research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 2-methyl-3-nitro-N-[(E)-(5-nitro­thio­phen-2-yl)methyl­­idene]aniline

CROSSMARK_Color_square_no_text.svg

aSamsun University, Faculty of Engineering, Department of Fundamental Sciences, Samsun, 55420, Turkey, bOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Samsun, Turkey, cOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Chemistry, 55139, Samsun, Turkey, dAmasya University, Faculty of Arts and Sciences, Department of Chemistry, Amasya, Turkey, eKocaeli University, Faculty of Arts and Sciences, Department of Physics, 41100, Kocaeli, Turkey, fDepartment of Computer and Electronic Engineering Technology, Sana'a Community College, Sana'a, Yemen, and gOndokuz Mayıs University, Faculty of Engineering, Department of Electrical and Electronic Engineering, 55139, Samsun, Turkey
*Correspondence e-mail: sevgi.kansiz@samsun.edu.tr, eiad.saif@scc.edu.tr

Edited by A. V. Yatsenko, Moscow State University, Russia (Received 28 December 2020; accepted 13 January 2021; online 19 January 2021)

The title compound, C12H9N3O4S, synthesized by condensation of 5-nitro­thio­phene-2-carbaldehyde and 2-methyl-3-nitro­aniline, crystallizes in the ortho­rhom­bic space group P212121. In the mol­ecule, the aromatic benzene and thio­phene rings are twisted with respect to each other, making a dihedral angle of 23.16 (7)°. In the crystal, mol­ecules are linked by inter­molecular C—H⋯O hydrogen bonds into chains extending along the c-axis direction. Weak ππ stacking inter­actions along the a-axis direction provide additional stabilization of the crystal structure. The roles of the various inter­molecular inter­actions were clarified by Hirshfeld surface analysis, which reveals that the crystal packing is dominated by O⋯H (39%) and H⋯H (21.3%) contacts. The crystal studied was refined as a two-component inversion twin.

1. Chemical context

Bioactivity is an important topic, which includes many areas such as the synthesis of new drugs, creams, agricultural products and so on. In this respect, Schiff bases are organic mol­ecules suitable for bioactivity applications because of the imine bond that increases the lipophilic character of the mol­ecule. The imine bond provides a synthetic route to structural chirality, changes the electronic properties and leads to solubility in different media (Tarafder et al., 2008[Tarafder, M. T. H., Islam, M. A. A. A. A., Crouse, K. A., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, o988-o989.]). Schiff bases can include heterocycles or amino acid residues and can be easily obtained by the condensation of primary amines with aldehydes or ketones without by-products, thus giving the pure product for biological treatments (Yu et al., 2009[Yu, Y. Y., Xian, H. D., Liu, J. F. & Zhao, G. L. (2009). Molecules, 14, 1747-1754.]; Lobana et al., 2009[Lobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977-1055.]). Many natural products contain thio­phene groups, which lead to pharmacological properties. Thio­phene-containing mol­ecules are used in medicinal chemistry for therapeutic applications (Mishra et al., 2011[Mishra, R., Jha, K. K., Kumar, S. & Tomer, I. (2011). Der Pharma Chem. 3, 38-54.]). 5-Nitro­thio­phene-2-carbox­aldehyde derivatives exhibit anti­bacterial properties (Foroumadi et al., 2003[Foroumadi, A., Mansouri, S., Kiani, Z. & Rahmani, A. (2003). Eur. J. Med. Chem. 38, 851-854.]). This highly reactive mol­ecule has been used in chemosensor applications (Ye et al., 2019[Ye, F., Liang, X. M., Wu, N., Li, P., Chai, Q. & Fu, Y. (2019). Spectrochim. Acta A, 216, 359-364.]). In the present study, a new Schiff base, 2-methyl-3-nitro-N-[(E)-(5-nitro­thio­phen-2-yl)methyl­idene]aniline (I)[link], was obtained in crystalline form from the reaction of 5-nitro­thio­phene-2-carbaldehyde with 2-methyl-3-nitro­aniline.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The mol­ecule adopts the E configuration with respect to the C=N bond and the benzene and thio­phene rings form a dihedral angle of 23.16 (7)°. The deviation from planarity can be attributed to packing forces. The nitro group attached to the thio­phene ring is strongly conjugated with the π-system of this ring, as evident from the short N2—C7 distance (see Table 1[link]). As a result, this nitro group is almost coplanar with the thio­phene ring. The nitro group attached to the benzene ring is twisted by 48.4 (2)° with respect to this ring, and thus the π-conjugation is much weaker in this case. The length of the C8=N2 bond is 1.277 (4) Å, which is consistent with those in the related structures 4-(naphthalen-2-yl)-N-[(Z)-4-propoxybenzyl­idene]-1,3-thia­zol-2-amine [1.284 (3) Å; Sheakh Mohamad et al., 2020[Sheakh Mohamad, R. A., Hamad, W. M. & Aziz, H. J. (2020). Acta Cryst. E76, 920-923.]] and (E)-2,4-di-tert-butyl-6-[(3-chloro-4-methyl­phenyl­imino)­meth­yl]phenol [1.278 (4) Å; Kansiz et al., 2018[Kansiz, S., Macit, M., Dege, N. & Pavlenko, V. A. (2018). Acta Cryst. E74, 1887-1890.]]. The C9—S1 and C12—S1 bonds in the thio­phene ring are slightly shorter than a standard Csp2—S single bond (1.76 Å; Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]) as a result of the π-conjugation with the double bonds. At the same time, these S—C bonds are longer than those in the structure of 6-[(E)-2-(thio­phen-2-yl)ethen­yl]-4,5-di­hydro­pyridazin-3(2H)-one [1.691 (3) Å; Daoui et al., 2019[Daoui, S., Çınar, E. B., El Kalai, F., Saddik, R., Dege, N., Karrouchi, K. & Benchat, N. (2019). Acta Cryst. E75, 1880-1883.]].

Table 1
Selected bond lengths (Å)

S1—C12 1.714 (4) N1—O2 1.218 (5)
S1—C9 1.718 (4) N1—C3 1.474 (5)
N2—C8 1.277 (4) N3—O3 1.216 (6)
N2—C7 1.411 (4) N3—O4 1.230 (6)
N1—O1 1.211 (5) N3—C12 1.423 (5)
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

3. Supra­molecular features

In the crystal structure, mol­ecules are connected by weak inter­molecular C8—H8⋯O4i hydrogen bonds into chains stretched along the c-axis direction (Table 2[link]; Fig. 2[link]). As a result, the mol­ecules form stacks extended along the a-axis direction. The shortest inter­centroid separation of 3.603 (2) Å within the stack indicates ππ stacking inter­actions between the benzene and thio­phene rings, which are, however, very weak, since inter­molecular contacts shorter than the sum of van der Waals radii are absent from these stacks.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O4i 0.93 (4) 2.56 (4) 3.492 (5) 176 (3)
Symmetry code: (i) [-x+{\script{3\over 2}}, -y+2, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
A view of the crystal packing of the title compound parallel to the bc plane. C—H⋯O inter­actions are indicated by dotted lines.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.41, update of November 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for (E)-N-[(5-nitro­thio­phen-2-yl)methyl­ene]aniline gave 15 hits including 4-methyl-N-[(5-nitro­thio­phen-2-yl)methyl­idene]aniline (EXIWIS; Cai et al., 2011[Cai, M., Wang, X. & Sun, T. (2011). Acta Cryst. E67, o2218.]), N-(2-chloro­phen­yl)-1-(5-nitro­thio­phen-2-yl)methanimine (FIBKUZ; Tari et al., 2018[Tarı, G. Ö, Ceylan, U., Uzun, U., Ağar, E. & Büyükgüngör, O. (2018). J. Mol. Struct. 1174, 18-24.]) and 1-(5-nitro-2-thien­yl)-N-(2-phen­oxy­phen­yl)methanimine (TONBAB; Tanak et al., 2014[Tanak, H., Ağar, A. A. & Büyükgüngör, O. (2014). Spectrochim. Acta A, 118, 672-682.]). In FIBKUZ and TONBAB, inter­molecular C—H⋯O hydrogen bonds are important features in the crystal packing, as in the structure of the title compound. In EXIWIS, the C=N bond length [1.277 (2) Å] is the same as in the title compound and longer than in both FIBKUZ [1.265 (6) Å] and in TONBAB [1.261 (4) Å]. The N—O bond lengths in the nitro groups in the title compound are the same within standard deviations as the corresponding bond lengths in all of the reference structures. The C—S bond lengths in EXIWIS, FIBKUZ and TONBAB range from 1.694 (3) to 1.730 (2) Å. The corresponding bond lengths in the title compound fall within these limits.

5. Hirshfeld surface analysis

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out using the CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia. https://hirshfeldsurface.net.]). The Hirshfeld surface and the associated two-dimensional fingerprint plots were used to qu­antify the various inter­molecular inter­actions in the title compound. The Hirshfeld surfaces mapped over dnorm and electrostatic potential are illustrated in Fig. 3[link]. In Fig. 3[link]a, the red spots correspond to the O⋯H contacts. The electrostatic potential (Fig. 3[link]b) shows donor (red) and acceptor (blue) regions. The percentage contribution of various inter­actions is shown in the fingerprint plot (Fig. 4[link]). The most important inter­actions for determining the morphology of the crystal are H⋯H, O⋯H and S⋯H contacts, their individual contributions being 39%, 21.3% and 5.9%, respectively. C⋯N/N⋯C (5.8%) and C⋯H/H⋯C (5.4%) contacts are also observed. The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the crystal packing.

[Figure 3]
Figure 3
Hirshfeld surfaces of the title compound mapped over (a) dnorm and (b) electrostatic potential.
[Figure 4]
Figure 4
Two-dimensional fingerprint plots for the title compound, with the relative contributions of the atom pairs to the Hirshfeld surface.

6. Synthesis and crystallization

The title compound was prepared by refluxing a solution containing 5-nitro­thio­phene-2-carbaldehyde (0,07 mmol) and 2-methyl-3-nitro­aniline (0,07 mmol) in ethanol (40 ml) for 5 h under stirring. The obtained yellow crystalline material was washed with ethanol and dried at room temperature (yield: 78%, m.p. 433 K). Crystals were grown from a solution in ethanol.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The C-bound H atoms were placed in idealized positions and refined using a riding model with C—H = 0.93–0.96 Å and Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other C-bound H atoms. The structure was refined as a two-component inversion twin.

Table 3
Experimental details

Crystal data
Chemical formula C12H9N3O4S
Mr 291.28
Crystal system, space group Orthorhombic, P212121
Temperature (K) 293
a, b, c (Å) 7.1335 (4), 11.7297 (6), 15.4593 (7)
V3) 1293.54 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.27
Crystal size (mm) 0.75 × 0.39 × 0.14
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.839, 0.966
No. of measured, independent and observed [I > 2σ(I)] reflections 6707, 3930, 2258
Rint 0.049
(sin θ/λ)max−1) 0.714
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.129, 0.91
No. of reflections 3930
No. of parameters 186
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.33, −0.19
Absolute structure Refined as an inversion twin.
Absolute structure parameter 0.59 (15)
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXT2017/1 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA(Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2017/1 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: WinGX (Farrugia, 2012).

2-Methyl-3-nitro-N-[(E)-(5-nitrothiophen-2-yl)methylidene]aniline top
Crystal data top
C12H9N3O4SDx = 1.496 Mg m3
Mr = 291.28Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 6261 reflections
a = 7.1335 (4) Åθ = 2.2–30.9°
b = 11.7297 (6) ŵ = 0.27 mm1
c = 15.4593 (7) ÅT = 293 K
V = 1293.54 (11) Å3Stick, yellow
Z = 40.75 × 0.39 × 0.14 mm
F(000) = 600
Data collection top
Stoe IPDS 2
diffractometer
3930 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2258 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.049
rotation method scansθmax = 30.5°, θmin = 2.2°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 810
Tmin = 0.839, Tmax = 0.966k = 1612
6707 measured reflectionsl = 2220
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.053 w = 1/[σ2(Fo2) + (0.063P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.129(Δ/σ)max < 0.001
S = 0.91Δρmax = 0.33 e Å3
3930 reflectionsΔρmin = 0.19 e Å3
186 parametersAbsolute structure: Refined as an inversion twin.
0 restraintsAbsolute structure parameter: 0.59 (15)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a two-component inversion twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.63801 (15)0.83820 (8)0.62698 (6)0.0504 (3)
N20.6540 (5)0.6808 (2)0.47460 (18)0.0437 (7)
N10.7061 (6)0.2794 (3)0.3994 (3)0.0637 (10)
O20.8371 (6)0.2537 (3)0.4460 (2)0.0886 (11)
O10.5937 (6)0.2119 (3)0.3708 (3)0.0988 (13)
C80.7015 (6)0.7831 (3)0.4567 (2)0.0432 (8)
C70.6589 (5)0.5963 (3)0.4097 (2)0.0397 (7)
C90.6899 (5)0.8708 (3)0.5213 (2)0.0431 (8)
C60.6287 (6)0.6186 (3)0.3229 (2)0.0487 (9)
H60.6100400.6933920.3048910.058*
C30.6828 (5)0.4000 (3)0.3749 (3)0.0474 (8)
N30.6315 (7)1.0145 (4)0.7400 (3)0.0756 (12)
C20.6860 (5)0.4834 (3)0.4389 (2)0.0423 (8)
C40.6524 (7)0.4210 (3)0.2888 (2)0.0549 (9)
H40.6498110.3616010.2490350.066*
O30.5983 (7)0.9420 (5)0.7941 (2)0.1054 (15)
C120.6570 (6)0.9799 (3)0.6526 (2)0.0537 (10)
C110.7002 (6)1.0482 (3)0.5853 (3)0.0575 (11)
H110.7145081.1268730.5890730.069*
O40.6437 (7)1.1168 (4)0.7564 (3)0.1149 (15)
C100.7204 (6)0.9856 (3)0.5095 (3)0.0520 (10)
H100.7512751.0178540.4564310.062*
C10.7131 (7)0.4585 (4)0.5333 (3)0.0559 (10)
H1A0.7104880.5285100.5654500.084*
H1B0.6143620.4094130.5531940.084*
H1C0.8318090.4215380.5417510.084*
C50.6258 (7)0.5321 (4)0.2626 (2)0.0573 (10)
H50.6060410.5485610.2044340.069*
H80.747 (5)0.807 (3)0.403 (2)0.034 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0561 (5)0.0487 (5)0.0465 (4)0.0019 (5)0.0005 (5)0.0003 (4)
N20.0474 (16)0.0390 (15)0.0448 (15)0.0002 (14)0.0051 (14)0.0033 (12)
N10.075 (3)0.0406 (18)0.075 (3)0.0010 (19)0.002 (2)0.0039 (17)
O20.110 (3)0.0465 (17)0.109 (3)0.012 (2)0.021 (3)0.0103 (18)
O10.120 (3)0.0470 (17)0.130 (3)0.0226 (19)0.015 (3)0.009 (2)
C80.052 (2)0.0367 (18)0.0407 (18)0.0013 (15)0.0051 (16)0.0002 (14)
C70.0433 (19)0.0334 (15)0.0424 (17)0.0017 (16)0.0050 (16)0.0029 (13)
C90.042 (2)0.0383 (17)0.0490 (19)0.0033 (14)0.0003 (15)0.0014 (15)
C60.062 (2)0.0445 (18)0.0400 (18)0.007 (2)0.0010 (19)0.0059 (14)
C30.050 (2)0.0368 (17)0.055 (2)0.0010 (15)0.0040 (19)0.0005 (17)
N30.070 (2)0.093 (3)0.063 (2)0.006 (3)0.006 (2)0.032 (2)
C20.045 (2)0.0399 (18)0.0423 (18)0.0028 (15)0.0037 (15)0.0006 (15)
C40.064 (3)0.050 (2)0.050 (2)0.002 (2)0.005 (2)0.0148 (17)
O30.131 (4)0.134 (4)0.052 (2)0.012 (3)0.006 (2)0.010 (2)
C120.050 (2)0.056 (2)0.055 (2)0.004 (2)0.0073 (19)0.0194 (18)
C110.064 (3)0.038 (2)0.070 (3)0.0038 (18)0.004 (2)0.0101 (19)
O40.141 (4)0.101 (3)0.102 (3)0.004 (3)0.007 (3)0.063 (3)
C100.061 (2)0.0366 (19)0.058 (2)0.0001 (17)0.0024 (19)0.0013 (17)
C10.073 (3)0.046 (2)0.048 (2)0.000 (2)0.002 (2)0.0085 (17)
C50.073 (3)0.063 (2)0.0361 (18)0.002 (3)0.001 (2)0.0028 (17)
Geometric parameters (Å, º) top
S1—C121.714 (4)C3—C21.392 (5)
S1—C91.718 (4)N3—O31.216 (6)
N2—C81.277 (4)N3—O41.230 (6)
N2—C71.411 (4)N3—C121.423 (5)
N1—O11.211 (5)C2—C11.501 (5)
N1—O21.218 (5)C4—C51.377 (6)
N1—C31.474 (5)C4—H40.9300
C8—C91.435 (5)C12—C111.349 (6)
C8—H80.93 (4)C11—C101.391 (6)
C7—C61.384 (5)C11—H110.9300
C7—C21.412 (5)C10—H100.9300
C9—C101.376 (5)C1—H1A0.9600
C6—C51.378 (5)C1—H1B0.9600
C6—H60.9300C1—H1C0.9600
C3—C41.371 (5)C5—H50.9300
C12—S1—C989.25 (18)C3—C2—C1123.8 (3)
C8—N2—C7120.0 (3)C7—C2—C1120.8 (3)
O1—N1—O2124.3 (4)C3—C4—C5118.6 (3)
O1—N1—C3117.3 (4)C3—C4—H4120.7
O2—N1—C3118.4 (4)C5—C4—H4120.7
N2—C8—C9120.5 (3)C11—C12—N3126.4 (4)
N2—C8—H8124 (2)C11—C12—S1114.6 (3)
C9—C8—H8115 (2)N3—C12—S1119.0 (3)
C6—C7—N2123.5 (3)C12—C11—C10111.1 (4)
C6—C7—C2120.6 (3)C12—C11—H11124.5
N2—C7—C2115.8 (3)C10—C11—H11124.5
C10—C9—C8126.9 (4)C9—C10—C11112.9 (4)
C10—C9—S1112.2 (3)C9—C10—H10123.5
C8—C9—S1120.9 (3)C11—C10—H10123.6
C5—C6—C7121.3 (3)C2—C1—H1A109.5
C5—C6—H6119.4C2—C1—H1B109.5
C7—C6—H6119.4H1A—C1—H1B109.5
C4—C3—C2124.5 (3)C2—C1—H1C109.5
C4—C3—N1116.1 (3)H1A—C1—H1C109.5
C2—C3—N1119.4 (4)H1B—C1—H1C109.5
O3—N3—O4123.7 (5)C4—C5—C6119.7 (4)
O3—N3—C12118.6 (4)C4—C5—H5120.2
O4—N3—C12117.7 (5)C6—C5—H5120.2
C3—C2—C7115.4 (3)
C7—N2—C8—C9177.5 (3)N2—C7—C2—C3177.4 (3)
C8—N2—C7—C630.4 (6)C6—C7—C2—C1178.2 (4)
C8—N2—C7—C2153.2 (4)N2—C7—C2—C11.7 (6)
N2—C8—C9—C10173.9 (4)C2—C3—C4—C51.0 (7)
N2—C8—C9—S17.5 (5)N1—C3—C4—C5178.7 (4)
C12—S1—C9—C100.4 (3)O3—N3—C12—C11177.8 (5)
C12—S1—C9—C8179.2 (3)O4—N3—C12—C112.5 (8)
N2—C7—C6—C5176.7 (4)O3—N3—C12—S10.6 (7)
C2—C7—C6—C50.5 (7)O4—N3—C12—S1179.2 (4)
O1—N1—C3—C447.0 (6)C9—S1—C12—C110.0 (4)
O2—N1—C3—C4132.2 (4)C9—S1—C12—N3178.6 (4)
O1—N1—C3—C2130.8 (4)N3—C12—C11—C10178.1 (4)
O2—N1—C3—C250.0 (6)S1—C12—C11—C100.3 (5)
C4—C3—C2—C71.2 (6)C8—C9—C10—C11179.3 (4)
N1—C3—C2—C7178.8 (3)S1—C9—C10—C110.7 (4)
C4—C3—C2—C1177.9 (4)C12—C11—C10—C90.6 (5)
N1—C3—C2—C10.3 (6)C3—C4—C5—C60.5 (7)
C6—C7—C2—C30.9 (6)C7—C6—C5—C40.3 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O4i0.93 (4)2.56 (4)3.492 (5)176 (3)
Symmetry code: (i) x+3/2, y+2, z1/2.
 

Funding information

This study was supported by Ondokuz Mayıs University under Project No. PYO·FEN.1906.19.001.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationCai, M., Wang, X. & Sun, T. (2011). Acta Cryst. E67, o2218.  CSD CrossRef IUCr Journals Google Scholar
First citationDaoui, S., Çınar, E. B., El Kalai, F., Saddik, R., Dege, N., Karrouchi, K. & Benchat, N. (2019). Acta Cryst. E75, 1880–1883.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationForoumadi, A., Mansouri, S., Kiani, Z. & Rahmani, A. (2003). Eur. J. Med. Chem. 38, 851–854.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKansiz, S., Macit, M., Dege, N. & Pavlenko, V. A. (2018). Acta Cryst. E74, 1887–1890.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977–1055.  Web of Science CrossRef CAS Google Scholar
First citationMishra, R., Jha, K. K., Kumar, S. & Tomer, I. (2011). Der Pharma Chem. 3, 38–54.  CAS Google Scholar
First citationSheakh Mohamad, R. A., Hamad, W. M. & Aziz, H. J. (2020). Acta Cryst. E76, 920–923.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTanak, H., Ağar, A. A. & Büyükgüngör, O. (2014). Spectrochim. Acta A, 118, 672–682.  CSD CrossRef CAS Google Scholar
First citationTarafder, M. T. H., Islam, M. A. A. A. A., Crouse, K. A., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, o988–o989.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationTarı, G. Ö, Ceylan, U., Uzun, U., Ağar, E. & Büyükgüngör, O. (2018). J. Mol. Struct. 1174, 18–24.  Google Scholar
First citationTurner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia. https://hirshfeldsurface.net.  Google Scholar
First citationYe, F., Liang, X. M., Wu, N., Li, P., Chai, Q. & Fu, Y. (2019). Spectrochim. Acta A, 216, 359–364.  CrossRef CAS Google Scholar
First citationYu, Y. Y., Xian, H. D., Liu, J. F. & Zhao, G. L. (2009). Molecules, 14, 1747–1754.  CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds