research communications
Crystal structures of 4-bromo-2-formyl-1-tosyl-1H-pyrrole, (E)-4-bromo-2-(2-nitrovinyl)-1-tosyl-1H-pyrrole and 6-(4-bromo-1-tosylpyrrol-2-yl)-4,4-dimethyl-5-nitrohexan-2-one
aChair of Organic Chemistry, School of Chemistry, Trinity Biomedical Science Institute, 152-160 Pearse Street, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
*Correspondence e-mail: sengem@tcd.ie
The crystal structures of three intermediate compounds in the synthesis of 8-bromo-2,3,4,5-tetrahydro-1,3,3-trimethyldipyrrin are reported; 4-bromo-2-formyl-1-tosyl-1H-pyrrole, C12H10BrNO3S, (E)-4-bromo-2-(2-nitrovinyl)-1-tosyl-1H-pyrrole, C13H11BrN2O4S, and 6-(4-bromo-1-tosylpyrrol-2-yl)-4,4-dimethyl-5-nitrohexan-2-one, C19H23BrN2O5S. The compounds show multitudinous intermolecular C—H⋯O interactions, with bond distances and angle consistent in the series and within expectations, as well as varied packing types. The merits of collecting data beyond the standard resolution usually reported for small molecules are discussed.
Keywords: crystal structure; pyrrole; chemical intermediates; high-resolution.
1. Chemical context
e.g., Boyle et al., 1999) employed as ligands in medicinal and materials chemistry (e.g., Hohlfeld et al., 2021) made through facile condensation reactions, and widely exploited in chemistry. Partially reduced analogues of containing one pyrrole and one pyrroline unit, are conceptually similar to chlorins – e.g. chlorophylls – where reduction of a macrocycle bond introduces electronic and photophysical changes (Senge et al., 2014). Synthetic chlorins are produced throught these intermediates by stepwise formation of a pyrroline ring (Taniguchi & Lindsey, 2017), pioneered by Battersby and coworkers (Dutton et al., 1983) and refined by Lindsey and coworkers (Laha et al., 2006). The compounds presented here are intermediates in the synthesis of derivatives of tetrahydrodipyrrin 4, a versatile precursor that can be formed in high yield from inexpensive reagents.
– 2,2′-dipyrromethenes – are molecular building blocks for multi-pyrrole fluorophores such as BODIPYs and (2. Structural commentary
The crystal structures of 1, 2, and 3 (see Scheme and Fig. 1) each display an isolated molecule with no solvate included, with Z = 2 (for 2) and Z = 4 (for 1 and 3). Each molecular structure shows a 2-substituted-4-bromo-1-tosyl-1H-pyrrole, with the 2-substitution as an aldehyde (1, R = CHO), a 2-nitrovinyl [2, R = (E)-(CH)2NO2] and a 3,3-dimethyl-2-nitrohexan-5-one substituent (3). The pyrrole fragment presents approximately consistent internal bond distances throughout this series, as demonstrated in Table 1. The pyrrole and tosyl groups adopt a consistent conformational structure with N—S and N—C bond torsion angles each at approximately 90°, as discussed in the Database survey section.
|
Compound 1 crystallizes in the P212121; although this compound exhibits no individual chiral atom centre, the pyrrole and toluenesulfonyl groups can have many possible orientations, with positive and negative rotation around the N—S bond breaking hypothetical reflection symmetry. The demands of the space-group symmetry of P212121 with Z′ = 1 are such that only one of these conformations is found in the A of −0.016 (2), although anomalously low, strongly suggests that this individual crystal consists only of this pseudo-atropisomer. No evidence of any barrier to inversion is implied in solution, and enrichment of a in the solid state for this intermediate, without similar packing observed for other compounds here, underscores the difficulty in predicting solid-state conformations.
Compound 2 shows comparatively larger displacement ellipsoids than compounds 1 and 3, but excellent agreement between observations and model, simply without the excessive-resolution data. Compound 3 is the only compound in this series to exhibit a chiral centre – both enantiomers exist within the as this is a conglomerate structure (Viedma et al., 2015). Both will form identical cyclized (oxidised) products upon conversion to compound 4 or similar species.
3. Supramolecular features
Each example reported here has a different mode of interactions with neighbouring molecules, with no consistent packing in the crystalline solid state. With a lack of heteroatom-bound protons, the solid-state architectures of each of these compounds lack traditional protic structure-directing mortar. Common features are the traditionally overlooked intermolecular C—H⋯O and C—H⋯Br interactions, from the H atoms on the pyrrolyl, vinyl and aryl units to oxygen atoms in the sulfonyl, nitro or ketone moieties. This type of interaction is assisted by the partial charge separation in these components (Steiner, 2002).
Individual molecules of compound 1 stack directly on top of one another down the crystallographic a-axis direction, and show a C—H⋯O chelate to molecules in an adjacent stack (Table 2), related by the 21 screw coincident with the a axis. This interaction is shown in Fig. 2. Compound 2 shows coplanar intermolecular interactions of the nitrovinylpyrrole unit (Table 3), in which short contacts can be observed as a C—H⋯O pseudo-chelate (3.36 and 3.30 Å, C⋯O), as well as C—H⋯Br (3.84 Å) interactions at the limit of notability. These two interactions serve to form ribbon-like arrangements, which propagate coincident with the crystallographic axes [20] vector. Compound 3 demonstrates C—H⋯O (3.28 and 3.29 Å, C⋯O) and C—H⋯Br (3.88 Å) close-contact interactions; due to the length, these are likely superficial rather than structure directing.
|
|
In each of the compounds reported here, a multitude of unremarkable interactions around the van der Waals limit are observed to constrain individual molecules. The presence of C—H⋯O interactions would likely be unremarkable if not for the chelate motif – these so-called weak interactions can be far stronger with partial charge separation, such as in a sulfonyl, and when occurring at multiple preorganized sites simultaneously (Kingsbury et al., 2019). Collection of multiple crystal structures along the synthetic pathway of organic compounds is, we believe, good practice to assist data science investigations, and offers potential insight into the electronic structure of intermediates (Senge & Smith, 2005).
4. Database survey
A search of the Cambridge Structural Database (CSD v 2020.3; Groom et al., 2016) revealed 37 closely related structures with the 2-carbo-4-halo-pyrrole These structures can be divided into BODIPYs and analogues (13/37), other isolated organic molecules (23/37), including intermediates in the total synthesis of (±)-sceptrin, and a lone Cu coordination complex.
A similar compound HULBIA, a bis(methoxy)methyl derivative of 3 has been reported (Krayer et al., 2009). The presence of a protecting group at the pyrrole N atom is critical in the performance of metal-catalysed reactions; similar 2-substituted-4-halogenated pyrroles have been formed with different N-substitution of N-Boc (UJADUF; Merkul et al., 2009), with an aesthetic seven-membered cycle (PYAZPC; Flippen & Gilardi, 1974), and a simple methyl group (FONHOG; Zeng et al., 2005). The non-tosylated iodo-analogue of 1 (HILTOM; Davis et al., 2007) has been reported previously.
A data analysis of a further 851 structures with an N-benzenesulfonyl-pyrrole shows that the component torsional angles (in the range of 0–90°), critcal in determining the solid-state conformation, each tend toward 90°. These values are consistent with our observations of an approximately adjacent-faces-of-a-cube arrangement of these two components. A Ramachandran-style plot illustrating the structural confluence of these two torsion angles is shown in Fig. 3, with the three compounds presented here highlighted in red.
5. Synthesis and crystallization
The synthesis of these compounds has been previously reported (Krayer et al., 2009). Crystals of the compounds 1, 2 and 3 were grown by hot recrystallization from ethyl acetate/hexane mixture (1) or isopropanol (2) or slow evaporation of acetonitrile (3).
6. Refinement
Crystal data, data collection and structure .
details are summarized in Table 4The collection of high-resolution data (to 0.7 Å for 1 and 0.5 Å for 3, with Mo Kα) appears to have an effect on the quality of the structure solution and Residual electron density at the centre of each bond is apparent, as shown in Fig. 4; displacement ellipsoids are small. This additional data allows for bond distances to be determined at greater precision, as indicated in Table 1, and for the time involved in collection of this data to be extended artificially by 3–4 times. While unnecessary, this additional precision merits collection on crystals of sufficient quality when shorter collections are inconvenient. The suppression of presumably non-thermal character of displacement ellipsoids, such as that shown in compound 2, implies that the true thermal character at cryogenic temperatures is able to be better identified in high-resolution structures, though this could be the coincident effect of additional redundancy.
Supporting information
https://doi.org/10.1107/S2056989021002280/tx2036sup1.cif
contains datablocks 1, 2, 3. DOI:Structure factors: contains datablock 1. DOI: https://doi.org/10.1107/S2056989021002280/tx20361sup2.hkl
Structure factors: contains datablock 2. DOI: https://doi.org/10.1107/S2056989021002280/tx20362sup3.hkl
Structure factors: contains datablock 3. DOI: https://doi.org/10.1107/S2056989021002280/tx20363sup4.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021002280/tx20361sup5.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989021002280/tx20362sup6.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989021002280/tx20363sup7.cml
For all structures, data collection: APEX3 (Bruker, 2015); cell
SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: shelXle (Hübschle, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).C12H10BrNO3S | Dx = 1.744 Mg m−3 |
Mr = 328.18 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 9913 reflections |
a = 4.8436 (5) Å | θ = 2.9–31.4° |
b = 13.9149 (13) Å | µ = 3.45 mm−1 |
c = 18.5479 (17) Å | T = 100 K |
V = 1250.1 (2) Å3 | Rod, colourless |
Z = 4 | 0.20 × 0.09 × 0.06 mm |
F(000) = 656 |
Bruker APEXII CCD diffractometer | 3714 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.028 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 31.0°, θmin = 1.8° |
Tmin = 0.616, Tmax = 0.746 | h = −7→6 |
23296 measured reflections | k = −20→19 |
3972 independent reflections | l = −20→26 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.021 | H-atom parameters constrained |
wR(F2) = 0.045 | w = 1/[σ2(Fo2) + (0.0201P)2 + 0.4002P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
3972 reflections | Δρmax = 0.34 e Å−3 |
164 parameters | Δρmin = −0.38 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 1.03533 (5) | 0.95495 (2) | 0.67018 (2) | 0.02243 (6) | |
N1 | 0.5067 (3) | 0.73027 (11) | 0.66274 (9) | 0.0138 (3) | |
C2 | 0.5792 (4) | 0.72511 (15) | 0.73590 (11) | 0.0167 (4) | |
C3 | 0.7636 (4) | 0.79838 (15) | 0.74892 (11) | 0.0181 (4) | |
H3 | 0.847177 | 0.813140 | 0.793908 | 0.022* | |
C4 | 0.8059 (4) | 0.84751 (15) | 0.68338 (10) | 0.0163 (4) | |
C5 | 0.6504 (4) | 0.80452 (15) | 0.63092 (11) | 0.0153 (4) | |
H5 | 0.642846 | 0.822553 | 0.581559 | 0.018* | |
C6 | 0.4882 (5) | 0.65241 (16) | 0.78783 (11) | 0.0226 (4) | |
H6 | 0.357430 | 0.605380 | 0.773252 | 0.027* | |
O7 | 0.5766 (4) | 0.65095 (14) | 0.84935 (8) | 0.0334 (4) | |
S9 | 0.30100 (10) | 0.65428 (4) | 0.61513 (3) | 0.01313 (9) | |
O10 | 0.2261 (3) | 0.70813 (11) | 0.55234 (7) | 0.0167 (3) | |
O11 | 0.0978 (3) | 0.62059 (10) | 0.66500 (8) | 0.0175 (3) | |
C12 | 0.5188 (4) | 0.55963 (13) | 0.59054 (10) | 0.0135 (3) | |
C13 | 0.6698 (4) | 0.56650 (15) | 0.52637 (11) | 0.0170 (4) | |
H13 | 0.653329 | 0.621364 | 0.496191 | 0.020* | |
C14 | 0.8442 (5) | 0.49124 (16) | 0.50790 (12) | 0.0187 (4) | |
H14 | 0.947090 | 0.494838 | 0.464384 | 0.022* | |
C15 | 0.8716 (4) | 0.41035 (16) | 0.55192 (12) | 0.0182 (4) | |
C16 | 0.7162 (5) | 0.40561 (16) | 0.61547 (12) | 0.0189 (4) | |
H16 | 0.731639 | 0.350655 | 0.645586 | 0.023* | |
C17 | 0.5402 (5) | 0.47959 (14) | 0.63526 (11) | 0.0168 (4) | |
H17 | 0.436014 | 0.475763 | 0.678556 | 0.020* | |
C18 | 1.0659 (5) | 0.33074 (16) | 0.53061 (12) | 0.0236 (5) | |
H18A | 1.020615 | 0.308589 | 0.481867 | 0.035* | |
H18B | 1.047418 | 0.277176 | 0.564571 | 0.035* | |
H18C | 1.256213 | 0.354656 | 0.531514 | 0.035* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.02171 (10) | 0.01959 (10) | 0.02598 (10) | −0.00630 (9) | 0.00443 (8) | −0.00624 (9) |
N1 | 0.0142 (8) | 0.0138 (7) | 0.0134 (7) | −0.0004 (6) | −0.0005 (7) | −0.0014 (6) |
C2 | 0.0185 (10) | 0.0186 (10) | 0.0128 (8) | 0.0029 (8) | −0.0004 (7) | −0.0026 (7) |
C3 | 0.0192 (10) | 0.0193 (10) | 0.0159 (9) | 0.0014 (8) | −0.0004 (8) | −0.0050 (8) |
C4 | 0.0146 (9) | 0.0150 (9) | 0.0194 (10) | −0.0004 (8) | 0.0021 (7) | −0.0045 (7) |
C5 | 0.0149 (9) | 0.0155 (10) | 0.0155 (9) | 0.0010 (7) | 0.0012 (7) | 0.0009 (7) |
C6 | 0.0289 (12) | 0.0209 (10) | 0.0182 (9) | −0.0009 (10) | −0.0002 (9) | −0.0004 (8) |
O7 | 0.0507 (12) | 0.0331 (9) | 0.0166 (7) | −0.0048 (9) | −0.0060 (7) | 0.0037 (7) |
S9 | 0.0118 (2) | 0.0141 (2) | 0.0135 (2) | 0.00034 (18) | −0.00095 (17) | −0.00007 (17) |
O10 | 0.0166 (7) | 0.0179 (7) | 0.0154 (7) | 0.0011 (6) | −0.0039 (5) | 0.0015 (6) |
O11 | 0.0135 (7) | 0.0210 (7) | 0.0181 (7) | −0.0011 (5) | 0.0031 (6) | 0.0006 (6) |
C12 | 0.0123 (8) | 0.0125 (9) | 0.0156 (8) | 0.0001 (7) | −0.0010 (7) | −0.0015 (6) |
C13 | 0.0172 (10) | 0.0170 (10) | 0.0168 (9) | 0.0011 (8) | −0.0007 (7) | 0.0005 (7) |
C14 | 0.0177 (10) | 0.0218 (10) | 0.0165 (9) | 0.0008 (8) | 0.0005 (8) | −0.0040 (8) |
C15 | 0.0148 (9) | 0.0182 (10) | 0.0215 (10) | 0.0007 (8) | −0.0070 (7) | −0.0068 (8) |
C16 | 0.0191 (10) | 0.0168 (10) | 0.0208 (10) | 0.0015 (8) | −0.0056 (8) | 0.0012 (8) |
C17 | 0.0166 (9) | 0.0167 (9) | 0.0170 (9) | −0.0011 (8) | −0.0015 (8) | 0.0014 (7) |
C18 | 0.0202 (11) | 0.0226 (11) | 0.0280 (11) | 0.0045 (9) | −0.0076 (9) | −0.0094 (9) |
Br1—C4 | 1.879 (2) | C12—C17 | 1.393 (3) |
N1—C5 | 1.378 (3) | C12—C13 | 1.400 (3) |
N1—C2 | 1.404 (2) | C13—C14 | 1.388 (3) |
N1—S9 | 1.7002 (16) | C13—H13 | 0.9500 |
C2—C3 | 1.377 (3) | C14—C15 | 1.397 (3) |
C2—C6 | 1.465 (3) | C14—H14 | 0.9500 |
C3—C4 | 1.410 (3) | C15—C16 | 1.400 (3) |
C3—H3 | 0.9500 | C15—C18 | 1.506 (3) |
C4—C5 | 1.368 (3) | C16—C17 | 1.386 (3) |
C5—H5 | 0.9500 | C16—H16 | 0.9500 |
C6—O7 | 1.219 (3) | C17—H17 | 0.9500 |
C6—H6 | 0.9500 | C18—H18A | 0.9800 |
S9—O11 | 1.4296 (15) | C18—H18B | 0.9800 |
S9—O10 | 1.4316 (15) | C18—H18C | 0.9800 |
S9—C12 | 1.7481 (19) | ||
C5—N1—C2 | 109.04 (16) | C17—C12—C13 | 121.47 (18) |
C5—N1—S9 | 122.66 (14) | C17—C12—S9 | 119.47 (15) |
C2—N1—S9 | 128.08 (14) | C13—C12—S9 | 119.05 (15) |
C3—C2—N1 | 107.09 (18) | C14—C13—C12 | 118.42 (19) |
C3—C2—C6 | 126.25 (19) | C14—C13—H13 | 120.8 |
N1—C2—C6 | 126.58 (19) | C12—C13—H13 | 120.8 |
C2—C3—C4 | 107.59 (18) | C13—C14—C15 | 121.4 (2) |
C2—C3—H3 | 126.2 | C13—C14—H14 | 119.3 |
C4—C3—H3 | 126.2 | C15—C14—H14 | 119.3 |
C5—C4—C3 | 108.74 (19) | C16—C15—C14 | 118.6 (2) |
C5—C4—Br1 | 125.50 (16) | C16—C15—C18 | 121.5 (2) |
C3—C4—Br1 | 125.75 (15) | C14—C15—C18 | 119.9 (2) |
C4—C5—N1 | 107.52 (17) | C17—C16—C15 | 121.2 (2) |
C4—C5—H5 | 126.2 | C17—C16—H16 | 119.4 |
N1—C5—H5 | 126.2 | C15—C16—H16 | 119.4 |
O7—C6—C2 | 121.4 (2) | C16—C17—C12 | 118.81 (19) |
O7—C6—H6 | 119.3 | C16—C17—H17 | 120.6 |
C2—C6—H6 | 119.3 | C12—C17—H17 | 120.6 |
O11—S9—O10 | 121.57 (9) | C15—C18—H18A | 109.5 |
O11—S9—N1 | 105.75 (9) | C15—C18—H18B | 109.5 |
O10—S9—N1 | 104.20 (9) | H18A—C18—H18B | 109.5 |
O11—S9—C12 | 109.72 (9) | C15—C18—H18C | 109.5 |
O10—S9—C12 | 109.57 (9) | H18A—C18—H18C | 109.5 |
N1—S9—C12 | 104.50 (9) | H18B—C18—H18C | 109.5 |
C5—N1—C2—C3 | 1.4 (2) | C5—N1—S9—C12 | 90.92 (17) |
S9—N1—C2—C3 | 176.08 (15) | C2—N1—S9—C12 | −83.10 (19) |
C5—N1—C2—C6 | −175.5 (2) | O11—S9—C12—C17 | −21.53 (19) |
S9—N1—C2—C6 | −0.8 (3) | O10—S9—C12—C17 | −157.39 (16) |
N1—C2—C3—C4 | −0.7 (2) | N1—S9—C12—C17 | 91.45 (17) |
C6—C2—C3—C4 | 176.3 (2) | O11—S9—C12—C13 | 158.96 (16) |
C2—C3—C4—C5 | −0.3 (2) | O10—S9—C12—C13 | 23.10 (19) |
C2—C3—C4—Br1 | 179.24 (16) | N1—S9—C12—C13 | −88.05 (17) |
C3—C4—C5—N1 | 1.2 (2) | C17—C12—C13—C14 | −0.2 (3) |
Br1—C4—C5—N1 | −178.37 (14) | S9—C12—C13—C14 | 179.33 (16) |
C2—N1—C5—C4 | −1.6 (2) | C12—C13—C14—C15 | −0.3 (3) |
S9—N1—C5—C4 | −176.62 (14) | C13—C14—C15—C16 | 0.7 (3) |
C3—C2—C6—O7 | −0.9 (4) | C13—C14—C15—C18 | −179.1 (2) |
N1—C2—C6—O7 | 175.5 (2) | C14—C15—C16—C17 | −0.6 (3) |
C5—N1—S9—O11 | −153.29 (16) | C18—C15—C16—C17 | 179.2 (2) |
C2—N1—S9—O11 | 32.69 (19) | C15—C16—C17—C12 | 0.2 (3) |
C5—N1—S9—O10 | −24.06 (18) | C13—C12—C17—C16 | 0.2 (3) |
C2—N1—S9—O10 | 161.93 (17) | S9—C12—C17—C16 | −179.26 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6···O11 | 0.95 | 2.38 | 2.994 (3) | 122 |
C5—H5···O10i | 0.95 | 2.55 | 3.423 (2) | 153 |
C13—H13···O10i | 0.95 | 2.56 | 3.470 (3) | 160 |
Symmetry code: (i) x+1/2, −y+3/2, −z+1. |
C13H11BrN2O4S | Z = 2 |
Mr = 371.21 | F(000) = 372 |
Triclinic, P1 | Dx = 1.707 Mg m−3 |
a = 6.8904 (4) Å | Cu Kα radiation, λ = 1.54178 Å |
b = 8.3224 (4) Å | Cell parameters from 4853 reflections |
c = 12.8763 (7) Å | θ = 3.5–68.2° |
α = 83.423 (3)° | µ = 5.40 mm−1 |
β = 80.393 (3)° | T = 100 K |
γ = 85.693 (3)° | Plate, colourless |
V = 722.06 (7) Å3 | 0.08 × 0.06 × 0.01 mm |
Bruker APEXII CCD diffractometer | 2378 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.042 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 68.2°, θmin = 3.5° |
Tmin = 0.544, Tmax = 0.753 | h = −6→8 |
7190 measured reflections | k = −9→9 |
2617 independent reflections | l = −15→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.049 | H-atom parameters constrained |
wR(F2) = 0.142 | w = 1/[σ2(Fo2) + (0.1118P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
2617 reflections | Δρmax = 0.80 e Å−3 |
191 parameters | Δρmin = −0.63 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.78111 (5) | 0.59378 (4) | 0.35381 (3) | 0.0425 (2) | |
N1 | 0.6292 (5) | 0.7256 (3) | 0.6502 (2) | 0.0384 (6) | |
C2 | 0.4649 (5) | 0.7946 (4) | 0.6072 (3) | 0.0358 (7) | |
C3 | 0.4914 (5) | 0.7634 (4) | 0.5026 (3) | 0.0392 (7) | |
H3 | 0.405169 | 0.797263 | 0.452898 | 0.047* | |
C4 | 0.6723 (5) | 0.6710 (4) | 0.4840 (3) | 0.0388 (7) | |
C5 | 0.7544 (6) | 0.6478 (4) | 0.5740 (3) | 0.0397 (7) | |
H5 | 0.875264 | 0.589067 | 0.582710 | 0.048* | |
C6 | 0.3020 (5) | 0.8827 (4) | 0.6651 (3) | 0.0381 (7) | |
H6 | 0.306219 | 0.898197 | 0.736623 | 0.046* | |
C7 | 0.1474 (6) | 0.9425 (5) | 0.6225 (3) | 0.0437 (8) | |
H7 | 0.141618 | 0.927123 | 0.551082 | 0.052* | |
N8 | −0.0128 (5) | 1.0308 (4) | 0.6821 (3) | 0.0447 (7) | |
O9 | −0.0096 (4) | 1.0452 (4) | 0.7764 (2) | 0.0499 (6) | |
O10 | −0.1458 (5) | 1.0858 (5) | 0.6356 (3) | 0.0706 (10) | |
S11 | 0.66335 (12) | 0.69881 (8) | 0.77875 (6) | 0.0366 (2) | |
O12 | 0.5680 (4) | 0.8370 (3) | 0.8260 (2) | 0.0435 (6) | |
O13 | 0.8708 (4) | 0.6635 (3) | 0.7737 (2) | 0.0429 (6) | |
C14 | 0.5375 (5) | 0.5261 (4) | 0.8327 (2) | 0.0338 (6) | |
C15 | 0.3465 (6) | 0.5434 (4) | 0.8867 (3) | 0.0469 (8) | |
H15 | 0.283748 | 0.647790 | 0.895024 | 0.056* | |
C16 | 0.2498 (6) | 0.4049 (5) | 0.9280 (3) | 0.0503 (9) | |
H16 | 0.118816 | 0.415207 | 0.964877 | 0.060* | |
C17 | 0.3389 (6) | 0.2510 (4) | 0.9171 (3) | 0.0408 (7) | |
C18 | 0.5283 (5) | 0.2385 (4) | 0.8610 (3) | 0.0395 (7) | |
H18 | 0.589695 | 0.134135 | 0.851045 | 0.047* | |
C19 | 0.6306 (5) | 0.3744 (4) | 0.8189 (3) | 0.0386 (7) | |
H19 | 0.761277 | 0.364040 | 0.781580 | 0.046* | |
C20 | 0.2280 (6) | 0.1045 (4) | 0.9648 (3) | 0.0480 (9) | |
H20A | 0.123086 | 0.091657 | 0.924079 | 0.072* | |
H20B | 0.169992 | 0.118266 | 1.038312 | 0.072* | |
H20C | 0.318724 | 0.007925 | 0.963164 | 0.072* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0488 (3) | 0.0434 (3) | 0.0347 (3) | −0.00224 (17) | −0.00398 (17) | −0.00571 (16) |
N1 | 0.0524 (17) | 0.0278 (13) | 0.0348 (14) | −0.0006 (11) | −0.0084 (12) | −0.0016 (10) |
C2 | 0.0443 (18) | 0.0255 (14) | 0.0371 (17) | −0.0049 (12) | −0.0072 (14) | 0.0015 (12) |
C3 | 0.0442 (18) | 0.0341 (16) | 0.0370 (17) | −0.0033 (13) | −0.0016 (14) | −0.0004 (12) |
C4 | 0.0500 (19) | 0.0289 (15) | 0.0360 (16) | −0.0051 (13) | −0.0024 (14) | −0.0020 (12) |
C5 | 0.0501 (19) | 0.0293 (15) | 0.0381 (17) | 0.0016 (12) | −0.0031 (14) | −0.0046 (12) |
C6 | 0.050 (2) | 0.0284 (14) | 0.0339 (16) | −0.0054 (13) | −0.0027 (14) | −0.0009 (12) |
C7 | 0.0436 (19) | 0.0496 (19) | 0.0376 (18) | −0.0050 (15) | −0.0016 (14) | −0.0091 (14) |
N8 | 0.0443 (17) | 0.0466 (16) | 0.0444 (18) | −0.0048 (13) | −0.0077 (14) | −0.0066 (13) |
O9 | 0.0517 (15) | 0.0545 (16) | 0.0429 (15) | −0.0010 (12) | −0.0034 (12) | −0.0102 (11) |
O10 | 0.0581 (19) | 0.099 (3) | 0.057 (2) | 0.0186 (18) | −0.0181 (15) | −0.0192 (18) |
S11 | 0.0507 (5) | 0.0251 (4) | 0.0345 (4) | −0.0034 (3) | −0.0070 (3) | −0.0042 (3) |
O12 | 0.0654 (16) | 0.0265 (11) | 0.0396 (13) | −0.0012 (10) | −0.0100 (11) | −0.0060 (9) |
O13 | 0.0526 (14) | 0.0363 (12) | 0.0413 (13) | −0.0081 (10) | −0.0100 (11) | −0.0034 (9) |
C14 | 0.0437 (17) | 0.0263 (14) | 0.0310 (15) | −0.0010 (12) | −0.0031 (12) | −0.0058 (11) |
C15 | 0.058 (2) | 0.0318 (16) | 0.0441 (19) | 0.0063 (14) | 0.0081 (16) | −0.0039 (13) |
C16 | 0.048 (2) | 0.0415 (19) | 0.054 (2) | 0.0007 (15) | 0.0134 (17) | −0.0068 (15) |
C17 | 0.053 (2) | 0.0368 (17) | 0.0328 (16) | −0.0071 (14) | −0.0052 (14) | −0.0055 (12) |
C18 | 0.0484 (19) | 0.0274 (15) | 0.0425 (18) | −0.0015 (12) | −0.0042 (14) | −0.0074 (13) |
C19 | 0.0405 (17) | 0.0292 (15) | 0.0460 (18) | 0.0002 (12) | −0.0062 (14) | −0.0062 (13) |
C20 | 0.061 (2) | 0.0407 (18) | 0.0410 (19) | −0.0146 (16) | −0.0006 (16) | −0.0045 (14) |
Br1—C4 | 1.881 (3) | S11—O13 | 1.430 (3) |
N1—C5 | 1.381 (4) | S11—C14 | 1.748 (3) |
N1—C2 | 1.399 (4) | C14—C15 | 1.387 (5) |
N1—S11 | 1.698 (3) | C14—C19 | 1.389 (4) |
C2—C3 | 1.381 (5) | C15—C16 | 1.383 (6) |
C2—C6 | 1.441 (5) | C15—H15 | 0.9500 |
C3—C4 | 1.414 (5) | C16—C17 | 1.390 (5) |
C3—H3 | 0.9500 | C16—H16 | 0.9500 |
C4—C5 | 1.361 (5) | C17—C18 | 1.385 (5) |
C5—H5 | 0.9500 | C17—C20 | 1.503 (5) |
C6—C7 | 1.318 (6) | C18—C19 | 1.386 (5) |
C6—H6 | 0.9500 | C18—H18 | 0.9500 |
C7—N8 | 1.439 (5) | C19—H19 | 0.9500 |
C7—H7 | 0.9500 | C20—H20A | 0.9800 |
N8—O10 | 1.210 (5) | C20—H20B | 0.9800 |
N8—O9 | 1.237 (4) | C20—H20C | 0.9800 |
S11—O12 | 1.428 (2) | ||
C5—N1—C2 | 109.1 (3) | O12—S11—C14 | 109.60 (15) |
C5—N1—S11 | 120.8 (2) | O13—S11—C14 | 109.53 (15) |
C2—N1—S11 | 129.0 (2) | N1—S11—C14 | 104.67 (14) |
C3—C2—N1 | 107.6 (3) | C15—C14—C19 | 121.5 (3) |
C3—C2—C6 | 128.1 (3) | C15—C14—S11 | 119.5 (2) |
N1—C2—C6 | 124.2 (3) | C19—C14—S11 | 119.0 (3) |
C2—C3—C4 | 106.5 (3) | C16—C15—C14 | 118.3 (3) |
C2—C3—H3 | 126.8 | C16—C15—H15 | 120.8 |
C4—C3—H3 | 126.8 | C14—C15—H15 | 120.8 |
C5—C4—C3 | 109.6 (3) | C15—C16—C17 | 121.9 (4) |
C5—C4—Br1 | 125.7 (3) | C15—C16—H16 | 119.1 |
C3—C4—Br1 | 124.7 (3) | C17—C16—H16 | 119.1 |
C4—C5—N1 | 107.2 (3) | C18—C17—C16 | 118.1 (3) |
C4—C5—H5 | 126.4 | C18—C17—C20 | 122.2 (3) |
N1—C5—H5 | 126.4 | C16—C17—C20 | 119.7 (3) |
C7—C6—C2 | 122.4 (4) | C17—C18—C19 | 121.7 (3) |
C7—C6—H6 | 118.8 | C17—C18—H18 | 119.1 |
C2—C6—H6 | 118.8 | C19—C18—H18 | 119.1 |
C6—C7—N8 | 121.2 (4) | C18—C19—C14 | 118.4 (3) |
C6—C7—H7 | 119.4 | C18—C19—H19 | 120.8 |
N8—C7—H7 | 119.4 | C14—C19—H19 | 120.8 |
O10—N8—O9 | 123.7 (3) | C17—C20—H20A | 109.5 |
O10—N8—C7 | 116.7 (3) | C17—C20—H20B | 109.5 |
O9—N8—C7 | 119.6 (3) | H20A—C20—H20B | 109.5 |
O12—S11—O13 | 121.14 (15) | C17—C20—H20C | 109.5 |
O12—S11—N1 | 106.10 (14) | H20A—C20—H20C | 109.5 |
O13—S11—N1 | 104.39 (15) | H20B—C20—H20C | 109.5 |
C5—N1—C2—C3 | −1.8 (3) | C2—N1—S11—O13 | −165.3 (3) |
S11—N1—C2—C3 | −169.3 (2) | C5—N1—S11—C14 | −86.7 (3) |
C5—N1—C2—C6 | 178.8 (3) | C2—N1—S11—C14 | 79.6 (3) |
S11—N1—C2—C6 | 11.2 (5) | O12—S11—C14—C15 | 17.3 (3) |
N1—C2—C3—C4 | 1.4 (3) | O13—S11—C14—C15 | 152.4 (3) |
C6—C2—C3—C4 | −179.2 (3) | N1—S11—C14—C15 | −96.2 (3) |
C2—C3—C4—C5 | −0.5 (4) | O12—S11—C14—C19 | −163.7 (3) |
C2—C3—C4—Br1 | 179.7 (2) | O13—S11—C14—C19 | −28.6 (3) |
C3—C4—C5—N1 | −0.5 (4) | N1—S11—C14—C19 | 82.9 (3) |
Br1—C4—C5—N1 | 179.2 (2) | C19—C14—C15—C16 | 0.6 (6) |
C2—N1—C5—C4 | 1.4 (4) | S11—C14—C15—C16 | 179.6 (3) |
S11—N1—C5—C4 | 170.2 (2) | C14—C15—C16—C17 | 0.3 (7) |
C3—C2—C6—C7 | 2.4 (6) | C15—C16—C17—C18 | −1.5 (6) |
N1—C2—C6—C7 | −178.3 (3) | C15—C16—C17—C20 | 179.2 (4) |
C2—C6—C7—N8 | −179.7 (3) | C16—C17—C18—C19 | 1.9 (6) |
C6—C7—N8—O10 | 177.7 (4) | C20—C17—C18—C19 | −178.8 (3) |
C6—C7—N8—O9 | −3.0 (6) | C17—C18—C19—C14 | −1.0 (5) |
C5—N1—S11—O12 | 157.4 (3) | C15—C14—C19—C18 | −0.2 (5) |
C2—N1—S11—O12 | −36.3 (3) | S11—C14—C19—C18 | −179.2 (3) |
C5—N1—S11—O13 | 28.4 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O10i | 0.95 | 2.37 | 3.297 (5) | 166 |
C7—H7···O10i | 0.95 | 2.41 | 3.360 (5) | 174 |
C6—H6···O12 | 0.95 | 2.29 | 2.963 (4) | 127 |
Symmetry code: (i) −x, −y+2, −z+1. |
C19H23BrN2O5S | F(000) = 968 |
Mr = 471.36 | Dx = 1.513 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.7375 (2) Å | Cell parameters from 9692 reflections |
b = 15.9728 (3) Å | θ = 2.8–46.1° |
c = 16.7621 (3) Å | µ = 2.12 mm−1 |
β = 93.055 (1)° | T = 100 K |
V = 2068.68 (8) Å3 | Block, colorless |
Z = 4 | 0.61 × 0.56 × 0.55 mm |
Bruker APEXII CCD diffractometer | 15578 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.031 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 46.5°, θmin = 1.8° |
Tmin = 0.669, Tmax = 0.749 | h = −15→15 |
226885 measured reflections | k = −32→32 |
18433 independent reflections | l = −34→34 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.027 | H-atom parameters constrained |
wR(F2) = 0.076 | w = 1/[σ2(Fo2) + (0.0366P)2 + 0.375P] where P = (Fo2 + 2Fc2)/3 |
S = 1.11 | (Δ/σ)max = 0.006 |
18433 reflections | Δρmax = 0.69 e Å−3 |
257 parameters | Δρmin = −0.72 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.22008 (2) | 0.57357 (2) | 0.01021 (2) | 0.01695 (2) | |
N1 | 0.17070 (6) | 0.42535 (3) | 0.20251 (3) | 0.01145 (6) | |
C3 | 0.37857 (7) | 0.44721 (3) | 0.11798 (3) | 0.01261 (7) | |
H3 | 0.483498 | 0.444262 | 0.091152 | 0.015* | |
N8 | 0.44371 (8) | 0.23904 (3) | 0.11422 (3) | 0.01693 (8) | |
C2 | 0.33880 (7) | 0.40180 (3) | 0.18381 (3) | 0.01093 (6) | |
C4 | 0.23457 (7) | 0.49959 (3) | 0.09697 (3) | 0.01208 (7) | |
O9 | 0.57359 (9) | 0.27017 (4) | 0.08769 (4) | 0.02494 (10) | |
C5 | 0.10853 (7) | 0.48676 (3) | 0.14928 (3) | 0.01247 (7) | |
H5 | −0.000347 | 0.514227 | 0.149476 | 0.015* | |
C6 | 0.45096 (7) | 0.33876 (3) | 0.22754 (3) | 0.01219 (7) | |
H6A | 0.434437 | 0.344148 | 0.285479 | 0.015* | |
H6B | 0.573549 | 0.351849 | 0.218744 | 0.015* | |
C7 | 0.41499 (7) | 0.24784 (3) | 0.20244 (3) | 0.01148 (7) | |
H7 | 0.290618 | 0.235381 | 0.210853 | 0.014* | |
O10 | 0.33578 (10) | 0.19916 (4) | 0.07358 (3) | 0.02730 (12) | |
C11 | 0.52787 (7) | 0.18170 (3) | 0.24936 (3) | 0.01285 (7) | |
C12 | 0.51170 (9) | 0.09560 (4) | 0.20840 (4) | 0.01678 (9) | |
H12A | 0.566845 | 0.052934 | 0.243202 | 0.025* | |
H12B | 0.568869 | 0.097269 | 0.157640 | 0.025* | |
H12C | 0.389085 | 0.081793 | 0.198271 | 0.025* | |
C13 | 0.71998 (8) | 0.20658 (4) | 0.25676 (5) | 0.01915 (10) | |
H13A | 0.786783 | 0.161943 | 0.284110 | 0.029* | |
H13B | 0.732997 | 0.258568 | 0.287538 | 0.029* | |
H13C | 0.762620 | 0.215080 | 0.203347 | 0.029* | |
C14 | 0.46432 (8) | 0.17737 (4) | 0.33473 (3) | 0.01491 (8) | |
H14A | 0.542953 | 0.139094 | 0.365724 | 0.018* | |
H14B | 0.479873 | 0.233710 | 0.358656 | 0.018* | |
C15 | 0.28132 (9) | 0.14997 (4) | 0.34817 (4) | 0.01594 (8) | |
O16 | 0.18406 (7) | 0.12067 (4) | 0.29612 (3) | 0.02047 (8) | |
C17 | 0.22683 (13) | 0.16059 (6) | 0.43234 (5) | 0.02768 (15) | |
H17A | 0.322919 | 0.145112 | 0.469905 | 0.042* | |
H17B | 0.127148 | 0.124460 | 0.440913 | 0.042* | |
H17C | 0.194909 | 0.219124 | 0.441078 | 0.042* | |
S18 | 0.05660 (2) | 0.39646 (2) | 0.28052 (2) | 0.01139 (2) | |
O19 | −0.11952 (6) | 0.41232 (3) | 0.25512 (3) | 0.01581 (7) | |
O20 | 0.11448 (7) | 0.31396 (3) | 0.30178 (3) | 0.01737 (7) | |
C21 | 0.11675 (7) | 0.46504 (3) | 0.35854 (3) | 0.01230 (7) | |
C22 | 0.04515 (8) | 0.54520 (4) | 0.35859 (4) | 0.01510 (8) | |
H22 | −0.032923 | 0.562991 | 0.316297 | 0.018* | |
C23 | 0.09053 (9) | 0.59848 (4) | 0.42186 (4) | 0.01861 (9) | |
H23 | 0.043057 | 0.653310 | 0.422446 | 0.022* | |
C24 | 0.20469 (9) | 0.57294 (4) | 0.48466 (4) | 0.01888 (10) | |
C25 | 0.27117 (9) | 0.49166 (5) | 0.48363 (4) | 0.01981 (10) | |
H25 | 0.346580 | 0.473194 | 0.526648 | 0.024* | |
C26 | 0.22901 (8) | 0.43731 (4) | 0.42083 (4) | 0.01686 (9) | |
H26 | 0.275760 | 0.382327 | 0.420358 | 0.020* | |
C27 | 0.25660 (13) | 0.63236 (6) | 0.55124 (5) | 0.02910 (16) | |
H27A | 0.286189 | 0.600523 | 0.600043 | 0.044* | |
H27B | 0.160185 | 0.670287 | 0.560580 | 0.044* | |
H27C | 0.357263 | 0.665022 | 0.536490 | 0.044* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.01729 (3) | 0.02109 (3) | 0.01259 (2) | 0.00044 (2) | 0.00191 (2) | 0.00605 (2) |
N1 | 0.01097 (14) | 0.01251 (15) | 0.01104 (14) | 0.00102 (11) | 0.00231 (11) | 0.00178 (11) |
C3 | 0.01252 (17) | 0.01266 (16) | 0.01295 (17) | 0.00042 (13) | 0.00361 (13) | 0.00055 (13) |
N8 | 0.0264 (2) | 0.01156 (16) | 0.01297 (17) | 0.00279 (15) | 0.00230 (16) | 0.00011 (13) |
C2 | 0.01090 (15) | 0.00970 (15) | 0.01232 (16) | 0.00022 (12) | 0.00189 (12) | −0.00041 (12) |
C4 | 0.01302 (17) | 0.01289 (17) | 0.01043 (16) | −0.00009 (13) | 0.00146 (13) | 0.00130 (13) |
O9 | 0.0316 (3) | 0.0223 (2) | 0.0222 (2) | 0.00315 (19) | 0.0137 (2) | 0.00241 (17) |
C5 | 0.01182 (16) | 0.01417 (17) | 0.01151 (17) | 0.00155 (13) | 0.00149 (13) | 0.00201 (13) |
C6 | 0.01206 (16) | 0.00977 (15) | 0.01461 (18) | 0.00011 (12) | −0.00042 (13) | −0.00072 (13) |
C7 | 0.01306 (16) | 0.00962 (15) | 0.01172 (16) | 0.00006 (12) | 0.00023 (13) | −0.00016 (12) |
O10 | 0.0448 (3) | 0.0210 (2) | 0.01518 (19) | −0.0039 (2) | −0.0072 (2) | −0.00253 (16) |
C11 | 0.01313 (17) | 0.01012 (16) | 0.01516 (19) | 0.00026 (13) | −0.00073 (14) | 0.00104 (13) |
C12 | 0.0209 (2) | 0.01018 (17) | 0.0193 (2) | 0.00159 (16) | 0.00143 (18) | −0.00047 (15) |
C13 | 0.01240 (18) | 0.0166 (2) | 0.0282 (3) | 0.00095 (16) | −0.00065 (18) | 0.00158 (19) |
C14 | 0.0173 (2) | 0.01399 (18) | 0.01306 (18) | −0.00250 (15) | −0.00284 (15) | 0.00117 (14) |
C15 | 0.0216 (2) | 0.01344 (18) | 0.01275 (18) | −0.00542 (16) | 0.00065 (16) | 0.00065 (14) |
O16 | 0.0214 (2) | 0.0228 (2) | 0.01716 (18) | −0.01001 (16) | 0.00056 (15) | −0.00288 (15) |
C17 | 0.0392 (4) | 0.0296 (3) | 0.0148 (2) | −0.0130 (3) | 0.0068 (2) | −0.0009 (2) |
S18 | 0.01086 (4) | 0.01178 (4) | 0.01174 (5) | −0.00151 (3) | 0.00243 (3) | 0.00137 (3) |
O19 | 0.01000 (13) | 0.02075 (17) | 0.01676 (17) | −0.00281 (12) | 0.00140 (12) | 0.00022 (13) |
O20 | 0.02110 (18) | 0.01187 (14) | 0.01957 (18) | 0.00005 (13) | 0.00506 (15) | 0.00389 (13) |
C21 | 0.01169 (16) | 0.01488 (18) | 0.01041 (16) | −0.00063 (13) | 0.00135 (13) | 0.00141 (13) |
C22 | 0.01588 (19) | 0.01612 (19) | 0.01330 (18) | 0.00146 (15) | 0.00080 (15) | −0.00038 (15) |
C23 | 0.0214 (2) | 0.0188 (2) | 0.0158 (2) | −0.00135 (19) | 0.00307 (18) | −0.00325 (17) |
C24 | 0.0201 (2) | 0.0256 (3) | 0.01121 (19) | −0.0081 (2) | 0.00354 (16) | −0.00192 (17) |
C25 | 0.0190 (2) | 0.0281 (3) | 0.01208 (19) | −0.0051 (2) | −0.00187 (17) | 0.00301 (18) |
C26 | 0.0164 (2) | 0.0205 (2) | 0.01350 (19) | 0.00019 (17) | −0.00121 (16) | 0.00393 (16) |
C27 | 0.0358 (4) | 0.0369 (4) | 0.0150 (2) | −0.0168 (3) | 0.0046 (2) | −0.0071 (2) |
Br1—C4 | 1.8727 (5) | C13—H13C | 0.9800 |
N1—C5 | 1.3942 (7) | C14—C15 | 1.5103 (9) |
N1—C2 | 1.4054 (7) | C14—H14A | 0.9900 |
N1—S18 | 1.6808 (5) | C14—H14B | 0.9900 |
C3—C2 | 1.3692 (7) | C15—O16 | 1.2150 (8) |
C3—C4 | 1.4226 (8) | C15—C17 | 1.5036 (10) |
C3—H3 | 0.9500 | C17—H17A | 0.9800 |
N8—O9 | 1.2258 (9) | C17—H17B | 0.9800 |
N8—O10 | 1.2275 (8) | C17—H17C | 0.9800 |
N8—C7 | 1.5135 (7) | S18—O19 | 1.4285 (5) |
C2—C6 | 1.4954 (7) | S18—O20 | 1.4307 (5) |
C4—C5 | 1.3613 (8) | S18—C21 | 1.7499 (6) |
C5—H5 | 0.9500 | C21—C26 | 1.3944 (8) |
C6—C7 | 1.5333 (7) | C21—C22 | 1.3951 (8) |
C6—H6A | 0.9900 | C22—C23 | 1.3902 (9) |
C6—H6B | 0.9900 | C22—H22 | 0.9500 |
C7—C11 | 1.5571 (7) | C23—C24 | 1.3984 (10) |
C7—H7 | 1.0000 | C23—H23 | 0.9500 |
C11—C13 | 1.5372 (8) | C24—C25 | 1.3970 (11) |
C11—C12 | 1.5392 (8) | C24—C27 | 1.5033 (10) |
C11—C14 | 1.5392 (8) | C25—C26 | 1.3898 (10) |
C12—H12A | 0.9800 | C25—H25 | 0.9500 |
C12—H12B | 0.9800 | C26—H26 | 0.9500 |
C12—H12C | 0.9800 | C27—H27A | 0.9800 |
C13—H13A | 0.9800 | C27—H27B | 0.9800 |
C13—H13B | 0.9800 | C27—H27C | 0.9800 |
C5—N1—C2 | 109.72 (4) | H13B—C13—H13C | 109.5 |
C5—N1—S18 | 120.89 (4) | C15—C14—C11 | 120.01 (5) |
C2—N1—S18 | 129.11 (4) | C15—C14—H14A | 107.3 |
C2—C3—C4 | 107.72 (5) | C11—C14—H14A | 107.3 |
C2—C3—H3 | 126.1 | C15—C14—H14B | 107.3 |
C4—C3—H3 | 126.1 | C11—C14—H14B | 107.3 |
O9—N8—O10 | 123.76 (6) | H14A—C14—H14B | 106.9 |
O9—N8—C7 | 118.87 (6) | O16—C15—C17 | 121.55 (6) |
O10—N8—C7 | 117.35 (6) | O16—C15—C14 | 123.66 (6) |
C3—C2—N1 | 106.76 (4) | C17—C15—C14 | 114.78 (6) |
C3—C2—C6 | 127.03 (5) | C15—C17—H17A | 109.5 |
N1—C2—C6 | 126.21 (5) | C15—C17—H17B | 109.5 |
C5—C4—C3 | 109.30 (5) | H17A—C17—H17B | 109.5 |
C5—C4—Br1 | 125.45 (4) | C15—C17—H17C | 109.5 |
C3—C4—Br1 | 125.24 (4) | H17A—C17—H17C | 109.5 |
C4—C5—N1 | 106.47 (5) | H17B—C17—H17C | 109.5 |
C4—C5—H5 | 126.8 | O19—S18—O20 | 121.24 (3) |
N1—C5—H5 | 126.8 | O19—S18—N1 | 104.58 (3) |
C2—C6—C7 | 114.27 (4) | O20—S18—N1 | 106.03 (3) |
C2—C6—H6A | 108.7 | O19—S18—C21 | 108.85 (3) |
C7—C6—H6A | 108.7 | O20—S18—C21 | 108.86 (3) |
C2—C6—H6B | 108.7 | N1—S18—C21 | 106.24 (2) |
C7—C6—H6B | 108.7 | C26—C21—C22 | 121.51 (5) |
H6A—C6—H6B | 107.6 | C26—C21—S18 | 119.41 (5) |
N8—C7—C6 | 108.79 (4) | C22—C21—S18 | 119.02 (4) |
N8—C7—C11 | 108.84 (4) | C23—C22—C21 | 118.56 (6) |
C6—C7—C11 | 114.54 (4) | C23—C22—H22 | 120.7 |
N8—C7—H7 | 108.2 | C21—C22—H22 | 120.7 |
C6—C7—H7 | 108.2 | C22—C23—C24 | 121.30 (6) |
C11—C7—H7 | 108.2 | C22—C23—H23 | 119.4 |
C13—C11—C12 | 108.80 (5) | C24—C23—H23 | 119.4 |
C13—C11—C14 | 106.98 (5) | C25—C24—C23 | 118.69 (6) |
C12—C11—C14 | 110.62 (5) | C25—C24—C27 | 120.79 (7) |
C13—C11—C7 | 112.29 (5) | C23—C24—C27 | 120.51 (7) |
C12—C11—C7 | 110.53 (4) | C26—C25—C24 | 121.21 (6) |
C14—C11—C7 | 107.56 (4) | C26—C25—H25 | 119.4 |
C11—C12—H12A | 109.5 | C24—C25—H25 | 119.4 |
C11—C12—H12B | 109.5 | C25—C26—C21 | 118.72 (6) |
H12A—C12—H12B | 109.5 | C25—C26—H26 | 120.6 |
C11—C12—H12C | 109.5 | C21—C26—H26 | 120.6 |
H12A—C12—H12C | 109.5 | C24—C27—H27A | 109.5 |
H12B—C12—H12C | 109.5 | C24—C27—H27B | 109.5 |
C11—C13—H13A | 109.5 | H27A—C27—H27B | 109.5 |
C11—C13—H13B | 109.5 | C24—C27—H27C | 109.5 |
H13A—C13—H13B | 109.5 | H27A—C27—H27C | 109.5 |
C11—C13—H13C | 109.5 | H27B—C27—H27C | 109.5 |
H13A—C13—H13C | 109.5 | ||
C4—C3—C2—N1 | 0.72 (6) | C12—C11—C14—C15 | −58.53 (7) |
C4—C3—C2—C6 | −179.65 (5) | C7—C11—C14—C15 | 62.27 (6) |
C5—N1—C2—C3 | −1.40 (6) | C11—C14—C15—O16 | 9.44 (9) |
S18—N1—C2—C3 | −175.24 (4) | C11—C14—C15—C17 | −171.28 (6) |
C5—N1—C2—C6 | 178.97 (5) | C5—N1—S18—O19 | 27.62 (5) |
S18—N1—C2—C6 | 5.13 (8) | C2—N1—S18—O19 | −159.14 (5) |
C2—C3—C4—C5 | 0.21 (7) | C5—N1—S18—O20 | 156.84 (5) |
C2—C3—C4—Br1 | −179.12 (4) | C2—N1—S18—O20 | −29.92 (6) |
C3—C4—C5—N1 | −1.05 (6) | C5—N1—S18—C21 | −87.44 (5) |
Br1—C4—C5—N1 | 178.27 (4) | C2—N1—S18—C21 | 85.80 (5) |
C2—N1—C5—C4 | 1.52 (6) | O19—S18—C21—C26 | 144.02 (5) |
S18—N1—C5—C4 | 175.95 (4) | O20—S18—C21—C26 | 9.94 (6) |
C3—C2—C6—C7 | −96.18 (6) | N1—S18—C21—C26 | −103.86 (5) |
N1—C2—C6—C7 | 83.39 (7) | O19—S18—C21—C22 | −33.26 (5) |
O9—N8—C7—C6 | 45.57 (7) | O20—S18—C21—C22 | −167.34 (5) |
O10—N8—C7—C6 | −135.92 (6) | N1—S18—C21—C22 | 78.86 (5) |
O9—N8—C7—C11 | −79.85 (6) | C26—C21—C22—C23 | 1.22 (9) |
O10—N8—C7—C11 | 98.66 (6) | S18—C21—C22—C23 | 178.44 (5) |
C2—C6—C7—N8 | 59.57 (6) | C21—C22—C23—C24 | −0.29 (10) |
C2—C6—C7—C11 | −178.41 (5) | C22—C23—C24—C25 | −1.06 (10) |
N8—C7—C11—C13 | 76.03 (6) | C22—C23—C24—C27 | 178.05 (6) |
C6—C7—C11—C13 | −45.96 (7) | C23—C24—C25—C26 | 1.54 (10) |
N8—C7—C11—C12 | −45.66 (6) | C27—C24—C25—C26 | −177.57 (7) |
C6—C7—C11—C12 | −167.66 (5) | C24—C25—C26—C21 | −0.65 (10) |
N8—C7—C11—C14 | −166.52 (4) | C22—C21—C26—C25 | −0.76 (9) |
C6—C7—C11—C14 | 71.48 (6) | S18—C21—C26—C25 | −177.96 (5) |
C13—C11—C14—C15 | −176.89 (5) |
Bond | 1 | 2 | 3 |
N1—C2 | 1.404 (2) | 1.399 (4) | 1.4054 (7) |
C2—C3 | 1.377 (3) | 1.381 (5) | 1.3692 (7) |
C3—C4 | 1.410 (3) | 1.414 (5) | 1.4226 (8) |
C4—C5 | 1.368 (3) | 1.361 (5) | 1.3613 (8) |
C5—N1 | 1.378 (3) | 1.381 (4) | 1.3942 (7) |
N1—S | 1.7002 (16) | 1.698 (3) | 1.6808 (5) |
C4—Br | 1.879 (2) | 1.881 (3) | 1.8727 (5) |
Funding information
This work has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska–Curie Grant Agreement No. 764837.
References
Boyle, R. W., Brückner, C., Posakony, J., James, B. R. & Dolphin, D. (1999). Org. Synth. 76, 287–287. CAS Google Scholar
Bruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Davis, R. A., Carroll, A. R., Quinn, R. J., Healy, P. C. & White, A. R. (2007). Acta Cryst. E63, o4076. Web of Science CSD CrossRef IUCr Journals Google Scholar
Dutton, C. J., Fookes, C. J. R. & Battersby, A. R. (1983). J. Chem. Soc. Chem. Commun. pp. 1237–1238. CrossRef Web of Science Google Scholar
Flippen, J. L. & Gilardi, R. D. (1974). Cryst. Struct. Commun. 3, 623–627. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hohlfeld, B. F., Gitter, B., Kingsbury, C. J., Flanagan, K. J., Steen, D., Wieland, G. D., Kulak, N., Senge, M. O. & Wiehe, A. (2021). Chem. Eur. J. https://doi.org/10.1002/chem.202004776. Google Scholar
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. Web of Science CrossRef IUCr Journals Google Scholar
Kingsbury, C. J., Abrahams, B. F., Auckett, J. E., Chevreau, H., Dharma, A. D., Duyker, S., He, Q., Hua, C., Hudson, T. A., Murray, K. S., Phonsri, W., Peterson, V. K., Robson, R. & White, K. F. (2019). Chem. Eur. J. 25, 5222–5234. Web of Science CSD CrossRef CAS PubMed Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Krayer, M., Balasubramanian, T., Ruzié, C., Ptaszek, M., Cramer, D. L., Taniguchi, M. & Lindsey, J. S. (2009). J. Porphyrins Phthalocyanines, 13, 1098–1110. Web of Science CSD CrossRef CAS Google Scholar
Laha, J. K., Muthiah, C., Taniguchi, M., McDowell, B. E., Ptaszek, M. & Lindsey, J. S. (2006). J. Org. Chem. 71, 4092–4102. Web of Science CrossRef PubMed CAS Google Scholar
Merkul, E., Boersch, C., Frank, W. & Müller, T. J. J. (2009). Org. Lett. 11, 2269–2272. Web of Science CSD CrossRef PubMed CAS Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Senge, M. O., Ryan, A. A., Letchford, K. A., MacGowan, S. A. & Mielke, T. (2014). Symmetry, 6, 781–843. Web of Science CrossRef Google Scholar
Senge, M. O. & Smith, K. M. (2005). Acta Cryst. C61, o537–o541. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76. Web of Science CrossRef CAS Google Scholar
Taniguchi, M. & Lindsey, J. S. (2017). Chem. Rev. 117, 344–535. Web of Science CrossRef CAS PubMed Google Scholar
Viedma, C., Coquerel, G. & Cintas, P. (2015). Crystallization of Chiral Molecules. In Handbook of Crystal Growth, vol. 2, edited by T. Nishinaga, pp. 951–1002. Tokyo: Elsevier. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zeng, X.-C., Gu, J., Xu, S.-H., Li, Y.-X. & Liu, P.-R. (2005). Acta Cryst. E61, o1805–o1806. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.