research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of 4-bromo-2-formyl-1-tosyl-1H-pyrrole, (E)-4-bromo-2-(2-nitro­vin­yl)-1-tosyl-1H-pyrrole and 6-(4-bromo-1-tosyl­pyrrol-2-yl)-4,4-di­methyl-5-nitro­hexan-2-one

CROSSMARK_Color_square_no_text.svg

aChair of Organic Chemistry, School of Chemistry, Trinity Biomedical Science Institute, 152-160 Pearse Street, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
*Correspondence e-mail: sengem@tcd.ie

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 19 February 2021; accepted 26 February 2021; online 5 March 2021)

The crystal structures of three inter­mediate compounds in the synthesis of 8-bromo-2,3,4,5-tetra­hydro-1,3,3-tri­methyl­dipyrrin are reported; 4-bromo-2-formyl-1-tosyl-1H-pyrrole, C12H10BrNO3S, (E)-4-bromo-2-(2-nitro­vin­yl)-1-tosyl-1H-pyrrole, C13H11BrN2O4S, and 6-(4-bromo-1-tosyl­pyrrol-2-yl)-4,4-dimethyl-5-nitro­hexan-2-one, C19H23BrN2O5S. The compounds show multitudinous inter­molecular C—H⋯O inter­actions, with bond distances and angle consistent in the series and within expectations, as well as varied packing types. The merits of collecting data beyond the standard resolution usually reported for small mol­ecules are discussed.

1. Chemical context

Dipyrrins – 2,2′-dipyrromethenes – are mol­ecular building blocks for multi-pyrrole fluoro­phores such as BODIPYs and porphyrins (e.g., Boyle et al., 1999[Boyle, R. W., Brückner, C., Posakony, J., James, B. R. & Dolphin, D. (1999). Org. Synth. 76, 287-287.]) employed as ligands in medicinal and materials chemistry (e.g., Hohlfeld et al., 2021[Hohlfeld, B. F., Gitter, B., Kingsbury, C. J., Flanagan, K. J., Steen, D., Wieland, G. D., Kulak, N., Senge, M. O. & Wiehe, A. (2021). Chem. Eur. J. https://doi.org/10.1002/chem.202004776.]) made through facile condensation reactions, and widely exploited in chemistry. Partially reduced analogues of dipyrrins, containing one pyrrole and one pyrroline unit, are conceptually similar to chlorins – e.g. chloro­phylls – where reduction of a macrocycle bond introduces electronic and photophysical changes (Senge et al., 2014[Senge, M. O., Ryan, A. A., Letchford, K. A., MacGowan, S. A. & Mielke, T. (2014). Symmetry, 6, 781-843.]). Synthetic chlorins are produced throught these inter­mediates by stepwise formation of a pyrroline ring (Taniguchi & Lindsey, 2017[Taniguchi, M. & Lindsey, J. S. (2017). Chem. Rev. 117, 344-535.]), pioneered by Battersby and coworkers (Dutton et al., 1983[Dutton, C. J., Fookes, C. J. R. & Battersby, A. R. (1983). J. Chem. Soc. Chem. Commun. pp. 1237-1238.]) and refined by Lindsey and coworkers (Laha et al., 2006[Laha, J. K., Muthiah, C., Taniguchi, M., McDowell, B. E., Ptaszek, M. & Lindsey, J. S. (2006). J. Org. Chem. 71, 4092-4102.]). The compounds presented here are inter­mediates in the synthesis of derivatives of tetra­hydro­dipyrrin 4, a versatile precursor that can be formed in high yield from inexpensive reagents.

2. Structural commentary

The crystal structures of 1, 2, and 3 (see Scheme and Fig. 1[link]) each display an isolated mol­ecule with no solvate included, with Z = 2 (for 2) and Z = 4 (for 1 and 3). Each mol­ecular structure shows a 2-substituted-4-bromo-1-tosyl-1H-pyrrole, with the 2-substitution as an aldehyde (1, R = CHO), a 2-nitro­vinyl [2, R = (E)-(CH)2NO2] and a 3,3-dimethyl-2-nitro­hexan-5-one substituent (3). The pyrrole fragment presents approximately consistent inter­nal bond distances throughout this series, as demonstrated in Table 1[link]. The pyrrole and tosyl groups adopt a consistent conformational structure with N—S and N—C bond torsion angles each at approximately 90°, as discussed in the Database survey section.

[Scheme 1]

Table 1
Bond distances (Å) in the shared pyrrole fragment of compounds 1, 2 and 3

Bond 1 2 3
N1—C2 1.404 (2) 1.399 (4) 1.4054 (7)
C2—C3 1.377 (3) 1.381 (5) 1.3692 (7)
C3—C4 1.410 (3) 1.414 (5) 1.4226 (8)
C4—C5 1.368 (3) 1.361 (5) 1.3613 (8)
C5—N1 1.378 (3) 1.381 (4) 1.3942 (7)
N1—S 1.7002 (16) 1.698 (3) 1.6808 (5)
C4—Br 1.879 (2) 1.881 (3) 1.8727 (5)
[Figure 1]
Figure 1
ORTEP plots of the mol­ecular units in the crystal structures of compounds 1, 2 and 3. Displacement ellipsoids (non-H) are presented at the 50% probability level, with H atoms presented as spheres of fixed radius (0.2 Å).

Compound 1 crystallizes in the chiral space group P212121; although this compound exhibits no individual chiral atom centre, the pyrrole and toluene­sulfonyl groups can have many possible orientations, with positive and negative rotation around the N—S bond breaking hypothetical reflection symmetry. The demands of the space-group symmetry of P212121 with Z′ = 1 are such that only one of these conformations is found in the unit cell. A Flack parameter of −0.016 (2), although anomalously low, strongly suggests that this individual crystal consists only of this pseudo-atropisomer. No evidence of any barrier to inversion is implied in solution, and enrichment of a preferred orientation in the solid state for this inter­mediate, without similar packing observed for other compounds here, underscores the difficulty in predicting solid-state conformations.

Compound 2 shows comparatively larger displacement ellipsoids than compounds 1 and 3, but excellent agreement between observations and model, simply without the excessive-resolution data. Compound 3 is the only compound in this series to exhibit a chiral centre – both enanti­omers exist within the unit cell, as this is a conglomerate structure (Viedma et al., 2015[Viedma, C., Coquerel, G. & Cintas, P. (2015). Crystallization of Chiral Molecules. In Handbook of Crystal Growth, vol. 2, edited by T. Nishinaga, pp. 951-1002. Tokyo: Elsevier.]). Both stereoisomers will form identical cyclized (oxidised) products upon conversion to compound 4 or similar species.

3. Supra­molecular features

Each example reported here has a different mode of inter­actions with neighbouring mol­ecules, with no consistent packing in the crystalline solid state. With a lack of heteroatom-bound protons, the solid-state architectures of each of these compounds lack traditional protic structure-directing mortar. Common features are the traditionally overlooked inter­molecular C—H⋯O and C—H⋯Br inter­actions, from the H atoms on the pyrrolyl, vinyl and aryl units to oxygen atoms in the sulfonyl, nitro or ketone moieties. This type of inter­action is assisted by the partial charge separation in these components (Steiner, 2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.]).

Individual mol­ecules of compound 1 stack directly on top of one another down the crystallographic a-axis direction, and show a C—H⋯O chelate to mol­ecules in an adjacent stack (Table 2[link]), related by the 21 screw coincident with the a axis. This inter­action is shown in Fig. 2[link]. Compound 2 shows coplanar inter­molecular inter­actions of the nitro­vinyl­pyrrole unit (Table 3[link]), in which short contacts can be observed as a C—H⋯O pseudo-chelate (3.36 and 3.30 Å, C⋯O), as well as C—H⋯Br (3.84 Å) inter­actions at the limit of notability. These two inter­actions serve to form ribbon-like arrangements, which propagate coincident with the crystallographic axes [2[\overline{1}]0] vector. Compound 3 demonstrates C—H⋯O (3.28 and 3.29 Å, C⋯O) and C—H⋯Br (3.88 Å) close-contact inter­actions; due to the length, these are likely superficial rather than structure directing.

Table 2
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O11 0.95 2.38 2.994 (3) 122
C5—H5⋯O10i 0.95 2.55 3.423 (2) 153
C13—H13⋯O10i 0.95 2.56 3.470 (3) 160
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Table 3
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O10i 0.95 2.37 3.297 (5) 166
C7—H7⋯O10i 0.95 2.41 3.360 (5) 174
C6—H6⋯O12 0.95 2.29 2.963 (4) 127
Symmetry code: (i) [-x, -y+2, -z+1].
[Figure 2]
Figure 2
Inter­molecular C—H⋯O inter­actions which control the inter­molecular packing of compound 1. Displacement ellipsoids are shown at 50% for non-H atoms. Four equivalent mol­ecules – in red, orange, green and blue – are related by a 21 screw coincident with the a axis.

In each of the compounds reported here, a multitude of unremarkable inter­actions around the van der Waals limit are observed to constrain individual mol­ecules. The presence of C—H⋯O inter­actions would likely be unremarkable if not for the chelate motif – these so-called weak inter­actions can be far stronger with partial charge separation, such as in a sulfonyl, and when occurring at multiple preorganized sites simultaneously (Kingsbury et al., 2019[Kingsbury, C. J., Abrahams, B. F., Auckett, J. E., Chevreau, H., Dharma, A. D., Duyker, S., He, Q., Hua, C., Hudson, T. A., Murray, K. S., Phonsri, W., Peterson, V. K., Robson, R. & White, K. F. (2019). Chem. Eur. J. 25, 5222-5234.]). Collection of multiple crystal structures along the synthetic pathway of organic compounds is, we believe, good practice to assist data science investigations, and offers potential insight into the electronic structure of inter­mediates (Senge & Smith, 2005[Senge, M. O. & Smith, K. M. (2005). Acta Cryst. C61, o537-o541.]).

4. Database survey

A search of the Cambridge Structural Database (CSD v 2020.3; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed 37 closely related structures with the 2-carbo-4-halo-pyrrole substructure. These structures can be divided into BODIPYs and analogues (13/37), other isolated organic mol­ecules (23/37), including inter­mediates in the total synthesis of (±)-sceptrin, and a lone Cu coordination complex.

A similar compound HULBIA, a bis­(meth­oxy)methyl derivative of 3 has been reported (Krayer et al., 2009[Krayer, M., Balasubramanian, T., Ruzié, C., Ptaszek, M., Cramer, D. L., Taniguchi, M. & Lindsey, J. S. (2009). J. Porphyrins Phthalocyanines, 13, 1098-1110.]). The presence of a protecting group at the pyrrole N atom is critical in the performance of metal-catalysed reactions; similar 2-substituted-4-halogenated pyrroles have been formed with different N-substitution of N-Boc (UJADUF; Merkul et al., 2009[Merkul, E., Boersch, C., Frank, W. & Müller, T. J. J. (2009). Org. Lett. 11, 2269-2272.]), with an aesthetic seven-membered cycle (PYAZPC; Flippen & Gilardi, 1974[Flippen, J. L. & Gilardi, R. D. (1974). Cryst. Struct. Commun. 3, 623-627.]), and a simple methyl group (FONHOG; Zeng et al., 2005[Zeng, X.-C., Gu, J., Xu, S.-H., Li, Y.-X. & Liu, P.-R. (2005). Acta Cryst. E61, o1805-o1806.]). The non-tosyl­ated iodo-analogue of 1 (HILTOM; Davis et al., 2007[Davis, R. A., Carroll, A. R., Quinn, R. J., Healy, P. C. & White, A. R. (2007). Acta Cryst. E63, o4076.]) has been reported previously.

A data analysis of a further 851 structures with an N-benzene­sulfonyl-pyrrole substructure shows that the component torsional angles (in the range of 0–90°), critcal in determining the solid-state conformation, each tend toward 90°. These values are consistent with our observations of an approximately adjacent-faces-of-a-cube arrangement of these two components. A Ramachandran-style plot illustrating the structural confluence of these two torsion angles is shown in Fig. 3[link], with the three compounds presented here highlighted in red.

[Figure 3]
Figure 3
Ramachandran-style plot of torsion angles (°) of central S—C and S—N bonds within N-benzene­sulfonyl­pyrrole substructures of crystal structures in the CSD v2020.3 (n = 851). Compounds 1, 2 and 3 are highlighted in red within the main orientation cluster.

5. Synthesis and crystallization

The synthesis of these compounds has been previously reported (Krayer et al., 2009[Krayer, M., Balasubramanian, T., Ruzié, C., Ptaszek, M., Cramer, D. L., Taniguchi, M. & Lindsey, J. S. (2009). J. Porphyrins Phthalocyanines, 13, 1098-1110.]). Crystals of the compounds 1, 2 and 3 were grown by hot recrystallization from ethyl acetate/hexane mixture (1) or iso­propanol (2) or slow evaporation of aceto­nitrile (3).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link].

Table 4
Experimental details

  1 2 3
Crystal data
Chemical formula C12H10BrNO3S C13H11BrN2O4S C19H23BrN2O5S
Mr 328.18 371.21 471.36
Crystal system, space group Orthorhombic, P212121 Triclinic, P[\overline{1}] Monoclinic, P21/c
Temperature (K) 100 100 100
a, b, c (Å) 4.8436 (5), 13.9149 (13), 18.5479 (17) 6.8904 (4), 8.3224 (4), 12.8763 (7) 7.7375 (2), 15.9728 (3), 16.7621 (3)
α, β, γ (°) 90, 90, 90 83.423 (3), 80.393 (3), 85.693 (3) 90, 93.055 (1), 90
V3) 1250.1 (2) 722.06 (7) 2068.68 (8)
Z 4 2 4
Radiation type Mo Kα Cu Kα Mo Kα
μ (mm−1) 3.45 5.40 2.12
Crystal size (mm) 0.20 × 0.09 × 0.06 0.08 × 0.06 × 0.01 0.61 × 0.56 × 0.55
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.616, 0.746 0.544, 0.753 0.669, 0.749
No. of measured, independent and observed [I > 2σ(I)] reflections 23296, 3972, 3714 7190, 2617, 2378 226885, 18433, 15578
Rint 0.028 0.042 0.031
(sin θ/λ)max−1) 0.725 0.602 1.021
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.045, 1.04 0.049, 0.142, 1.05 0.027, 0.076, 1.11
No. of reflections 3972 2617 18433
No. of parameters 164 191 257
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.34, −0.38 0.80, −0.63 0.69, −0.72
Absolute structure Flack x determined using 1452 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.016 (2)
Computer programs: APEX3 and SAINT (Bruker, 2015[Bruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), shelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

The collection of high-resolution data (to 0.7 Å for 1 and 0.5 Å for 3, with Mo Kα) appears to have an effect on the quality of the structure solution and refinement. Residual electron density at the centre of each bond is apparent, as shown in Fig. 4[link]; displacement ellipsoids are small. This additional data allows for bond distances to be determined at greater precision, as indicated in Table 1[link], and for the time involved in collection of this data to be extended artificially by 3–4 times. While unnecessary, this additional precision merits collection on crystals of sufficient quality when shorter collections are inconvenient. The suppression of presumably non-thermal character of displacement ellipsoids, such as that shown in compound 2, implies that the true thermal character at cryogenic temperatures is able to be better identified in high-resolution structures, though this could be the coincident effect of additional redundancy.

[Figure 4]
Figure 4
Residual electron density in the high-resolution data structure of 3; isosurface at 0.4 e Å−3 (+ve in green, -ve in red). H atoms omitted from view. This plot shows residual positive electron density at the centre point of a significant fraction of the C—C bonds.

Supporting information


Computing details top

For all structures, data collection: APEX3 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: shelXle (Hübschle, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).

4-Bromo-1-[(4-methylbenzene)sulfonyl]pyrrole-2-carbaldehyde (1) top
Crystal data top
C12H10BrNO3SDx = 1.744 Mg m3
Mr = 328.18Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 9913 reflections
a = 4.8436 (5) Åθ = 2.9–31.4°
b = 13.9149 (13) ŵ = 3.45 mm1
c = 18.5479 (17) ÅT = 100 K
V = 1250.1 (2) Å3Rod, colourless
Z = 40.20 × 0.09 × 0.06 mm
F(000) = 656
Data collection top
Bruker APEXII CCD
diffractometer
3714 reflections with I > 2σ(I)
φ and ω scansRint = 0.028
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 31.0°, θmin = 1.8°
Tmin = 0.616, Tmax = 0.746h = 76
23296 measured reflectionsk = 2019
3972 independent reflectionsl = 2026
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.045 w = 1/[σ2(Fo2) + (0.0201P)2 + 0.4002P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3972 reflectionsΔρmax = 0.34 e Å3
164 parametersΔρmin = 0.38 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.03533 (5)0.95495 (2)0.67018 (2)0.02243 (6)
N10.5067 (3)0.73027 (11)0.66274 (9)0.0138 (3)
C20.5792 (4)0.72511 (15)0.73590 (11)0.0167 (4)
C30.7636 (4)0.79838 (15)0.74892 (11)0.0181 (4)
H30.8471770.8131400.7939080.022*
C40.8059 (4)0.84751 (15)0.68338 (10)0.0163 (4)
C50.6504 (4)0.80452 (15)0.63092 (11)0.0153 (4)
H50.6428460.8225530.5815590.018*
C60.4882 (5)0.65241 (16)0.78783 (11)0.0226 (4)
H60.3574300.6053800.7732520.027*
O70.5766 (4)0.65095 (14)0.84935 (8)0.0334 (4)
S90.30100 (10)0.65428 (4)0.61513 (3)0.01313 (9)
O100.2261 (3)0.70813 (11)0.55234 (7)0.0167 (3)
O110.0978 (3)0.62059 (10)0.66500 (8)0.0175 (3)
C120.5188 (4)0.55963 (13)0.59054 (10)0.0135 (3)
C130.6698 (4)0.56650 (15)0.52637 (11)0.0170 (4)
H130.6533290.6213640.4961910.020*
C140.8442 (5)0.49124 (16)0.50790 (12)0.0187 (4)
H140.9470900.4948380.4643840.022*
C150.8716 (4)0.41035 (16)0.55192 (12)0.0182 (4)
C160.7162 (5)0.40561 (16)0.61547 (12)0.0189 (4)
H160.7316390.3506550.6455860.023*
C170.5402 (5)0.47959 (14)0.63526 (11)0.0168 (4)
H170.4360140.4757630.6785560.020*
C181.0659 (5)0.33074 (16)0.53061 (12)0.0236 (5)
H18A1.0206150.3085890.4818670.035*
H18B1.0474180.2771760.5645710.035*
H18C1.2562130.3546560.5315140.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02171 (10)0.01959 (10)0.02598 (10)0.00630 (9)0.00443 (8)0.00624 (9)
N10.0142 (8)0.0138 (7)0.0134 (7)0.0004 (6)0.0005 (7)0.0014 (6)
C20.0185 (10)0.0186 (10)0.0128 (8)0.0029 (8)0.0004 (7)0.0026 (7)
C30.0192 (10)0.0193 (10)0.0159 (9)0.0014 (8)0.0004 (8)0.0050 (8)
C40.0146 (9)0.0150 (9)0.0194 (10)0.0004 (8)0.0021 (7)0.0045 (7)
C50.0149 (9)0.0155 (10)0.0155 (9)0.0010 (7)0.0012 (7)0.0009 (7)
C60.0289 (12)0.0209 (10)0.0182 (9)0.0009 (10)0.0002 (9)0.0004 (8)
O70.0507 (12)0.0331 (9)0.0166 (7)0.0048 (9)0.0060 (7)0.0037 (7)
S90.0118 (2)0.0141 (2)0.0135 (2)0.00034 (18)0.00095 (17)0.00007 (17)
O100.0166 (7)0.0179 (7)0.0154 (7)0.0011 (6)0.0039 (5)0.0015 (6)
O110.0135 (7)0.0210 (7)0.0181 (7)0.0011 (5)0.0031 (6)0.0006 (6)
C120.0123 (8)0.0125 (9)0.0156 (8)0.0001 (7)0.0010 (7)0.0015 (6)
C130.0172 (10)0.0170 (10)0.0168 (9)0.0011 (8)0.0007 (7)0.0005 (7)
C140.0177 (10)0.0218 (10)0.0165 (9)0.0008 (8)0.0005 (8)0.0040 (8)
C150.0148 (9)0.0182 (10)0.0215 (10)0.0007 (8)0.0070 (7)0.0068 (8)
C160.0191 (10)0.0168 (10)0.0208 (10)0.0015 (8)0.0056 (8)0.0012 (8)
C170.0166 (9)0.0167 (9)0.0170 (9)0.0011 (8)0.0015 (8)0.0014 (7)
C180.0202 (11)0.0226 (11)0.0280 (11)0.0045 (9)0.0076 (9)0.0094 (9)
Geometric parameters (Å, º) top
Br1—C41.879 (2)C12—C171.393 (3)
N1—C51.378 (3)C12—C131.400 (3)
N1—C21.404 (2)C13—C141.388 (3)
N1—S91.7002 (16)C13—H130.9500
C2—C31.377 (3)C14—C151.397 (3)
C2—C61.465 (3)C14—H140.9500
C3—C41.410 (3)C15—C161.400 (3)
C3—H30.9500C15—C181.506 (3)
C4—C51.368 (3)C16—C171.386 (3)
C5—H50.9500C16—H160.9500
C6—O71.219 (3)C17—H170.9500
C6—H60.9500C18—H18A0.9800
S9—O111.4296 (15)C18—H18B0.9800
S9—O101.4316 (15)C18—H18C0.9800
S9—C121.7481 (19)
C5—N1—C2109.04 (16)C17—C12—C13121.47 (18)
C5—N1—S9122.66 (14)C17—C12—S9119.47 (15)
C2—N1—S9128.08 (14)C13—C12—S9119.05 (15)
C3—C2—N1107.09 (18)C14—C13—C12118.42 (19)
C3—C2—C6126.25 (19)C14—C13—H13120.8
N1—C2—C6126.58 (19)C12—C13—H13120.8
C2—C3—C4107.59 (18)C13—C14—C15121.4 (2)
C2—C3—H3126.2C13—C14—H14119.3
C4—C3—H3126.2C15—C14—H14119.3
C5—C4—C3108.74 (19)C16—C15—C14118.6 (2)
C5—C4—Br1125.50 (16)C16—C15—C18121.5 (2)
C3—C4—Br1125.75 (15)C14—C15—C18119.9 (2)
C4—C5—N1107.52 (17)C17—C16—C15121.2 (2)
C4—C5—H5126.2C17—C16—H16119.4
N1—C5—H5126.2C15—C16—H16119.4
O7—C6—C2121.4 (2)C16—C17—C12118.81 (19)
O7—C6—H6119.3C16—C17—H17120.6
C2—C6—H6119.3C12—C17—H17120.6
O11—S9—O10121.57 (9)C15—C18—H18A109.5
O11—S9—N1105.75 (9)C15—C18—H18B109.5
O10—S9—N1104.20 (9)H18A—C18—H18B109.5
O11—S9—C12109.72 (9)C15—C18—H18C109.5
O10—S9—C12109.57 (9)H18A—C18—H18C109.5
N1—S9—C12104.50 (9)H18B—C18—H18C109.5
C5—N1—C2—C31.4 (2)C5—N1—S9—C1290.92 (17)
S9—N1—C2—C3176.08 (15)C2—N1—S9—C1283.10 (19)
C5—N1—C2—C6175.5 (2)O11—S9—C12—C1721.53 (19)
S9—N1—C2—C60.8 (3)O10—S9—C12—C17157.39 (16)
N1—C2—C3—C40.7 (2)N1—S9—C12—C1791.45 (17)
C6—C2—C3—C4176.3 (2)O11—S9—C12—C13158.96 (16)
C2—C3—C4—C50.3 (2)O10—S9—C12—C1323.10 (19)
C2—C3—C4—Br1179.24 (16)N1—S9—C12—C1388.05 (17)
C3—C4—C5—N11.2 (2)C17—C12—C13—C140.2 (3)
Br1—C4—C5—N1178.37 (14)S9—C12—C13—C14179.33 (16)
C2—N1—C5—C41.6 (2)C12—C13—C14—C150.3 (3)
S9—N1—C5—C4176.62 (14)C13—C14—C15—C160.7 (3)
C3—C2—C6—O70.9 (4)C13—C14—C15—C18179.1 (2)
N1—C2—C6—O7175.5 (2)C14—C15—C16—C170.6 (3)
C5—N1—S9—O11153.29 (16)C18—C15—C16—C17179.2 (2)
C2—N1—S9—O1132.69 (19)C15—C16—C17—C120.2 (3)
C5—N1—S9—O1024.06 (18)C13—C12—C17—C160.2 (3)
C2—N1—S9—O10161.93 (17)S9—C12—C17—C16179.26 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O110.952.382.994 (3)122
C5—H5···O10i0.952.553.423 (2)153
C13—H13···O10i0.952.563.470 (3)160
Symmetry code: (i) x+1/2, y+3/2, z+1.
(E)-4-bromo-2-(2-nitrovinyl)-1-tosyl-1H-pyrrole (2) top
Crystal data top
C13H11BrN2O4SZ = 2
Mr = 371.21F(000) = 372
Triclinic, P1Dx = 1.707 Mg m3
a = 6.8904 (4) ÅCu Kα radiation, λ = 1.54178 Å
b = 8.3224 (4) ÅCell parameters from 4853 reflections
c = 12.8763 (7) Åθ = 3.5–68.2°
α = 83.423 (3)°µ = 5.40 mm1
β = 80.393 (3)°T = 100 K
γ = 85.693 (3)°Plate, colourless
V = 722.06 (7) Å30.08 × 0.06 × 0.01 mm
Data collection top
Bruker APEXII CCD
diffractometer
2378 reflections with I > 2σ(I)
φ and ω scansRint = 0.042
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 68.2°, θmin = 3.5°
Tmin = 0.544, Tmax = 0.753h = 68
7190 measured reflectionsk = 99
2617 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.1118P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2617 reflectionsΔρmax = 0.80 e Å3
191 parametersΔρmin = 0.63 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.78111 (5)0.59378 (4)0.35381 (3)0.0425 (2)
N10.6292 (5)0.7256 (3)0.6502 (2)0.0384 (6)
C20.4649 (5)0.7946 (4)0.6072 (3)0.0358 (7)
C30.4914 (5)0.7634 (4)0.5026 (3)0.0392 (7)
H30.4051690.7972630.4528980.047*
C40.6723 (5)0.6710 (4)0.4840 (3)0.0388 (7)
C50.7544 (6)0.6478 (4)0.5740 (3)0.0397 (7)
H50.8752640.5890670.5827100.048*
C60.3020 (5)0.8827 (4)0.6651 (3)0.0381 (7)
H60.3062190.8981970.7366230.046*
C70.1474 (6)0.9425 (5)0.6225 (3)0.0437 (8)
H70.1416180.9271230.5510820.052*
N80.0128 (5)1.0308 (4)0.6821 (3)0.0447 (7)
O90.0096 (4)1.0452 (4)0.7764 (2)0.0499 (6)
O100.1458 (5)1.0858 (5)0.6356 (3)0.0706 (10)
S110.66335 (12)0.69881 (8)0.77875 (6)0.0366 (2)
O120.5680 (4)0.8370 (3)0.8260 (2)0.0435 (6)
O130.8708 (4)0.6635 (3)0.7737 (2)0.0429 (6)
C140.5375 (5)0.5261 (4)0.8327 (2)0.0338 (6)
C150.3465 (6)0.5434 (4)0.8867 (3)0.0469 (8)
H150.2837480.6477900.8950240.056*
C160.2498 (6)0.4049 (5)0.9280 (3)0.0503 (9)
H160.1188160.4152070.9648770.060*
C170.3389 (6)0.2510 (4)0.9171 (3)0.0408 (7)
C180.5283 (5)0.2385 (4)0.8610 (3)0.0395 (7)
H180.5896950.1341350.8510450.047*
C190.6306 (5)0.3744 (4)0.8189 (3)0.0386 (7)
H190.7612770.3640400.7815800.046*
C200.2280 (6)0.1045 (4)0.9648 (3)0.0480 (9)
H20A0.1230860.0916570.9240790.072*
H20B0.1699920.1182661.0383120.072*
H20C0.3187240.0079250.9631640.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0488 (3)0.0434 (3)0.0347 (3)0.00224 (17)0.00398 (17)0.00571 (16)
N10.0524 (17)0.0278 (13)0.0348 (14)0.0006 (11)0.0084 (12)0.0016 (10)
C20.0443 (18)0.0255 (14)0.0371 (17)0.0049 (12)0.0072 (14)0.0015 (12)
C30.0442 (18)0.0341 (16)0.0370 (17)0.0033 (13)0.0016 (14)0.0004 (12)
C40.0500 (19)0.0289 (15)0.0360 (16)0.0051 (13)0.0024 (14)0.0020 (12)
C50.0501 (19)0.0293 (15)0.0381 (17)0.0016 (12)0.0031 (14)0.0046 (12)
C60.050 (2)0.0284 (14)0.0339 (16)0.0054 (13)0.0027 (14)0.0009 (12)
C70.0436 (19)0.0496 (19)0.0376 (18)0.0050 (15)0.0016 (14)0.0091 (14)
N80.0443 (17)0.0466 (16)0.0444 (18)0.0048 (13)0.0077 (14)0.0066 (13)
O90.0517 (15)0.0545 (16)0.0429 (15)0.0010 (12)0.0034 (12)0.0102 (11)
O100.0581 (19)0.099 (3)0.057 (2)0.0186 (18)0.0181 (15)0.0192 (18)
S110.0507 (5)0.0251 (4)0.0345 (4)0.0034 (3)0.0070 (3)0.0042 (3)
O120.0654 (16)0.0265 (11)0.0396 (13)0.0012 (10)0.0100 (11)0.0060 (9)
O130.0526 (14)0.0363 (12)0.0413 (13)0.0081 (10)0.0100 (11)0.0034 (9)
C140.0437 (17)0.0263 (14)0.0310 (15)0.0010 (12)0.0031 (12)0.0058 (11)
C150.058 (2)0.0318 (16)0.0441 (19)0.0063 (14)0.0081 (16)0.0039 (13)
C160.048 (2)0.0415 (19)0.054 (2)0.0007 (15)0.0134 (17)0.0068 (15)
C170.053 (2)0.0368 (17)0.0328 (16)0.0071 (14)0.0052 (14)0.0055 (12)
C180.0484 (19)0.0274 (15)0.0425 (18)0.0015 (12)0.0042 (14)0.0074 (13)
C190.0405 (17)0.0292 (15)0.0460 (18)0.0002 (12)0.0062 (14)0.0062 (13)
C200.061 (2)0.0407 (18)0.0410 (19)0.0146 (16)0.0006 (16)0.0045 (14)
Geometric parameters (Å, º) top
Br1—C41.881 (3)S11—O131.430 (3)
N1—C51.381 (4)S11—C141.748 (3)
N1—C21.399 (4)C14—C151.387 (5)
N1—S111.698 (3)C14—C191.389 (4)
C2—C31.381 (5)C15—C161.383 (6)
C2—C61.441 (5)C15—H150.9500
C3—C41.414 (5)C16—C171.390 (5)
C3—H30.9500C16—H160.9500
C4—C51.361 (5)C17—C181.385 (5)
C5—H50.9500C17—C201.503 (5)
C6—C71.318 (6)C18—C191.386 (5)
C6—H60.9500C18—H180.9500
C7—N81.439 (5)C19—H190.9500
C7—H70.9500C20—H20A0.9800
N8—O101.210 (5)C20—H20B0.9800
N8—O91.237 (4)C20—H20C0.9800
S11—O121.428 (2)
C5—N1—C2109.1 (3)O12—S11—C14109.60 (15)
C5—N1—S11120.8 (2)O13—S11—C14109.53 (15)
C2—N1—S11129.0 (2)N1—S11—C14104.67 (14)
C3—C2—N1107.6 (3)C15—C14—C19121.5 (3)
C3—C2—C6128.1 (3)C15—C14—S11119.5 (2)
N1—C2—C6124.2 (3)C19—C14—S11119.0 (3)
C2—C3—C4106.5 (3)C16—C15—C14118.3 (3)
C2—C3—H3126.8C16—C15—H15120.8
C4—C3—H3126.8C14—C15—H15120.8
C5—C4—C3109.6 (3)C15—C16—C17121.9 (4)
C5—C4—Br1125.7 (3)C15—C16—H16119.1
C3—C4—Br1124.7 (3)C17—C16—H16119.1
C4—C5—N1107.2 (3)C18—C17—C16118.1 (3)
C4—C5—H5126.4C18—C17—C20122.2 (3)
N1—C5—H5126.4C16—C17—C20119.7 (3)
C7—C6—C2122.4 (4)C17—C18—C19121.7 (3)
C7—C6—H6118.8C17—C18—H18119.1
C2—C6—H6118.8C19—C18—H18119.1
C6—C7—N8121.2 (4)C18—C19—C14118.4 (3)
C6—C7—H7119.4C18—C19—H19120.8
N8—C7—H7119.4C14—C19—H19120.8
O10—N8—O9123.7 (3)C17—C20—H20A109.5
O10—N8—C7116.7 (3)C17—C20—H20B109.5
O9—N8—C7119.6 (3)H20A—C20—H20B109.5
O12—S11—O13121.14 (15)C17—C20—H20C109.5
O12—S11—N1106.10 (14)H20A—C20—H20C109.5
O13—S11—N1104.39 (15)H20B—C20—H20C109.5
C5—N1—C2—C31.8 (3)C2—N1—S11—O13165.3 (3)
S11—N1—C2—C3169.3 (2)C5—N1—S11—C1486.7 (3)
C5—N1—C2—C6178.8 (3)C2—N1—S11—C1479.6 (3)
S11—N1—C2—C611.2 (5)O12—S11—C14—C1517.3 (3)
N1—C2—C3—C41.4 (3)O13—S11—C14—C15152.4 (3)
C6—C2—C3—C4179.2 (3)N1—S11—C14—C1596.2 (3)
C2—C3—C4—C50.5 (4)O12—S11—C14—C19163.7 (3)
C2—C3—C4—Br1179.7 (2)O13—S11—C14—C1928.6 (3)
C3—C4—C5—N10.5 (4)N1—S11—C14—C1982.9 (3)
Br1—C4—C5—N1179.2 (2)C19—C14—C15—C160.6 (6)
C2—N1—C5—C41.4 (4)S11—C14—C15—C16179.6 (3)
S11—N1—C5—C4170.2 (2)C14—C15—C16—C170.3 (7)
C3—C2—C6—C72.4 (6)C15—C16—C17—C181.5 (6)
N1—C2—C6—C7178.3 (3)C15—C16—C17—C20179.2 (4)
C2—C6—C7—N8179.7 (3)C16—C17—C18—C191.9 (6)
C6—C7—N8—O10177.7 (4)C20—C17—C18—C19178.8 (3)
C6—C7—N8—O93.0 (6)C17—C18—C19—C141.0 (5)
C5—N1—S11—O12157.4 (3)C15—C14—C19—C180.2 (5)
C2—N1—S11—O1236.3 (3)S11—C14—C19—C18179.2 (3)
C5—N1—S11—O1328.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O10i0.952.373.297 (5)166
C7—H7···O10i0.952.413.360 (5)174
C6—H6···O120.952.292.963 (4)127
Symmetry code: (i) x, y+2, z+1.
6-(4-bromo-1-tosylpyrrol-2-yl)-4,4-dimethyl-5-nitrohexan-2-one (3) top
Crystal data top
C19H23BrN2O5SF(000) = 968
Mr = 471.36Dx = 1.513 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.7375 (2) ÅCell parameters from 9692 reflections
b = 15.9728 (3) Åθ = 2.8–46.1°
c = 16.7621 (3) ŵ = 2.12 mm1
β = 93.055 (1)°T = 100 K
V = 2068.68 (8) Å3Block, colorless
Z = 40.61 × 0.56 × 0.55 mm
Data collection top
Bruker APEXII CCD
diffractometer
15578 reflections with I > 2σ(I)
φ and ω scansRint = 0.031
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 46.5°, θmin = 1.8°
Tmin = 0.669, Tmax = 0.749h = 1515
226885 measured reflectionsk = 3232
18433 independent reflectionsl = 3434
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0366P)2 + 0.375P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.006
18433 reflectionsΔρmax = 0.69 e Å3
257 parametersΔρmin = 0.72 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.22008 (2)0.57357 (2)0.01021 (2)0.01695 (2)
N10.17070 (6)0.42535 (3)0.20251 (3)0.01145 (6)
C30.37857 (7)0.44721 (3)0.11798 (3)0.01261 (7)
H30.4834980.4442620.0911520.015*
N80.44371 (8)0.23904 (3)0.11422 (3)0.01693 (8)
C20.33880 (7)0.40180 (3)0.18381 (3)0.01093 (6)
C40.23457 (7)0.49959 (3)0.09697 (3)0.01208 (7)
O90.57359 (9)0.27017 (4)0.08769 (4)0.02494 (10)
C50.10853 (7)0.48676 (3)0.14928 (3)0.01247 (7)
H50.0003470.5142270.1494760.015*
C60.45096 (7)0.33876 (3)0.22754 (3)0.01219 (7)
H6A0.4344370.3441480.2854790.015*
H6B0.5735490.3518490.2187440.015*
C70.41499 (7)0.24784 (3)0.20244 (3)0.01148 (7)
H70.2906180.2353810.2108530.014*
O100.33578 (10)0.19916 (4)0.07358 (3)0.02730 (12)
C110.52787 (7)0.18170 (3)0.24936 (3)0.01285 (7)
C120.51170 (9)0.09560 (4)0.20840 (4)0.01678 (9)
H12A0.5668450.0529340.2432020.025*
H12B0.5688690.0972690.1576400.025*
H12C0.3890850.0817930.1982710.025*
C130.71998 (8)0.20658 (4)0.25676 (5)0.01915 (10)
H13A0.7867830.1619430.2841100.029*
H13B0.7329970.2585680.2875380.029*
H13C0.7626200.2150800.2033470.029*
C140.46432 (8)0.17737 (4)0.33473 (3)0.01491 (8)
H14A0.5429530.1390940.3657240.018*
H14B0.4798730.2337100.3586560.018*
C150.28132 (9)0.14997 (4)0.34817 (4)0.01594 (8)
O160.18406 (7)0.12067 (4)0.29612 (3)0.02047 (8)
C170.22683 (13)0.16059 (6)0.43234 (5)0.02768 (15)
H17A0.3229190.1451120.4699050.042*
H17B0.1271480.1244600.4409130.042*
H17C0.1949090.2191240.4410780.042*
S180.05660 (2)0.39646 (2)0.28052 (2)0.01139 (2)
O190.11952 (6)0.41232 (3)0.25512 (3)0.01581 (7)
O200.11448 (7)0.31396 (3)0.30178 (3)0.01737 (7)
C210.11675 (7)0.46504 (3)0.35854 (3)0.01230 (7)
C220.04515 (8)0.54520 (4)0.35859 (4)0.01510 (8)
H220.0329230.5629910.3162970.018*
C230.09053 (9)0.59848 (4)0.42186 (4)0.01861 (9)
H230.0430570.6533100.4224460.022*
C240.20469 (9)0.57294 (4)0.48466 (4)0.01888 (10)
C250.27117 (9)0.49166 (5)0.48363 (4)0.01981 (10)
H250.3465800.4731940.5266480.024*
C260.22901 (8)0.43731 (4)0.42083 (4)0.01686 (9)
H260.2757600.3823270.4203580.020*
C270.25660 (13)0.63236 (6)0.55124 (5)0.02910 (16)
H27A0.2861890.6005230.6000430.044*
H27B0.1601850.6702870.5605800.044*
H27C0.3572630.6650220.5364900.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01729 (3)0.02109 (3)0.01259 (2)0.00044 (2)0.00191 (2)0.00605 (2)
N10.01097 (14)0.01251 (15)0.01104 (14)0.00102 (11)0.00231 (11)0.00178 (11)
C30.01252 (17)0.01266 (16)0.01295 (17)0.00042 (13)0.00361 (13)0.00055 (13)
N80.0264 (2)0.01156 (16)0.01297 (17)0.00279 (15)0.00230 (16)0.00011 (13)
C20.01090 (15)0.00970 (15)0.01232 (16)0.00022 (12)0.00189 (12)0.00041 (12)
C40.01302 (17)0.01289 (17)0.01043 (16)0.00009 (13)0.00146 (13)0.00130 (13)
O90.0316 (3)0.0223 (2)0.0222 (2)0.00315 (19)0.0137 (2)0.00241 (17)
C50.01182 (16)0.01417 (17)0.01151 (17)0.00155 (13)0.00149 (13)0.00201 (13)
C60.01206 (16)0.00977 (15)0.01461 (18)0.00011 (12)0.00042 (13)0.00072 (13)
C70.01306 (16)0.00962 (15)0.01172 (16)0.00006 (12)0.00023 (13)0.00016 (12)
O100.0448 (3)0.0210 (2)0.01518 (19)0.0039 (2)0.0072 (2)0.00253 (16)
C110.01313 (17)0.01012 (16)0.01516 (19)0.00026 (13)0.00073 (14)0.00104 (13)
C120.0209 (2)0.01018 (17)0.0193 (2)0.00159 (16)0.00143 (18)0.00047 (15)
C130.01240 (18)0.0166 (2)0.0282 (3)0.00095 (16)0.00065 (18)0.00158 (19)
C140.0173 (2)0.01399 (18)0.01306 (18)0.00250 (15)0.00284 (15)0.00117 (14)
C150.0216 (2)0.01344 (18)0.01275 (18)0.00542 (16)0.00065 (16)0.00065 (14)
O160.0214 (2)0.0228 (2)0.01716 (18)0.01001 (16)0.00056 (15)0.00288 (15)
C170.0392 (4)0.0296 (3)0.0148 (2)0.0130 (3)0.0068 (2)0.0009 (2)
S180.01086 (4)0.01178 (4)0.01174 (5)0.00151 (3)0.00243 (3)0.00137 (3)
O190.01000 (13)0.02075 (17)0.01676 (17)0.00281 (12)0.00140 (12)0.00022 (13)
O200.02110 (18)0.01187 (14)0.01957 (18)0.00005 (13)0.00506 (15)0.00389 (13)
C210.01169 (16)0.01488 (18)0.01041 (16)0.00063 (13)0.00135 (13)0.00141 (13)
C220.01588 (19)0.01612 (19)0.01330 (18)0.00146 (15)0.00080 (15)0.00038 (15)
C230.0214 (2)0.0188 (2)0.0158 (2)0.00135 (19)0.00307 (18)0.00325 (17)
C240.0201 (2)0.0256 (3)0.01121 (19)0.0081 (2)0.00354 (16)0.00192 (17)
C250.0190 (2)0.0281 (3)0.01208 (19)0.0051 (2)0.00187 (17)0.00301 (18)
C260.0164 (2)0.0205 (2)0.01350 (19)0.00019 (17)0.00121 (16)0.00393 (16)
C270.0358 (4)0.0369 (4)0.0150 (2)0.0168 (3)0.0046 (2)0.0071 (2)
Geometric parameters (Å, º) top
Br1—C41.8727 (5)C13—H13C0.9800
N1—C51.3942 (7)C14—C151.5103 (9)
N1—C21.4054 (7)C14—H14A0.9900
N1—S181.6808 (5)C14—H14B0.9900
C3—C21.3692 (7)C15—O161.2150 (8)
C3—C41.4226 (8)C15—C171.5036 (10)
C3—H30.9500C17—H17A0.9800
N8—O91.2258 (9)C17—H17B0.9800
N8—O101.2275 (8)C17—H17C0.9800
N8—C71.5135 (7)S18—O191.4285 (5)
C2—C61.4954 (7)S18—O201.4307 (5)
C4—C51.3613 (8)S18—C211.7499 (6)
C5—H50.9500C21—C261.3944 (8)
C6—C71.5333 (7)C21—C221.3951 (8)
C6—H6A0.9900C22—C231.3902 (9)
C6—H6B0.9900C22—H220.9500
C7—C111.5571 (7)C23—C241.3984 (10)
C7—H71.0000C23—H230.9500
C11—C131.5372 (8)C24—C251.3970 (11)
C11—C121.5392 (8)C24—C271.5033 (10)
C11—C141.5392 (8)C25—C261.3898 (10)
C12—H12A0.9800C25—H250.9500
C12—H12B0.9800C26—H260.9500
C12—H12C0.9800C27—H27A0.9800
C13—H13A0.9800C27—H27B0.9800
C13—H13B0.9800C27—H27C0.9800
C5—N1—C2109.72 (4)H13B—C13—H13C109.5
C5—N1—S18120.89 (4)C15—C14—C11120.01 (5)
C2—N1—S18129.11 (4)C15—C14—H14A107.3
C2—C3—C4107.72 (5)C11—C14—H14A107.3
C2—C3—H3126.1C15—C14—H14B107.3
C4—C3—H3126.1C11—C14—H14B107.3
O9—N8—O10123.76 (6)H14A—C14—H14B106.9
O9—N8—C7118.87 (6)O16—C15—C17121.55 (6)
O10—N8—C7117.35 (6)O16—C15—C14123.66 (6)
C3—C2—N1106.76 (4)C17—C15—C14114.78 (6)
C3—C2—C6127.03 (5)C15—C17—H17A109.5
N1—C2—C6126.21 (5)C15—C17—H17B109.5
C5—C4—C3109.30 (5)H17A—C17—H17B109.5
C5—C4—Br1125.45 (4)C15—C17—H17C109.5
C3—C4—Br1125.24 (4)H17A—C17—H17C109.5
C4—C5—N1106.47 (5)H17B—C17—H17C109.5
C4—C5—H5126.8O19—S18—O20121.24 (3)
N1—C5—H5126.8O19—S18—N1104.58 (3)
C2—C6—C7114.27 (4)O20—S18—N1106.03 (3)
C2—C6—H6A108.7O19—S18—C21108.85 (3)
C7—C6—H6A108.7O20—S18—C21108.86 (3)
C2—C6—H6B108.7N1—S18—C21106.24 (2)
C7—C6—H6B108.7C26—C21—C22121.51 (5)
H6A—C6—H6B107.6C26—C21—S18119.41 (5)
N8—C7—C6108.79 (4)C22—C21—S18119.02 (4)
N8—C7—C11108.84 (4)C23—C22—C21118.56 (6)
C6—C7—C11114.54 (4)C23—C22—H22120.7
N8—C7—H7108.2C21—C22—H22120.7
C6—C7—H7108.2C22—C23—C24121.30 (6)
C11—C7—H7108.2C22—C23—H23119.4
C13—C11—C12108.80 (5)C24—C23—H23119.4
C13—C11—C14106.98 (5)C25—C24—C23118.69 (6)
C12—C11—C14110.62 (5)C25—C24—C27120.79 (7)
C13—C11—C7112.29 (5)C23—C24—C27120.51 (7)
C12—C11—C7110.53 (4)C26—C25—C24121.21 (6)
C14—C11—C7107.56 (4)C26—C25—H25119.4
C11—C12—H12A109.5C24—C25—H25119.4
C11—C12—H12B109.5C25—C26—C21118.72 (6)
H12A—C12—H12B109.5C25—C26—H26120.6
C11—C12—H12C109.5C21—C26—H26120.6
H12A—C12—H12C109.5C24—C27—H27A109.5
H12B—C12—H12C109.5C24—C27—H27B109.5
C11—C13—H13A109.5H27A—C27—H27B109.5
C11—C13—H13B109.5C24—C27—H27C109.5
H13A—C13—H13B109.5H27A—C27—H27C109.5
C11—C13—H13C109.5H27B—C27—H27C109.5
H13A—C13—H13C109.5
C4—C3—C2—N10.72 (6)C12—C11—C14—C1558.53 (7)
C4—C3—C2—C6179.65 (5)C7—C11—C14—C1562.27 (6)
C5—N1—C2—C31.40 (6)C11—C14—C15—O169.44 (9)
S18—N1—C2—C3175.24 (4)C11—C14—C15—C17171.28 (6)
C5—N1—C2—C6178.97 (5)C5—N1—S18—O1927.62 (5)
S18—N1—C2—C65.13 (8)C2—N1—S18—O19159.14 (5)
C2—C3—C4—C50.21 (7)C5—N1—S18—O20156.84 (5)
C2—C3—C4—Br1179.12 (4)C2—N1—S18—O2029.92 (6)
C3—C4—C5—N11.05 (6)C5—N1—S18—C2187.44 (5)
Br1—C4—C5—N1178.27 (4)C2—N1—S18—C2185.80 (5)
C2—N1—C5—C41.52 (6)O19—S18—C21—C26144.02 (5)
S18—N1—C5—C4175.95 (4)O20—S18—C21—C269.94 (6)
C3—C2—C6—C796.18 (6)N1—S18—C21—C26103.86 (5)
N1—C2—C6—C783.39 (7)O19—S18—C21—C2233.26 (5)
O9—N8—C7—C645.57 (7)O20—S18—C21—C22167.34 (5)
O10—N8—C7—C6135.92 (6)N1—S18—C21—C2278.86 (5)
O9—N8—C7—C1179.85 (6)C26—C21—C22—C231.22 (9)
O10—N8—C7—C1198.66 (6)S18—C21—C22—C23178.44 (5)
C2—C6—C7—N859.57 (6)C21—C22—C23—C240.29 (10)
C2—C6—C7—C11178.41 (5)C22—C23—C24—C251.06 (10)
N8—C7—C11—C1376.03 (6)C22—C23—C24—C27178.05 (6)
C6—C7—C11—C1345.96 (7)C23—C24—C25—C261.54 (10)
N8—C7—C11—C1245.66 (6)C27—C24—C25—C26177.57 (7)
C6—C7—C11—C12167.66 (5)C24—C25—C26—C210.65 (10)
N8—C7—C11—C14166.52 (4)C22—C21—C26—C250.76 (9)
C6—C7—C11—C1471.48 (6)S18—C21—C26—C25177.96 (5)
C13—C11—C14—C15176.89 (5)
Bond distances (Å) in the shared pyrrole fragment of compounds 1, 2 and 3 top
Bond123
N1—C21.404 (2)1.399 (4)1.4054 (7)
C2—C31.377 (3)1.381 (5)1.3692 (7)
C3—C41.410 (3)1.414 (5)1.4226 (8)
C4—C51.368 (3)1.361 (5)1.3613 (8)
C5—N11.378 (3)1.381 (4)1.3942 (7)
N1—S1.7002 (16)1.698 (3)1.6808 (5)
C4—Br1.879 (2)1.881 (3)1.8727 (5)
 

Funding information

This work has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska–Curie Grant Agreement No. 764837.

References

First citationBoyle, R. W., Brückner, C., Posakony, J., James, B. R. & Dolphin, D. (1999). Org. Synth. 76, 287–287.  CAS Google Scholar
First citationBruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDavis, R. A., Carroll, A. R., Quinn, R. J., Healy, P. C. & White, A. R. (2007). Acta Cryst. E63, o4076.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDutton, C. J., Fookes, C. J. R. & Battersby, A. R. (1983). J. Chem. Soc. Chem. Commun. pp. 1237–1238.  CrossRef Web of Science Google Scholar
First citationFlippen, J. L. & Gilardi, R. D. (1974). Cryst. Struct. Commun. 3, 623–627.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHohlfeld, B. F., Gitter, B., Kingsbury, C. J., Flanagan, K. J., Steen, D., Wieland, G. D., Kulak, N., Senge, M. O. & Wiehe, A. (2021). Chem. Eur. J. https://doi.org/10.1002/chem.202004776.  Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKingsbury, C. J., Abrahams, B. F., Auckett, J. E., Chevreau, H., Dharma, A. D., Duyker, S., He, Q., Hua, C., Hudson, T. A., Murray, K. S., Phonsri, W., Peterson, V. K., Robson, R. & White, K. F. (2019). Chem. Eur. J. 25, 5222–5234.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKrayer, M., Balasubramanian, T., Ruzié, C., Ptaszek, M., Cramer, D. L., Taniguchi, M. & Lindsey, J. S. (2009). J. Porphyrins Phthalocyanines, 13, 1098–1110.  Web of Science CSD CrossRef CAS Google Scholar
First citationLaha, J. K., Muthiah, C., Taniguchi, M., McDowell, B. E., Ptaszek, M. & Lindsey, J. S. (2006). J. Org. Chem. 71, 4092–4102.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMerkul, E., Boersch, C., Frank, W. & Müller, T. J. J. (2009). Org. Lett. 11, 2269–2272.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSenge, M. O., Ryan, A. A., Letchford, K. A., MacGowan, S. A. & Mielke, T. (2014). Symmetry, 6, 781–843.  Web of Science CrossRef Google Scholar
First citationSenge, M. O. & Smith, K. M. (2005). Acta Cryst. C61, o537–o541.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.  Web of Science CrossRef CAS Google Scholar
First citationTaniguchi, M. & Lindsey, J. S. (2017). Chem. Rev. 117, 344–535.  Web of Science CrossRef CAS PubMed Google Scholar
First citationViedma, C., Coquerel, G. & Cintas, P. (2015). Crystallization of Chiral Molecules. In Handbook of Crystal Growth, vol. 2, edited by T. Nishinaga, pp. 951–1002. Tokyo: Elsevier.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZeng, X.-C., Gu, J., Xu, S.-H., Li, Y.-X. & Liu, P.-R. (2005). Acta Cryst. E61, o1805–o1806.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds