7802 (2) | 0.99943 (13) | 0.53330 (13) | 0.0219 (3) | |
C9 | 0.7297 (2) | 0.47699 (13) | 0.40235 (12) | 0.0202 (3) | |
C10 | 0.74095 (19) | 0.53778 (12) | 0.48835 (11) | 0.0156 (3) | |
C5 | 0.9117 (2) | 0.32879 (13) | 0.67236 (13) | 0.0218 (3) | |
C7 | 0.8416 (2) | 0.31473 (12) | 0.49048 (13) | 0.0220 (3) | |
C4 | 0.9205 (2) | 0.39232 (13) | 0.75648 (13) | 0.0226 (3) | |
C8 | 0.7817 (2) | 0.36497 (13) | 0.40491 (12) | 0.0228 (3) | |
H12A | 0.603 (3) | 0.7776 (18) | 0.4103 (15) | 0.029 (5)* | |
H3 | 0.879 (3) | 0.5482 (16) | 0.8163 (15) | 0.027 (5)* | |
H5 | 0.951 (3) | 0.2505 (18) | 0.6727 (15) | 0.030 (5)* | |
H7 | 0.882 (3) | 0.2398 (17) | 0.4889 (14) | 0.025 (5)* | |
H16 | 0.663 (3) | 1.1313 (17) | 0.5991 (14) | 0.026 (5)* | |
H12B | 0.723 (3) | 0.7008 (16) | 0.3497 (14) | 0.023 (5)* | |
H4 | 0.961 (3) | 0.3617 (18) | 0.8184 (16) | 0.033 (5)* | |
H17 | 0.856 (3) | 1.0433 (17) | 0.4948 (15) | 0.028 (5)* | |
H9 | 0.695 (3) | 0.5092 (17) | 0.3402 (15) | 0.026 (5)* | |
H12C | 0.518 (3) | 0.6600 (16) | 0.3771 (14) | 0.025 (5)* | |
H15 | 0.474 (3) | 1.0204 (17) | 0.6955 (15) | 0.027 (5)* | |
H14 | 0.489 (3) | 0.8271 (16) | 0.6786 (14) | 0.023 (5)* | |
H8 | 0.777 (3) | 0.3237 (17) | 0.3434 (16) | 0.033 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N2 | 0.0187 (6) | 0.0155 (6) | 0.0178 (6) | 0.0007 (5) | 0.0024 (5) | 0.0012 (5) |
N3 | 0.0193 (6) | 0.0155 (6) | 0.0248 (7) | 0.0029 (5) | 0.0045 (5) | 0.0026 (5) |
N1 | 0.0172 (6) | 0.0128 (6) | 0.0160 (6) | 0.0024 (5) | 0.0005 (5) | 0.0006 (4) |
C11 | 0.0123 (6) | 0.0151 (7) | 0.0208 (7) | −0.0008 (5) | 0.0030 (5) | 0.0023 (5) |
C1 | 0.0130 (6) | 0.0144 (6) | 0.0192 (7) | 0.0011 (5) | 0.0023 (5) | −0.0003 (5) |
C13 | 0.0146 (6) | 0.0148 (6) | 0.0174 (7) | 0.0021 (5) | −0.0011 (5) | −0.0006 (5) |
C2 | 0.0142 (6) | 0.0158 (7) | 0.0200 (7) | 0.0003 (5) | 0.0030 (5) | 0.0025 (5) |
C14 | 0.0162 (7) | 0.0194 (7) | 0.0175 (7) | 0.0007 (6) | 0.0009 (5) | −0.0003 (6) |
C6 | 0.0143 (6) | 0.0147 (7) | 0.0274 (8) | −0.0006 (5) | 0.0045 (6) | 0.0027 (6) |
C12 | 0.0207 (7) | 0.0182 (7) | 0.0189 (7) | 0.0038 (6) | −0.0024 (6) | 0.0013 (6) |
C3 | 0.0200 (7) | 0.0217 (8) | 0.0206 (7) | −0.0001 (6) | 0.0017 (6) | 0.0040 (6) |
C16 | 0.0174 (7) | 0.0143 (7) | 0.0299 (8) | 0.0027 (6) | −0.0020 (6) | −0.0023 (6) |
C15 | 0.0184 (7) | 0.0216 (7) | 0.0199 (7) | 0.0046 (6) | −0.0006 (6) | −0.0045 (6) |
C17 | 0.0188 (7) | 0.0167 (7) | 0.0304 (8) | 0.0010 (6) | 0.0030 (6) | 0.0035 (6) |
C9 | 0.0205 (7) | 0.0184 (7) | 0.0219 (7) | −0.0017 (6) | 0.0026 (6) | −0.0019 (6) |
C10 | 0.0135 (6) | 0.0131 (6) | 0.0205 (7) | −0.0004 (5) | 0.0033 (5) | −0.0004 (5) |
C5 | 0.0181 (7) | 0.0144 (7) | 0.0329 (8) | 0.0011 (6) | 0.0035 (6) | 0.0076 (6) |
C7 | 0.0217 (7) | 0.0118 (7) | 0.0330 (8) | −0.0003 (6) | 0.0076 (6) | −0.0015 (6) |
C4 | 0.0191 (7) | 0.0223 (8) | 0.0262 (8) | −0.0001 (6) | 0.0010 (6) | 0.0097 (6) |
C8 | 0.0234 (8) | 0.0190 (7) | 0.0265 (8) | −0.0037 (6) | 0.0066 (6) | −0.0070 (6) |
N2—C1 | 1.2974 (19) | C12—H12B | 0.996 (19) |
N2—C2 | 1.3986 (18) | C12—H12C | 1.01 (2) |
N3—C13 | 1.341 (2) | C3—C4 | 1.408 (2) |
N3—C17 | 1.340 (2) | C3—H3 | 0.99 (2) |
N1—C1 | 1.3720 (18) | C16—C15 | 1.381 (2) |
N1—C12 | 1.4644 (18) | C16—C17 | 1.386 (2) |
N1—C10 | 1.4055 (18) | C16—H16 | 0.96 (2) |
C11—C2 | 1.421 (2) | C15—H15 | 0.96 (2) |
C11—C6 | 1.424 (2) | C17—H17 | 0.95 (2) |
C11—C10 | 1.422 (2) | C9—C10 | 1.379 (2) |
C1—C13 | 1.5005 (19) | C9—C8 | 1.413 (2) |
C13—C14 | 1.393 (2) | C9—H9 | 0.95 (2) |
C2—C3 | 1.386 (2) | C5—C4 | 1.376 (2) |
C14—C15 | 1.394 (2) | C5—H5 | 0.99 (2) |
C14—H14 | 0.94 (2) | C7—C8 | 1.369 (2) |
C6—C5 | 1.419 (2) | C7—H7 | 0.96 (2) |
C6—C7 | 1.421 (2) | C4—H4 | 0.96 (2) |
C12—H12A | 0.95 (2) | C8—H8 | 0.97 (2) |
C1—N2—C2 | 117.78 (13) | C2—C3—H3 | 120.6 (12) |
C17—N3—C13 | 116.91 (13) | C4—C3—H3 | 119.6 (12) |
C1—N1—C12 | 123.08 (12) | C15—C16—C17 | 118.60 (14) |
C1—N1—C10 | 119.48 (12) | C15—C16—H16 | 120.9 (12) |
C10—N1—C12 | 117.35 (12) | C17—C16—H16 | 120.4 (12) |
C2—C11—C6 | 120.68 (13) | C14—C15—H15 | 118.8 (12) |
C2—C11—C10 | 119.45 (13) | C16—C15—C14 | 118.81 (14) |
C10—C11—C6 | 119.86 (14) | C16—C15—H15 | 122.3 (12) |
N2—C1—N1 | 125.88 (13) | N3—C17—C16 | 123.87 (15) |
N2—C1—C13 | 114.84 (13) | N3—C17—H17 | 117.6 (12) |
N1—C1—C13 | 119.20 (12) | C16—C17—H17 | 118.5 (12) |
N3—C13—C1 | 116.58 (13) | C10—C9—C8 | 119.10 (15) |
N3—C13—C14 | 123.48 (14) | C10—C9—H9 | 122.2 (12) |
C14—C13—C1 | 119.74 (13) | C8—C9—H9 | 118.6 (12) |
N2—C2—C11 | 120.45 (13) | N1—C10—C11 | 116.90 (13) |
C3—C2—N2 | 119.91 (14) | C9—C10—N1 | 122.59 (13) |
C3—C2—C11 | 119.62 (14) | C9—C10—C11 | 120.51 (14) |
C13—C14—C15 | 118.27 (14) | C6—C5—H5 | 117.5 (12) |
C13—C14—H14 | 119.6 (12) | C4—C5—C6 | 120.59 (14) |
C15—C14—H14 | 122.2 (12) | C4—C5—H5 | 121.9 (12) |
C5—C6—C11 | 117.91 (14) | C6—C7—H7 | 120.0 (12) |
C5—C6—C7 | 123.71 (14) | C8—C7—C6 | 120.24 (14) |
C7—C6—C11 | 118.37 (14) | C8—C7—H7 | 119.7 (12) |
N1—C12—H12A | 110.2 (12) | C3—C4—H4 | 117.7 (13) |
N1—C12—H12B | 109.7 (11) | C5—C4—C3 | 121.47 (15) |
N1—C12—H12C | 107.6 (11) | C5—C4—H4 | 120.9 (13) |
H12A—C12—H12B | 105.7 (17) | C9—C8—H8 | 118.3 (12) |
H12A—C12—H12C | 110.7 (17) | C7—C8—C9 | 121.90 (14) |
H12B—C12—H12C | 113.0 (15) | C7—C8—H8 | 119.8 (12) |
C2—C3—C4 | 119.73 (15) | ||
N2—C1—C13—N3 | 118.34 (15) | C6—C11—C2—C3 | −0.2 (2) |
N2—C1—C13—C14 | −56.73 (19) | C6—C11—C10—N1 | −177.46 (12) |
N2—C2—C3—C4 | −178.61 (13) | C6—C11—C10—C9 | 1.6 (2) |
N3—C13—C14—C15 | −2.1 (2) | C6—C5—C4—C3 | 0.1 (2) |
N1—C1—C13—N3 | −58.57 (18) | C6—C7—C8—C9 | 0.7 (2) |
N1—C1—C13—C14 | 126.37 (15) | C12—N1—C1—N2 | 174.50 (14) |
C11—C2—C3—C4 | −0.1 (2) | C12—N1—C1—C13 | −9.0 (2) |
C11—C6—C5—C4 | −0.3 (2) | C12—N1—C10—C11 | −176.81 (13) |
C11—C6—C7—C8 | −0.8 (2) | C12—N1—C10—C9 | 4.2 (2) |
C1—N2—C2—C11 | −1.7 (2) | C15—C16—C17—N3 | −2.0 (2) |
C1—N2—C2—C3 | 176.77 (14) | C17—N3—C13—C1 | −172.77 (13) |
C1—N1—C10—C11 | −0.12 (19) | C17—N3—C13—C14 | 2.1 (2) |
C1—N1—C10—C9 | −179.15 (14) | C17—C16—C15—C14 | 1.9 (2) |
C1—C13—C14—C15 | 172.63 (13) | C10—N1—C1—N2 | −2.0 (2) |
C13—N3—C17—C16 | 0.0 (2) | C10—N1—C1—C13 | 174.54 (12) |
C13—C14—C15—C16 | 0.0 (2) | C10—C11—C2—N2 | −0.2 (2) |
C2—N2—C1—N1 | 2.9 (2) | C10—C11—C2—C3 | −178.68 (13) |
C2—N2—C1—C13 | −173.79 (12) | C10—C11—C6—C5 | 178.90 (13) |
C2—C11—C6—C5 | 0.4 (2) | C10—C11—C6—C7 | −0.3 (2) |
C2—C11—C6—C7 | −178.86 (13) | C10—C9—C8—C7 | 0.6 (2) |
C2—C11—C10—N1 | 1.1 (2) | C5—C6—C7—C8 | −179.97 (15) |
C2—C11—C10—C9 | −179.87 (13) | C7—C6—C5—C4 | 178.87 (15) |
C2—C3—C4—C5 | 0.2 (2) | C8—C9—C10—N1 | 177.31 (13) |
C6—C11—C2—N2 | 178.32 (13) | C8—C9—C10—C11 | −1.7 (2) |
C18H16N3+·I− | F(000) = 792 |
Mr = 401.24 | Dx = 1.589 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 9.8821 (2) Å | Cell parameters from 9859 reflections |
b = 9.7125 (2) Å | θ = 2.3–28.3° |
c = 17.9839 (4) Å | µ = 1.91 mm−1 |
β = 103.676 (1)° | T = 230 K |
V = 1677.15 (6) Å3 | Block, yellow |
Z = 4 | 0.32 × 0.18 × 0.13 mm |
Bruker SMART APEXII diffractometer | 4146 independent reflections |
Radiation source: fine-focus sealed X-ray tube, X-ray tube | 3700 reflections with I > 2σ(I) |
Mirror optics monochromator | Rint = 0.026 |
Detector resolution: 7.9 pixels mm-1 | θmax = 28.4°, θmin = 2.3° |
ω scan | h = −13→13 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −12→12 |
Tmin = 0.668, Tmax = 0.746 | l = −23→23 |
28389 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.028 | H-atom parameters constrained |
wR(F2) = 0.067 | w = 1/[σ2(Fo2) + (0.0273P)2 + 1.1509P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
4146 reflections | Δρmax = 0.72 e Å−3 |
201 parameters | Δρmin = −0.46 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
I1 | 0.46311 (2) | 0.43924 (2) | 0.27610 (2) | 0.05057 (7) | |
N2 | 0.70014 (19) | 0.6145 (2) | 0.48068 (10) | 0.0417 (4) | |
C14 | 0.6404 (2) | 0.8060 (2) | 0.39271 (12) | 0.0389 (4) | |
N1 | 0.78491 (17) | 0.61380 (19) | 0.37060 (10) | 0.0380 (4) | |
C11 | 0.8424 (2) | 0.4240 (2) | 0.45912 (13) | 0.0397 (4) | |
C15 | 0.5033 (2) | 0.8101 (2) | 0.35210 (14) | 0.0475 (5) | |
H15 | 0.453130 | 0.728579 | 0.336938 | 0.057* | |
C1 | 0.7119 (2) | 0.6712 (2) | 0.41527 (12) | 0.0377 (4) | |
N3 | 0.7182 (2) | 0.9164 (2) | 0.41510 (15) | 0.0633 (6) | |
C2 | 0.7651 (2) | 0.4869 (2) | 0.50629 (13) | 0.0425 (5) | |
C10 | 0.8527 (2) | 0.4851 (2) | 0.38939 (12) | 0.0401 (4) | |
C3 | 0.7545 (3) | 0.4271 (3) | 0.57385 (16) | 0.0573 (6) | |
H3 | 0.701812 | 0.469174 | 0.604759 | 0.069* | |
C6 | 0.9113 (2) | 0.2971 (2) | 0.48227 (15) | 0.0494 (5) | |
C16 | 0.4421 (3) | 0.9371 (3) | 0.33438 (17) | 0.0562 (6) | |
H16 | 0.348626 | 0.943924 | 0.307067 | 0.067* | |
C7 | 0.9857 (3) | 0.2348 (3) | 0.43274 (18) | 0.0619 (7) | |
H7 | 1.031867 | 0.150768 | 0.446700 | 0.074* | |
C13 | 0.6248 (3) | 0.6850 (3) | 0.53130 (15) | 0.0618 (7) | |
H13A | 0.589318 | 0.772451 | 0.508734 | 0.093* | |
H13B | 0.687651 | 0.701041 | 0.580789 | 0.093* | |
H13C | 0.547719 | 0.628024 | 0.537689 | 0.093* | |
C8 | 0.9909 (3) | 0.2948 (3) | 0.36572 (18) | 0.0646 (7) | |
H8 | 1.039315 | 0.250527 | 0.333392 | 0.078* | |
C17 | 0.5194 (3) | 1.0531 (2) | 0.35717 (18) | 0.0600 (7) | |
H17 | 0.480165 | 1.141064 | 0.346141 | 0.072* | |
C12 | 0.7915 (3) | 0.6767 (3) | 0.29709 (13) | 0.0525 (6) | |
H12A | 0.741265 | 0.619574 | 0.255397 | 0.079* | |
H12B | 0.887977 | 0.684564 | 0.294207 | 0.079* | |
H12C | 0.749586 | 0.767565 | 0.293224 | 0.079* | |
C18 | 0.6552 (4) | 1.0379 (3) | 0.3964 (2) | 0.0725 (9) | |
H18 | 0.707770 | 1.118127 | 0.411245 | 0.087* | |
C9 | 0.9255 (3) | 0.4220 (3) | 0.34300 (16) | 0.0536 (6) | |
H9 | 0.931871 | 0.462969 | 0.296594 | 0.064* | |
C5 | 0.8993 (3) | 0.2393 (3) | 0.55276 (18) | 0.0622 (7) | |
H5 | 0.944762 | 0.155928 | 0.569505 | 0.075* | |
C4 | 0.8238 (3) | 0.3020 (3) | 0.59604 (17) | 0.0659 (8) | |
H4 | 0.817190 | 0.261112 | 0.642411 | 0.079* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.05271 (10) | 0.04098 (9) | 0.05737 (11) | −0.00419 (6) | 0.01171 (7) | −0.01150 (6) |
N2 | 0.0404 (9) | 0.0444 (10) | 0.0404 (9) | 0.0032 (8) | 0.0100 (7) | 0.0044 (8) |
C14 | 0.0395 (10) | 0.0339 (10) | 0.0430 (10) | −0.0019 (8) | 0.0090 (8) | 0.0019 (8) |
N1 | 0.0339 (8) | 0.0395 (9) | 0.0389 (9) | −0.0004 (7) | 0.0054 (7) | 0.0043 (7) |
C11 | 0.0312 (9) | 0.0350 (10) | 0.0467 (11) | −0.0059 (8) | −0.0029 (8) | 0.0020 (8) |
C15 | 0.0396 (11) | 0.0363 (11) | 0.0629 (14) | −0.0025 (9) | 0.0049 (10) | 0.0001 (10) |
C1 | 0.0313 (9) | 0.0375 (10) | 0.0416 (10) | −0.0021 (8) | 0.0035 (8) | 0.0033 (8) |
N3 | 0.0528 (12) | 0.0445 (12) | 0.0820 (16) | −0.0107 (10) | −0.0054 (11) | −0.0028 (11) |
C2 | 0.0363 (10) | 0.0416 (11) | 0.0463 (11) | −0.0045 (9) | 0.0031 (9) | 0.0085 (9) |
C10 | 0.0326 (10) | 0.0401 (11) | 0.0427 (11) | −0.0011 (8) | −0.0005 (8) | −0.0030 (9) |
C3 | 0.0531 (14) | 0.0652 (17) | 0.0532 (14) | −0.0032 (12) | 0.0118 (11) | 0.0165 (12) |
C6 | 0.0384 (11) | 0.0356 (11) | 0.0644 (14) | −0.0056 (9) | −0.0072 (10) | 0.0028 (10) |
C16 | 0.0457 (13) | 0.0501 (14) | 0.0697 (16) | 0.0107 (11) | 0.0079 (12) | 0.0046 (12) |
C7 | 0.0487 (14) | 0.0378 (12) | 0.088 (2) | 0.0056 (11) | −0.0068 (13) | −0.0064 (12) |
C13 | 0.0679 (16) | 0.0709 (17) | 0.0523 (14) | 0.0169 (14) | 0.0255 (12) | 0.0077 (13) |
C8 | 0.0539 (15) | 0.0597 (16) | 0.0761 (18) | 0.0122 (13) | 0.0072 (13) | −0.0189 (14) |
C17 | 0.0728 (18) | 0.0353 (12) | 0.0735 (17) | 0.0086 (11) | 0.0201 (14) | 0.0032 (11) |
C12 | 0.0540 (13) | 0.0605 (15) | 0.0452 (12) | 0.0073 (12) | 0.0163 (10) | 0.0136 (11) |
C18 | 0.075 (2) | 0.0353 (13) | 0.099 (2) | −0.0130 (13) | 0.0047 (17) | −0.0059 (13) |
C9 | 0.0497 (13) | 0.0563 (14) | 0.0530 (13) | 0.0056 (11) | 0.0086 (11) | −0.0080 (11) |
C5 | 0.0538 (14) | 0.0416 (13) | 0.0792 (18) | −0.0041 (11) | −0.0085 (13) | 0.0203 (12) |
C4 | 0.0599 (16) | 0.0647 (17) | 0.0673 (17) | −0.0064 (14) | 0.0036 (13) | 0.0311 (14) |
N2—C1 | 1.328 (3) | C6—C5 | 1.417 (4) |
N2—C2 | 1.422 (3) | C16—H16 | 0.9400 |
N2—C13 | 1.474 (3) | C16—C17 | 1.369 (4) |
C14—C15 | 1.379 (3) | C7—H7 | 0.9400 |
C14—C1 | 1.497 (3) | C7—C8 | 1.351 (4) |
C14—N3 | 1.326 (3) | C13—H13A | 0.9700 |
N1—C1 | 1.323 (3) | C13—H13B | 0.9700 |
N1—C10 | 1.421 (3) | C13—H13C | 0.9700 |
N1—C12 | 1.472 (3) | C8—H8 | 0.9400 |
C11—C2 | 1.408 (3) | C8—C9 | 1.409 (4) |
C11—C10 | 1.413 (3) | C17—H17 | 0.9400 |
C11—C6 | 1.422 (3) | C17—C18 | 1.368 (4) |
C15—H15 | 0.9400 | C12—H12A | 0.9700 |
C15—C16 | 1.378 (3) | C12—H12B | 0.9700 |
N3—C18 | 1.339 (4) | C12—H12C | 0.9700 |
C2—C3 | 1.373 (3) | C18—H18 | 0.9400 |
C10—C9 | 1.369 (3) | C9—H9 | 0.9400 |
C3—H3 | 0.9400 | C5—H5 | 0.9400 |
C3—C4 | 1.405 (4) | C5—C4 | 1.345 (4) |
C6—C7 | 1.417 (4) | C4—H4 | 0.9400 |
C1—N2—C2 | 121.39 (19) | C6—C7—H7 | 119.6 |
C1—N2—C13 | 121.1 (2) | C8—C7—C6 | 120.8 (2) |
C2—N2—C13 | 117.40 (19) | C8—C7—H7 | 119.6 |
C15—C14—C1 | 120.71 (19) | N2—C13—H13A | 109.5 |
N3—C14—C15 | 124.3 (2) | N2—C13—H13B | 109.5 |
N3—C14—C1 | 114.99 (19) | N2—C13—H13C | 109.5 |
C1—N1—C10 | 121.36 (18) | H13A—C13—H13B | 109.5 |
C1—N1—C12 | 121.10 (18) | H13A—C13—H13C | 109.5 |
C10—N1—C12 | 117.43 (18) | H13B—C13—H13C | 109.5 |
C2—C11—C10 | 121.08 (19) | C7—C8—H8 | 119.2 |
C2—C11—C6 | 119.4 (2) | C7—C8—C9 | 121.7 (3) |
C10—C11—C6 | 119.6 (2) | C9—C8—H8 | 119.2 |
C14—C15—H15 | 120.9 | C16—C17—H17 | 120.8 |
C16—C15—C14 | 118.2 (2) | C18—C17—C16 | 118.4 (2) |
C16—C15—H15 | 120.9 | C18—C17—H17 | 120.8 |
N2—C1—C14 | 117.88 (19) | N1—C12—H12A | 109.5 |
N1—C1—N2 | 122.52 (19) | N1—C12—H12B | 109.5 |
N1—C1—C14 | 119.60 (18) | N1—C12—H12C | 109.5 |
C14—N3—C18 | 115.8 (2) | H12A—C12—H12B | 109.5 |
C11—C2—N2 | 116.78 (19) | H12A—C12—H12C | 109.5 |
C3—C2—N2 | 122.2 (2) | H12B—C12—H12C | 109.5 |
C3—C2—C11 | 121.0 (2) | N3—C18—C17 | 124.5 (2) |
C11—C10—N1 | 116.85 (19) | N3—C18—H18 | 117.8 |
C9—C10—N1 | 122.4 (2) | C17—C18—H18 | 117.8 |
C9—C10—C11 | 120.8 (2) | C10—C9—C8 | 119.1 (3) |
C2—C3—H3 | 120.6 | C10—C9—H9 | 120.4 |
C2—C3—C4 | 118.9 (3) | C8—C9—H9 | 120.4 |
C4—C3—H3 | 120.6 | C6—C5—H5 | 119.6 |
C7—C6—C11 | 118.0 (2) | C4—C5—C6 | 120.9 (2) |
C5—C6—C11 | 118.0 (2) | C4—C5—H5 | 119.6 |
C5—C6—C7 | 123.9 (2) | C3—C4—H4 | 119.1 |
C15—C16—H16 | 120.5 | C5—C4—C3 | 121.8 (3) |
C17—C16—C15 | 118.9 (2) | C5—C4—H4 | 119.1 |
C17—C16—H16 | 120.5 | ||
N2—C2—C3—C4 | −178.8 (2) | C2—C11—C6—C5 | −0.2 (3) |
C14—C15—C16—C17 | 0.4 (4) | C2—C3—C4—C5 | −0.3 (4) |
C14—N3—C18—C17 | 0.3 (5) | C10—N1—C1—N2 | 1.7 (3) |
N1—C10—C9—C8 | 179.6 (2) | C10—N1—C1—C14 | −179.10 (18) |
C11—C2—C3—C4 | 0.7 (4) | C10—C11—C2—N2 | −0.7 (3) |
C11—C10—C9—C8 | −0.2 (4) | C10—C11—C2—C3 | 179.7 (2) |
C11—C6—C7—C8 | 0.2 (4) | C10—C11—C6—C7 | −1.6 (3) |
C11—C6—C5—C4 | 0.6 (4) | C10—C11—C6—C5 | 179.6 (2) |
C15—C14—C1—N2 | −87.1 (3) | C6—C11—C2—N2 | 179.11 (18) |
C15—C14—C1—N1 | 93.6 (3) | C6—C11—C2—C3 | −0.5 (3) |
C15—C14—N3—C18 | 0.6 (4) | C6—C11—C10—N1 | −178.17 (18) |
C15—C16—C17—C18 | 0.4 (5) | C6—C11—C10—C9 | 1.6 (3) |
C1—N2—C2—C11 | 0.2 (3) | C6—C7—C8—C9 | 1.2 (4) |
C1—N2—C2—C3 | 179.7 (2) | C6—C5—C4—C3 | −0.4 (4) |
C1—C14—C15—C16 | 178.6 (2) | C16—C17—C18—N3 | −0.8 (5) |
C1—C14—N3—C18 | −179.0 (3) | C7—C6—C5—C4 | −178.1 (3) |
C1—N1—C10—C11 | −2.1 (3) | C7—C8—C9—C10 | −1.3 (4) |
C1—N1—C10—C9 | 178.1 (2) | C13—N2—C1—C14 | −2.8 (3) |
N3—C14—C15—C16 | −1.0 (4) | C13—N2—C1—N1 | 176.4 (2) |
N3—C14—C1—N2 | 92.5 (3) | C13—N2—C2—C11 | −177.0 (2) |
N3—C14—C1—N1 | −86.8 (3) | C13—N2—C2—C3 | 2.6 (3) |
C2—N2—C1—C14 | −179.88 (18) | C12—N1—C1—N2 | 177.7 (2) |
C2—N2—C1—N1 | −0.6 (3) | C12—N1—C1—C14 | −3.1 (3) |
C2—C11—C10—N1 | 1.7 (3) | C12—N1—C10—C11 | −178.33 (19) |
C2—C11—C10—C9 | −178.6 (2) | C12—N1—C10—C9 | 1.9 (3) |
C2—C11—C6—C7 | 178.6 (2) | C5—C6—C7—C8 | 178.9 (3) |
Acknowledgements
X-ray diffraction studies were performed at the Centre of Shared Equipment of IGIC RAS. Dr I. M. Vatsouro is acknowledged for assistance with the NMR measurements.
Funding information
Funding for this research was provided by: Presidential Grant Program (grant No. MK-1200.2020.3).
References
Bahena, E. N., Gijon, C. A. F., Fomine, S., Alexandrova, L. & Le Lagadec, R. (2019). Eur. J. Inorg. Chem. 3494–3502. Google Scholar
Booysen, I. N., Ebinumoliseh, I., Sithebe, S., Akerman, M. P. & Xulu, B. (2016). Polyhedron, 117, 755–760. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2017). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Foces-Foces, C., Llamas-Saiz, A. L., Claramunt, R. M., Sanz, D., Dotor, J. & Elguero, J. (1993). J. Cryst. Spec. Res. 23, 305–312. CAS Google Scholar
Hill, A. F., Ma, C., McQueen, C. M. A. & Ward, J. S. (2018). Dalton Trans. 47, 1577–1587. Web of Science CSD CrossRef CAS PubMed Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Li, Z.-Y., Zhang, M., Yuan, X.-Y. & Yuan, L. (2017). Z. Kristallogr. New Cryst. Struct. 232, 429–430. CSD CrossRef CAS Google Scholar
Llamas-Saiz, A. L., Foces-Foces, C., Sanz, D., Claramunt, R. M., Dotor, J., Elguero, J., Catalan, J. & del Valle, J. C. (1995). J. Chem. Soc., Perkin Trans. 2, 1389–1398. Google Scholar
Pozharskii, A. F., Gulevskaya, A. V., Claramunt, R. M., Alkorta, I. & Elguero, J. (2020). Russ. Chem. Rev. 89, 1204–1260. CrossRef Google Scholar
Sahiba, N. & Agarwal, S. (2020). Top. Curr. Chem. 378 article number 44. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.